1
|
Lin D, Shen X, Tan C, Zhang H, Chen R, Du X, Liang H. Establishing electro-functionalized gravity-driven ceramic membrane filtration (EGDCM) for decentralized treatment of algae-laden brackish water: Comparison of in-situ electro-oxidation and ex-situ electro-coagulation. WATER RESEARCH 2025; 272:122940. [PMID: 39671867 DOI: 10.1016/j.watres.2024.122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Algae-laden brackish water (ABW) has remarkably threatened drinking water safety in warm coastal areas. Although gravity-driven ceramic membrane filtration (GDCM) exhibits high potential in ABW treatment during decentralized water supply, membrane fouling is still a critical problem. Herein, GDCM was skillfully electro-functionalized (EGDCM) by in-situ electro-oxidation (ISEO) based on self-fabricated Ti/SnO2-Sb dimensionally stable anode (DSA) (EO-EGDCM) and ex-situ electro-coagulation (ESEC) based on iron anode (EC-EGDCM) in this study. EO-EGDCM with KMnO4 augment (MnEO-EGDCM) was also established for comparison. Results show that ISEO increased GDCM membrane permeability by 22 %, while EC-EGDCM membrane flux was nearly 4.8 times that of GDCM. ISEO enhanced the early removal of organic pollution, and KMnO4 facilitated the active chlorine oxidization of ammonia and algal toxins on electrified Ti/SnO2-Sb DSA by suppressing the transformation of free chlorine to less reactive chloramines. Both algae cell permeabilization and intracellular organic matter release were enhanced by ISEO. But SEM-EDS, CLSM and biomass analysis evidenced that membrane biological process, which was improved by 32 %∼323 % by electrical stimulation, developed porous structures in the fouling layer in EO-EGDCM/MnEO-EGDCM. According to energy consumption and carbon emissions evaluation, GDCM was confirmed as an energy-saving system for treating ABW with the consumption of only 3.47 × 10-3 kWh/m3. Electricity demand was increased for EGDCM but still considerably lower than that for other algae-laden water treatment processes. EC-EGDCM reduced energy consumption and carbon emission by around 80 % compared to EC-EGDCM/MnEO-EGDCM. Electro-functionalization was a promising option to improve GDCM treatment of ABW via multiple mechanisms but further optimization was still required.
Collapse
Affiliation(s)
- Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinxu Shen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Caiwei Tan
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rui Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
2
|
Miele V, Varriale F, Melchiorre C, Varra M, Tartaglione L, Kulis D, Anderson DM, Ricks K, Poli M, Dell'Aversano C. Isolation of ovatoxin-a from Ostreopsis cf. ovata cultures. A key step for hazard characterization and risk management of ovatoxins. J Chromatogr A 2024; 1736:465350. [PMID: 39270567 DOI: 10.1016/j.chroma.2024.465350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Ostreopsis cf. ovata, a benthic/epiphytic marine dinoflagellate, is currently spreading in tropical, sub-tropical and temperate areas, causing periodic Harmful Algal Blooms (HABs). It produces a wide array of palytoxin-like compounds named ovatoxins (OVTXs), with OVTX-a generally the most abundant congener. Despite numerous cases of human poisonings and environmental damage associated with the presence of OVTXs and O. cf. ovata proliferations, a complete characterization of the toxicity of this class of molecules cannot be performed until Reference Material (RM) for individual congeners is available. This, in turn, requires the availability of sufficient amounts of toxin at a high purity grade. To achieve this goal, herein an analytical re-evaluation of critical-steps of OVTX-a isolation from O. cf. ovata cell pellets is reported. The overall procedure consists of four steps, namely an extraction, a Medium Pressure Liquid Chromatography (MPLC) separation, and two preparative High Performance Liquid Chromatography (HPLC) steps. Particular attention was paid to the extraction step to evaluate the repeatability in OVTX-a yields. For subsequent steps, loading sample preparation and chromatographic conditions were refined. As a result, a significant increase in recovery yields (from 12.5 to 20 ± 3%) and in purity grade (from 51% to 94%) of the isolated OVTX-a was achieved in comparison to previous studies. The improved procedure can easily be applied to isolate sufficient quantities of a good candidate RM for OVTX-a.
Collapse
Affiliation(s)
- Valentina Miele
- UNINA-DF, University of Naples Federico II, School of Medicine and Surgery, Department of Pharmacy, Naples, Italy
| | - Fabio Varriale
- UNINA-DF, University of Naples Federico II, School of Medicine and Surgery, Department of Pharmacy, Naples, Italy
| | - Chiara Melchiorre
- UNINA-DF, University of Naples Federico II, School of Medicine and Surgery, Department of Pharmacy, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Michela Varra
- UNINA-DF, University of Naples Federico II, School of Medicine and Surgery, Department of Pharmacy, Naples, Italy.
| | - Luciana Tartaglione
- UNINA-DF, University of Naples Federico II, School of Medicine and Surgery, Department of Pharmacy, Naples, Italy
| | - David Kulis
- WHOI, Woods Hole Oceanographic Institution, Woods Hole 02543, MA USA
| | - Donald M Anderson
- WHOI, Woods Hole Oceanographic Institution, Woods Hole 02543, MA USA
| | - Keersten Ricks
- USAMRIID, U.S. Army Medical Research Institute of Infectious Diseases, Diagnostic Systems Division, Ft Detrick, MD, USA
| | - Mark Poli
- USAMRIID, U.S. Army Medical Research Institute of Infectious Diseases, Diagnostic Systems Division, Ft Detrick, MD, USA
| | - Carmela Dell'Aversano
- UNINA-DF, University of Naples Federico II, School of Medicine and Surgery, Department of Pharmacy, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
3
|
Fabri-Ruiz S, Berdalet E, Ulses C, Somot S, Vila M, Lemée R, Irisson JO. Harmful Ostreopsis cf. ovata blooms could extend in time span with climate change in the Western Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174726. [PMID: 39002574 DOI: 10.1016/j.scitotenv.2024.174726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Fast environmental changes and high coastal human pressures and impacts threaten the Mediterranean Sea. Over the last decade, recurrent blooms of the harmful dinoflagellate Ostreopsis cf. ovata have been recorded in many Mediterranean beaches. These microalgae produce toxins that affect marine organisms and human health. Understanding the environmental conditions that influence the appearance and magnitude of O. cf. ovata blooms, as well as how climate change will modify its future distribution and dynamics, is crucial for predicting and managing their effects. This study investigates whether the spatio-temporal distribution of this microalga and the frequency of its blooms could be altered in future climate change scenarios in the Mediterranean Western basin. For the first time, an ecological habitat model (EHM) is forced by physico-chemical climate change simulations at high-resolution, under the strong greenhouse gas emission trajectory (RCP8.5). It allows to characterize how O. cf. ovata may respond to projected conditions and how its distribution could shift over a wide spatial scale, in this plausible future. Before being applied to the EHM, future climate simulations are further refined by using a statistical adaptation method (Cumulative Distribution Function transform) to improve the predictions robustness. Temperature (optimum 23-26 °C), high salinity (>38 psu) and high inorganic nutrient concentrations (nitrate >0.25 mmol N·m-3 and phosphate >0.035 mmol P·m-3) drive O. cf. ovata abundances. High spatial disparities in future abundances are observed. Namely, O. cf. ovata abundances could increase on the Mediterranean coasts of France, Spain and the Adriatic Sea while a decrease is expected in the Tyrrhenian Sea. The bloom period could be extended, starting earlier and continuing later in the year. From a methodological point of view, this study highlights best practices of EHMs in the context of climate change to identify sensitive areas for current and future harmful algal blooms.
Collapse
Affiliation(s)
- S Fabri-Ruiz
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France; DECOD, L'Institut Agro, IFREMER, INRAE, 44000 Nantes, France.
| | - E Berdalet
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - C Ulses
- Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES, CNRS, IRD, UT3, Toulouse, France
| | - S Somot
- CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
| | - M Vila
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - R Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - J-O Irisson
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| |
Collapse
|
4
|
Chiantore M, Asnaghi V, Saab MAA, Acaf L, Accoroni S, Badreddine A, Escalera L, Fricke A, Jauzein C, Lemée R, Totti C, Turki S, Vila M, Zaghmourii I, Zingone A, Berdalet E, Mangialajo L. Basin scale variability of Ostreopsis spp. blooms provides evidence of effectiveness of an integrated sampling approach. HARMFUL ALGAE 2024; 136:102651. [PMID: 38876529 DOI: 10.1016/j.hal.2024.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
Ostreopsis spp. blooms have been occurring in the last two decades in the Mediterranean Sea in association with a variety of biotic and abiotic substrata (macroalgae, seagrasses, benthic invertebrates, sand, pebbles and rocks). Cells proliferate attached to the surfaces through mucilaginous trichocysts, which lump together microalgal cells, and can also be found in the plankton and on floating aggregates: such tychoplanktonic behavior makes the quantitative assessment of blooms more difficult than planktonic or benthic ones. Different techniques have been so far applied for quantifying cell abundances of benthic microalgae for research, monitoring and risk assessment purposes. In this context, the Benthic Dinoflagellates Integrator (BEDI), a non-destructive quantification method for benthic dinoflagellate abundances, was developed and tested within the EU ENPI-CBCMED project M3-HABs. This device allows mechanical detachment of cells without collecting the benthic substrate, providing an integrated assessment of both epiphytic and planktonic cells, i.e. of the number of cells potentially made available in the water volume from "resuspension" which could have harmful effects on other organisms (including humans). The present study confirms the effectiveness of the BEDI sampling device across different environments across the Mediterranean Sea and constitutes the first large-scale study of Ostreopsis spp. blooms magnitude in function of different macro- and meso‑habitat features across the basin.
Collapse
Affiliation(s)
- Mariachiara Chiantore
- DiSTAV, Università di Genova, C. so Europa 26, 16132 Genoa, Italy; CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Valentina Asnaghi
- DiSTAV, Università di Genova, C. so Europa 26, 16132 Genoa, Italy; CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy; National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Marie Abboud-Abi Saab
- National Council for Scientific Research, National Centre for Marine Sciences, P.O. Box 534, Batroun, Lebanon
| | - Laury Acaf
- National Council for Scientific Research, National Centre for Marine Sciences, P.O. Box 534, Batroun, Lebanon; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 06234 Villefranche-sur-mer, France
| | - Stefano Accoroni
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Ali Badreddine
- National Council for Scientific Research, National Centre for Marine Sciences, P.O. Box 534, Batroun, Lebanon
| | - Laura Escalera
- Stazione Zoologica Anton Dohrn, Napoli, Italy; Subida a Radiofaro 50, 36390 Vigo (Pontevedra, Spain), Centro Oceanografico de Vigo (IEO-CSIC), Spain
| | - Anna Fricke
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France; IGZ - Leibniz Institute of Vegetable and Ornamental Crops, e.V. Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Cécile Jauzein
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 06234 Villefranche-sur-mer, France; Laboratoire d'Ecologie Pélagique (PDG-ODE-DYNECO-PELAGOS) Centre Bretagne - ZI de la Pointe du Diable - CS 10070 - 29280 Plouzané, France
| | - Rodolphe Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 06234 Villefranche-sur-mer, France
| | - Cecilia Totti
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Souad Turki
- National Institute of Marine Sciences and Technologies, 28 rue 2 mars 1934, Carthage Salammbô, Tunisia
| | - Magda Vila
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Imen Zaghmourii
- National Institute of Marine Sciences and Technologies, 28 rue 2 mars 1934, Carthage Salammbô, Tunisia
| | | | - Elisa Berdalet
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Luisa Mangialajo
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France
| |
Collapse
|
5
|
Drouet K, Lemée R, Guilloud E, Schmitt S, Laza-Martinez A, Seoane S, Boutoute M, Réveillon D, Hervé F, Siano R, Jauzein C. Ecophysiological responses of Ostreopsis towards temperature: A case study of benthic HAB facing ocean warming. HARMFUL ALGAE 2024; 135:102648. [PMID: 38830713 DOI: 10.1016/j.hal.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Abstract
Reports of the benthic dinoflagellate Ostreopsis spp. have been increasing in the last decades, especially in temperate areas. In a context of global warming, evidences of the effects of increasing sea temperatures on its physiology and its distribution are still lacking and need to be investigated. In this study, the influence of temperature on growth, ecophysiology and toxicity was assessed for several strains of O. cf. siamensis from the Bay of Biscay (NE Atlantic) and O. cf. ovata from NW Mediterranean Sea. Cultures were acclimated to temperatures ranging from 14.5 °C to 32 °C in order to study the whole range of each strain-specific thermal niche. Acclimation was successful for temperatures ranging from 14.5 °C to 25 °C for O. cf. siamensis and from 19 °C to 32 °C for O. cf. ovata, with the highest growth rates measured at 22 °C (0.54-1.06 d-1) and 28 °C (0.52-0.75 d-1), respectively. The analysis of cellular content of pigments and lipids revealed some aspects of thermal acclimation processes in Ostreopsis cells. Specific capacities of O. cf. siamensis to cope with stress of cold temperatures were linked with the activation of a xanthophyll cycle based on diadinoxanthin. Lipids (neutral reserve lipids and polar ones) also revealed species-specific variations, with increases in cellular content noted under extreme temperature conditions. Variations in toxicity were assessed through the Artemia franciscana bioassay. For both species, a decrease in toxicity was observed when temperature dropped under the optimal temperature for growth. No PLTX-like compounds were detected in O. cf. siamensis strains. Thus, the main part of the lethal effect observed on A. franciscana was dependent on currently unknown compounds. From a multiclonal approach, this work allowed for defining specificities in the thermal niche and acclimation strategies of O. cf. siamensis and O. cf. ovata towards temperature. Potential impacts of climate change on the toxic risk associated with Ostreopsis blooms in both NW Mediterranean Sea and NE Atlantic coast is further discussed, taking into account variations in the geographic distribution, growth abilities and toxicity of each species.
Collapse
Affiliation(s)
- K Drouet
- Sorbonne Université, CNRS - Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, 06230, France; Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France.
| | - R Lemée
- Sorbonne Université, CNRS - Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, 06230, France
| | - E Guilloud
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| | - S Schmitt
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| | - A Laza-Martinez
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Leioa, 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), Plentzia, 48620, Spain
| | - S Seoane
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Leioa, 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), Plentzia, 48620, Spain
| | - M Boutoute
- Sorbonne Université, CNRS - Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, 06230, France
| | - D Réveillon
- Ifremer, PHYTOX, Laboratoire METALG, F-44000, Nantes, France
| | - F Hervé
- Ifremer, PHYTOX, Laboratoire METALG, F-44000, Nantes, France
| | - R Siano
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| | - C Jauzein
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| |
Collapse
|
6
|
Lanceleur R, Gémin MP, Blier AL, Meslier L, Réveillon D, Amzil Z, Ternon E, Thomas OP, Fessard V. Toxic responses of metabolites produced by Ostreopsis cf. ovata on a panel of cell types. Toxicon 2024; 240:107631. [PMID: 38331106 DOI: 10.1016/j.toxicon.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Blooms of the dinoflagellate Ostreopsis cf. ovata are regularly associated with human intoxications that are attributed to ovatoxins (OVTXs), the main toxic compounds produced by this organism and close analogs to palytoxin (PlTX). Unlike for PlTX, information on OVTXs'toxicity are scarce due to the absence of commercial standards. Extracts from two cultures of Mediterranean strains of O. cf. ovata (MCCV54 and MCCV55), two fractions containing or not OVTXs (prepared from the MCCV54 extract) and OVTX-a and -d (isolated from the MCCV55 extract) were generated. These chemical samples and PlTX were tested on a panel of cell types from several organs and tissues (skin, intestine, lung, liver and nervous system). The MCCV55 extract, containing a 2-fold higher amount of OVTXs than MCCV54 extract, was shown to be more cytotoxic on all the cell lines and more prone to increase interleukin-8 (IL-8) release in keratinocytes. The fraction containing OVTXs was also cytotoxic on the cell lines tested but induced IL-8 release only in liver cells. Unexpectedly, the cell lines tested showed the same sensitivity to the fraction that does not contain OVTXs. With this fraction, a pro-inflammatory effect was shown both in lung and liver cells. The level of cytotoxicity was similar for OVTX-a and -d, except on intestinal and skin cells where a weak difference of toxicity was observed. Among the 3 toxins, only PlTX induced a pro-inflammatory effect mostly on keratinocytes. These results suggest that the ubiquitous Na+/K+ ATPase target of PlTX is likely shared with OVTX-a and -d, although the differences in pro-inflammatory effect must be explained by other mechanisms.
Collapse
Affiliation(s)
- Rachelle Lanceleur
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France
| | | | - Anne-Louise Blier
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France
| | - Lisa Meslier
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France
| | | | - Zouher Amzil
- IFREMER, PHYTOX, METALG Laboratory, 44000, Nantes, France
| | - Eva Ternon
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093, BP 28, 06230, Villefranche-sur-Mer, France; Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560, Valbonne, France
| | - Olivier P Thomas
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, H91TK33, Galway, Ireland
| | - Valérie Fessard
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France.
| |
Collapse
|
7
|
Giuliani ME, Bacchiocchi S, Accoroni S, Siracusa M, Campacci D, Notarstefano V, Mezzelani M, Piersanti A, Totti C, Benedetti M, Regoli F, Gorbi S. Subcellular effects and lipid metabolism alterations in the gilthead seabream Sparus aurata fed on ovatoxins-contaminated mussels. CHEMOSPHERE 2024; 352:141413. [PMID: 38336037 DOI: 10.1016/j.chemosphere.2024.141413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The marine microalgae Ostreopsis cf. ovata are a well-known producer of palytoxin (PlTXs) analogues, i.e. ovatoxins (OVTXs) among others, which arouse concern for animal and human health. Both in field and laboratory studies, presence of OVTXs, detected in species directly feeding on O. cf. ovata, was frequently correlated with impairment on organisms' physiology, development and behaviour, while similar knowledge is still lacking for animals feeding on contaminated preys. In this study, transfer and toxicity of OVTXs were evaluated in an exposure experiment, in which gilthead seabream Sparus aurata was fed with bivalve mussel Mytilus galloprovincialis, contaminated by a toxic strain of O. cf. ovata. Mussels exposed to O. cf. ovata for 21 days accumulated meanly 188 ± 13 μg/kg OVTXs in the whole tissues. Seabreams fed with OVTX-contaminated mussels started to reject the food after 6 days of contaminated diet. Although no detectable levels of OVTXs were measured in muscle, liver, gills and gastro-intestinal tracts, the OVTX-enriched diet induced alterations of lipid metabolism in seabreams livers, displaying a decreased content of total lipid and fatty acid, together with overexpression of fatty acid biosynthetic genes, downregulation of β-oxidation genes and modulation of several genes related to lipid transport and regulation. Results from this study would suggest the hypothesis that OVTXs produced by O. cf. ovata may not be subject to bioaccumulation in fish fed on contaminated preys, being however responsible of significant biological effects, with important implications for human consumption of seafood products.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, AN, Italy
| | - Simone Bacchiocchi
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, AN, Italy
| | - Stefano Accoroni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Melania Siracusa
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, AN, Italy
| | - Debora Campacci
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, AN, Italy
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arianna Piersanti
- Istituto Zooprofilattico Sperimentale Umbria e Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, AN, Italy
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
8
|
Grigoriyan A, Lorini ML, Figueiredo MDSL, Corrêa Almada EV, Nascimento SM. Effects of culture conditions on the growth of the benthic dinoflagellates Ostreopsis cf. ovata, Prorocentrum lima and Coolia malayensis (Dinophyceae): A global review. HARMFUL ALGAE 2024; 132:102565. [PMID: 38331537 DOI: 10.1016/j.hal.2023.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/10/2024]
Abstract
Benthic dinoflagellates produce potent toxins that may negatively affect humans and the marine biota. Understanding the factors that stimulate their growth is important for management strategies and to reduce their potential negative impacts. Laboratory cultures have been extensively used to study microalgae physiology and characterize life cycles, nutrition, growth rates, among other processes. A systematic review of the literature on the growth parameters of the benthic dinoflagellates Ostreopsis cf. ovata, Prorocentrum lima species complex and Coolia malayensis obtained in laboratory cultures of strains isolated from all over the world was performed. The effects of temperature, light intensity, photoperiod, salinity and culture media on the growth rate of these species were evaluated using multiple regressions and a model selection approach, based on the Akaike Information Criteria (AIC). The potential effects of the initial culture abundance and the media volume used on the growth of the species were also assessed. Data from 50 articles (25 for O. cf. ovata, 21 for P. lima and 6 for C. malayensis), resulting in 399 growth parameter values (growth rate, doubling time and maximum yield) were compiled in a database. The genetic clades of O. cf. ovata and P. lima species complex were also noted. Growth rate was the most frequently reported growth parameter for the three species, and 127 values were retrieved for O. cf. ovata, 90 for P. lima and 56 for C. malayensis. Temperature was the factor that best explained the growth response of P. lima and C. malayensis, whereas for O. cf. ovata, temperature and salinity were equally important. Light intensity and photoperiod were included among the six best models for the studied species but presented a weaker effect on growth. Given the observed and future projected climate change, increasing ocean temperature will promote the growth of these species, likely leading to an expansion of their impacts on ecosystems and human health. The use of common garden experiments using multiple strains from different geographic domains, particularly addressing underrepresented lineages is recommended, as they will provide more balanced insight regarding the species physiological responses to environmental drivers.
Collapse
Affiliation(s)
- Alexandra Grigoriyan
- Laboratório de Microalgas Marinhas, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil
| | - Maria Lucia Lorini
- Laboratório de Ecologia e Biogeografia, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil
| | - Marcos de Souza Lima Figueiredo
- Laboratório de Ecologia e Biogeografia, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil
| | | | - Silvia M Nascimento
- Laboratório de Microalgas Marinhas, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil.
| |
Collapse
|
9
|
Medina-Pérez NI, Santos FJ, Berdalet E, Moyano E. Multiply charged ion profiles in the UHPLC-HRMS analysis of palytoxin analogues from Ostreopsis cf. ovata blooms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1355-1364. [PMID: 36847157 PMCID: PMC10633106 DOI: 10.1039/d2ay02019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Analogues of palytoxin (PLTX), one of the most potent marine biotoxins, are produced by some species of the marine dinoflagellates of the genus Ostreopsis. The proliferation of these species in different coastal zones represents a potential threat of seafood poisoning in humans because the produced toxins can be transferred through marine food webs. Thus, the determination of the concentration of PLTX analogues (ovatoxins-OVTXs, ostreocins-OSTs and isobaric PLTX) in different matrices (seawater, marine fauna, etc.) is necessary to protect human health. This study is addressed to overcome some of the challenges that the chemical complexity of these molecules poses to their quantification by ultra-high-performance liquid chromatography high-resolution mass spectrometry-based techniques (UHPLC-HRMS). In particular, the mass spectra of the palytoxin analogues show the presence of a large number of ions (including mono- and multiply charged ions) whose nature, relative abundances and behavior can lead to quantitation errors if the correct ions are not selected. In this work, the variability of the PLTX and OVTX profiles under different instrument conditions, including the use of diverse electrospray generation sources and different quantitation methods, is studied. Moreover, the extraction protocol in seawater containing Ostreopsis sp. ovata cells is also evaluated. The use of a heated electrospray operating at 350 °C and a quantitative method including ions from different multiply charged species provides a more robust and reliable method for overcoming the problems due to the variability in the toxin's mass spectrum profile. A single MeOH : H2O (80 : 20, v/v) extraction is proposed as the best and reliable procedure. The overall method proposed was applied to quantify OVTXs (-a to -g) and iso-PLTX along the 2019 Ostreopsis cf. ovata bloom. The cells contained a total toxin concentration of up to 20.39 pg per cell.
Collapse
Affiliation(s)
- Noemí Inmaculada Medina-Pérez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Francisco Javier Santos
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
- Water Research Institute (IdRA), University of Barcelona, Barcelona, Spain
| | - Elisa Berdalet
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
- Water Research Institute (IdRA), University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Medina-Pérez NI, Cerdán-García E, Rubió F, Viure L, Estrada M, Moyano E, Berdalet E. Progress on the Link between Nutrient Availability and Toxin Production by Ostreopsis cf. ovata: Field and Laboratory Experiments. Toxins (Basel) 2023; 15:188. [PMID: 36977079 PMCID: PMC10057244 DOI: 10.3390/toxins15030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to improve the understanding of the nutrient modulation of Ostreopsis cf. ovata toxin content. During the 2018 natural bloom in the NW Mediterranean, the total toxin content (up to ca. 57.6 ± 7.0 pg toxin cell-1) varied markedly. The highest values often coincided with elevated O. cf. ovata cell abundance and with low inorganic nutrient concentrations. The first culture experiment with a strain isolated from that bloom showed that cell toxin content was higher in the stationary than in the exponential phase of the cultures; phosphate- and nitrate-deficient cells exhibited similar cell toxin variability patterns. The second experiment with different conditions of nitrogen concentration and source (nitrate, urea, ammonium, and fertilizer) presented the highest cellular toxin content in the high-nitrogen cultures; among these, urea induced a significantly lower cellular toxin content than the other nutrient sources. Under both high- and low-nitrogen concentrations, cell toxin content was also higher in the stationary than in the exponential phase. The toxin profile of the field and cultured cells included ovatoxin (OVTX) analogues -a to -g and isobaric PLTX (isoPLTX). OVTX-a and -b were dominant while OVTX-f, -g, and isoPLTX contributed less than 1-2%. Overall, the data suggest that although nutrients determine the intensity of the O. cf. ovata bloom, the relationship of major nutrient concentrations, sources and stoichiometry with cellular toxin production is not straightforward.
Collapse
Affiliation(s)
- Noemí Inmaculada Medina-Pérez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| | - Elena Cerdán-García
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Francesc Rubió
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| | - Laia Viure
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| | - Marta Estrada
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
- Water Research Institute (IdRA), University of Barcelona, Montalegre 6, E-08001 Barcelona, Spain
| | - Elisa Berdalet
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| |
Collapse
|
11
|
Rapid Biotic and Abiotic Transformation of Toxins produced by Ostreopsis. cf. ovata. Mar Drugs 2022; 20:md20120748. [PMID: 36547895 PMCID: PMC9787646 DOI: 10.3390/md20120748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The dinoflagellate Ostreopsis cf. ovata produces several families of toxic polyketides. Despite only a few field measurements of these phycotoxins in seawater and aerosols, they are believed to be responsible for dermatitis and the toxic inhalations reported during blooms of this species. Therefore, the stability of these compounds in seawater is essential to understanding the causes of these symptoms, however, this has never been assessed. In the current study, the optimization of a solid phase extraction (SPE) procedure was first performed to ensure the most efficient extraction of all phycotoxins known to be produced by this strain, including the recently described liguriatoxins. The SPE cartridge SDBL® under non acidified conditions offered the best option. The stability of the ovatoxins and the liguriatoxins under biotic and abiotic stress was assessed by exposing the spent medium of a culture of Ostreopsis cf. ovata to its bacterial consortium and natural sunlight. A rapid biotic transformation was detected for both families of compounds. When exposed to bacteria, the half-lives of the ovatoxins were reached before 10 h and at 36 h, 97% of these toxins had been transformed. The half-lives of the liguriatoxins were 10 h under these conditions. Photolysis (abiotic degradation) of the ovatoxins (T1/2 < 36 h) was faster than for the liguriatoxins (T1/2 > 62 h). Although none of the catabolites of these phycotoxins were thoroughly identified, an untargeted metabolomics approach combined with molecular networking highlighted the presence of several compounds exhibiting structural similarities with the ovatoxins. Additional work should confirm the preliminary findings on these potential ovatoxins’ catabolites and their biological properties. The rapid transformation of O. cf. ovata’s phycotoxins introduces questions concerning their presence in seawater and their dispersion in the sea spray aerosols. The compounds involved in the toxic inhalations and dermatitis often experienced by beachgoers may stem from the catabolites of these toxins or even unrelated and as yet unidentified compounds.
Collapse
|
12
|
Berdalet E, Pavaux AS, Abós-Herràndiz R, Travers M, Appéré G, Vila M, Thomas J, de Haro L, Estrada M, Medina-Pérez NI, Viure L, Karlson B, Lemée R. Environmental, human health and socioeconomic impacts of Ostreopsis spp. Blooms in the NW Mediterranean. HARMFUL ALGAE 2022; 119:102320. [PMID: 36344192 DOI: 10.1016/j.hal.2022.102320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
This paper summarizes the research conducted by the partners of the EU co-funded CoCliME project to ascertain the ecological, human health and economic impacts of Ostreopsis (mainly O. cf. ovata) blooms in the NW Mediterranean coasts of France, Monaco and Spain. This knowledge is necessary to design strategies to prevent, mitigate and, if necessary, adapt to the impacts of these events in the future and in other regions. Ostreopsis proliferations in the Mediterranean have been related to massive mortalities of benthic organisms and to symptoms of respiratory and cutaneous irritation in humans. A six-year epidemiologic study in a Ostreopsis hot spot in Catalonia and the accumulated experience of the French Mediterranean National Ostreopsis Surveillance Network confirm the main effects of these blooms on human health in the NW Mediterranean. The impacts are associated to direct exposure to seawater with high Ostreopsis cell concentrations and to inhalation of aerosols containing unknown irritative chemicals produced under certain circumstances during the blooms. A series of mild acute symptoms, affecting the entire body as well as the ophthalmic, digestive, respiratory and dermatologic systems have been identified. A main remaining challenge is to ascertain the effects of the chronic exposure to toxic Ostreopsis blooms. Still, the mechanisms involved in the deletereous effects of Ostreopsis blooms are poorly understood. Characterizing the chemical nature of the harmful compounds synthesized by Ostreopsis as well as the role of the mucus by which cells attach to benthic surfaces, requires new technical approaches (e.g., metabolomics) and realistic and standardized ecotoxicology tests. It is also necessary to investigate how palytoxin analogues produced by O. cf. ovata could be transferred through the marine food webs, and to evaluate the real risk of seafood poisonings in the area. On the other hand, the implementation of beach monitoring and surveillance systems in the summer constitutes an effective strategy to prevent the impacts of Ostreopsis on human health. In spite of the confirmed noxious effects, a survey of tourists and residents in Nice and Monaco to ascertain the socioeconomic costs of Ostreopsis blooms indicated that the occurrence of these events and their impacts are poorly known by the general public. In relationship with a plausible near future increase of Ostreopsis blooms in the NW Mediterranean coast, this survey showed that a substantial part of the population might continue to go to the beaches during Ostreopsis proliferations and thus could be exposed to health risks. In contrast, some people would not visit the affected areas, with the potential subsequent negative impacts on coastal recreational and touristic activities. However, at this stage, it is too early to accurately assess all the economic impacts that a potentially increasing frequency and biogeographic expansion of the events might cause in the future.
Collapse
Affiliation(s)
- Elisa Berdalet
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, Barcelona, Catalonia 08003, Spain.
| | - Anne-Sophie Pavaux
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université - CNRS, UMR 7093, 181 Chemin du Lazaret, Villefranche-sur-mer 06230, France
| | - Rafael Abós-Herràndiz
- Departament de la Salut, Institut Català de la Salut, Generalitat de Catalunya, Spain
| | - Muriel Travers
- LEMNA, Institute of Economics and Management of Nantes, Nantes University, Chemin de la Censive du Tertre, BP 52231, Cedex 3, Nantes 44322, France
| | - Gildas Appéré
- GRANEM, Faculty of Law, Economics and Management, University of Angers, 13 allée François Mitterrand, BP 13633, CEDEX 01, Angers 49036, France
| | - Magda Vila
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, Barcelona, Catalonia 08003, Spain
| | - Jérémy Thomas
- LEMNA, Institute of Economics and Management of Nantes, Nantes University, Chemin de la Censive du Tertre, BP 52231, Cedex 3, Nantes 44322, France
| | - Luc de Haro
- Clinical Pharmacology and Poison Control Centre, APHM, Hôpital Sainte Marguerite, Marseille 13009, France
| | - Marta Estrada
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, Barcelona, Catalonia 08003, Spain
| | - Noemí Inmaculada Medina-Pérez
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, Barcelona, Catalonia 08003, Spain; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Avinguda Diagonal 645, Barcelona, Catalonia 08028, Spain
| | - Laia Viure
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, Barcelona, Catalonia 08003, Spain
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute, Research and Development, Oceanography, Sven Källfelts gata 15, Västra Frölunda SE-426 71, Sweden
| | - Rodolphe Lemée
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université - CNRS, UMR 7093, 181 Chemin du Lazaret, Villefranche-sur-mer 06230, France
| |
Collapse
|
13
|
Kim YS, An HJ, Kim J, Jeon YJ. Current Situation of Palytoxins and Cyclic Imines in Asia-Pacific Countries: Causative Phytoplankton Species and Seafood Poisoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4921. [PMID: 35457784 PMCID: PMC9026528 DOI: 10.3390/ijerph19084921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.
Collapse
Affiliation(s)
- Young-Sang Kim
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| | - Hyun-Joo An
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jaeseong Kim
- Water and Eco-Bio Corporation, Kunsan National University, Kunsan 54150, Korea
| | - You-Jin Jeon
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| |
Collapse
|
14
|
Drouet K, Jauzein C, Gasparini S, Pavaux AS, Berdalet E, Marro S, Davenet-Sbirrazuoli V, Siano R, Lemée R. The benthic toxic dinoflagellate Ostreopsis cf. ovata in the NW Mediterranean Sea: Relationship between sea surface temperature and bloom phenology. HARMFUL ALGAE 2022; 112:102184. [PMID: 35144819 DOI: 10.1016/j.hal.2022.102184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Blooms of the toxic benthic dinoflagellate Ostreopsis cf. ovata can induce ecological and human health issues in certain temperate areas. In order to prevent these negative effects, long-term monitoring studies of O. cf. ovata blooms have been conducted in several impacted areas to have a comprehensive understanding of bloom dynamics and efficient tools for risk management. O. cf. ovata blooms were monitored every summer (from mid-June to the end of August) on five identified sites in Larvotto beach (Monaco, NW Mediterranean Sea), between 2007 and 2019. This time-series represents one of the largest time-series in the world describing blooms of this species. Bloom phenological features (timing, duration, maximum cell abundance and growth rate), were found to be highly variable throughout the studied period, and were analyzed as a function of different hydroclimatic parameters, including sea surface temperature (SST). The highest net growth rates were related to temperatures ranging between 21°C and 25°C, and did not coincide with maximal temperature records (27.5°C). Such results suggest that, although global warming possibly influences the expansion of O. cf. ovata from tropical to temperate waters, the definite impact of temperature on bloom dynamics might be more complex than a simple facilitation factor for algal growth, at least in NW Mediterranean waters. Furthermore, monthly SST anomalies calculated over this 13-year survey showed a strong positive correlation between spring SST positive anomalies and the bloom starting date, indicating that blooms occurred earlier in the season when spring SSTs were warmer than usual. Overall results provide tools to modelers and managers who are facing crucial challenges to predict the distribution and phenology of O. cf. ovata blooms in European coastal waters, moreover in a context of global warming.
Collapse
Affiliation(s)
- K Drouet
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE; Ifremer, DYNECO Pelagos, F-29280 Plouzané, FRANCE.
| | - C Jauzein
- Ifremer, DYNECO Pelagos, F-29280 Plouzané, FRANCE
| | - S Gasparini
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| | - A-S Pavaux
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| | - E Berdalet
- Institut de Ciènces del Mar (CSIC), Barcelona, SPAIN
| | - S Marro
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| | | | - R Siano
- Ifremer, DYNECO Pelagos, F-29280 Plouzané, FRANCE
| | - R Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, FRANCE
| |
Collapse
|
15
|
Ecotoxicological Impact of the Marine Toxin Palytoxin on the Micro-Crustacean Artemia franciscana. Mar Drugs 2022; 20:md20020081. [PMID: 35200611 PMCID: PMC8879372 DOI: 10.3390/md20020081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Palytoxin (PLTX) is a highly toxic polyether identified in various marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. In addition to adverse effects in humans, negative impacts on different marine organisms have been often described during Ostreopsis blooms and the concomitant presence of PLTX and its analogues. Considering the increasing frequency of Ostreopsis blooms due to global warming, PLTX was investigated for its effects on Artemia franciscana, a crustacean commonly used as a model organism for ecotoxicological studies. At concentrations comparable to those detected in culture media of O. cf. ovata (1.0–10.0 nM), PLTX significantly reduced cysts hatching and induced significant mortality of the organisms, both at larval and adult stages. Adults appeared to be the most sensitive developmental stage to PLTX: significant mortality was recorded after only 12 h of exposure to PLTX concentrations > 1.0 nM, with a 50% lethal concentration (LC50) of 2.3 nM (95% confidence interval = 1.2–4.7 nM). The toxic effects of PLTX toward A. franciscana adults seem to involve oxidative stress induction. Indeed, the toxin significantly increased ROS levels and altered the activity of the major antioxidant enzymes, in particular catalase and peroxidase, and marginally glutathione-S-transferase and superoxide dismutase. On the whole, these results indicate that environmentally relevant concentrations of PLTX could have a negative effect on Artemia franciscana population, suggesting its potential ecotoxicological impact at the marine level.
Collapse
|
16
|
de Virgilio M, Cifarelli S, Garofoli G, Lamberti G, Massari V, Degryse B. Citizen science in the monitoring of Ostreopsis ovata blooms in southern Italy: A five-year study. MARINE POLLUTION BULLETIN 2021; 173:112981. [PMID: 34600169 DOI: 10.1016/j.marpolbul.2021.112981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The toxic benthic dinoflagellate Ostreopsis ovata causes harmful algal blooms. During five years, citizens have monitored blooms of O. cf. ovata along the coast of Molfetta city facing the Adriatic Sea. Coscinodiscus spp., Licmophora spp., Gyrosigma spp. and Achnantes spp. diatoms were also quantified. O. cf. ovata was detected from spring up to winter, however, blooms always occurred in summer. Correlation with nine weather parameters was relatively strong with seawater temperature, dew point and air temperature. Dew point has never been reported before as key parameter. Blooms of O. cf. ovata were preceded by lag period during which conditions permitted proliferation but no proliferation observed. Furthermore, dew point, seawater and air temperature only moderately correlated with proliferation of Coscinodiscus spp. However, correlation between blooms of O. cf. ovata and Coscinodiscus spp. was relatively strong. Correlation between proliferation of O. cf. ovata and Gyrosigma spp. was very weak, while moderate and negative with Licmophora spp. or Achnantes spp.
Collapse
Affiliation(s)
- Maddalena de Virgilio
- Osservatorio del Mare a Molfetta, Piazza Effrem, 4, Molfetta, BA, Italy; Institute of Bioscience and Bioresources - National Research Council of Italy, Via Amendola 165/A, Bari, Italy.
| | | | - Giuseppe Garofoli
- Osservatorio del Mare a Molfetta, Piazza Effrem, 4, Molfetta, BA, Italy
| | - Grazia Lamberti
- Osservatorio del Mare a Molfetta, Piazza Effrem, 4, Molfetta, BA, Italy
| | - Vincenzo Massari
- Osservatorio del Mare a Molfetta, Piazza Effrem, 4, Molfetta, BA, Italy
| | - Bernard Degryse
- Osservatorio del Mare a Molfetta, Piazza Effrem, 4, Molfetta, BA, Italy
| |
Collapse
|
17
|
Wu Z, Zhang H, Li Q, Cui L, Chen H, Lu S. Effects of temperature on the growth and carbohydrate production of three benthic dinoflagellate species from Hainan Island, South China Sea. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1789-1798. [PMID: 34142305 DOI: 10.1007/s10646-021-02428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Dinoflagellates in the genera Ostreopsis and Gambierdiscus are typical members of the marine benthic community particularly in tropical areas. Their geographic distribution has shown an increasing expansion towards temperate waters recently due to the global warming and climate changes; however, the knowledge is little of how the increasing temperatures might influence the physiological characteristics of Ostreopsis spp. and Gambierdiscus spp. Here, we carried out experiments to understand the effect of different temperatures on the growth, chlorophyll a content, and carbohydrate yield of Chinese strains of Ostreopsis cf. ovata, O. lenticularis, and Gambierdiscus caribaeus. Specifically, seven temperatures (15, 17.5, 20, 25, 30, 32.5, and 35 °C) were set for the two Ostreopsis species and five temperatures (15, 20, 25, 30, and 35 °C) were set for G. caribaeus. Our results suggested that both Ostreopsis (both species were 17.5-32.5 °C) and Gambierdiscus (20-35 °C) could survive a wide range of temperatures, consistent with the record worldwide. Cell density and chlorophyll a content were observed to be higher at high temperatures (30 and 32.5 °C) for both Ostreopsis species whereas G. caribaeus reached the maximum cell density and highest growth rate at 20 °C. Higher carbohydrate yield was detected in the suboptimal temperatures for all three dinoflagellates especially during the decaying phase. Our study reveals the optimal temperatures for the growth of three benthic harmful dinoflagellate species and provides insight into how the increasing temperature will affect their abundance as well as distribution.
Collapse
Affiliation(s)
- Zhen Wu
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Hua Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
- Shenzhen Academy of Environmental Science, Shenzhen, China
| | - Qun Li
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Lei Cui
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Heng Chen
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou, China.
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
18
|
Gémin MP, Bertrand S, Séchet V, Amzil Z, Réveillon D. Combined effects of temperature and light intensity on growth, metabolome and ovatoxin content of a Mediterranean Ostreopsis cf. ovata strain. HARMFUL ALGAE 2021; 106:102060. [PMID: 34154782 DOI: 10.1016/j.hal.2021.102060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Ostreopsis cf. ovata is a benthic and ovatoxin-producing dinoflagellate proliferating yearly along the Mediterranean coasts where blooms have been related to human illness and unusual mortality of marine organisms. The spreading of O. cf. ovata in this temperate area has been linked to global changes and its consequences such as the increase of temperature or light intensities. In the present study, an experimental design using batch cultures of pre-acclimated cells of a strain of O. cf. ovata isolated from Villefranche-sur-Mer (NW Mediterranean Sea, France), was implemented to investigate the combined effect of temperature (23, 27 and 30 °C) and light intensity (200, 400 and 600 µmol m-2s-1) on the growth, metabolome and OVTX content. Both light intensity and temperature affected the growth as significantly higher growth rates were obtained under 400 and 600 µmol m-2s-1 while the maximum values were obtained at 27 °C (0.48 d-1). Metabolomic analyses highlighted a clear effect only for temperature that may correspond to two different strategies of acclimation to suboptimal temperatures. Significant features (such as carotenoid and lipids) modified by the temperature and/or light conditions were annotated. Only temperature induced a significant change of OVTX content with higher values measured at the lowest temperature of 23 °C (29 - 36 pg cell-1). In a context of global changes, these results obtained after acclimation suggest that the increase of temperature might favor the proliferation of less toxic cells. However, in the light of the intraspecific variability of O. cf. ovata, further studies will be necessary to test this hypothesis. This study also highlighted the lack of knowledge about the metabolome composition of such non-model organisms that impairs data interpretation. There is a need to study more deeply the metabolome of toxic dinoflagellates to better understand how they can acclimate to a changing environment.
Collapse
Affiliation(s)
| | - Samuel Bertrand
- Faculté de Pharmacie, Université de Nantes, EA 2160-Mer Molécules Santé, F-44035 Nantes, France; ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France.
| | - Véronique Séchet
- IFREMER, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France.
| | - Zouher Amzil
- IFREMER, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France.
| | - Damien Réveillon
- IFREMER, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France.
| |
Collapse
|
19
|
Drouet K, Jauzein C, Herviot-Heath D, Hariri S, Laza-Martinez A, Lecadet C, Plus M, Seoane S, Sourisseau M, Lemée R, Siano R. Current distribution and potential expansion of the harmful benthic dinoflagellate Ostreopsis cf. siamensis towards the warming waters of the Bay of Biscay, North-East Atlantic. Environ Microbiol 2021; 23:4956-4979. [PMID: 33497010 DOI: 10.1111/1462-2920.15406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 01/05/2023]
Abstract
In a future scenario of increasing temperatures in North-Atlantic waters, the risk associated with the expansion of the harmful, benthic dinoflagellate Ostreopsis cf. siamensis has to be evaluated and monitored. Microscopy observations and spatio-temporal surveys of environmental DNA (eDNA) were associated with Lagrangian particle dispersal simulations to: (i) establish the current colonization of the species in the Bay of Biscay, (ii) assess the spatial connectivity among sampling zones that explain this distribution, and (iii) identify the sentinel zones to monitor future expansion. Throughout a sampling campaign carried out in August to September 2018, microscope analysis showed that the species develops in the south-east of the bay where optimal temperatures foster blooms. Quantitative PCR analyses revealed its presence across almost the whole bay to the western English Channel. An eDNA time-series collected on plastic samplers showed that the species occurs in the bay from April to September. Due to the water circulation, colonization of the whole bay from the southern blooming zones is explained by inter-site connectivity. Key areas in the middle of the bay permit continuous dispersal connectivity towards the north. These key areas are proposed as sentinel zones to monitor O. cf. siamensis invasions towards the presumably warming water of the North-East Atlantic.
Collapse
Affiliation(s)
- Kévin Drouet
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-mer, 06230, France.,Ifremer, DYNECO, Plouzané, F-29280, France
| | | | | | | | - Aitor Laza-Martinez
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Leioa, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), Plentzia, 48620, Spain
| | | | | | - Sergio Seoane
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Leioa, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), Plentzia, 48620, Spain
| | | | - Rodolphe Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-mer, 06230, France
| | | |
Collapse
|
20
|
Li X, Yan M, Gu J, Lam VTT, Wai TC, Baker DM, Thompson PD, Yiu SKF, Lam PKS, Leung PTY. The effect of temperature on physiology, toxicity and toxin content of the benthic dinoflagellate Coolia malayensis from a seasonal tropical region. WATER RESEARCH 2020; 185:116264. [PMID: 32791455 DOI: 10.1016/j.watres.2020.116264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Coolia malayensis is one of the commonly found benthic dinoflagellates in Hong Kong which can produce biotoxins and threaten the early life stages of marine invertebrates. Seawater temperature has been recognized as one of the primary environmental factors that affect the formation of harmful algal blooms. The present study evaluated the responses of C. malayensis, including growth, toxicity and toxin content (putative analogues of okadaic acid and azaspiracids), after exposure to a range of seven different temperatures (i.e., 16°C, 18°C, 20°C, 22°C, 24°C, 26°C, and 28°C). The highest algal density and specific growth rate were recorded at 24°C. Significantly higher Fv/Fm (maximum quantum yield of PSII) and total phaeo-pigment values were observed in the exponential growth phase at 28°C. The toxicity of the algal extract, which was assessed by the lethality rate of Artemia larvae, increased with temperature. The highest toxin content was detected at the second highest temperature treatment, i.e., 26°C. Overall, temperature had significant effects on the physiological activities and toxicity of C. malayensis. This study has raised attention to the potentially increasing risks posed by toxic benthic dinoflagellates during heat waves in coastal waters.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Tak-Cheung Wai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - David M Baker
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Philip D Thompson
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Sam K F Yiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
21
|
Zhang J, Jiang L, Wu D, Yin Y, Guo H. Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO 2 nanoparticles stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139443. [PMID: 32454338 DOI: 10.1016/j.scitotenv.2020.139443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Due to the growing use and release of nanomaterials, their toxic impacts on aquatic ecosystems have drawn widespread attention in recent years. In this study, we exposed Microcystis aeruginosa to 5 mg/L titanium dioxide nanoparticles (nTiO2) under different culture conditions (pH 6, 7, 8, 9; 20 °C, 25 °C, 30 °C). The results showed that algae had the worst growth status with lowest biomass, lowest photosynthetic activity and highest reactive oxygen species (ROS) generation under 5 mg/L nTiO2 at pH 6 and 20 °C. Images by scanning electron microscopy (SEM) revealed that nTiO2 hindered light absorption by algal cells by wrapping the algal surface, which led to obvious cell surface deformation at pH 6 or 20 °C. In addition, microcystin-LR (MC-LR) production increased as temperature or pH decreased when exposed to nTiO2 at 5 mg/L, demonstrating that falling pH or temperature enhanced the adverse effects toward algal cells under nTiO2 stress and the potential risk of algae to the environment.
Collapse
Affiliation(s)
- Jingxian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Lijuan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
22
|
Toxin profile of Ostreopsis cf. ovata from Portuguese continental coast and Selvagens Islands (Madeira, Portugal). Toxicon 2020; 181:91-101. [DOI: 10.1016/j.toxicon.2020.04.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/25/2020] [Indexed: 01/27/2023]
|
23
|
Pavaux AS, Ternon E, Dufour L, Marro S, Gémin MP, Thomas OP, Lemée R. Efficient, fast and inexpensive bioassay to monitor benthic microalgae toxicity: Application to Ostreopsis species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105485. [PMID: 32353662 DOI: 10.1016/j.aquatox.2020.105485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Even though HPLC-MS is commonly used to quantify the toxin content of Ostreopsis spp. cells, there is a need to develop easy-to-use toxicological tests to set thresholds during Ostreopsis spp. blooms. The crustacean Artemia has been widely used to evaluate the presence and toxicity of chemicals and biological contaminants and we anticipated that it could also be useful to test Ostreopsis spp. toxicity. Its relevance was first assessed by investigating the variability of the toxic effects among Ostreopsis spp. strains and throughout the dinoflagellate life cycle in combination with chemical analyses of the toxinic content by UHPLC-HRMS. After testing the toxicity of fractions prepared from Ostreopsis spp. cells, the known ova- and paly-toxins were not the only toxic metabolites to Artemia franciscana, indicating that other toxic compounds synthesized by Ostreopsis spp. still remain to be identified. To extend the bioassay to in situ monitoring, the toxicity of the benthic microalgal consortium was tested during a natural bloom of Ostreopsis cf. ovata in the NW Mediterranean Sea. The results highlight the accuracy and sensitivity of the ecotoxicological assay with Artemia franciscana to assess the toxicity of Ostreopsis spp. blooms.
Collapse
Affiliation(s)
- Anne-Sophie Pavaux
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France.
| | - Eva Ternon
- Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560, Valbonne, France
| | - Louison Dufour
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| | - Sophie Marro
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| | - Marin-Pierre Gémin
- IFREMER - Laboratoire Phycotoxines (PHYC), Rue de l'Île d'Yeu, BP 21105, F- 44311, Nantes, France
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - Rodolphe Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| |
Collapse
|
24
|
Neves RAF, Pardal MA, Nascimento SM, Oliveira PJ, Rodrigues ET. Screening-level evaluation of marine benthic dinoflagellates toxicity using mammalian cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110465. [PMID: 32199217 DOI: 10.1016/j.ecoenv.2020.110465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Complementary studies at different levels of the biological organization are fundamental to fully link environmental exposure to marine benthic dinoflagellate toxins and their effects. In order to contribute to this transdisciplinary evaluation, and for the first time, the present study aims to study the effects of Gambierdiscus excentricus, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and Prorocentrum lima extracts on seven functionally different mammalian cell lines: HEK 293, HepG2, HNDF, H9c2(2-1), MC3T3-E1, Raw 264.7 and SH-SY5Y. All the cell lines presented cell mass decrease in a concentration-dependence of dinoflagellate extracts, exhibiting marked differences in cell toxicity. Gambierdiscus excentricus presented the highest effect, at very low concentrations with EC50,24h (i.e., the concentration that gives half-maximal response after a 24-h exposure) between 1.3 and 13 cells mL-1, followed by O. cf. ovata (EC50,24h between 3.3 and 40 cells mL-1), and Prorocentrum species (P. lima: EC50,24h between 191 and 1027 cells mL-1 and P. hoffmannianum: EC50,24h between 152 and 783 cells mL-1). Cellular specificities were also detected and rat cardiomyoblast H9c2(2-1) cells were in general the most sensitive to dinoflagellate toxic compounds, suggesting that this cell line is an animal-free potential model for dinoflagellate toxin testing. Finally, the sensitivity of cells expressing distinct phenotypes to each dinoflagellate extract exhibited low relation to human poisoning symptoms.
Collapse
Affiliation(s)
- Raquel A F Neves
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil; CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Silvia M Nascimento
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil.
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
25
|
Wu Y, Wan L, Zhang W, Ding H, Yang W. Resistance of cyanobacteria Microcystis aeruginosa to erythromycin with multiple exposure. CHEMOSPHERE 2020; 249:126147. [PMID: 32062559 DOI: 10.1016/j.chemosphere.2020.126147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Here we report a set of experiments in which water blooming cyanobacteria Microcystis aeruginosa was repeatedly exposed to erythromycin. Growth inhibition increased with increasing erythromycin concentration (1-150 μg/L) upon first exposure. Maximum inhibition rate (76.06%), occurred under 150 μg/L erythromycin. Moreover, 96-h 50% effective concentration (EC50) was 22.97 μg/L, indicating that the growth of M. aeruginosa was affected by erythromycin under common environmental concentrations. Photosynthesis was hindered by chlorophyll and photosystem II limitations. Malondialdehyde, reactive oxygen species, and superoxide dismutase contents increased significantly under certain concentrations of erythromycin, but superoxide dismutase was suppressed by 150 μg/L erythromycin. Synthesis of intracellular and extracellular microcystins was promoted by 10-60 and by 20-60 μg/L erythromycin, respectively, but both were inhibited by 100-150 μg/L. Principal component analysis and Pearson's correlation revealed the accumulation of reactive oxygen species as the dominant mechanism of erythromycin toxicity to cells. M. aeruginosa repeatedly subjected to erythromycin exposure showed obvious resistance against the antibiotic, especially when treated twice with 60 μg/L erythromycin. The 96-h EC50 was 81.29 μg/L. As compared to the first exposure to erythromycin, photosynthetic and antioxidant activities increased, while growth inhibition and oxidation stress decreased upon multiple exposures. Production and release of microcystins were enhanced by repeated exposure to the antibiotic. Thus, erythromycin persistence in water should be examined, as repeated exposure may lead to serious environmental and human health hazards.
Collapse
Affiliation(s)
- Yixiao Wu
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Liang Wan
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Weihao Zhang
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China.
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Provincial Institute of Water Sciences, Nanchang, 330029, China
| | - Wenfeng Yang
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
26
|
Gémin MP, Réveillon D, Hervé F, Pavaux AS, Tharaud M, Séchet V, Bertrand S, Lemée R, Amzil Z. Toxin content of Ostreopsis cf. ovata depends on bloom phases, depth and macroalgal substrate in the NW Mediterranean Sea. HARMFUL ALGAE 2020; 92:101727. [PMID: 32113596 DOI: 10.1016/j.hal.2019.101727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Over the last fifteen years, blooms of the genus Ostreopsis have been reported more frequently and at higher abundances in the Mediterranean area. Ostreopsis cf. ovata is known to produce ovatoxins (OVTXs), structural analogues of palytoxin, which is one of the most potent non-polymeric toxins. However, the production of OVTXs is poorly characterized in situ. The present study focuses on toxin content and profile according to the bloom phase during summer 2017 in Villefranche-sur-Mer, France (NW Mediterranean Sea), depth (from 0.5 to 5 m) and three different macroalgal substrates of this epiphytic dinoflagellate (Padina pavonica, Dictyota spp. and Halopteris scoparia). Ovatoxin quantification of all samples was performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The bloom started at the end of June and declined in mid-July, showing the typical seasonal pattern of the NW Mediterranean Sea area. The peak was observed on the 10 July with 1.8 × 106 cells/g FW and 1.7 × 104 cells/L for benthic and planktonic cells, respectively. Total toxin content of cells, collected using artificial substrates, increased during the exponential and stationary growth phases. After reaching a maximum concentration of 9.2 pg/cell on 18 July, toxin concentration decreased and remained stable from 25 July until the end of monitoring. A decreasing trend of the abundance and of the associated total toxin content was noted with depth. Finally, the decreasing order of maximal epiphytic concentration of O. cf. ovata was: Dictyota spp. (8.3 × 105 cells/g FW), H. scoparia (3.1 × 105 cells/g FW) and P. pavonica (1.6 × 105 cells/g FW). Interestingly, the highest OVTX quota was obtained in cells present on Halopteris scoparia, then on Dictyota spp. and Padina pavonica. This suggests that the nature of the macroalgal substrate influences both growth and toxin production of O. cf. ovata and further work will be required to understand the underlying mechanisms (e.g., competition for nutrition, pH or allelopathic interaction). However, the toxin profiles (i.e., the proportion of each ovatoxin analogue) were not affected by any of the studied parameters (bloom phase, depth, macroalgae or artificial substrates).
Collapse
Affiliation(s)
| | | | - Fabienne Hervé
- IFREMER - Phycotoxins Laboratory, F- 44311 Nantes 03, France
| | - Anne-Sophie Pavaux
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093, BP 28, F-06230 Villefranche-sur-Mer, France
| | - Maxime Tharaud
- IFREMER - Phycotoxins Laboratory, F- 44311 Nantes 03, France
| | | | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Nantes-cedex 1 44035, France
| | - Rodolphe Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093, BP 28, F-06230 Villefranche-sur-Mer, France
| | - Zouher Amzil
- IFREMER - Phycotoxins Laboratory, F- 44311 Nantes 03, France
| |
Collapse
|
27
|
Tester PA, Litaker RW, Berdalet E. Climate change and harmful benthic microalgae. HARMFUL ALGAE 2020; 91:101655. [PMID: 32057343 DOI: 10.1016/j.hal.2019.101655] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Sea surface temperatures in the world's oceans are projected to warm by 0.4-1.4 °C by mid twenty-first century causing many tropical and sub-tropical harmful dinoflagellate genera like Gambierdiscus, Fukuyoa and Ostreopsis (benthic harmful algal bloom species, BHABs) to exhibit higher growth rates over much of their current geographic range, resulting in higher population densities. The primary exception to this trend will be in the tropics where temperatures exceed species-specific upper thermal tolerances (30-31 °C) beyond which growth slows significantly. As surface waters warm, migration to deeper habitats is expected to provide refuge. Range extensions of several degrees of latitude also are anticipated, but only where species-specific habitat requirements can be met (e.g., temperature, suitable substrate, low turbulence, light, salinity, pH). The current understanding of habitat requirements that determine species distributions are reviewed to provide fuller understanding of how individual species will respond to climate change from the present to 2055 while addressing the paucity of information on environmental factors controlling small-scale distribution in localized habitats. Based on the available information, we hypothesized how complex environmental interactions can influence abundance and potential range extensions of BHAB species in different biogeographic regions and identify sentinel sites appropriate for long-term monitoring programs to detect range extensions and reduce human health risks.
Collapse
Affiliation(s)
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Elisa Berdalet
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Tibiriçá CEJA, Leite IP, Batista TVV, Fernandes LF, Chomérat N, Herve F, Hess P, Mafra LL. Ostreopsis cf. ovata Bloom in Currais, Brazil: Phylogeny, Toxin Profile and Contamination of Mussels and Marine Plastic Litter. Toxins (Basel) 2019; 11:E446. [PMID: 31357621 PMCID: PMC6723160 DOI: 10.3390/toxins11080446] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ostreopsis cf. ovata is a toxic marine benthic dinoflagellate responsible for harmful blooms affecting ecosystem and human health, mostly in the Mediterranean Sea. In this study we report the occurrence of a summer O. cf. ovata bloom in Currais, a coastal archipelago located on the subtropical Brazilian coast (~25° S). This bloom was very similar to Mediterranean episodes in many aspects: (a) field-sampled and cultivated O. cf. ovata cells aligned phylogenetically (ITS and LSU regions) along with Mediterranean strains; (b) the bloom occurred at increasing temperature and irradiance, and decreasing wind speed; (c) cell densities reached up to 8.0 × 104 cell cm-2 on fiberglass screen and 5.6 × 105 cell g-1 fresh weight on seaweeds; (d) and toxin profiles were composed mostly of ovatoxin-a (58%) and ovatoxin-b (32%), up to 35.5 pg PLTX-eq. cell-1 in total. Mussels were contaminated during the bloom with unsafe toxin levels (up to 131 µg PLTX-eq. kg-1). Ostreopsis cells attached to different plastic litter, indicating an alternate route for toxin transfer to marine fauna via ingestion of biofilm-coated plastic debris.
Collapse
Affiliation(s)
- Carlos Eduardo J A Tibiriçá
- Centro de Estudos do Mar, Universidade Federal do Paraná, Cx. Postal 61, Pontal do Paraná, PR 83255-976, Brazil.
| | - Isabel P Leite
- Centro de Estudos do Mar, Universidade Federal do Paraná, Cx. Postal 61, Pontal do Paraná, PR 83255-976, Brazil
| | - Talita V V Batista
- Centro de Estudos do Mar, Universidade Federal do Paraná, Cx. Postal 61, Pontal do Paraná, PR 83255-976, Brazil
| | - Luciano F Fernandes
- Departamento de Botânica, Universidade Federal do Paraná, Cx. Postal 19031, Curitiba, PR 81531-990, Brazil
| | - Nicolas Chomérat
- LER BO, Station de Biologie Marine, IFREMER, Place de la Croix, F-29900 Concarneau, France
| | - Fabienne Herve
- Laboratoire Phycotoxines, IFREMER, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | - Philipp Hess
- Laboratoire Phycotoxines, IFREMER, Rue de l'Ile d'Yeu, 44311 Nantes, France.
| | - Luiz L Mafra
- Centro de Estudos do Mar, Universidade Federal do Paraná, Cx. Postal 61, Pontal do Paraná, PR 83255-976, Brazil.
- Laboratoire Phycotoxines, IFREMER, Rue de l'Ile d'Yeu, 44311 Nantes, France.
| |
Collapse
|
29
|
Accoroni S, Ceci M, Tartaglione L, Romagnoli T, Campanelli A, Marini M, Giulietti S, Dell'Aversano C, Totti C. Role of temperature and nutrients on the growth and toxin production of Prorocentrum hoffmannianum (Dinophyceae) from the Florida Keys. HARMFUL ALGAE 2018; 80:140-148. [PMID: 30502806 DOI: 10.1016/j.hal.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The benthic dinoflagellate Prorocentrum hoffmannianum M.A. Faust is typical of tropical warm waters and produces biotoxins responsible for diarrhetic shellfish poisoning (DSP). In this study, the effect of temperature and nutrient limitation on growth and toxin production of P. hoffmannianum isolated from field samples collected in the Florida Keys was investigated. Batch culture experiments were ran at two temperatures (i.e. 21 ± 0.1 and 27 ± 0.1 °C) and under nitrogen-limited (14.7 μmol L-1 N-NO3- and 18.1 μmol L-1 P-PO43-) and phosphorus-limited (441 μmol L-1 N-NO3- and 0.6 μmol L-1 P-PO43-) levels with respect to control nutrient conditions (441 μmol L-1 N-NO3-and 18.1 μmol L-1 P-PO43-). Both temperature and nutrient conditions significantly affected growth rates and maximum yield of P. hoffmannianum with the maximum values being recorded at the higher temperature and in the replete medium. Production of okadaic acid was induced under all conditions (from 13.5 to 859.8 pg cell-1), with values up to one order of magnitude higher than those observed in other DSP toxin producing species. Toxin production was enhanced under P limitation at 27 °C, corroborating the theory that toxin production is modulated by cell physiological conditions, which are in turn affected by a wide spectrum of factors, including environmental stressors such as nutrient availability. Toxin fraction released in the growth medium was negligible. No okadaic acid esters were detected in this strain of P. hoffmannianum.
Collapse
Affiliation(s)
- Stefano Accoroni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy.
| | - Martina Ceci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Luciana Tartaglione
- Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy; Dipartimento di Farmacia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Tiziana Romagnoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Alessandra Campanelli
- National Research Council, CNR-IRBIM, Largo Fiera della Pesca, 2, 60125, Ancona, Italy
| | - Mauro Marini
- National Research Council, CNR-IRBIM, Largo Fiera della Pesca, 2, 60125, Ancona, Italy
| | - Sonia Giulietti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Carmela Dell'Aversano
- Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy; Dipartimento di Farmacia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| |
Collapse
|
30
|
Ternon E, Pavaux AS, Marro S, Thomas OP, Lemée R. Allelopathic interactions between the benthic toxic dinoflagellate Ostreopsis cf. ovata and a co-occurring diatom. HARMFUL ALGAE 2018; 75:35-44. [PMID: 29778224 DOI: 10.1016/j.hal.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
For decades the microphytobenthos assemblage in the coastal Mediterranean Sea has been regularly colonized by the toxic benthic dinoflagellate Ostreopsis cf. ovata. This harmful algal species is a toxin producer and occupies the same ecological niche as various diatoms. Surprisingly, there are only few insights reported on the physiological responses of diatoms to blooms of O. cf. ovata The chemical interactions of O. cf. ovata with the co-occurring diatom Licmophora paradoxa was studied using a bioassay (measuring impact of cell-free culture filtrate) and a co-culture approach (separate by a membrane) to investigate the effects of the exometabolome and its mode of action. Bioassays highlighted a toxic effect of the exometabolome of O. cf. ovata on the diatom photosynthetic activity. However, the co-cultures revealed that these toxic effects do not occur through remote allelopathy. Contact or close interactions between cells of the two species is most likely needed to impair the diatom growth. Ovatoxins are suspected to be the toxic metabolites secreted by O. cf. ovata although the current set of data did not give confirmation of this assumption. Interestingly, the exometabolome of L. paradoxa impaired the growth and the photochemistry of O. cf. ovata in both bioassays and co-cultures. Some biomarkers possibly involved for the effect were identified using a metabolomic approach and may correspond to oxylipins, however a bacterial source of the bioactive metabolites is also considered.
Collapse
Affiliation(s)
- Eva Ternon
- Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560 Valbonne, France.
| | - Anne-Sophie Pavaux
- Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560 Valbonne, France; Sorbonne Universités, Université Pierre et Marie-Curie Paris 6, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, 06234 Villefranche sur mer, France
| | - Sophie Marro
- Sorbonne Universités, Université Pierre et Marie-Curie Paris 6, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, 06234 Villefranche sur mer, France
| | - Olivier P Thomas
- Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560 Valbonne, France; Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| | - Rodolphe Lemée
- Sorbonne Universités, Université Pierre et Marie-Curie Paris 6, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, 06234 Villefranche sur mer, France
| |
Collapse
|
31
|
Couet D, Pringault O, Bancon-Montigny C, Briant N, Elbaz Poulichet F, Delpoux S, Kefi-Daly Yahia O, Hela B, Charaf M, Hervé F, Rovillon G, Amzil Z, Laabir M. Effects of copper and butyltin compounds on the growth, photosynthetic activity and toxin production of two HAB dinoflagellates: The planktonic Alexandrium catenella and the benthic Ostreopsis cf. ovata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:154-167. [PMID: 29407801 DOI: 10.1016/j.aquatox.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Controlled laboratory experiments were conducted to test the effects of copper (Cu2+) and butyltins (BuT) on the growth, photosynthetic activity and toxin content of two HABs (Harmful Algal Blooms) dinoflagellates, the planktonic Alexandrium catenella and the benthic Ostreopsis cf. ovata. Microalgae were exposed to increasing concentrations of Cu2+ (10-4 to 31 nM) or BuT (0.084 to 84 nM) for seven days. When considering the growth, EC50 values were 0.16 (±0.09) nM and 0.03 (±0.02) nM of Cu2+ for A. catenella and O. cf. ovata, respectively. Regarding BuT, EC50 was 14.2 (±6) nM for O. cf. ovata, while A. catenella growth inhibition appeared at BuT concentrations ≥27 nM. Photosynthetic activity of the studied dinoflagellates decreased with increasing Cu and BuT concentrations. For O. cf. ovata, the response of this physiological parameter to contamination was less sensitive than the biomass. Cu exposure induced the formation of temporary cysts in both organisms that could resist adverse conditions. The ovatoxin-a and -b concentrations in O. cf. ovata cells increased significantly in the presence of Cu. Altogether, the results suggest a better tolerance of the planktonic A. catenella to Cu and BuT. This could result in a differentiated selection pressure exerted by these metals on phytoplankton species in highly polluted waters. The over-production of toxins in response to Cu stress could pose supplementary health and socio-economic threats in the contaminated marine ecosystems where HABs develop.
Collapse
Affiliation(s)
- Douglas Couet
- Center for Marine Biodiversity, Exploitation and Conservation (MARBEC): IRD, IFREMER, CNRS, Montpellier University, Montpellier, France; Research Group on Oceanography and Plankton Ecology, Tunisian National Institute of Agronomy (INAT), IRESA-Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - Olivier Pringault
- Center for Marine Biodiversity, Exploitation and Conservation (MARBEC): IRD, IFREMER, CNRS, Montpellier University, Montpellier, France
| | | | - Nicolas Briant
- IFREMER- Phycotoxins Laboratory, BP 21105, Nantes F-44311, France
| | | | - Sophie Delpoux
- Hydrosciences Montpellier, CNRS, IRD, Université de Montpellier, Montpellier, France
| | - Ons Kefi-Daly Yahia
- Research Group on Oceanography and Plankton Ecology, Tunisian National Institute of Agronomy (INAT), IRESA-Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - BenGharbia Hela
- Research Group on Oceanography and Plankton Ecology, Tunisian National Institute of Agronomy (INAT), IRESA-Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - M'Rabet Charaf
- Research Group on Oceanography and Plankton Ecology, Tunisian National Institute of Agronomy (INAT), IRESA-Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - Fabienne Hervé
- IFREMER- Phycotoxins Laboratory, BP 21105, Nantes F-44311, France
| | - Georges Rovillon
- IFREMER- Phycotoxins Laboratory, BP 21105, Nantes F-44311, France
| | - Zouher Amzil
- IFREMER- Phycotoxins Laboratory, BP 21105, Nantes F-44311, France
| | - Mohamed Laabir
- Center for Marine Biodiversity, Exploitation and Conservation (MARBEC): IRD, IFREMER, CNRS, Montpellier University, Montpellier, France.
| |
Collapse
|
32
|
Tartaglione L, Dello Iacovo E, Mazzeo A, Casabianca S, Ciminiello P, Penna A, Dell'Aversano C. Variability in Toxin Profiles of the Mediterranean Ostreopsis cf. ovata and in Structural Features of the Produced Ovatoxins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13920-13928. [PMID: 29131595 DOI: 10.1021/acs.est.7b03827] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fifty-five strains of Ostreopsis were collected in the Mediterranean Sea and analyzed to characterize their toxin profiles. All the strains were grown in culture under the same experimental conditions and identified by molecular PCR assay based on the ITS-5.8S rDNA. A liquid chromatography-high resolution multiple stage mass spectrometry (LC-HRMSn) approach was used to analyze toxin profiles and to structurally characterize the detected toxins. Despite morphological and molecular characterization being consistent within the species O. cf. ovata, a certain degree of toxin variability was observed. All the strains produced ovatoxins (OVTXs), with the exception of only one strain. Toxin profiles were quite different from both qualitative and quantitative standpoints: 67% of the strains contained OVTX-a to -e, OVTX-g, and isobaric PLTX, in 25% of them only OVTX-a, -d, -e and isobaric PLTX were present, while 4% produced only OVTX-b and -c. None of the strains showed a previously identified profile, featuring OVTX-f as dominant toxin, whereas OVTX-f was a minor component of very few strains. Toxin content was mostly in the range 4-70 pg/cell with higher levels (up to 238 pg/cell) being found in strains from the Ligurian and South Adriatic Sea. Structural insights into OVTX-b, -c, -d, and -e were gained, and the new OVTX-l was detected in 36 strains.
Collapse
Affiliation(s)
- Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II , via D. Montesano 49, 80131 Naples, Italy
| | - Emma Dello Iacovo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II , via D. Montesano 49, 80131 Naples, Italy
| | - Antonia Mazzeo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II , via D. Montesano 49, 80131 Naples, Italy
| | - Silvia Casabianca
- Department of Biomolecular Sciences, University of Urbino , Viale Trieste 296, 61121 Pesaro, Italy
- CoNISMa, Italian Interuniversity Consortium on Marine Sciences , Piazzale Flaminio 9, 00196 Rome, Italy
| | - Patrizia Ciminiello
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II , via D. Montesano 49, 80131 Naples, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino , Viale Trieste 296, 61121 Pesaro, Italy
- CoNISMa, Italian Interuniversity Consortium on Marine Sciences , Piazzale Flaminio 9, 00196 Rome, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II , via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
33
|
Liquid Chromatography–Tandem Mass Spectrometry Method for the Screening of Eight Paralytic Shellfish Poisoning Toxins, Domoic Acid, 13-Desmethyl Spirolide C, Palytoxin and Okadaic Acid in Seawater. Chromatographia 2017. [DOI: 10.1007/s10337-017-3440-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Mendes MCDQ, Nunes JMC, Menezes M, Fraga S, Rodríguez F, Vázquez JA, Blanco J, Franco JM, Riobó P. Toxin production, growth kinetics and molecular characterization of Ostreopsis cf. ovata isolated from Todos os Santos Bay, tropical southwestern Atlantic. Toxicon 2017; 138:18-30. [DOI: 10.1016/j.toxicon.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 01/20/2023]
|
35
|
Accoroni S, Tartaglione L, Dello Iacovo E, Pichierri S, Marini M, Campanelli A, Dell'Aversano C, Totti C. Influence of environmental factors on the toxin production of Ostreopsis cf. ovata during bloom events. MARINE POLLUTION BULLETIN 2017; 123:261-268. [PMID: 28863976 DOI: 10.1016/j.marpolbul.2017.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Intense blooms of the toxic dinoflagellate Ostreopsis have been a recurrent phenomenon along several Mediterranean coasts. Blooms have been associated with noxious effects on human health and mortality of marine organisms, due to the production of palytoxin-like compounds. We analyzed the toxin concentrations throughout an O. cf. ovata bloom to highlight their relationships with environmental parameters in the Conero Riviera, northern Adriatic Sea. High temperature and balanced nutrient conditions were the optimal environmental conditions to start and sustain blooms as well as to maximize toxin production. Ostreopsis showed a gradual decrease of toxin content throughout the bloom ascribed to the occurring of the same non-optimal conditions that led to the bloom decline. Moreover, our results suggest that toxin fraction released during bloom could be higher than that released in batch culture. Results from this study pointed out that the first bloom phase is potentially the most dangerous to human health.
Collapse
Affiliation(s)
- Stefano Accoroni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Luciana Tartaglione
- Dipartimento di Farmacia, Scuola di Medicina, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Emma Dello Iacovo
- Dipartimento di Farmacia, Scuola di Medicina, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Salvatore Pichierri
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Mauro Marini
- Istituto di Scienze Marine (Consiglio Nazionale delle Ricerche), Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Alessandra Campanelli
- Istituto di Scienze Marine (Consiglio Nazionale delle Ricerche), Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Carmela Dell'Aversano
- Dipartimento di Farmacia, Scuola di Medicina, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
36
|
Pichierri S, Accoroni S, Pezzolesi L, Guerrini F, Romagnoli T, Pistocchi R, Totti C. Allelopathic effects of diatom filtrates on the toxic benthic dinoflagellate Ostreopsis cf. ovata. MARINE ENVIRONMENTAL RESEARCH 2017; 131:116-122. [PMID: 28965670 DOI: 10.1016/j.marenvres.2017.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Ostreopsis blooms regularly occur in many Mediterranean coastal areas in late summer-autumn. In the northern Adriatic Sea, Ostreopsis blooms affect diatom-dominated microphytobenthic communities. In this study, the effects of the filtrates of some diatom species, both benthic (Tabularia affinis, Proschkinia complanatoides and Navicula sp.) and planktonic (Thalassiosira sp. and Skeletonema marinoi) on cell morphology, cytological features and growth of O. cf. ovata were investigated. Our results showed a marked decrease of O. cf. ovata growth when cells were exposed to all diatom filtrates tested. The highest inhibitions were observed for exposures to P. complanatoides and Navicula sp. filtrates (92.5% and 80%, respectively) and increased with the age of diatom culture. Moreover, a clear DNA degradation and abnormal forms of O. cf. ovata cells (83.8% of the total) were found at the highest concentrations using Navicula sp. filtrate after 10 days of the inoculum.
Collapse
Affiliation(s)
- Salvatore Pichierri
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Stefano Accoroni
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Pezzolesi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Franca Guerrini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Tiziana Romagnoli
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Rossella Pistocchi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente - Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
37
|
Giussani V, Asnaghi V, Pedroncini A, Chiantore M. Management of harmful benthic dinoflagellates requires targeted sampling methods and alarm thresholds. HARMFUL ALGAE 2017; 68:97-104. [PMID: 28962993 DOI: 10.1016/j.hal.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Concern regarding Benthic Harmful Algal Blooms (BHABs) is increasing since some harmful benthic species have been identified in new areas. In the Mediterranean basin, the most common harmful benthic microalgae are Ostreopsis cf. ovata and Prorocentrum lima, which produce palytoxin-like compounds and okadaic acid respectively, and the need to implement monitoring activities has increased. However, a general agreement on appropriate strategies (e.g. sampling season, definition of alarm thresholds, etc.) is still lagging behind, especially for P. lima, whose proliferation dynamics are still poorly known.
Collapse
Affiliation(s)
- Valentina Giussani
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; ARPAL-Dip. Biotossicologia ambientale, Via Fontevivo 21L, 19125 La Spezia, Italy.
| | - Valentina Asnaghi
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; CoNISMa-P.le Flaminio, 9, 00196, Rome, Italy
| | | | - Mariachiara Chiantore
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; CoNISMa-P.le Flaminio, 9, 00196, Rome, Italy
| |
Collapse
|
38
|
Neves RAF, Fernandes T, Santos LND, Nascimento SM. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina. PLoS One 2017; 12:e0175168. [PMID: 28388672 PMCID: PMC5384755 DOI: 10.1371/journal.pone.0175168] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/21/2017] [Indexed: 01/08/2023] Open
Abstract
Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.
Collapse
Affiliation(s)
- Raquel A F Neves
- Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Tainá Fernandes
- Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Luciano Neves Dos Santos
- Laboratório de Ictiologia Teórica e Aplicada, Departamento de Ecologia e Recursos Marinhos, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biodiversidade Neotropical (PPGBIO), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Silvia M Nascimento
- Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biodiversidade Neotropical (PPGBIO), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Abdennadher M, Zouari AB, Sahnoun WF, Alverca E, Penna A, Hamza A. Ostreopsis cf. ovata in the Gulf of Gabès (south-eastern Mediterranean Sea): morphological, molecular and ecological characterization. HARMFUL ALGAE 2017; 63:56-67. [PMID: 28366400 DOI: 10.1016/j.hal.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 06/07/2023]
Abstract
In the last few decades, the frequency of the toxic benthic dinoflagellate Ostreopsis cf. ovata proliferation has increased in the Mediterranean Sea. These blooms are associated with harmful effects on human health and the environment. The present work provides the first long term study on the spatio-temporal distribution of O. cf. ovata in relation to physical parameters in the Gulf of Gabès coastal waters (south-eastern Mediterranean Sea), as well as its morphological, molecular and physiological features. The strains of O. cf. ovata were identified morphologically by light and epifluorescence microscopy. The morphology and the size range of cultured strains were similar to those described regarding O. cf. ovata isolated from the Mediterranean Sea. The ultrastructural analysis of O. cf. ovata cells using the transmission electron microscopy showed the presence of numerous vesicles (VE) containing spirally coiled fibers (SCFs) connected to the mucus canal (CH). The phylogenetic tree based on the internal transcribed spacer region containing the 5.8S rDNA (ITS-5.8S rDNA) revealed that O. cf. ovata strains were placed into the Mediterranean/Atlantic clade. In addition, O. cf. ovata toxicity was evaluated by the mouse bioassay and a dose level≥4×104 cells was found to be lethal to mice. The examination of the O. cf. ovata occurrence in the Gulf of Gabès at a large temporal scale (1997-2012) revealed a clear seasonal pattern with dominance from midsummer (July) to late autumn (November). Furthermore, a positive correlation was found between the abundance of O. cf. ovata and salinity, whereas no correlation was found as regards temperature. The occurrence of O. cf. ovata was only detected at salinity above 35 and the highest concentrations were observed at 45. Laboratory experiments confirmed such a result and showed that isolated O. cf. ovata strains had optimal growth at salinity ranging between 35 and 45, with its peak at 40.
Collapse
Affiliation(s)
- Moufida Abdennadher
- National Institute of Marine Sciences and Technologies, BP 1035, 3018 Sfax, Tunisie.
| | - Amel Bellaaj Zouari
- National Institute of Marine Sciences and Technologies, Fishing Port, 2060 La Goulette, Tunisie.
| | - Wafa Feki Sahnoun
- National Institute of Marine Sciences and Technologies, BP 1035, 3018 Sfax, Tunisie.
| | - Elsa Alverca
- Environment Reference Laboratory, Portuguese Environment Agency, Rua da Murgueira, 9/9A | Zambujal, 2611-865 Amadora, Portugal.
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, 61121 Pesaro (PU), Italy.
| | - Asma Hamza
- National Institute of Marine Sciences and Technologies, BP 1035, 3018 Sfax, Tunisie.
| |
Collapse
|
40
|
Toxicity and Growth Assessments of Three Thermophilic Benthic Dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) Developing in the Southern Mediterranean Basin. Toxins (Basel) 2016; 8:toxins8100297. [PMID: 27754462 PMCID: PMC5086657 DOI: 10.3390/toxins8100297] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/20/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023] Open
Abstract
Harmful benthic dinoflagellates, usually developing in tropical areas, are expanding to temperate ecosystems facing water warming. Reports on harmful benthic species are particularly scarce in the Southern Mediterranean Sea. For the first time, three thermophilic benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) were isolated from Bizerte Bay (Tunisia, Mediterranean) and monoclonal cultures established. The ribotyping confirmed the morphological identification of the three species. Maximum growth rates were 0.59 ± 0.08 d−1 for O. cf. ovata, 0.35 ± 0.01 d−1 for C. monotis and 0.33 ± 0.04 d−1 for P. lima. Toxin analyses revealed the presence of ovatoxin-a and ovatoxin-b in O. cf. ovata cells. Okadaic acid and dinophysistoxin-1 were detected in P. lima cultures. For C. monotis, a chromatographic peak at 5.6 min with a mass m/z = 1061.768 was observed, but did not correspond to a mono-sulfated analogue of the yessotoxin. A comparison of the toxicity and growth characteristics of these dinoflagellates, distributed worldwide, is proposed.
Collapse
|
41
|
Carnicer O, García-Altares M, Andree KB, Tartaglione L, Dell'Aversano C, Ciminiello P, de la Iglesia P, Diogène J, Fernández-Tejedor M. Ostreopsis cf. ovata from western Mediterranean Sea: Physiological responses under different temperature and salinity conditions. HARMFUL ALGAE 2016; 57:98-108. [PMID: 30170726 DOI: 10.1016/j.hal.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/26/2016] [Accepted: 06/15/2016] [Indexed: 06/08/2023]
Abstract
The dinoflagellate Ostreopsis cf. ovata proliferates seasonally in the Mediterranean Sea, producing palytoxin-like compounds (ovatoxins) which are considered among the most potent marine toxins. Blooms have been related to several toxic events in which respiratory problems in humans and mortality of benthic marine organisms have been observed. In the coming decades, an increase in temperature and salinity is predicted in the Mediterranean Sea as a consequence of global warming that may provoke alterations in the dynamics of marine microorganisms. In this study, the physiological effects of changes in water temperature and salinity were analyzed, and their interaction through a multi-factorial experiment using two strains of O. cf. ovata in culture that had been isolated from the western Mediterranean Sea. In order to perform an accurate and reliable estimation of cell abundance, hydrochloric acid and sodium-ethylenediaminetetraacetic acid treatments were evaluated for the purpose of disaggregating cell clumps, with the former providing lower counting errors, especially after the stationary phase. Results of the physiological study showed that growth was inhibited at 19°C for all salinities. The highest growth rates were registered at 24°C for both strains (0.48±0.05divday-1), and a significant variability in growth rate was found among salinities at 24°C and 28°C. Two groups were distinguished by cell size in all high temperature conditions and a positive correlation was found between the amount of small cells and growth rate. The concentration of palytoxin-like compounds in the cultures increased with time and significantly higher amounts of toxin were found at 28°C in comparison to 24°C. The results suggest that climate change may not affect intensity of blooms, but their toxicity may be enhanced.
Collapse
Affiliation(s)
- Olga Carnicer
- IRTA, Carretera de Poble Nou, Km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | - Karl B Andree
- IRTA, Carretera de Poble Nou, Km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Luciana Tartaglione
- Dipartimento di Chimica delle Sostanze Naturali, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Carmela Dell'Aversano
- Dipartimento di Chimica delle Sostanze Naturali, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Patrizia Ciminiello
- Dipartimento di Chimica delle Sostanze Naturali, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | | | - Jorge Diogène
- IRTA, Carretera de Poble Nou, Km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | |
Collapse
|
42
|
Brovedani V, Sosa S, Poli M, Forino M, Varello K, Tubaro A, Pelin M. A revisited hemolytic assay for palytoxin detection: Limitations for its quantitation in mussels. Toxicon 2016; 119:225-33. [PMID: 27343702 DOI: 10.1016/j.toxicon.2016.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Abstract
Palytoxin (PLTX) and its analogues have been detected as seafood contaminants associated with a series of human foodborne poisonings. Due to a number of fatalities ascribed to the ingestion of PLTX-contaminated marine organisms, the development of methods for its detection in seafood has been recommended by the European Food Safety Authority (EFSA). Due to its feasibility, the spectrophotometric hemolytic assay is widely used to detect PLTX in different matrices, even though a standardized protocol is still lacking. Thus, on the basis of available assay procedures, a new standardized protocol was set up using purified human erythrocytes exposed to PLTX (working range: 3.9 × 10(-10)-2.5 × 10(-8) M) in a K(+)-free phosphate buffered saline solution, employing a 5 h incubation at 41 °C. An intra-laboratory characterization demonstrated its sensitivity (limit of detection, LOD = 1.4 × 10(-10) M and quantitation, LOQ = 3.4 × 10(-10) M), accuracy (bias = -0.8%), repeatability (RSDr = 15% and 6% for intra- and inter-day repeatability, respectively) and specificity. However, the standardized method seems not to be suitable for PLTX quantitation in complex matrices, such as mussel (Mytilus galloprovincialis) extracts, at least below the limit suggested by EFSA (30 μg PLTXs/Kg shellfish meat). Thus, the hemolytic assay for PLTX quantitation in seafood should be used only after a careful evaluation of the specific matrix effects.
Collapse
Affiliation(s)
- Valentina Brovedani
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| | - Mark Poli
- U.S. Army Medical Research Institute of Infectious Diseases, Ft Detrick, MD, United States.
| | - Martino Forino
- Department of Pharmacy, University of Napoli Federico II, 80131, Napoli, Italy.
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| |
Collapse
|
43
|
Vanucci S, Guidi F, Pistocchi R, Long RA. Phylogenetic structure of bacterial assemblages co-occurring with Ostreopsis cf. ovata bloom. HARMFUL ALGAE 2016; 55:259-271. [PMID: 28073540 DOI: 10.1016/j.hal.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 06/06/2023]
Abstract
Extensive blooms of the toxic epiphytic/benthic dinoflagellate Ostreopsis cf. ovata are being reported with increasing frequency and spatial distribution in temperate coastal regions including the Mediterranean. These blooms are of human and environmental health concern due to the production of isobaric palytoxin and a wide range of ovatoxins by Ostreopsis cf. ovata. Bacterial-microalgal interactions are important regulators in algal bloom dynamics and potentially toxin dynamics. This study investigated the bacterial assemblages co-occurring with O. cf. ovata (OA) and from ambient seawaters (SW) during the early and peak phases of bloom development in NW Adriatic Sea. Fractions of the bacterial assemblages co-occurring with O. cf. ovata (OA) and more closely associated to the mucilage layer (LA) embedding O. cf. ovata cells were also reported. In total, 14 bacterial phyla were detected by targeted 454 pyrosequencing of the 16S rRNA gene. The dominant bacterial phyla in the OA assemblages were Proteobacteria and Bacteroidetes; while at the class level, Alphaproteobacteria were the most abundant (83 and 66%, relative abundance, early and peak bloom phases), followed by Flavobacteria (7 and 19%, early and peak phases). Actinobacteria and Cyanobacteria were of minor importance (<5% of the relative bacterial abundance each). Gammaproteobacteria showed a notably presence in OA assemblage only at the early phase of the bloom (genus Haliea, 13%). The Alphaproteobacteria were predominately composed by the genera Ruegeria, Jannaschia and Erythrobacter which represented about half of the total phylotypes' contribution of OA at both early and peak phases of the O. cf. ovata bloom, suggesting interactions between this consortium and the microalga. Moreover, the highest contribution of Ruegeria (30% of the total phylotypes) was observed at the early phase of the bloom in LA assemblage. Microbial assemblages associated with the ambient seawaters while being also dominated by Alphaproteobacteria and Flavobacteria were partially distinct from those associated with O. cf. ovata due to the presence of genera almost not retrieved in the latter assemblages.
Collapse
Affiliation(s)
- Silvana Vanucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S. Agata, Messina, Italy.
| | - Flavio Guidi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy
| | - Rossella Pistocchi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy
| | - Richard A Long
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
44
|
Pezzolesi L, Vanucci S, Dell'Aversano C, Dello Iacovo E, Tartaglione L, Pistocchi R. Effects of N and P availability on carbon allocation in the toxic dinoflagellate Ostreopsis cf. ovata. HARMFUL ALGAE 2016; 55:202-212. [PMID: 28073533 DOI: 10.1016/j.hal.2016.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 06/06/2023]
Abstract
Blooms of the toxic dinoflagellate Ostreopsis cf. ovata are usually associated with shallow and calm coastal waters, characterized by low nutrient concentrations. The algal cells typically cover the benthic substrates, such as the macroalgal and invertebrate communities and rocks, forming a mucilaginous film. Data reported on O. cf. ovata toxin production observed under both field and culture conditions show high variability in terms of toxic profile and cellular content; little is known about the environmental and physiological aspects which regulate the toxin dynamics. In this study, O. cf. ovata physiology was investigated using batch cultures supplied with nutrient concentrations similar to those found in the Adriatic Sea during the recurrent blooms and the observed cellular dynamics were compared with those found in a culture grown under optimal conditions, used as a reference. Data on the cellular C, N and P content during the growth highlighted a possible important role of the cellular nutritional status in regulating the toxin production that resulted to be promoted under specific intervals of the C:N and C:P ratios. The variable toxicity found for O. cf. ovata in various geographic areas could be related to the different in situ prevalent environmental conditions (e.g., nutrient concentrations) which affect the cellular elemental composition and carbon allocation. The obtained results strongly suggest that in the environment toxin production is steadily sustained by a low and constant nutrient supply, able to maintain appropriate cellular C:N (>12) or C:P (>170) ratios for a long period. These results explain to some extent the variability in toxicity and growth dynamics observed in blooms occurring in the different coastal areas.
Collapse
Affiliation(s)
- Laura Pezzolesi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy.
| | - Silvana Vanucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando d'Alcontres 31, 98166 S. Agata, Messina, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Emma Dello Iacovo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Tartaglione
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Rossella Pistocchi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
45
|
Pelin M, Forino M, Brovedani V, Tartaglione L, Dell'Aversano C, Pistocchi R, Poli M, Sosa S, Florio C, Ciminiello P, Tubaro A. Ovatoxin-a, A Palytoxin Analogue Isolated from Ostreopsis cf. ovata Fukuyo: Cytotoxic Activity and ELISA Detection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1544-1551. [PMID: 26714047 DOI: 10.1021/acs.est.5b04749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study provides the first evaluation of the cytotoxic effects of the recently identified palytoxin (PLTX) analog, ovatoxin-a (OVTX-a), the major toxin produced by Ostreopsis cf. ovata in the Mediterranean Sea. Its increasing detection during Ostreopsis blooms and in seafood highlights the need to characterize its toxic effects and to set up appropriate detection methods. OVTX-a is about 100 fold less potent than PLTX in reducing HaCaT cells viability (EC50 = 1.1 × 10(-9) M vs 1.8 × 10(-11) M, MTT test) in agreement with a reduced binding affinity (Kd = 1.2 × 10(-9) vs 2.7 × 10(-11) M, saturation experiments on intact cells). Similarly, OVTX-a hemolytic effect is lower than that of the reference PLTX compound. Ost-D shows the lowest cytotoxicity toward HaCaT keratinocytes, suggesting the lack of a hydroxyl group at C44 as a critical feature for PLTXs cytotoxic effects. A sandwich ELISA developed for PLTX detects also OVTX-a in a sensitive (LOD = 4.2 and LOQ = 5.6 ng/mL) and accurate manner (Bias = 0.3%), also in O. cf. ovata extracts and contaminated mussels. Although in vitro OVTX-a appears less toxic than PLTX, its cytotoxicity at nanomolar concentrations after short exposure time rises some concern for human health. The sandwich ELISA can be a viable screening method for OVTXs detection in monitoring program.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| | - Martino Forino
- Department of Pharmacy, University of Napoli Federico II , 80131 Napoli, Italy
| | | | - Luciana Tartaglione
- Department of Pharmacy, University of Napoli Federico II , 80131 Napoli, Italy
| | | | - Rossella Pistocchi
- Interdepartmental Center for Research in Environmental Sciences, University of Bologna , 481230 Ravenna, Italy
| | - Mark Poli
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, 21701-5011 United States
| | - Silvio Sosa
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| | - Chiara Florio
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| | - Patrizia Ciminiello
- Department of Pharmacy, University of Napoli Federico II , 80131 Napoli, Italy
| | - Aurelia Tubaro
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| |
Collapse
|
46
|
Chen L, Gin KYH, He Y. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3586-3595. [PMID: 26490939 DOI: 10.1007/s11356-015-5605-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Karina Y H Gin
- Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, E1A-07-03, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
47
|
Chen L, Mao F, Kirumba GC, Jiang C, Manefield M, He Y. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:126-135. [PMID: 26232039 DOI: 10.1016/j.ecoenv.2015.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Feijian Mao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - George Chira Kirumba
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Cheng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Institute of Energy Conversion, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
48
|
Tartaglione L, Mazzeo A, Dell'Aversano C, Forino M, Giussani V, Capellacci S, Penna A, Asnaghi V, Faimali M, Chiantore M, Yasumoto T, Ciminiello P. Chemical, molecular, and eco-toxicological investigation of Ostreopsis sp. from Cyprus Island: structural insights into four new ovatoxins by LC-HRMS/MS. Anal Bioanal Chem 2015; 408:915-32. [PMID: 26608282 DOI: 10.1007/s00216-015-9183-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Blooms of benthic dinoflagellates of the genus Ostreopsis (mainly O. cf. ovata and occasionally O. cf. siamensis) represent a serious concern for humans in the Mediterranean area, due to production of palytoxin-like compounds listed among the most potent marine toxins known. In this work, six strains of Ostreopsis sp. from Cyprus Island were analyzed through an integrated approach based on molecular, chemical, and eco-toxicological methods. Cypriot Ostreopsis sp. was found to be a species distinct from O. cf. ovata and O. cf. siamensis, belonging to the Atlantic/Mediterranean Ostreopsis spp. clade. Some variability in toxin profiles emerged: three strains produced ovatoxin-a (OVTX-a), OVTX-d, OVTX-e, and isobaric palytoxin, so far found only in O. cf. ovata; the other three strains produced only new palytoxin-like compounds, which we named ovatoxin-i, ovatoxin-j1, ovatoxin-j2, and ovatoxin-k. The new ovatoxins present the same carbon skeleton as ovatoxin-a, differing primarily in an additional C2H2O2 moiety and an unsaturation in the region C49-C52. Other minor structural differences were found, including the presence of a hydroxyl group at C44 (in OVTX-j1 and OVTX-k) and the lack of a hydroxyl group in the region C53-C78 (in OVTX-i and OVTX-j1). The toxin content of the analyzed Ostreopsis sp. strains was in the range 0.06-2.8 pg cell(-1), definitely lower than that of a Ligurian O. cf. ovata strain cultured under the same conditions. Accordingly, an eco-toxicological test on Artemia salina nauplii demonstrated that Ostreopsis sp. presents a very low toxicity compared to O. cf. ovata. The whole of these data suggest that Ostreopsis sp. from Cyprus Island poses a relatively low risk to humans.
Collapse
Affiliation(s)
- Luciana Tartaglione
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Antonia Mazzeo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Martino Forino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | | | | | - Antonella Penna
- DISB, University of Urbino, Viale Trieste 296, 61121, Pesaro, Italy
| | | | - Marco Faimali
- CNR, Institute of Marine Sciences (ISMAR), Via De Marini 6, 16149, Genoa, Italy
| | | | - Takeshi Yasumoto
- Tama Laboratory, Japan Food Research Laboratories, 6-11-10 Nagayama, Tama-shi, Tokyo, 206-0025, Japan
| | - Patrizia Ciminiello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
49
|
Carnicer O, Guallar C, Andree KB, Diogène J, Fernández-Tejedor M. Ostreopsis cf. ovata dynamics in the NW Mediterranean Sea in relation to biotic and abiotic factors. ENVIRONMENTAL RESEARCH 2015; 143:89-99. [PMID: 26365038 DOI: 10.1016/j.envres.2015.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 07/30/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
An expansion of the distribution of Ostreopsis cf. ovata, a dinoflagellate which produces palytoxin-like compounds, has been reported in recent years. Economical and social interests are affected by blooms, as they are responsible for respiratory and skin problems in humans and may cause damage to marine organisms. In order to identify the most influential environmental factors that trigger proliferations of O. cf. ovata in the area of the adjacent shallow rocky coast of the Ebro Delta (NW Mediterranean Sea) a three-year survey was performed on the metaphytic microalgae community growing on the macrophytes Jania rubens and Corallina elongata. Small-size diatoms were more abundant than dinoflagellates; O. cf. ovata was identified as the only species present from the genus. Seawater temperature was the primary driver defining the ecological niche of O. cf. ovata. Freshwater and groundwater fluxes were more pronounced in southern than in northern sites, which may have resulted in a distinct O. cf. ovata spatial distribution, with the highest records of abundance and more frequent blooms in the north. In consequence, negative correlations between the abundance of O. cf. ovata and nitrate concentrations and significant positive correlation with salinity were observed. The temporal pattern of O. cf. ovata dynamics from mid-July to early-November is probably due to the fact that this species is observed only above a certain threshold temperature of seawater. Metaphytic cells of O. cf. ovata were smaller in the northern site than in the south, possibly as a result of an increase in cell division, coinciding with higher abundance, and this could be an indicator of favorable conditions. Toxicity in planktonic cells was negatively correlated with cell abundance in the water column, achieving maximum concentrations of 25pg. PLTX eqcell(-1).
Collapse
Affiliation(s)
- Olga Carnicer
- IRTA, Carretera de Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Carles Guallar
- IRTA, Carretera de Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain; IFREMER, DYNECO-PELAGOS Centre de Brest, Pointe du Diable BP70, 29280 Plouzane, France
| | - Karl B Andree
- IRTA, Carretera de Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Jorge Diogène
- IRTA, Carretera de Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | |
Collapse
|
50
|
The novel ovatoxin-g and isobaric palytoxin (so far referred to as putative palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): structural insights by LC-high resolution MSn. Anal Bioanal Chem 2014; 407:1191-204. [DOI: 10.1007/s00216-014-8338-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|