1
|
Hasan NT, Han D, Xu X, Sansom G, Roh T. Relationship between low-level arsenic exposure in drinking water and kidney cancer risk in Texas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125097. [PMID: 39389248 DOI: 10.1016/j.envpol.2024.125097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Kidney cancer rates are increasing in the US and worldwide. Arsenic, a known human carcinogen, is a suspected contributor to this rise, particularly in areas with arsenic-rich groundwater. However, research on the connection between low-level arsenic in drinking water and kidney cancer is limited. In our ecological study, we assessed the association between county-level drinking water arsenic levels and kidney cancer incidences using data from 240 counties in Texas. The analysis included 28,896 cancer cases among adults aged ≥20 years and 101,776,294 person-years during the period 2016-2020. Spatial Poisson regression models estimated the risk ratio (RR) for incident kidney cancer based on drinking water arsenic levels, adjusting for demographic, socioeconomic, and other risk factors, as well as spatial factors. Population-weighted drinking water arsenic levels were calculated using data from water testing for both public water systems and private wells, adjusted for populations served from each source. After adjusting for spatial factors and covariates, we observed 6% and 22% higher incidence of cancer in the medium (1-5 ppb) (RR 1.06, 95% CI 1.01, 1.11) and high arsenic (>5 ppb) group counties (RR 1.22, 95% CI 1.12, 1.34) compared to the low arsenic level ones (<1 ppb), showing a dose-response relationship (p-trend <0.001). Additionally, when arsenic was treated as a continuous variable, the incidence increased by 4% for each doubling of drinking water arsenic level (RR 1.04, 95% CI 1.02, 1.07) when considering drinking water arsenic level as a continuous variable. Our study suggests that exposure to low-level drinking water arsenic may be associated with an increased risk of kidney cancer. Further prospective studies are required to confirm our findings.
Collapse
Affiliation(s)
- Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Xioahui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Garett Sansom
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
McAtee D, Abdelmoneim A. Effects of developmental exposure to arsenic species on behavioral stress responses in larval zebrafish and implications for stress-related disorders. Toxicol Sci 2024; 201:61-72. [PMID: 38833692 DOI: 10.1093/toxsci/kfae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Arsenic (As) is globally detected in drinking water and food products at levels repeatedly surpassing regulatory thresholds. Several neurological and mental health risks linked to arsenic exposure are proposed; however, the nature of these effects and their association with the chemical forms of arsenic are not fully understood. Gaining a clear understanding of the etiologies and characteristics of these effects is crucial, particularly in association with developmental exposures where the nervous system is most vulnerable. In this study, we investigated the effects of early developmental exposure (6- to 120-h postfertilization [hpf]) of larval zebrafish to environmentally relevant concentrations of arsenic species-trivalent/pentavalent, inorganic/organic forms-on developmental, behavioral, and molecular endpoints to determine their effect on stress response and their potential association with stress-related disorders. At 120 hpf, the developing larvae were assessed for a battery of endpoints including survival, developmental malformities, background activity, and behavioral responses to acute visual and acoustic stimuli. Pooled larval samples were analyzed for alterations in the transcript levels of genes associated with developmental neurotoxicity and stress-related disorders. Developmental exposures at target concentrations did not significantly alter survival, overall development, or background activity, and had minor effects on developmental morphology. Sodium arsenate and monomethylarsonic acid exaggerated the behavioral responses of larval zebrafish, whereas sodium arsenite depressed them. Sodium arsenate induced significant effects on molecular biomarkers. This study highlights the effects of developmental exposure to arsenicals on the behavioral stress response, the role chemical formulation plays in exerting toxicological effects, and the possible association with stress-related disorders.
Collapse
Affiliation(s)
- Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
3
|
Kaiser LM, Freeborn RA, Boss AP, Jin Y, Rockwell CE. Arsenic trioxide inhibits the response of primary human B cells to influenza virus A in vitro. Toxicol In Vitro 2024; 96:105783. [PMID: 38278458 DOI: 10.1016/j.tiv.2024.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Arsenic compounds are common environmental toxicants worldwide and particularly enriched in the Northeast and the Southwestern United States, the Alps, and Bangladesh. Exposure to arsenic is linked with various detrimental health outcomes, including cancer, cognitive decline, and kidney damage. Our group has previously shown that arsenic trioxide alters T cell cytokine production. In the current study, we demonstrate that exposure to arsenic compounds alters B cell function in an in vitro influenza model. Human peripheral blood mononuclear cells (PBMCs) were isolated from blood and cultured with arsenic trioxide (As3O2) and subsequently challenged with Influenza A virus. B cells showed decreased expression of CD267, surface IgG and CD80 when treated with As3O2. Taken together, the data suggest that As3O2 affects the activation and surface antibody expression of human peripheral B cells. Overall, this suggests that As3O2 exposure could cause impaired humoral immunity.
Collapse
Affiliation(s)
- Luca M Kaiser
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Allison P Boss
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America; Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Yining Jin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America; Applied Immunology Center for Research and Education, Michigan State University, East Lansing, United States of America.
| |
Collapse
|
4
|
Younas M, Bacha AUR, Khan K, Nabi I, Ullah Z, Humayun M, Hou J. Application of manganese oxide-based materials for arsenic removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170269. [PMID: 38266733 DOI: 10.1016/j.scitotenv.2024.170269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In the context of growing arsenic (As) contamination in the world, there is an urgent need for an effective treatment approach to remove As from the environment. Industrial wastewater is one of the primary sources of As contamination, which poses significant risks to both microorganisms and human health, as the presence of As can disrupt the vital processes and synthesis of crucial macromolecules in living organisms. The global apprehension regarding As presence in aquatic environments persists as a key environmental issue. This review summarizes the recent advances and progress in the design, strategy, and synthesis method of various manganese-based adsorbent materials for As removal. Occurrence, removal, oxidation mechanism of As(III), As adsorption on manganese oxide (MnOx)-based materials, and influence of co-existing solutes are also discussed. Furthermore, the existing knowledge gaps of MnOx-based adsorbent materials and future research directions are proposed. This review provides a reference for the application of MnOx-based adsorbent materials to As removal.
Collapse
Affiliation(s)
- Muhammad Younas
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan China
| | - Iqra Nabi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology Wuhan, 430074, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China..
| |
Collapse
|
5
|
Meng F, Tong H, Feng C, Huang Z, Wu P, Zhou J, Hua J, Wu F, Liu C. Structural Fe(II)-induced generation of reactive oxygen species on magnetite surface for aqueous As(III) oxidation during oxygen activation. WATER RESEARCH 2024; 252:121232. [PMID: 38309068 DOI: 10.1016/j.watres.2024.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/06/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Magnetite is a reductive Fe(II)-bearing mineral, and its reduction property is considered important for degradation of contaminants in groundwater and anaerobic subsurface environments. However, the redox condition of subsurface environments frequently changes from anaerobic to aerobic owing to natural and anthropogenic disturbances, generating reactive oxygen species (ROS) from the interaction between Fe(II)-bearing minerals and O2. Despite this, the mechanism of ROS generation induced by magnetite under aerobic conditions is poorly understood, which may play a crucial role in As(III) oxidation. Herein, we found that magnetite could activate O2 and induce the oxidative transformation of As(III) under aerobic conditions. As(III) oxidation was attributed to the ROS generated via structural Fe(II) within the magnetite octahedra oxygenation. The electron paramagnetic resonance and quenching tests confirmed that O2•-, H2O2, and •OH were produced by magnetite. Moreover, density function theory calculations combined with experiments demonstrated that O2•- was initially formed via single electron transfer from the structural Fe(II) to the adsorbed O2; O2•- was then converted to •OH and H2O2 via a series of free radical reactions. Among them, O2•-and H2O2 were the primary ROS responsible for As(III) oxidation, accounting for approximately 52 % and 19 % of As(III) oxidation. Notably, As(III) oxidation mainly occurred on the magnetite surface, and As was immobilized further within the magnetite structure. This study provides solid evidence regarding the role of magnetite in determining the fate and transformation of As in redox-fluctuating subsurface environments.
Collapse
Affiliation(s)
- Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jimei Zhou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jian Hua
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
6
|
Han Y, Gao T, Li X, Wāng Y. Didactical approaches and insights into environmental processes and cardiovascular hazards of arsenic contaminants. CHEMOSPHERE 2024; 352:141381. [PMID: 38360414 DOI: 10.1016/j.chemosphere.2024.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Arsenic, as a metalloid, has the ability to move and transform in different environmental media. Its widespread contamination has become a significant environmental problem and public concern. Arsenic can jeopardize multiple organs through various pathways, influenced by environmental bioprocesses. This article provides a comprehensive overview of current research on the cardiovascular hazards of arsenic. A bibliometric analysis revealed that there are 376 papers published in 145 journals, involving 40 countries, 631 institutions, and 2093 authors, all focused on arsenic-related concerns regarding cardiovascular health. China and the U.S. have emerged as the central hubs of collaborative relationships and have the highest number of publications. Hypertension and atherosclerosis are the most extensively studied topics, with redox imbalance, apoptosis, and methylation being the primary mechanistic clues. Cardiovascular damage caused by arsenic includes arrhythmia, cardiac remodeling, vascular leakage, and abnormal angiogenesis. However, the current understanding is still inadequate over cardiovascular impairments, underlying mechanisms, and precautionary methods of arsenic, thus calling an urgent need for further studies to bridge the gap between environmental processes and arsenic hazards.
Collapse
Affiliation(s)
- Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tiantian Gao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiaozhi Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
8
|
Di Caprio F, Altimari P, Astolfi ML, Pagnanelli F. Optimization of two-phase synthesis of Fe-hydrochar for arsenic removal from drinking water: Effect of temperature and Fe concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119834. [PMID: 38128206 DOI: 10.1016/j.jenvman.2023.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Arsenic-contaminated water is a global concern that demands the development of cost-effective treatments to ensure a safe drinking water supply for people worldwide. In this paper, we report the optimization of a two-phase synthesis for producing a hydrochar core from olive pomace to serve as support for the deposition of Fe-hydroxide, which is the active component in As(V) removal. The operating conditions considered were the initial concentration of Fe in solution in the hydrothermal treatment (phase I) and the temperature of Fe precipitation (phase II). The obtained samples were characterized for their elemental composition, solid yield, mineral content (Fe and K), phenol release, As(V) sorption capacity, and sorbent stability. Correlation analysis revealed that higher Fe concentrations (26.8 g/L) ensured better carbonization during hydrothermal treatment, increased arsenic removal, reduced concentrations of phenols in the final liquid, and improved stability of the sorbent composite. On the other hand, the temperature during Fe precipitation (phase II) can be maintained at lower levels (25-80 °C) since higher temperatures yielded lower adsorption capacity. Regression analysis demonstrated the significance of the main effects of the parameters on sorption capacity and provided a model for selecting operating conditions (Fe concentration and phase II temperature) to obtain composite sorbents with tailored sorption properties.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Pietro Altimari
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Luisa Astolfi
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy; CIABC, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Pagnanelli
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
9
|
Bali S, Goswami S, Halder A, Mondal A. A facile approach for selective detection of arsenite ions using plasmonic behaviour of silver nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:170-174. [PMID: 38099858 DOI: 10.1039/d3ay01701j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A specific reagent/aptamer-free easy redox strategy between silver(I) moieties present in a citrate-stabilized colloidal silver nanoparticle (NP) system and arsenite ions is described that enables plasmonic change of AgNPs for the selective quantification of arsenite ions in the range of 0 to 30 μM with a low limit of quantification value of 50 nM (5.3 ppb).
Collapse
Affiliation(s)
- Somnath Bali
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India.
| | - Subhajit Goswami
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India.
| | - Arnab Halder
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India.
| | - Avijit Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
10
|
Jegen D, Maxson J, Fischer K, Bernard M, Foss R, Hidaka B, Passmore R, Sosso J, Stacey SK, Thacher TD. Arsenic Exposure in Well Water From the Perspective of Patients and Providers. J Prim Care Community Health 2024; 15:21501319241247984. [PMID: 38682480 PMCID: PMC11060032 DOI: 10.1177/21501319241247984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Arsenic is a well-known toxin which may contaminate household water. It is harmful when ingested over prolonged periods of time. As a result, public health experts recommend that water should be screened and treated to prevent arsenic ingestion. In the United States, the responsibility of testing and treatment of private wells falls on homeowners. Despite recommendations for routine screening, this is rarely done. OBJECTIVES To assess the prevalence of well water use in a Midwestern patient population, how patients and clinicians perceive the risks of arsenic in well water, and whether additional resources on well water testing are desired. These findings will be used to influence tools for clinicians regarding symptom and examination findings of chronic arsenic exposure and potentiate the distribution of informational resources on well water testing. METHODS Surveys were sent via email to all actively practicing primary care clinicians at the Mayo Clinic in the United States Midwest, and all active adult patients at the Mayo Clinic in the same region. Our team analyzed survey data to determine whether both patients and clinicians are aware of the health effects of chronic arsenic toxicity from well water, the need for routine well water testing and whether each group wants more information on the associated risks. RESULTS Both patients and primary care clinicians worry about arsenic exposure. Patients with well water are concerned about their water safety yet feel uninformed about testing options. Clinicians do not know how prevalent well water use is among their patients, feel uninformed about the chronic risks of arsenic exposure and the physical examination associated with it. Both groups unanimously want more information on testing options. CONCLUSIONS Our findings show a significant reliance on well water use in the American Midwest, and unanimous support for the need for further well water testing information and resources for patients and their clinicians.
Collapse
Affiliation(s)
| | | | | | | | - Randy Foss
- Mayo Clinic Health System, Lake City, MN, USA
| | | | | | | | | | | |
Collapse
|
11
|
Su LJ, Chiang TC, O’Connor SN. Arsenic in brown rice: do the benefits outweigh the risks? Front Nutr 2023; 10:1209574. [PMID: 37521417 PMCID: PMC10375490 DOI: 10.3389/fnut.2023.1209574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Brown rice has been advocated for as a healthier alternative to white rice. However, the concentration of arsenic and other pesticide contaminants is greater in brown rice than in white. The potential health risks and benefits of consuming more brown rice than white rice remain unclear; thus, mainstream nutritional messaging should not advocate for brown rice over white rice. This mini-review aims to summarize the most salient concepts related to dietary arsenic exposure with emphasis on more recent findings and provide consumers with evidence of both risks and benefits of consuming more brown rice than white rice. Despite risk-benefit assessments being a challenging new frontier in nutrition, researchers should pursue an assessment to validate findings and solidify evidence. In the interim, consumers should be cognizant that the dose of arsenic exposure determines its toxicity, and brown rice contains a greater concentration of arsenic than white rice.
Collapse
Affiliation(s)
- Lihchyun Joseph Su
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tung-Chin Chiang
- Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sarah N. O’Connor
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Wei Y, Zhao J, Yang W, Qiu Z, Xia Y, Wang Z, Li Y, Liu C. Deep remediation of As(III) in water by La-Ce bimetal oxide modified carbon framework. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131163. [PMID: 36893596 DOI: 10.1016/j.jhazmat.2023.131163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Arsenic contamination of groundwater harms the health of millions of people, especially As(III), which is extremely toxic and difficult to remediate. Herein, we fabricated a reliable La-Ce binary oxide-anchored carbon framework foam (La-Ce/CFF) adsorbent for As(III) deep removal. Its open 3D macroporous structure ensures fast adsorption kinetic. The incorporation of an appropriate amount of La could enhance the affinity of La-Ce/CFF for As(III). The adsorption capacity of La-Ce10/CFF reached 40.01 mg/g. It could purify the As(III) concentrations to drinking standard level (< 10 μg/L) over the pH ranges 3-10. It also possessed excellent anti-interference ability to the interfering ions. In addition, it worked reliably in the simulated As(III)-contaminated groundwater and river water. La-Ce10/CFF could easily apply in fixed-bed, and La-Ce10/CFF (1 g) packed column could purify 4580 BV (36.0 L) of As(III)-contaminated groundwater. When further considering the excellent reusability of La-Ce10/CFF, it is a promising and reliable adsorbent for As(III) deep remediation.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Jing Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Weijian Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Zhiyuan Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| | - Yufen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Zhimin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yuxin Li
- Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
13
|
Shakya A, Dodson M, Artiola JF, Ramirez-Andreotta M, Root RA, Ding X, Chorover J, Maier RM. Arsenic in Drinking Water and Diabetes. WATER 2023; 15:1751. [PMID: 37886432 PMCID: PMC10601382 DOI: 10.3390/w15091751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Arsenic is ubiquitous in soil and water environments and is consistently at the top of the Agency for Toxic Substances Disease Registry (ATSDR) substance priority list. It has been shown to induce toxicity even at low levels of exposure. One of the major routes of exposure to arsenic is through drinking water. This review presents current information related to the distribution of arsenic in the environment, the resultant impacts on human health, especially related to diabetes, which is one of the most prevalent chronic diseases, regulation of arsenic in drinking water, and approaches for treatment of arsenic in drinking water for both public utilities and private wells. Taken together, this information points out the existing challenges to understanding both the complex health impacts of arsenic and to implementing the treatment strategies needed to effectively reduce arsenic exposure at different scales.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Janick F. Artiola
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | | | - Robert A. Root
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Xinxin Ding
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Raina M. Maier
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Zhang X, Fu Q, Hu H, Zhu J, Liu Y. Effects of Fe(II) on As(III) oxidation in Fe(II)-As(III) co-oxidation: Limiting and driving roles. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130790. [PMID: 36669406 DOI: 10.1016/j.jhazmat.2023.130790] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The co-oxidation of Fe(II) and As(III) occurs under aerobic conditions, and Fe(II) may largely determine the fate of As(III), but the effect of Fe(II) on the As(III) oxidation is barely explored. In this research, the limiting and driving roles of Fe(II) in As(III) oxidation were systematically studied through batch kinetic studies in combination with X-ray photoelectron spectroscopy (XPS) depth profiling, scanning electron microscopy and energy dispersive X-ray spectrometry (SEM-EDS), and quenching experiments. The results showed that As(III) oxidation efficiency increased with the increase of Fe/As molar ratio (from 63.1% to 98.3%), but decreased with the increase of pH (from 96.0% to 44.2%) and the increase of air flow rate (from 88.1% to 75.1%). The Fe(II) oxidation rate increased with the increase of pH and air flow rate. When Fe(II) was oxidized rapidly, As(III) was more likely to be immobilized in the "inner sphere" of formed Fe (hydr)oxides, limiting As(III) oxidation. On the other hand, Fe(II) was oxidized to produce Fe (hydr)oxides to adsorb or fix As(III); meanwhile, the ROS generated by Fenton-like reaction of Fe(II) promoted As(III) oxidation, especially, •O2- and H2O2 were important ROS that drove the As(III) oxidation. These findings might provide a new insight for Fe(II) and As(III) geochemistry cycling in naturally occurring environment.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
15
|
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Use of Microbial Consortia in Bioremediation of Metalloid Polluted Environments. Microorganisms 2023; 11:microorganisms11040891. [PMID: 37110315 PMCID: PMC10143001 DOI: 10.3390/microorganisms11040891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| | - Raymond J. Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada;
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14178-64411, Iran
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| |
Collapse
|
16
|
Li W, Liu Z, Wang L, Gao G, Xu H, Huang W, Yan N, Wang H, Qu Z. FeS x@MOF-808 composite for efficient As(III) removal from wastewater: behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130681. [PMID: 36584652 DOI: 10.1016/j.jhazmat.2022.130681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Arsenic is extremely toxic to humans with water as its carrier. One challenge for arsenic control is the complete elimination of As(III) due to its high toxicity, mobility, and solubility. Herein, an active FeSx@MOF-808 composite was fabricated to enhance the As(III) removal for wastewater remediation. The FeSx@MOF-808 showed better As(III) adsorptive performance (Qe = 73.60 mg/g) compared with Fe2S3 (Qe=12.38 mg/g), MOF-808 (Qe = 27.85 mg/g), and Fe@MOF-808 (Qe=34.26 mg/g). This can be attributed to an improved porous structure provided by MOF-808 and abundant reactive sites provided by FeSx. Calculated by the Langmuir model (R2 =0.9965), the maximum adsorption capacity (Qmax) of FeSx@MOF-808 for As(III) removal at 298 K and pH = 7 was 203.28 ± 6.43 mg/g, which is beyond most of the traditional materials and MOFs. Additionally, FeSx@MOF-808 exhibited good stability in a wide pH range (1-13). Results also showed that the different Fe/S ratios (1:0-1:8) and FeSx loading amount (0.00625-0.25 mmol) have effects on the FeSx@MOF-808 performance. By kinetics studies, XPS, and DFT calculation, the mechanisms for arsenic by FeSx@MOF-808 were proposed. Multiple reaction mechanisms combine the adsorption by the MOF-808 support, the co-precipitation of iron oxides via hydroxyl (Fe-OH) groups, and most importantly, the precipitation through the break of Fe-S and the bond of As-S.
Collapse
Affiliation(s)
- Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Longlong Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongwei Wang
- Wuhan Municipal Road&Bridge Co., Ltd, No. 426 Gaoxin Avenue, Wuhan East Lake New Technology Development Zone, Wuhan 430223, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
17
|
Das M, Gangopadhyay D, Pelc R, Hadravová R, Šebestík J, Bouř P. Aggregation-aided SERS: Selective detection of arsenic by surface-enhanced Raman spectroscopy facilitated by colloid cross-linking. Talanta 2023; 253:123940. [DOI: 10.1016/j.talanta.2022.123940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
|
18
|
Wang Z, Bi X, He X, Xie Y, Lin J, Deng B. A two-sorbent system for fast uptake of arsenate from water: Batch and column studies. WATER RESEARCH 2023; 228:119290. [PMID: 36434972 DOI: 10.1016/j.watres.2022.119290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
There is a critical need to use decentralized and/or point-of-use systems to address some challenging water quality issues in society. Sorption-based approaches are uniquely suitable for such applications because of their simplicity in operation; however, the sorbents must possess fast contaminant uptake kinetics to overcome short hydraulic contact times often encountered in small systems. Here we designed a two-sorbent system consisting of Fe2O3-coated mesoporous carbon (FeMC) and nano-Fe2O3-coated activated carbon (FeAC) and demonstrated its ability to remove arsenate with a < 1 min empty bed contact time (EBCT) by a capture-and-storage process. Batch experiments showed rapid capture of arsenate by FeMC, likely occurred on the rod-like structures protruding to the liquid film. The captured arsenate could subsequently be relocated to FeAC for storage, which had a higher apparent sorption capacity. Column studies, operated with a 10 h running time followed by a 14 h pump-off time, showed that with a 102 μg-As/L influent concentration and at 0.85 min EBCT, the column treated 20,022 bed volumes until the 10 μg-As/L breakthrough, corresponding to a sorption density of 2.36 mg-As/g. This capture-and-storage technique resulted in a rapid and high-capacity arsenate removal through a combined effect of facile access to sorption sites on one sorbent and dynamic equilibrium in the two-sorbent system possessing a large total sorption capacity.
Collapse
Affiliation(s)
- Zhengyang Wang
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA; Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Xiangyu Bi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoqing He
- Electron Microscopy Core Facilities, The University of Missouri, Columbia, MO 65211, USA; Department of Mechanical and Aerospace Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Yunchao Xie
- Department of Mechanical and Aerospace Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Baolin Deng
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Arienzo MM, Saftner D, Bacon SN, Robtoy E, Neveux I, Schlauch K, Carbone M, Grzymski J. Naturally occurring metals in unregulated domestic wells in Nevada, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158277. [PMID: 36029812 PMCID: PMC9588670 DOI: 10.1016/j.scitotenv.2022.158277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 05/26/2023]
Abstract
The dominant source of drinking water in rural Nevada, United States, is privately-owned domestic wells. Because the water from these wells is unregulated with respect to government guidelines, it is the owner's responsibility to test their groundwater for heavy metals and other contaminants. Arsenic, lead, cadmium, and uranium have been previously measured at concentrations above Environmental Protection Agency (EPA) guidelines in Nevada groundwater. This is a public health concern because elevated levels of these metals are known to have negative health effects. We recruited individuals through a population health study, the Healthy Nevada Project, to submit drinking water samples from domestic wells for testing. Water samples were returned from 174 households with private wells. We found 22 % had arsenic concentrations exceeding the EPA maximum contaminant level (MCL) of 10 μg/L. Additionally, federal, state, or health-based guidelines were exceeded for 8 % of the households for uranium and iron, 6 % for lithium and manganese, 4 % for molybdenum, and 1 % for lead. The maximum observed concentrations of arsenic, uranium, and lead were ∼80, ∼5, and ∼1.5 times the EPA guideline values, respectively. 41 % of households had a treatment system and submitted both pre- and post-treatment water samples from their well. The household treatments were shown to reduce metal concentrations, but concentrations above guideline values were still observed. Many treatment systems cannot reduce the concentration below guideline values because of water chemistry, treatment failure, or improper treatment techniques. These results show the pressing need for continued education and outreach on regular testing of domestic well waters, proper treatment types, and health effects of metal contamination. These findings are potentially applicable to other arid areas where groundwater contamination of naturally occurring heavy metals occurs.
Collapse
Affiliation(s)
- Monica M Arienzo
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA.
| | - Daniel Saftner
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA
| | - Steven N Bacon
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA
| | - Erika Robtoy
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA
| | - Iva Neveux
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA
| | - Karen Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA
| | | | - Joseph Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA; Renown Health, Reno, NV, USA
| |
Collapse
|
20
|
Liu H, Xu R, Häggblom MM, Zhang J, Sun X, Gao P, Li J, Yan W, Gao W, Gao P, Liu G, Zhang H, Sun W. Immobile Iron-Rich Particles Promote Arsenic Retention and Regulate Arsenic Biotransformation in Treatment Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15627-15637. [PMID: 36283075 DOI: 10.1021/acs.est.2c04421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Remediation of arsenic (As)-contaminated wastewater by treatment wetlands (TWs) remains a technological challenge due to the low As adsorption capacity of wetland substrates and the release of adsorbed As to pore water. This study investigated the feasibility of using immobile iron-rich particles (IIRP) to promote As retention and to regulate As biotransformation in TWs. Iron-rich particles prepared were immobilized in the interspace of a gravel substrate. TWs with IIRP amendment (IIRP-TWs) achieved a stable As removal efficiency of 63 ± 4% over 300 days, while no As removal or release was observed in TWs without IIRP after 180 days of continuous operation. IIRP amendment provided additional adsorption sites and increased the stability of adsorbed As due to the strong binding affinity between As and Fe oxides. Microbially mediated As(III) oxidation was intensified by iron-rich particles in the anaerobic bottom layer of IIRP-TWs. Myxococcus and Fimbriimonadaceae were identified as As(III) oxidizers. Further, metagenomic binning suggested that these two bacterial taxa may have the capability for anaerobic As(III) oxidation. Overall, this study demonstrated that abiotic and biotic effects of IIRP contribute to As retention in TWs and provided insights into the role of IIRP for the remediation of As contamination.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiayi Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
21
|
Nayyar M, Chawla J, Kumar R. N-Substituted 2-Sulfanylacetamide Prunus Armeniaca: Synthesis, Characterization, and Adsorption Studies for As(III) Remediation. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222090233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Fang K, Deng L, Yin J, Yang T, Li J, He W. Recent advances in starch-based magnetic adsorbents for the removal of contaminants from wastewater: A review. Int J Biol Macromol 2022; 218:909-929. [PMID: 35914554 DOI: 10.1016/j.ijbiomac.2022.07.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Considerable concern exists regarding water contamination by various pollutants, such as conventional pollutants (e.g., heavy metals and organics) and emerging micropollutants (e.g., consumer care products and interfering endocrine-related compounds). Currently, academics are continuously exploring sustainability-related materials and technologies to remove contaminants from wastewater. Magnetic starch-based adsorbents (MSAs) can combine the advantages of starch and magnetic nanoparticles, which exhibit unique critical features such as availability, cost-effectiveness, size, shape, crystallinity, magnetic properties, stability, adsorption properties, and excellent surface properties. However, limited reviews on MSAs' preparations, characterizations, applications, and adsorption mechanisms could be available nowadays. Hence, this review not only focuses on their activation and preparation methods, including physical (e.g., mechanical activation treatment, microwave radiation treatment, sonication, and extrusion), chemical (e.g., grafting, cross-linking, oxidation and esterification), and enzymatic modifications to enhance their adsorption properties, but also offers an all-round state-of-the-art analysis of the full range of its characterization methods, the adsorption of various contaminants, and the underlying adsorption mechanisms. Eventually, this review focuses on the recycling and reclamation performance and highlights the main gaps in the areas where further studies are warranted. We hope that this review will spark an interdisciplinary discussion and bring about a revolution in the applications of MSAs.
Collapse
Affiliation(s)
- Kun Fang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China; College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Ligao Deng
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Jiangyu Yin
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Tonghan Yang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China.
| | - Wei He
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
23
|
Sandhi A, Yu C, Rahman MM, Amin MN. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51354-51366. [PMID: 35618999 PMCID: PMC9288370 DOI: 10.1007/s11356-022-20880-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/12/2022] [Indexed: 04/12/2023]
Abstract
The presence of high levels of carcinogenic metalloid arsenic (As) in the groundwater system of Bangladesh has been considered as one of the major environmental disasters in this region. Many parts of Bangladesh have extensively reported the presence of high levels of arsenic in the groundwater due to both geological and anthropogenic activities. In this paper, we reviewed the available literature and scientific information regarding arsenic pollution in Bangladesh, including arsenic chemistry and occurrences. Along with using As-rich groundwater as a drinking-water source, the agricultural activities and especially irrigation have greatly depended on the groundwater resources in this region due to high water demands for ensuring food security. A number of investigations in Bangladesh have shown that high arsenic content in both soil and groundwater may result in high levels of arsenic accumulation in different plants, including cereals and vegetables. This review provides information regarding arsenic accumulation in major rice varieties, soil-groundwater-rice arsenic interaction, and past arsenic policies and plans, as well as previously implemented arsenic mitigation options for both drinking and irrigation water systems in Bangladesh. In conclusion, this review highlights the importance and necessity for more in-depth studies as well as more effective arsenic mitigation action plans to reduce arsenic incorporation in the food chain of Bangladesh.
Collapse
Affiliation(s)
- Arifin Sandhi
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Changxun Yu
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Md Marufur Rahman
- Bangladesh Institute of Research and Training On Applied Nutrition, Rangpur Regional Station, Pirgonj-5470, Rangpur, Bangladesh
| | - Md Nurul Amin
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Breeder Seed Production Centre, Bangladesh Agricultural Research Institute, Debiganj, Panchagarh-5020, Bangladesh
| |
Collapse
|
24
|
Gahlaut A, Kharewal T, Verma N, Hooda V. Cell-free arsenic biosensors with applied nanomaterials: critical analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:525. [PMID: 35737169 DOI: 10.1007/s10661-022-10127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a ubiquitously found metalloid in our ecosystem because of natural and anthropogenic activities. People exposed to a higher level of arsenic become susceptible to several disorders, including cancer. According to current statistics, the population chronically exposed to arsenic has surpassed 200 million. Therefore, its detection in our environment is of great importance. There are many analytical techniques for the assessment of arsenic in different kinds of environmental samples. Among these techniques, the biosensor is considered a convenient platform and a widely applied analytical device for rapid qualitative and quantitative analysis in the field of environmental monitoring, food safety, and disease diagnosis. Today, there is a trend of including nanomaterials in sensors and biosensors because it empowers researchers to explore new arsenic detection methods and to enhance their analytical capabilities. In this review article, we summarized the latest developments in arsenic biosensors in particular with emphasis on the works based on cell-free approaches that are protein/enzyme-based, DNA-based, and aptamer-based utilizing various transduction platforms. In the meantime, we compared the capabilities that were related to these cell-free arsenic biosensors. This review article also highlights the development and application of novel nanomaterials for arsenic detection.
Collapse
Affiliation(s)
- Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Tannu Kharewal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
25
|
Biswas S, Chowdhury T, Ghosh A, Das AK, Das D. Effect of O-substitution in imidazole based Zn(II) dual fluorescent probes in the light of arsenate detection in potable water: a combined experimental and theoretical approach. Dalton Trans 2022; 51:7174-7187. [PMID: 35470835 DOI: 10.1039/d2dt00357k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efficient detection of arsenate (AsO43-) from contaminated drinking water extracted from underground has become a matter of utmost necessity and an exquisite challenge owing to the growing public health issue due to arsenicosis. In order to combat this we planned to detect arsenate with the naked eye under UV light using a novel chemosensor material whose structure and functioning as a sensor could be certified mechanistically. Hence we were encouraged to synthesize two differently O-substituted imidazole based homologous ligands: C1 (HL1 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-ethoxyphenol) and C2 (HL2 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-methoxyphenol). To accomplish the purposeful exploration of the luminescent sensor, we considered Chelation Enhanced Fluorescence (CHEF) and kept on searching for a metal cation that would be able to turn on the fluorescence of the ligands. Considering Zn(II) as the most suitable candidate, luminescent complexes D1 and D2 ({[Zn2(L1)2(I)2](DMF)} and [Zn2(L2)2(I)2](DMF), respectively) were synthesized and characterized by SXRD, UV-Vis, FT-IR, and photoluminescence spectroscopy. In spite of the resemblance in the solid state structures of D1 and D2, the selective response of D1 towards arsenate with high quenching constants (2.13 × 106), unlike D2, has been demonstrated mechanistically with steady state and time resolved fluorescence titration, solution phase ESI-MS spectral analysis and DFT studies. The selectivity and sensitivity of the sensor D1 explicitly make this material a potent candidate for arsenate detection due to its very low detection limit (8.2 ppb), low cost and user friendly characteristics. Real life implementation of this work in a test strip is expected to prove beneficial for public health to identify arsenate polluted water.
Collapse
Affiliation(s)
- Sneha Biswas
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Tania Chowdhury
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
26
|
Yuan H, Huang Y, Jiang O, Huang Y, Qiu D, Gustave W, Tang X, Li Z. Removal of Arsenate From Groundwater by Cathode of Bioelectrochemical System Through Microbial Electrosorption, Reduction, and Sulfuration. Front Microbiol 2022; 13:812991. [PMID: 35359725 PMCID: PMC8963459 DOI: 10.3389/fmicb.2022.812991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Arsenate [As(V)] is a toxic metalloid and has been observed at high concentrations in groundwater globally. In this study, a bioelectrochemical system (BES) was used to efficiently remove As(V) from groundwater, and the mechanisms involved were systematically investigated. Our results showed that As(V) can be efficiently removed in the BES cathode chamber. When a constant cell current of 30 mA (Icell, volume current density = 66.7 A/m3) was applied, 90 ± 3% of total As was removed at neutral pH (7.20–7.50). However, when Icell was absent, the total As in the effluent, mainly As(V), had increased approximately 2–3 times of the As(V) in influent. In the abiotic control reactor, under the same condition, no significant total As or As(V) removal was observed. These results suggest that As(V) removal was mainly ascribed to microbial electrosorption of As(V) in sludge. Moreover, part of As(V) was bioelectrochemically reduced to As(III), and sulfate was also reduced to sulfides [S(–II)] in sludge. The XANES results revealed that the produced As(III) reacted with S(–II) to form As2S3, and the residual As(III) was microbially electroadsorbed in sludge. This BES-based technology requires no organic or chemical additive and has a high As(V) removal efficiency, making it an environment-friendly technique for the remediation of As-contaminated groundwater.
Collapse
Affiliation(s)
- Honghong Yuan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yumeng Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Ouyuan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Yue Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Dongsheng Qiu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Williamson Gustave
- School of Chemistry, Environmental and Life Sciences, University of The Bahamas, Nassau, Bahamas
| | - Xianjin Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xianjin Tang,
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University - Quzhou, Quzhou, China
- Zhongjian Li,
| |
Collapse
|
27
|
Mohammadi M, Naghibi SA, Motevalli A, Hashemi H. Human-induced arsenic pollution modeling in surface waters - An integrated approach using machine learning algorithms and environmental factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114347. [PMID: 34954681 DOI: 10.1016/j.jenvman.2021.114347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/20/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
In recent years, assessment of sediment contamination by heavy metals, i.e., arsenic, has attracted the interest of scientists worldwide. The present study provides a new methodology to better understand the factors influencing surface water vulnerability to arsenic pollution by two advanced machine learning algorithms including boosted regression trees (BRT) and random forest (RF). Based on the sediment quality guidelines (Effects range low) polluted and non-polluted arsenic sediment samples were defined with concentrations >8 ppm and <8 ppm, respectively. Different conditioning factors such as topographical, lithology, erosion, hydrological, and anthropogenic factors were acquired to model surface waters' vulnerability to arsenic. We trained and validated the models using 70 and 30% of both polluted and non-polluted samples, respectively, and generated surface vulnerability maps. To verify the maps to arsenic pollution, the receiver operating characteristics (ROC) curve was implemented. The results approved the acceptable performance of the RF and BRT algorithms with an area under ROC values of 85% and 75.6%, respectively. Further, the findings showed higher importance of precipitation, slope aspect, distance from residential areas, and slope length in arsenic pollution in the modeling process. Erosion, lithology, and land use maps were introduced as the least important factors. The introduced methodology can be used to define the most vulnerable areas to arsenic pollution in advance and implement proper remediation actions to reduce the damages.
Collapse
Affiliation(s)
- Maziar Mohammadi
- Department of Watershed Management and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran.
| | - Seyed Amir Naghibi
- Department of Water Resources Engineering & Center for Advanced Middle Eastern Studies, Lund University, Lund, Sweden
| | - Alireza Motevalli
- Department of Watershed Management and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran
| | - Hossein Hashemi
- Department of Water Resources Engineering & Center for Advanced Middle Eastern Studies, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Smith NK, Keltie E, Sweeney E, Weerasinghe S, MacPherson K, Kim JS. Toenail speciation biomarkers in arsenic-related disease: a feasibility study for investigating the association between arsenic exposure and chronic disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113269. [PMID: 35144129 DOI: 10.1016/j.ecoenv.2022.113269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Long-term exposure to environmental arsenic has been associated with many chronic diseases, including several cancers, and diabetes. Urinary studies have implicated arsenic speciation as an important risk factor, however, such associations have not been replicated using toenail samples: a relatively new biosample for estimating long-term internal dose-exposure to arsenic. Despite having several advantages over conventional biosamples such as ease of collection and storage, standard methods for arsenic speciation analysis in toenails have not yet been established. The primary objectives of this study were to 1) establish an analytical method for arsenic speciation analysis in toenails, 2) describe preliminary arsenic speciation profiles of toenail samples from individuals with skin, lung, bladder, and kidney cancer, type II diabetes, and no known disease, and 3) determine if these speciation patterns differ between disease groups to inform the feasibility of subsequent research. A small cross-sectional feasibility study was carried out using 60 toenail samples and baseline questionnaire data from the Atlantic Partnership for Tomorrow's Health (Atlantic PATH) study. Arsenic speciation profiles were determined using high performance liquid chromatography (HPLC) paired with inductively coupled plasma-mass spectrometry (ICP-MS). While no differences in total arsenic were found, arsenic speciation profiles were significantly different between certain cancer groups and the reference group with no known disease. Specifically, the percentage of monomethylarsonic acid (%MMA) was found to be significantly higher in the toenails of individuals with lung cancer and kidney cancer, compared to healthy individuals with similar total arsenic exposure. To the best of our knowledge, this is the first study to describe arsenic speciation patterns in individuals with several arsenic-related diseases using toenails: a convenient, non-invasive, biobankable sample capable of longer-term exposure estimation than conventional biosamples. These preliminary data provide evidence that toenail arsenic speciation patterns differ between groups with arsenic-related disease, and those with no known disease. Toenail arsenic speciation analysis is feasible and could potentially have important implications for research on arsenic-related diseases. Further investigation is warranted and would benefit from including detailed arsenic exposure data to explore the observed heterogeneity in arsenic speciation profiles.
Collapse
Affiliation(s)
- Nathan Kyle Smith
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin Keltie
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ellen Sweeney
- Atlantic PATH, Population Cancer Research Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Swarna Weerasinghe
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen MacPherson
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jong Sung Kim
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
29
|
Wu T, Zhu Y, Song L, Chen Y, Huang Y, Tang J, Ma X, Wang H, Zhang J, Lin D, Chen G. Three-dimensional gold nanowires with high specific surface area for simultaneous detection of heavy metal ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:859-868. [PMID: 35166284 DOI: 10.1039/d1ay02051j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditional detection methods to detect heavy metal ions are time-consuming, complicated, and expensive. Here, we developed a simple electroless plating method to prepare three-dimensional gold nanowire (Au NW) films with high specific surface area. In an aqueous plating bath, tetrachloroauric acid, 4-dimethylaminopyridine and formaldehyde are used as precursor, ligand, and reducing agent, respectively. An electrochemical sensor based on a Au NWs/SPE could be applied for simultaneous detection of lead (Pb(II)), arsenic (As(III)), and mercury (Hg(II)) ions. The detection limits of Pb(II), As(III), and Hg(II) are 2.6, 1.5, and 4.2 μg L-1, all lower than the permissible limits of the WHO for drinking water (the permissible level of Pb(II) and As(III) is 10.0 μg L-1, and the permissible level of Hg(II) is 6.0 μg L-1), respectively. This work presents a simple and novel method to prepare gold nanowires for quick detection of trace heavy metal ions.
Collapse
Affiliation(s)
- Tingxia Wu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Yongbao Zhu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Lingyu Song
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Yizhe Chen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai, 201209, China.
| | - Yufu Huang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai, 201209, China.
| | - Junping Tang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai, 201209, China.
| | - Xinzhou Ma
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, China
| | - Hanchun Wang
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China
| | - Jun Zhang
- Food, Drug and Environmental Crime Research Center of Fujian Police College, Fujian Police College, Fuzhou, 350007, China
| | - Donghai Lin
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai, 201209, China.
| | - Guosong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
30
|
Hua J, Fei YH, Feng C, Liu C, Liang S, Wang SL, Wu F. Anoxic oxidation of As(III) during Fe(II)-induced goethite recrystallization: Evidence and importance of Fe(IV) intermediate. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126806. [PMID: 34388930 DOI: 10.1016/j.jhazmat.2021.126806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Under anoxic conditions, aqueous Fe(II) (Fe(II)aq)-induced recrystallization of iron (oxyhydr)oxides changes the speciation and geochemical cycle of trace elements in environments. Oxidation of trace element, i.e., As(III), driven by Fe(II)aq-iron (oxyhydr)oxides interactions under anoxic condition was observed previously, but the oxidative species and involved mechanisms are remained unknown. In the present study, we explored the formed oxidative intermediates during Fe(II)aq-induced recrystallization of goethite under anoxic conditions. The methyl phenyl sulfoxide-based probe experiment suggested the featured oxidation by Fe(IV) species in Fe(II)aq-goethite system. Both the Mössbauer spectra and X-ray absorption near edge structure spectroscopic evidenced the generation and quenching of Fe(IV) intermediate. It was proved that the interfacial electron exchange between Fe(II)aq and Fe(III) of goethite initiated the generation of Fe(IV). After transferring electrons to goethite, Fe(II)aq was transformed to labile Fe(III), which was then transformed to Fe(IV) via a proton-coupled electron transfer process. This highly reactive transient Fe(IV) could quickly react with reductive species, i.e. Fe(II) or As(III). Considering the ubiquitous occurrence of Fe(II)-iron (oxyhydr)oxides reactions under anoxic conditions, our findings are expected to provide new insight into the anoxic oxidative transformation processes of matters in non-surface environments on earth.
Collapse
Affiliation(s)
- Jian Hua
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Sheng Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Feng Wu
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
31
|
Song Y, Gotoh T, Nakai S. Synthesis of Oxidant Functionalised Cationic Polymer Hydrogel for Enhanced Removal of Arsenic (III). Gels 2021; 7:gels7040197. [PMID: 34842691 PMCID: PMC8628796 DOI: 10.3390/gels7040197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
A cationic polymer gel (N-[3-(dimethylamino)propyl]acrylamide, methyl chloride quaternary)(DMAPAA-Q gel)-supported oxidising agent (KMnO4 or K2Cr2O7) was proposed to remove As from water. The gel could adsorb arsenite, As(III), and arsenate, As(V), through the ion exchange method, where the oxidising agent oxidised As(III) to As(V). theoretically speaking, the amount of oxidant in the gels can reach 73.7 Mol%. The maximal adsorption capacity of the D-Mn gel (DMAPAA-Q gel carrying MnO4−) and D-Cr gel (DMAPAA-Q gel carrying Cr2O72−) for As(III) could reach 200 mg g−1 and 263 mg g−1, respectively; moreover, the As(III) removal rate of the gels could still be maintained above 85% in a neutral or weak acid aquatic solution. Studies on the kinetic and adsorption isotherms indicated that the As adsorption by the D-Mn and D-Cr gels was dominated by chemisorption. The thermodynamic parameters of adsorption confirmed that the adsorption was an endothermic process. The removal of As is influenced by the co-existing high-valence anions. Based on these results, the gels were found to be efficient for the As(III) adsorption and could be employed for the As(III) removal from the industrial wastewater.
Collapse
|
32
|
Coral JA, Heaps S, Glaholt SP, Karty JA, Jacobson SC, Shaw JR, Bondesson M. Arsenic exposure induces a bimodal toxicity response in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117637. [PMID: 34182391 DOI: 10.1016/j.envpol.2021.117637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
In toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level. This study investigated the effect of arsenic (sodium arsenite) on post-gastrulated zebrafish embryos and elucidated effects of bimodal concentration-responses on different phenotypic perturbations. Six hour post fertilized (hpf) zebrafish embryos were exposed to arsenic to 96 hpf. Hatching success, mortality, and morphometric endpoints were evaluated both in embryos with chorions and dechorionated embryos. Zebrafish embryos exhibited a bimodal response to arsenic exposure. Concentration-response curves for exposed embryos with intact chorions had an initial peak in mortality (88%) at 1.33 mM arsenic, followed by a decrease in toxicity (~20% mortality) at 1.75 mM, and subsequently peaked to 100% mortality at higher concentrations. To account for the bimodal response, two distinct concentration-response curves were generated with estimated LC10 values (and 95% CI) of 0.462 (0.415, 0.508) mM and 1.69 (1.58, 1.78) mM for the 'low concentration' and 'high concentration' peaks, respectively. Other phenotypic analyses, including embryo length, yolk and pericardial edema all produced similar concentration-response patterns. Tests with dechorionated embryos also resulted in a bimodal toxicity response but with lower LC10 values of 0.170 (0.120, 0.220) mM and 0.800 (0.60, 0842) mM, respectively. Similarities in bimodal concentration-responses between with-chorion and dechorionated embryos indicate that the observed effect was not caused by the chorion limiting arsenic availability, thus lending support to other studies such as those that hypothesized a conserved bimodal mechanism of arsenic interference with nuclear receptor activation.
Collapse
Affiliation(s)
- Jason A Coral
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Samuel Heaps
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| |
Collapse
|
33
|
Ma S, Yang F, Chen X, Khor CM, Jung B, Iddya A, Sant G, Jassby D. Removal of As(III) by Electrically Conducting Ultrafiltration Membranes. WATER RESEARCH 2021; 204:117592. [PMID: 34469809 DOI: 10.1016/j.watres.2021.117592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
As(III) species are the predominant form of arsenic found in groundwater. However, nanofiltration (NF) and reverse osmosis (RO) membranes are often unable to effectively reject As(III). In this study, we fabricate highly conducting ultrafiltration (UF) membranes for effective As(III) rejection. These membranes consist of a hydrophilic nickel-carbon nanotubes layer deposited on a UF support, and used as cathodes. Applying cathodic potentials significantly increased As(III) rejection in synthetic/real tap water, a result of locally elevated pH that is brought upon through water electrolysis at the membrane/water interface. The elevated pH conditions convert H3ASO3 to H2AsO3-/HAsO32- that are rejected by the negatively charged membranes. In addition, it was found that Mg(OH)2 that precipitates on the membrane can further trap arsenic. Importantly, almost all As(III) passing through the membranes is oxidized to As(V) by hydrogen peroxide produced on the cathode, which significantly decreased its overall toxicity and mobility. Although the high pH along the membrane surface led to mineral scaling, this scale could be partially removed by backwashing the membrane. To the best of our knowledge, this is the first report of effective As(III) removal using low-pressure membranes, with As(III) rejection higher than that achieved by NF and RO, and high water permeance.
Collapse
Affiliation(s)
- Shengcun Ma
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fan Yang
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xin Chen
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Laboratory for the Chemistry of Construction Materials (LC2), University of California, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States
| | - Chia Miang Khor
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bongyeon Jung
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arpita Iddya
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gaurav Sant
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Laboratory for the Chemistry of Construction Materials (LC2), University of California, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States; Department of Materials Science and Engineering, University of California, Los Angeles, CA, United States; California Nano systems Institute (CNSI), University of California, Los Angeles, CA, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Yan B, Liang T, Yang X, Gadgil AJ. Superior removal of As(III) and As(V) from water with Mn-doped β-FeOOH nanospindles on carbon foam. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126347. [PMID: 34126383 DOI: 10.1016/j.jhazmat.2021.126347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Arsenic pollution of water is one of the severest environmental challenges threatening human health. Iron-based nanomaterials have been demonstrated effective in arsenic removal. However, they generally suffer from low removal efficiency towards highly toxic As(III), loss of active sites owing to agglomeration, and poor reusability. Herein, we report a carbonized melamine foam supported Mn(IV)-doped β-FeOOH nanospindles(CF@Mn-FeOOH NSp) for tackling the technical hurdles. The designed CF@Mn-FeOOH NSp appears as a free-standing monolith through a low-cost and straightforward hydrothermal method. The atomic-scale integration of Mn(IV) into β-FeOOH enables an oxidation-adsorption bifunctionality, where Mn(IV) serves as oxidizer for As(III) and Fe(III) acts as adsorber for As(V). The maximal adsorption capacity for As(V) and As(III) can reach 152 and 107 mg g-1, respectively. Meanwhile, As in simulated high arsenic groundwater can be decreased to below 10 μg L-1 within 24 h. By simple "filtrating-washing", 85% and 82% of its initial adsorption capacity for As(V) and As(III) can be easily recovered even after 5-cycles reuse. Kinetics and isotherm adsorption study indicate that the arsenic adsorption behavior is mainly through chemical bonding during single-layer adsorbing process. The as-prepared CF@Mn-FeOOH offers a scalable, efficient, and recyclable solution for arsenic removal in groundwater and wastewater from mines and industry.
Collapse
Affiliation(s)
- Bing Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, USA.
| | - Tian Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xiaohui Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Ashok J Gadgil
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, USA.
| |
Collapse
|
35
|
Chen T, Wei Y, Yang W, Liu C. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125822. [PMID: 34492784 DOI: 10.1016/j.jhazmat.2021.125822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Biochar adsorbents for removing As(III) suffer from the problems of low adsorption capacity and ineffective removal. Herein, a granular MgO-embedded biochar (g-MgO-Bc) adsorbent is fabricated in the form of millimeter-sized particles through a simple gelation-calcination method using chitosan as biochar sources. High-density MgO nanoparticles are evenly dispersed throughout the biochar matrix and can be fully exposed to As(III) through the rich pores in g-MgO-Bc. These features endow the adsorbent with a high adsorption capacity of 249.1 mg/g for As(III). The g-MgO-Bc can efficiently remove As(III) over a wide pH of 3-10. The coexisting carbonate, nitrate, sulfate, silicate, and humic acid exert a negligible influence on As(III) removal. 300 μg/L of As(III) can be purified to far below 10 μg/L using only 0.3 g/L g-MgO-Bc. The spent g-MgO-Bc could be well regenerated by simple calcination. In fixed-bed column experiments, the effective treatment volume of As(III)-spiked groundwater achieves 1500 BV (30 L) (3 g of adsorbent, solution flow rate of 2.0 mL/min, C0 = 50 μg/L). The Mg(OH)2 generated in situ in g-MgO-Bc is responsible for the adsorption of As(III) through the inner-sphere complex mechanism. The work would extend the potential applicability of biochar adsorbent for As(III) removal to a great extent.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yuanfeng Wei
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Weijian Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
36
|
Malakar A, Singh R, Westrop J, Weber KA, Elofson CN, Kumar M, Snow DD. Occurrence of arsenite in surface and groundwater associated with a perennial stream located in Western Nebraska, USA. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126170. [PMID: 34492946 DOI: 10.1016/j.jhazmat.2021.126170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Dissolved arsenic typically results from chemical weathering of arsenic rich sediments and is most often found in oxidized forms in surface water. The mobility of arsenic is controlled by its valence state and also by its association with iron oxides minerals, the forms of which are both influenced by abiotic and biotic processes in aqueous environment. In this study, speciation methods were used to measure and confirm the presence of reduced arsenic species in the surface water of Frenchman creek, a gaining stream that crosses the Colorado-Nebraska border. Selective extraction analysis of aquifer and stream bed sediments shows that the bulk of the arsenic occurs with labile iron-rich oxy(hydroxide) minerals. Total dissolved arsenic in surface and groundwater ranged from ~3-18 µg L-1, and reduced arsenic species comprise about 41% of the total dissolved arsenic (16.0 µg L-1) in Frenchman creek. Leachable arsenic in the aquifer sediment samples ranged up to 1553 µg kg-1, while samples from Frenchman creek bed sediments contained 4218 µg kg-1. Dynamic surface and groundwater interaction sustains arsenite in iron-rich surface headwaters, and the implied toxicity of reduced arsenic in this hydrogeological setting, which can be important in surface water environments around the globe.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 109 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, Uttarakhand, India
| | - Jeffrey Westrop
- School of Biological Sciences and Robert B. Daugherty Water for Food Institute, University of Nebraska-Lincoln, 232 Manter Hall, Lincoln, NE 68588-0118, USA
| | - Karrie A Weber
- School of Biological Sciences and Robert B. Daugherty Water for Food Institute, University of Nebraska-Lincoln, 232 Manter Hall, Lincoln, NE 68588-0118, USA; Department of Earth and Atmospheric Sciences and Robert B. Daugherty Water for Food Global Institute, University of Nebraska-Lincoln, 316 Bessey Hall, Lincoln, NE 68588-0340, USA
| | - Christopher N Elofson
- School of Biological Sciences and Robert B. Daugherty Water for Food Institute, University of Nebraska-Lincoln, 232 Manter Hall, Lincoln, NE 68588-0118, USA
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355 Gujarat, India
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA.
| |
Collapse
|
37
|
Zeng XC, Xu Y, He Z, Wang Y, Chen X. A powerful arsenite-oxidizing biofilm bioreactor derived from a single chemoautotrophic bacterial strain: Bioreactor construction, long-term operations and kinetic analysis. CHEMOSPHERE 2021; 273:129672. [PMID: 33524754 DOI: 10.1016/j.chemosphere.2021.129672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/13/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Microbial oxidation of As(III) by biofilm bioreactors followed by adsorption is a promising and environment friendly approach to remediate As(III) contaminated groundwater; however, poor activity, stability and expandability of the bioreactors hampered their industrious applications. To resolve this issue, we constructed a new biofilm bioreactor using a powerful chemoautotrophic As(III)-oxidizing bacterium Rhizobium sp. A219. This strain has strong ability to form biofilms and possesses very high As(III)-oxidizing activities in both planktonic and biofilm forms. Perlites were used as the biofilm carriers. Long-term operations suggest that the bioreactor has very high efficiency, stability and scalability under different geochemical conditions, and it is cheap and easy to construct and operate. During the operations, it is only required to supply air, nothing else. All the common contaminants in groundwater slightly affected the bioreactor As(III)-oxidizing activity. The common contaminants in groundwater can be largely removed through assimilation by the bacterial cells as nutrition. The bioreactor completely oxidize 1.0, 5.0, 10.0, 20.0 and 30.0 mg/L As(III) in 12, 18, 20, 25 and 30 min, respectively. Approximately 18, 18, 12, 12 and 21 min were needed to oxidize 1.1 mg/L As(III) at 20, 25, 30, 35 and 40 °C, respectively. The bioreactor works well under the pH values of 5-8, and the most optimal was 7.0. The data suggest that this bioreactor possesses the highest efficiency and stability, and thus has the great potential for industrial applications among all the described As(III)-oxidizing bioreactors derived from a single bacterium.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China.
| | - Yifan Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Zhong He
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| |
Collapse
|
38
|
Liu F, Yang W, Li W, Zhao GC. Simultaneous Oxidation and Sequestration of Arsenic(III) from Aqueous Solution by Copper Aluminate with Peroxymonosulfate: A Fast and Efficient Heterogeneous Process. ACS OMEGA 2021; 6:1477-1487. [PMID: 33490807 PMCID: PMC7818582 DOI: 10.1021/acsomega.0c05203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The major problem in arsenic (As(III)) removal using adsorbents is that the method is time-consuming and inefficient owing to the fact that most of the adsorbents are more effective for As(V). Herein, we report a new discovery regarding the significant simultaneous oxidation and sequestration of As(III) by a heterogeneous catalytic process of copper aluminate (CuAl2O4) coupled with peroxymonosulfate (PMS). Oxidation and adsorption promote each other. With the help of the active radicals, the As(III) removal efficiency can be increased from 59.4 to 99.2% in the presence of low concentrations of PMS (50 μM) and CuAl2O4 (300 mg/L) in solution. CuAl2O4/PMS can work effectively in a wide pH range (3.0-9.0). Other substances, such as nitrate, sulfate, chloride, carbonate, and humic acid, exert an insignificant effect on As(III) removal. Based on X-ray photoelectron spectroscopy (XPS) analysis, the exposed reductive copper active sites might drive the redox reaction of Cu(II)/Cu(I), which plays a key role in the decomposition of PMS and the oxidation of As(III). The exhausted CuAl2O4 could be refreshed for cycling runs with insignificant capacity loss by the combined regeneration strategy because of the stable spinel structure. According to all results, the CuAl2O4/PMS with favorable oxidation ability and stability could be employed as a promising candidate in real As(III)-contaminated groundwater treatment.
Collapse
|
39
|
Zhou Q, Jin P, Liu J, Li S, Liu W, Xi S. HER2 overexpression triggers the IL-8 to promote arsenic-induced EMT and stem cell-like phenotypes in human bladder epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111693. [PMID: 33396024 DOI: 10.1016/j.ecoenv.2020.111693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is a natural chemical element that is strongly associated with bladder cancer. Understanding the underlying mechanisms behind the association between arsenic and bladder cancer as well as identifying effective preventive interventions will help reduce the incidence and mortality of this disease. The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties play key roles in cancer development and progression. Here, we reported that chronic exposure to arsenic resulted in EMT and increased levels of the CSC marker CD44 in human uroepithelial cells. Furthermore, IL-8 promoted a mesenchymal phenotype and upregulated CD44 by activating the ERK, AKT and STAT3 signaling. Phosphorylation of the human epidermal growth factor receptor 2 (HER2) was key for arsenic-induced IL-8 overexpression and depended on the simultaneous activation of the MAPK, JNK, PI3K/AKT and GSK3β signaling pathways. We also found that genistein inhibited arsenic-induced HER2 phosphorylation and downregulated its downstream signaling pathways, thereby inhibiting progression of EMT, and reducing CD44 expression levels. These results demonstrate that the HER2/IL-8 axis is related to the acquisition of an EMT phenotype and CSCs in arsenic-treated cells. The inhibitory effects of genistein on EMT and CSCs provide a new perspective for the intervention and potential chemotherapy against arsenic-induced bladder cancer.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Peiyu Jin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Jieyu Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Sihao Li
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Weijue Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| |
Collapse
|
40
|
Liu F, Wu JF, Zhao GC. Synchronous oxidation and sequestration for As( iii) from aqueous solution by modified CuFe 2O 4 coupled with peroxymonosulfate: a fast and stable heterogeneous process. RSC Adv 2021; 11:4598-4609. [PMID: 35424406 PMCID: PMC8694489 DOI: 10.1039/d0ra09324f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/15/2021] [Indexed: 12/05/2022] Open
Abstract
Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention. However, the agglomerated nature and stability of nanoparticles are major concerns. Herein, we report a new process regarding the anchoring of CuFe2O4 nanoparticles on a substrate material, a kind of Fe–Ni foam, to form porous CuFe2O4 foam (CuFe2O4-foam) by in situ synthesis. The prepared material was then applied to activate peroxymonosulfate (PMS) for fast and efficient removal of As(iii) from water. The results of removal experiments show that the complete removal of arsenic (<10 μg L−1) from 1 mg L−1 As(iii) aqueous solution can be achieved within shorter time (<10 min) using this adsorbent coupled with PMS. The maximum adsorption capability of As(iii) and As(v) on the prepared adsorbent is observed to be about 105.78 mg g−1 and 120.32 mg g−1, respectively. CuFe2O4-foam/PMS couple could work effectively in a wide pH range (3.0–9.0) and temperature range (10–60 °C), which is more beneficial to its application in actual water treatment engineering. The exhausted adsorbents can be refreshed for cyclic runs (at least 7 cycles) with insignificant capacity loss using alkaline solution as a regeneration strategy, suggesting this process has good stability. Investigation of the mechanism reveals that the route to the removal of As(iii) is synchronous oxidation and sequestration in the arsenic removal process. The large As(iii) removal capability and stability of CuFe2O4-foam/PMS show its potential as a promising candidate in real As(iii)-contaminated groundwater treatment. Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention.![]()
Collapse
Affiliation(s)
- Fu Liu
- School of Ecology and Environment
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Jian-Feng Wu
- School of Ecology and Environment
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Guang-Chao Zhao
- School of Ecology and Environment
- Anhui Normal University
- Wuhu 241000
- P. R. China
| |
Collapse
|
41
|
Hung DT, Thi Cuc V, Thi Bich Phuong V, Thi Thanh Diu D, Thi Huyen Trang N, Phuong Thoa N, Thi Tuyet Chinh D, Manh Hung T, Manh Linh C, Van Long N. Evaluation of Drinking Water Quality in Schools in a District Area in Hanoi, Vietnam. ENVIRONMENTAL HEALTH INSIGHTS 2020; 14:1178630220959672. [PMID: 33013160 PMCID: PMC7513401 DOI: 10.1177/1178630220959672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Drinking water quality affects directly human health. Assessment and prevention of water-borne diseases are crucial for primary prevention, especially for children. OBJECTIVE The main aim of this study was to investigate the quality of drinking water from tap water in preschools and primary schools in a district area in Hanoi City, Vietnam. METHODS A cross-sectional study was performed from August to October 2019. Water samples from tap water of 154 schools in a district area of Hanoi were collected to determine the quality of drinking water. From each school, at least 2 bottles of water samples were collected on the basis of a standard operating procedure (SOP). Each water sample was analyzed for microbial and physicochemical parameters, including Color, Taste and Odor, Turbidity, pH, Nitrite, Nitrate, Ammonium, Total Iron, Permanganate, Chloride, Hardness, Total Manganese, Sulfate, Arsenic, Coliform, and E.coli, by analytical methods. The obtained values of each parameter were compared with the standard values set by WHO and National Technical Regulation on Domestic Water Quality of Vietnam. RESULTS All of the schools employed community water system as a main source for drinking water. The results showed that all tested samples were found to be within the standards for some physicochemical properties, including Color, Taste and Odor, Hardness, Chloride, Total Iron (Fe2+ và Fe3+), Total Manganese (Mn), Nitrate (NO3 -), Sulfate (SO4 2-), and Total Arsenic (As). On the other hand, some samples did not meet the allowable limits of the national standard, due to pH (3.9%), Turbidity (0.6%), Nitrite (3.2%), Permanganate (6.5%), and Ammonium (5.8%). Furthermore, the microbial data revealed that the substandard water samples from municipal water systems were contaminated by Coliform (9.7%) and/or E.coli (7.8%). CONCLUSIONS AND RECOMMENDATIONS Contaminants such as bacterial and chemical agents in to drinking water could be occurred during transport, storage and handling before using by the consumer without regular surveillance. A periodic treatment procedure and monitoring system to keep the level of microbial and chemical contamination of drinking water in schools under control should be performed.
Collapse
Affiliation(s)
- Dang The Hung
- Laboratory Center, Hanoi University of
Public Health, Hanoi, Vietnam
| | - Vu Thi Cuc
- Laboratory Center, Hanoi University of
Public Health, Hanoi, Vietnam
| | | | - Dao Thi Thanh Diu
- Laboratory Center, Hanoi University of
Public Health, Hanoi, Vietnam
| | | | | | | | - Ta Manh Hung
- National Institute of Drug Quality
Control, Hanoi, Vietnam
| | - Chu Manh Linh
- Laboratory Center, Hanoi University of
Public Health, Hanoi, Vietnam
| | - Nguyen Van Long
- Laboratory Center, Hanoi University of
Public Health, Hanoi, Vietnam
| |
Collapse
|
42
|
Wei S, Qiu T, Wang N, Yao X, Jiang L, Jia X, Tao Y, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. ENVIRONMENTAL RESEARCH 2020; 188:109824. [PMID: 32593899 DOI: 10.1016/j.envres.2020.109824] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 05/16/2023]
Abstract
Exposure to arsenic is a risk factor for nonalcoholic steatohepatitis (NASH). Ferroptosis is a form of regulated cell death defined by the accumulation of lipid peroxidation. In the current study, we observed the occurrence of ferroptosis in arsenic-induced NASH by assessing ferroptosis related hallmarks. In vitro, we found that ferrostatin-1 effectively attenuated the executing of ferroptosis and NASH. Simultaneously, the expression of ACSL4 (acyl-CoA synthetase long-chain family member 4) was upregulated in rat's liver and L-02 cells exposed to arsenic. While, suppression of ACSL4 with rosiglitazone or ACSL4 siRNA remarkably alleviated arsenic-induced NASH and ferroptosis through diminishing 5-hydroxyeicosatetraenoic acid (5-HETE) content. Additionally, Mitofusin 2 (Mfn2), a physical tether between endoplasmic reticulum and mitochondria, has rarely been explored in the ferroptosis. Using Mfn2 siRNA or inositol-requiring enzyme 1 alpha (IRE1α) inhibitor, we found NASH and ferroptosis were obviously mitigated through reducing 5-HETE content. Importantly, Co-IP assay indicated that Mfn2 could interact with IRE1α and promoted the production of 5-HETE, ultimately led to ferroptosis and NASH. Collectively, our data showed that ferroptosis is involved in arsenic-induced NASH. These data provide insightful viewpoints into the mechanism of arsenic-induced NASH.
Collapse
Affiliation(s)
- Sen Wei
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xue Jia
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ye Tao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Yuhan Zhu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Guang Yang
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Shuang Liu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
43
|
Dey S, Kumar A, Mondal PK, Modi KM, Chopra D, Jain VK. An oxacalix[4]arene derived dual sensing fluorescent probe for the detection of As(v) and Cr(vi) oxyanions in aqueous media. Dalton Trans 2020; 49:7459-7466. [PMID: 32432588 DOI: 10.1039/d0dt00452a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An oxacalix[4]arene-Ce(iii) complex viz. L-Ce(III) has been introduced for the selective detection of As(v) and Cr(vi) oxyanions in aqueous medium. The binding mode of L-Ce(III) + AsO43-/CrO42- was completely investigated with fluorometric titration, time resolve fluorescent decay and FTIR analyses. Photoinduced electron transfer (PET) and chelation-enhanced fluorescence (CHEF) play an important role in the sensing of these oxyanions. The characteristic fluorescence of the L-Ce(III) complex has been quenched by AsO43- and CrO42- through cascading the ligating sites. Cyclic voltammetry (CV) experiments with various scan rates suggest that the electrochemical processes on the electrodes were controlled by diffusion. Both the analytes exhibit a lower limit of detection (LOD) below their standard EPA permissible limits. Moreover, the probe successfully detects the oxyanions in environmental real samples with excellent recovery ranging from 97 to 101%.
Collapse
Affiliation(s)
- Shuvankar Dey
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad-380009, India.
| | | | | | | | | | | |
Collapse
|
44
|
Chen ASC, Wang L, Sorg TJ, Lytle DA. Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. WATER RESEARCH 2020; 172:115455. [PMID: 31958595 PMCID: PMC7453620 DOI: 10.1016/j.watres.2019.115455] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 05/13/2023]
Abstract
This study investigated the performance of two full-scale ion exchange (IX) systems, one point-of-entry (POE) reverse osmosis (RO) system and nine point-of-use (POU) RO units for simultaneous removal of arsenic and several co-occurring contaminants from drinking water. The study was performed as part of the U.S. Environmental Protection Agency's Arsenic Treatment Demonstration Program. The IX systems, with strong base anionic (SBA) resins, effectively removed arsenic (As), nitrate (NO3-) and uranium (U) to below respective maximum contaminant levels and vanadium (V) and molybdenum (Mo) to below 2 μg/L. The useful run length, as determined by either 10-mg/L (as N) nitrate or 10-μg/L arsenic breakthrough, was approximately 400 bed volumes (BV) initially. However, it was decreased over time, e.g., by 15% in 13 months at one site and 33% in 7 months at another site, apparently caused by resin fouling due to the presence of 2-mg/L natural organic matter (NOM) in source waters. The use of dual resins ‒ an acrylic SBA resin underlain by a polystyrene SBA resin ‒ effectively removed NOM and allowed the system to perform at its baseline level through the 13-month study. Arsenic and nitrate peaking occurred when the resins were not regenerated timely. The removal of contaminants appeared to follow a selectivity sequence: U, Mo > V > SO42- > HAsO42- > NO3- > HCO3-. RO effectively removed arsenic, nitrate, antimony, uranium and vanadium, mostly with a >99% rejection rate. The POE RO coupled with dual plumbing (only treating a fraction of water for potable use) and POU RO in individual homes could be used as low-cost alternatives to traditional RO treatment.
Collapse
Affiliation(s)
| | - Lili Wang
- U.S. Environmental Protection Agency, Office of Water, Washington, DC, 20460, USA.
| | | | - Darren A Lytle
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| |
Collapse
|
45
|
Degnan JR, Levitt JP, Erickson ML, Jurgens BC, Lindsey BD, Ayotte JD. Time scales of arsenic variability and the role of high-frequency monitoring at three water-supply wells in New Hampshire, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135946. [PMID: 31905564 DOI: 10.1016/j.scitotenv.2019.135946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/16/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Groundwater geochemistry, redox process classification, high-frequency physicochemical and hydrologic measurements, and climate data were analyzed to identify controls on arsenic (As) concentration changes. Groundwater was monitored in two public-supply wells (one glacial aquifer and one bedrock aquifer), and one bedrock-aquifer domestic well in New Hampshire, USA, from 2014 to 2018 to identify time scales of and controls on As concentration changes. Concentrations of As and other geochemical constituents were measured bimonthly. Specific conductance (SC), pH, dissolved oxygen, and pumping rate/water level were measured at high frequency (every 5 to 15 min). Median (and 95% confidence interval) As concentrations at the three wells were 4.1 (3.7-4.6), 18.9 (17.2-23.6), and 37.5 (30.4-42.9) μg/L. Arsenic variability in each of the three wells, in relative standard deviation, ranged from 9 to 12%. Median quarterly As concentrations were highest in all wells in the spring. The bedrock-aquifer public-supply well As concentration increased over the period of study while pumping rate decreased. In the public-supply wells, As variability was correlated with SC and pH, and As species were related to SC, pH, pumping, precipitation, and changes in redox process. Specific conductance also had a seasonal pattern in the two public-supply wells and was correlated with Na and Cl. Excess Na in water samples suggests possible ion exchange with dissolved Ca, creating more capacity to dissolve CaCO3 from calcareous rocks, which can increase pH and in turn, As concentrations in wells. High-frequency monitoring data are cost effective to collect, which could be advantageous in other parts of the United States and in the many parts of the world where glacial aquifers are in direct contact with other water supply aquifers or where water from different aquifers have potential to mix.
Collapse
Affiliation(s)
- James R Degnan
- U.S. Geological Survey, New England Water Science Center, New Hampshire - Vermont Office, 331 Commerce Way, Pembroke, NH 03301, United States.
| | - Joseph P Levitt
- U.S. Geological Survey, New England Water Science Center, New Hampshire - Vermont Office, 331 Commerce Way, Pembroke, NH 03301, United States
| | - Melinda L Erickson
- U.S. Geological Survey, Upper Midwest Water Science Center, Minnesota Office, 2280 Woodale Dr., Mounds View, MN 55112, United States
| | - Bryant C Jurgens
- U.S. Geological Survey, California Water Science Center, 6000 J St, Sacramento, CA 95819, United States
| | - Bruce D Lindsey
- U.S. Geological Survey, Pennsylvania Water Science Center, 215 Limekiln Road, New Cumberland, PA 17070, United States
| | - Joseph D Ayotte
- U.S. Geological Survey, New England Water Science Center, New Hampshire - Vermont Office, 331 Commerce Way, Pembroke, NH 03301, United States
| |
Collapse
|
46
|
Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121390. [PMID: 31735470 DOI: 10.1016/j.jhazmat.2019.121390] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 05/16/2023]
Abstract
Chronic arsenic exposure is a significantly risk factor for pancreatic dysfunction and type 2 diabetes (T2D). Ferroptosis is a newly identified iron-dependent form of oxidative cell death that relies on lipid peroxidation. Previous data have indicated that ferroptosis is involved in various diseases, including cancers, neurodegenerative diseases, and T2D. However, the concrete effect and mechanism of ferroptosis on pancreatic dysfunction triggered by arsenic remains unknown. In this study, we verified that ferroptosis occurred in animal models of arsenic-induced pancreatic dysfunction through assessing proferroptotic markers and morphological changes in mitochondria. In vitro, arsenic caused execution of ferroptosis in a dose-dependent manner, which could be significantly reduced by ferrostatin-1. Additionally, arsenic damaged mitochondria manifested as diminishing of mitochondrial membrane potential, reduced cytochrome c level and production of mitochondrial reactive oxygen species (MtROS) in MIN6 cells. Using the Mito-TEMPO, we found the autophagy level and subsequent ferroptotic cell death induced by arsenic were both alleviated. With autophagy inhibitor chloroquine, we further revealed that ferritin regulated ferroptosis through the MtROS-autophagy pathway. Collectively, NaAsO2-induced ferroptotic cell death is relied on the MtROS-dependent autophagy by regulating the iron homeostasis. Ferroptosis is involved in pancreatic dysfunction triggered by arsenic, and arsenic-induced ferroptosis involves MtROS, autophagy, ferritin.
Collapse
Affiliation(s)
- Sen Wei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ningning Wang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xue Jia
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ye Tao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Zhidong Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Pei Pei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Shuang Liu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
47
|
Zhou J, Zhou X, Yang K, Cao Z, Wang Z, Zhou C, Baig SA, Xu X. Adsorption behavior and mechanism of arsenic on mesoporous silica modified by iron-manganese binary oxide (FeMnO x/SBA-15) from aqueous systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121229. [PMID: 31605977 DOI: 10.1016/j.jhazmat.2019.121229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Iron-manganese binary oxides (FeMnOx) can remove contaminants from aqueous solutions with high efficiency, and mesoporous silica (SBA-15) is widely used as a supporting material due to its large specific surface area and good stability. In this study, SBA-15 was used to support FeMnOx in the synthesis of a novel arsenic (As) adsorbent (FeMnOx/SBA-15), and its characteristics under different reaction conditions, such as pH, temperature, presence of competing ions, and humic acid, were tested. The results showed that the contaminant adsorption efficiency of the novel adsorbent was better than that of bare FeMnOx, as the addition of SBA-15 decreased the agglomeration effect of FeMnOx. Additionally, FeMnOx/SBA-15 underwent calcination to further enhance its performance. The state of iron and manganese in FeMnOx/SBA-15 and the corresponding arsenic removal efficiency were improved by calcination at 350 °C with an FeMnOx/SBA-15 mass fraction of approximately 45%. Almost 90% of As (50 mL, 5.0 mg L-1) could be removed by 0.2 g L-1 of FeMnOx/SBA-15 (mass ratio of 45% and calcination temperature of 350 °C). The FeMnOx/SBA-15 could regenerate and still be used after four consecutive cycles. The high As sorption capacity, ability to regenerate, and reusability of FeMnOx/SBA-15 confirmed that this adsorbent is promising for treating As-contaminated drinking water.
Collapse
Affiliation(s)
- Jiasheng Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoxin Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Kunlun Yang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhen Cao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheni Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chuchen Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
48
|
Liu L, Chen H, Yang X, Tan W, Liu C, Dang Z, Qiu G. High-efficiency As(III) oxidation and electrocoagulation removal using hematite with a charge-discharge technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135678. [PMID: 31771850 DOI: 10.1016/j.scitotenv.2019.135678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Arsenite (As(III)) is generally removed by adsorption or coprecipitation after being oxidized to arsenate (As(V)). Electrocoagulation is regarded as an effective and environment-friendly method for arsenic (As) removal from wastewater. However, some disadvantages including the passivation of electrode and high energy consumption limit its wide application. Herein, a multi-cycle galvanostatic charge-discharge technique was employed to remove aqueous As(III) using hematite prepared through a microwave-assisted hydrothermal reaction. When charge-discharge experiments were conducted at the potential window of -0.8-0 V (vs. SCE) in As(III) solution with NaCl as the background electrolyte, ClO- intermediates and the counter electrode at high potential contributed much to As(III) oxidation. As(V) was adsorbed on ferrihydrite generated from the re-oxidation of released Fe2+, forming FeAsO4 precipitate. A higher removal ratio of As(T) was achieved at initial pH 7.0 compared with that at initial pH 5.0 and 9.0. When the hematite mass was 4, 10 and 15 mg, the removal ratio of As(T) reached 55.2%, 79.6% and 98.6% after 600 cycles of charge-discharge. The periodic redox reactions of hematite electrodes occurred in each charge-discharge process, effectively avoiding the passivation of electrode. Additionally, the electrochemical system can be used as a supercapacitor for power output. The present work provides a novel strategy for high-efficiency As(III) immobilization and removal from aqueous solution.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanchen Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
49
|
CH 3NH 3Br solution as a novel platform for the selective fluorescence detection of Pb 2+ ions. Sci Rep 2019; 9:15840. [PMID: 31676813 PMCID: PMC6825161 DOI: 10.1038/s41598-019-52431-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/17/2019] [Indexed: 11/09/2022] Open
Abstract
The development of a simple fluorescent sensor for detecting the Pb2+ heavy metal is fundamentally important. The CH3NH3PbBr3 perovskite material exhibits excellent photoluminescence properties that are related to Pb2+. Based on the effects of Pb2+ on the luminescent properties of CH3NH3PbBr3, we design a novel platform for the selective fluorescence detection of Pb2+ ions. Herein, we use a CH3NH3Br solution at a high concentration as the fluorescent probe. Incorporation of PbBr2 into the CH3NH3Br solution results in a rapid chemical reaction to form CH3NH3PbBr3. Hence, the nonfluorescent CH3NH3Br material displays a sensitive and selective luminescent response to Pb2+ under UV light illumination. Moreover, the reaction between CH3NH3Br and PbBr2 could transform Pb2+ into CH3NH3PbBr3, and therefore, CH3NH3Br may also be used to extract Pb2+ from liquid waste in recycling applications.
Collapse
|
50
|
Triantafyllidou S, Lytle D, Chen AS, Wang L, Muhlen C, Sorg TJ. Patterns of Arsenic Release in Drinking Water Distribution Systems. AWWA WATER SCIENCE 2019; 1:10.1002/aws2.1149. [PMID: 32185367 PMCID: PMC7077812 DOI: 10.1002/aws2.1149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 11/06/2022]
Abstract
Retrospective analysis of 20 water systems from the USEPA's Arsenic Demonstration Program revealed three patterns of arsenic levels at the tap, after arsenic treatment of the source well water. Following an initial destabilization period, Pattern A systems (6/20 with low iron/manganese in source water and plastic piping) had arsenic concentrations that did not change as water traveled to consumer taps (conservative contaminant behavior). Pattern B systems (8/20 with high iron/manganese in source water and iron piping) had consistently higher arsenic concentrations at consumer taps, above the arsenic content of incoming treated water, for months to more than a year after arsenic treatment (non-conservative behavior). Pattern C systems (6/20 with additional occasional arsenic treatment complications) experienced multiple arsenic spikes at consumer taps (non-conservative and unpredictable behavior). These field observations suggest that in some water distribution systems arsenic may linger long after it has been removed at its source.
Collapse
Affiliation(s)
| | - Darren Lytle
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH
| | | | - Lili Wang
- US Environmental Protection Agency, Office of Ground Water and Drinking Water, Washington, DC
| | - Christy Muhlen
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH
| | - Thomas J. Sorg
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH
| |
Collapse
|