1
|
Song M, Wang J, DeNicola M, Hanigan D. Natural vs. anthropogenic sources of N-Nitrosodimethylamine precursors in surface water. WATER RESEARCH 2024; 265:122313. [PMID: 39197389 DOI: 10.1016/j.watres.2024.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
N-nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct formed from reactions between dichloramine and organic nitrogen-containing precursors. It is unclear if NDMA precursors in surface water intakes originate in anthropogenic (i.e., wastewater) or natural sources. The Truckee River has a single point source release of treated wastewater effluent, making it an ideal system to study the relative importance of precursor sources. Three Lagrangian sampling events were conducted. NDMA formation potential (FP, a measurement of precursors) above the wastewater outfall indicated that the natural background of NDMA precursors was 2-28 ng/L. NDMA FP increased to 18-31 ng/L immediately downstream of the wastewater outfall, but decreased rapidly in a first order manner, and were not statistically different from the upstream samples in only ∼6 km. This suggests that the dominant source of NDMA precursors may be wastewater derived only near wastewater outfalls and deviates from the previous belief that wastewater-derived precursors are responsible for NDMA formation in drinking water sources located further downstream. Additionally, given the rapid loss of the wastewater precursors in this study, precursors which are slow to biodegrade/photolyze/adsorb to sediment are likely to be poor surrogates for the overall wastewater NDMA precursor pool. To understand temporal changes in the wastewater impact on environmental NDMA precursor loading, two 24-hour sampling events were conducted near (<3 km) the wastewater outfall and demonstrated that temporal changes in the NDMA precursors directly downstream of the wastewater outfall are directly linked to the wastewater flow contribution.
Collapse
Affiliation(s)
- Mingrui Song
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Junli Wang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA
| | - Michael DeNicola
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA.
| |
Collapse
|
2
|
Li J, Arnold WA, Hozalski RM. Animal Feedlots and Domestic Wastewater Discharges are Likely Sources of N-Nitrosodimethylamine (NDMA) Precursors in Midwestern Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2973-2983. [PMID: 38290429 DOI: 10.1021/acs.est.3c09251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
N-nitrosodimethylamine (NDMA) precursor concentrations along four major rivers in Minnesota, USA were quantified and correlated with watershed land cover types, anthropogenic activity, and organic matter characteristics. River water samples (36 in total) were chloraminated under uniform formation conditions (UFC) before and after lime-softening treatment, and the resulting NDMA concentrations were quantified (NDMAUFC). Regarding land cover, NDMAUFC in raw river water exhibited weak positive correlations with urban land (ρ = 0.33, p = 0.05) and cropland coverage (ρ = 0.35, p = 0.04). For anthropogenic activity, NDMAUFC in raw river water positively correlated with the number of feedlots (ρ = 0.57), total weight of animals (ρ = 0.68), and total number of domestic wastewater treatment plants (WWTPs; ρ = 0.63) with p < 0.01. NDMAUFC positively correlated with region IV fluorescence intensity from fluorescence excitation-emission spectra (ρ = 0.70, p < 0.01). Lime softening of river water typically increased NDMAUFC and preferentially removed organic matter that fluoresces in region V, suggesting that the organic matter in this region decreases NDMAUFC by competing for available chloramines. Overall, animal feedlots, along with domestic WWTPs, are predominant sources of NDMA precursors in the studied watersheds, while croplands and urban runoff are of lesser importance.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Li J, Arnold WA, Hozalski RM. Spatiotemporal Variability in N-Nitrosodimethylamine Precursor Levels in a Watershed Impacted by Agricultural Activities and Municipal Wastewater Discharges and Effects of Lime Softening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13959-13969. [PMID: 37671798 DOI: 10.1021/acs.est.3c01767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The Crow River, a tributary of the Mississippi River in Minnesota, U.S.A., that is impacted by agricultural activities and municipal wastewater discharges, was sampled approximately monthly at 12 locations over 18 months to investigate temporal and spatial variations in N-nitrosodimethylamine (NDMA) precursor levels. NDMA precursors were quantified primarily by measuring NDMA formed under the low chloramine dose uniform formation conditions protocol (NDMAUFC) and occasionally using the high dose formation potential protocol (NDMAFP). Raw water NDMAUFC concentrations (2.2 to 128 ng/L) exhibited substantial temporal variation but relatively little spatial variation. An increase in NDMAUFC was observed for 126 of 169 water samples after lime-softening treatment. A kinetic model indicates that under chloramine-limited UFC test conditions, the increase in NDMAUFC can be attributed to a decrease in competition between precursors and natural organic matter (NOM) for chloramines and reduced interactions of precursors with NOM. NDMAUFC concentrations correlated positively with dissolved nitrogen concentration (ρ = 0.44, p < 0.01) when excluding the spring snowmelt period and negatively correlated with dissolved organic carbon concentration (ρ = -0.47, p < 0.01). Overall, NDMA precursor levels were highly dynamic and strongly affected by lime-softening treatment.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Chen Z, Liao X, Yang Y, Han L, He Z, Dong Y, Yeo KFH, Sun X, Xue T, Xie Y, Wang W. Analysis of rainwater storage and use recommendations: From the perspective of DBPs generation and their risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130833. [PMID: 36716556 DOI: 10.1016/j.jhazmat.2023.130833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As a vital freshwater resource, rainwater is usually stored in water cellars in arid regions to solve the daily drinking water problems of the population. However, the status of disinfection by-products (DBPs) generation in cellar water under intermittent disinfection conditions is unclear. Therefore, we investigated the formation and distribution characteristics of DBPs in cellar water under intermittent disinfection conditions for the first time. The results demonstrated that six categories of DBPs were selected for detection after chlorination, including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), haloacetonitriles (HANs), halonitromethanes (HNMs), and nitrosamines (NAs), among which HAAs, HKs, and HANs were the major DBPs. Only bromoacetic acid (MBAA), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA) showed an increasing trend of accumulation as the number of disinfections increased. Meanwhile, the precursor composition was gradually transformed from humic substances to amino acids, and both organic substances were the main precursors of HAAs. The health risk assessment showed that the main carcinogenic and non-carcinogenic risks of cellar water were contributed by NAs and HAAs, respectively, and children are more susceptible to the risks than adults. The best time to drink cellar water is after approximately 12 days of storage, when the total carcinogenic risk is the minimum.
Collapse
Affiliation(s)
- Zhiwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ye Yang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Liu Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Zixiang He
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yingying Dong
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Kanfolo Franck Herve Yeo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xubo Sun
- Shanxi Provincial Land Engineering Construction Group, Xi'an, Shaanxi 710075, China
| | - Tongxuan Xue
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Yuefeng Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| | - Wendong Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
5
|
Luo Q, Miao Y, Liu C, Bei E, Zhang JF, Zhang LH, Deng YL, Qiu Y, Lu WQ, Wright JM, Chen C, Zeng Q. Maternal exposure to nitrosamines in drinking water during pregnancy and birth outcomes in a Chinese cohort. CHEMOSPHERE 2023; 315:137776. [PMID: 36623593 PMCID: PMC11534404 DOI: 10.1016/j.chemosphere.2023.137776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Maternal exposure to regulated disinfection by-products (DBPs) during pregnancy has been linked with adverse birth outcomes. However, no human studies have focused on drinking water nitrosamines, a group of emerging unregulated nitrogenous DBPs that exhibits genotoxicity and developmental toxicity in experimental studies. This cohort study included 2457 mother-infant pairs from a single drinking water supply system in central China, and maternal trimester-specific and entire pregnancy exposure of drinking water nitrosamines were evaluated. Multivariable linear and Poisson regression models were used to estimate the associations between maternal exposure to nitrosamines in drinking water and birth outcomes [birth weight (BW), low birth weight (LBW), small for gestational age (SGA) and preterm delivery (PTD)]. Elevated maternal N-nitrosodimethylamine (NDMA) exposure in the second trimester and N-nitrosopiperidine (NPIP) exposure during the entire pregnancy were associated with decreased BW (e.g., β = -88.6 g; 95% CI: -151.0, -26.1 for the highest vs. lowest tertile of NDMA; p for trend = 0.01) and increased risks of PTD [e.g., risk ratio (RR) = 2.16; 95% CI: 1.23, 3.79 for the highest vs. lowest tertile of NDMA; p for trend = 0.002]. Elevated maternal exposure of N-nitrosodiethylamine (NDEA) in the second trimester was associated with increased risk of SGA (RR = 1.80; 95% CI: 1.09, 2.98 for the highest vs. lowest tertile; p for trend = 0.01). Our study detected associations of maternal exposure to drinking water nitrosamines during pregnancy with decreased BW and increased risks of SGA and PTD. These findings are novel but require replication in other study populations.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Jin-Feng Zhang
- Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Ling-Hua Zhang
- Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - J Michael Wright
- Office of Research and Development, U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Cincinnati, OH, USA
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Cai H, Shen C, Xu H, Qian H, Pei S, Cai P, Song J, Zhang Y. Seasonal variability, predictive modeling and health risks of N-nitrosamines in drinking water of Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159530. [PMID: 36270378 DOI: 10.1016/j.scitotenv.2022.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of carcinogenic N-nitrosamines in drinking water is of significant concern. In the present study, eight N-nitrosamines from three representative drinking water treatment plants (DWTPs) in Shanghai, China were monitored for an entire year to evaluate their seasonal variability, probabilistic cancer risk and the resulting disease burden. The possibility of employing routinely monitored water quality parameters as predictors of N-nitrosamines was also examined. The results showed that the Taipu River-fed reservoir suffered more serious N-nitrosamine contamination than the Yangtze River-fed reservoirs. Winter witnessed higher levels of N-nitrosamines in both source and finished water. N-nitrosamine concentrations increased from source water to finished water in autumn or winter, but no spatial variations were observed in summer. The total lifetime cancer risk (LCR) posed by N-nitrosamines in finished water was within the acceptable range (1.00 × 10-6 to 1.00 × 10-4), with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) being the main contributors. Winter and autumn were found to have higher total LCR values. The average individual disability-adjusted life years (DALYs) lost was 4.43 × 10-6 per person-year (ppy), exceeding the reference risk level (1.00 × 10-6 ppy). Liver cancer accounted for 97.1 % of the total disease burden, while bladder and esophagus cancers made a little contribution (2.9 %). A multiple regression model was developed to estimate the total N-nitrosamines in finished water as a function of water quality parameters, and the R2 value was 0.735. This study not only provides fundamental data for public health policy development, but also reveals the necessity to incorporate a seasonal control strategy in DWTPs to minimize the associated health risks induced by N-nitrosamines.
Collapse
Affiliation(s)
- Hongquan Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chaoye Shen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Huihui Xu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Hailei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Saifeng Pei
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Ping Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jun Song
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yun Zhang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China.
| |
Collapse
|
7
|
Li K, Wang R, Wang X, Sun C, Li Q. Effects of seasons and parts on volatile N-nitrosamines and their exposure and risk assessment in raw chicken and duck meats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1831-1839. [PMID: 35531403 PMCID: PMC9046479 DOI: 10.1007/s13197-021-05195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 05/03/2023]
Abstract
The N-nitrosamine (NA) concentrations and types in raw chicken and duck meats of different parts and seasons were estimated by headspace solid-phase micro-extraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The exposure level and hazard quotient of each detected volatile N-nitrosamine (VNA) were conducted. The selected chicken and duck samples were contaminated by VNAs to some extent. The major types and contents of VNAs in different parts of chicken and duck meats varied seasonally. For chicken samples, the order of the total VNA concentrations was as follows: autumn > spring > winter > summer. For duck samples, the order was changed as follows: winter > autumn > summer > spring (thigh samples) and autumn > spring > winter > summer (breast samples). The estimated exposure levels for adults caused by duck consumption were slightly higher than those by chickens, which was consistent with the tendency in 2-3 years old children. According to the linear regression correlation between the 10% benchmark dose limit (BMDL10) and subtriplicate of median lethal dose (LD50), BMDL10 values of each VNA were calculated. Due to this hypothesis, the risk assessments of each detected VNA and total VNAs posed by consuming chicken and duck meats in Tianjin, China were of low concern. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05195-1.
Collapse
Affiliation(s)
- Kexin Li
- Department of Chemistry, College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing, 100083 People’s Republic of China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing, 100083 People’s Republic of China
| | - Rui Wang
- Agricultural Analysis and Testing Center, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300000, People’s Republic of China
| | - Xiaoxu Wang
- Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing, 100083 People’s Republic of China
| | - Changxia Sun
- Department of Chemistry, College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing, 100083 People’s Republic of China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing, 100083 People’s Republic of China
| | - Qiang Li
- Department of Chemistry, College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing, 100083 People’s Republic of China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing, 100083 People’s Republic of China
| |
Collapse
|
8
|
Zhao C, Zhang H, Zhou J, Lu Q, Zhang Y, Yu X, Wang S, Liu R, Pu Y, Yin L. Metabolomics-based molecular signatures reveal the toxic effect of co-exposure to nitrosamines in drinking water. ENVIRONMENTAL RESEARCH 2022; 204:111997. [PMID: 34506781 DOI: 10.1016/j.envres.2021.111997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrosamines, a group of emerging nitrogenous pollutants, are ubiquitously found in the drinking water system. However, less is known about how systemic biological responses resist or tolerate nitrosamines, especially long-term co-exposure at low concentrations. In this study, untargeted metabolomics was used to investigate the metabolic perturbations in human esophageal epithelial Het-1A cells induced by a mixture of nine common nitrosamines in drinking water at environmentally relevant, human-internal-exposure, and genotoxic concentrations. Generally, the disrupted metabolic spectrum became complicated with nitrosamines dose increasing. Notably, two inflammation-associated pathways, namely, cysteine (Cys) and methionine (MET) metabolism, and nicotinate and nicotinamide metabolism, changed significantly under the action of nitrosamines, even at the environmentally relevant level. Furthermore, targeted metabolomics and molecular biology indicators in cells were identified in mice synchronously. For one thing, the up-regulated Cys and MET metabolism provided methyl donors for histone methylation in the context of pro-inflammatory response. For another, the down-regulated NAD+/NADH ratio inhibited the deacetylation of NF-кB p65 and eventually activated the NF-кB signaling pathway. Taken collectively, the metabolomics molecular signatures were important indicative markers for nitrosamines-induced inflammation. The potential crosstalk between the inflammatory cascade and metabolic regulation also requires further studies. These findings suggest that more attention should be paid to long-term co-exposure at low concentrations in the control of nitrosamines pollution in drinking water. Additionally, this study also highlights a good prospect of the combined metabolomic-molecular biology approach in environmental toxicology.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaojin Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
9
|
Khan MFS, Akbar M, Wu J, Xu Z. A review on fluorescence spectroscopic analysis of water and wastewater. Methods Appl Fluoresc 2021; 10. [PMID: 34823232 DOI: 10.1088/2050-6120/ac3d79] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
In recent years, the application of fluorescence spectroscopy has been widely recognized in water environment studies. The sensitiveness, simplicity, and efficiency of fluorescence spectroscopy are proved to be a promising tool for effective monitoring of water and wastewater. The fluorescence excitation-emission matrix (EEMs) and synchronous fluorescence spectra have been widely used analysis techniques of fluorescence measurement. The presence of organic matter in water and wastewater defines the degree and type of pollution in water. The application of fluorescence spectroscopy to characterize dissolved organic matter (DOM) has made the water quality assessment simple and easy. With the recent advances in this technology, components of DOM are identified by employing parallel factor analysis (PARAFAC), a mathematical trilinear data modeling with EEMs. The majority of wastewater studies indicated that the fluorescence peak of EX/EM at 275 nm/340 nm is referred to tryptophan region (Peak T1). However, some researchers identified another fluorescence peak in the region of EX/EM at 225-237 nm/340-381 nm, which described the tryptophan region and labeled it as Peak T2. Generally, peak T is a protein-like component in the water sample, where T1 and T2 signals were derived from the <0.20μm fraction of pollution. Therefore, a more advanced approach, such as an online fluorescence spectrofluorometer, can be used for the online monitoring of water. The results of various waters studied by fluorescence spectroscopy indicate that changes in peak T intensity could be used for real-time wastewater quality assessment and process control of wastewater treatment works. Finally, due to its effective use in water quality assessment, the fluorescence technique is proved to be a surrogate online monitoring tool and early warning equipment.
Collapse
Affiliation(s)
- Muhammad Farooq Saleem Khan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China.,Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215000, People's Republic of China
| | - Mona Akbar
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215000, People's Republic of China
| | - Zhou Xu
- International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Zhang J, Maqbool T, Qiu Y, Qin Y, Asif MB, Chen C, Zhang Z. Determining the leading sources of N-nitrosamines and dissolved organic matter in four reservoirs in Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145409. [PMID: 33548708 DOI: 10.1016/j.scitotenv.2021.145409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The presence of carcinogenic N-nitrosamines and dissolved organic matter (DOM) in freshwater is a significant concern from the perspective of public health and drinking water treatment plant operation. This study investigated the N-nitrosamines concentration and their precursors' distributions, and DOM composition in four reservoirs located in a southern city of China. A total of 22 renowned precursors were identified. Precursors from industrial and pharmaceutical origins were found to be dominant in all reservoirs; however, traces of pesticide-based precursors, i.e. pirimicarb and cycluron were also found. The distribution of nine N-nitrosamines was substantially different among the reservoirs. N-Nitrosodibutylamine (NDBA), N-Nitrosopiperidine (NPIP), N-Nitrosodimethylamine (NDMA), and N-Nitrosopyrrolidine (NPYR) were abundantly present in all reservoirs. Most of N-nitrosamines except NDMA and N-nitrosodiethylamine (NDEA) were far below the generally accepted cancer risk of 10-6, and NDMA/NDEA were found close to the risk level (10-6). Anthropogenic DOM was dominant in three reservoirs as depicted by a higher biological index (BIX) than the humification index (HIX). By the principle component analysis, BIX appeared as an indicator of N-nitrosamines (except NDEA and NPIP). A strong and direct relationship was observed between the NDMA-formation potential (FP) and concentration of total N-nitrosamines (∑NA), and BIX. These results confirmed that the anthropogenic activities were the leading source of DOM and N-nitrosamines in this city based on land-use.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanling Qin
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Chen Y, Chen W, Huang H, Zeng H, Tan L, Pang Y, Ghani J, Qi S. Occurrence of N-nitrosamines and their precursors in the middle and lower reaches of Yangtze River water. ENVIRONMENTAL RESEARCH 2021; 195:110673. [PMID: 33508261 DOI: 10.1016/j.envres.2020.110673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The presence of some types of N-nitrosamines in water bodies is of great concern worldwide due to their carcinogenic risks and harmful mutagenic effects on human health. In the present study, eight N-nitrosamines and their formation potentials (FPs) were primarily investigated in Yangtze River surface water to evaluate their spatial distribution, mass loads, and ecological risks. The results showed that of the eight N-nitrosamines investigated, NDMA (<1.5-17 ng/L), NDEA (<1.4-9.5 ng/L), NDPA (1.0 ng/L), NMOR (<1.0-1.3 ng/L), NPIP (<2.1-3.7 ng/L), and NDBA (<3.6-30 ng/L) were detected. The FPs of NDMA (<27-130 ng/L), NDEA (<0.9-2.3 ng/L), NDPA (<1.2-1.9 ng/L), NPYR (<1.4-2.9 ng/L), NMOR (<1.0 ng/L), and NDBA (<1.1-14 ng/L) were significantly identified. NDBA was predominantly observed in surface water, while NDMA was noticeably detected in chloraminated water samples. It was estimated that approximately 5.4 t/y of N-nitrosamines were carried by the Yangtze River to the East China Sea, whereas the input flux of N-nitrosamine precursors was estimated to be approximately 69.5 t/y. Spatial variations were observed due to the input of N-nitrosamines from the upstream dams and lakes. The origin of N-nitrosamine precursors was not associated with the presence of sediment in river water. NDEA could be introduced into river water by the discharge of wastewater. NDBA and its precursors could originate from industrial and aquaculture activities. NDMA and its precursors could result from both of the aforementioned sources. Moreover, the wastewater discharge from small cities, pH value, wastewater treatment ratio, and dilution could be the key factors that influence the occurrence of N-nitrosamines along the Yangtze River. More attention should be paid to the cancer risks posed by N-nitrosamines. The ecological risks posed by N-nitrosamines in the Yangtze River can be ignored.
Collapse
Affiliation(s)
- Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - Huanfang Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lingzhi Tan
- Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan, 430012, China
| | - Yu Pang
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Junaid Ghani
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
12
|
Zhao B, Nakada N. Contribution of N,N-dimethylformamide to formation of N-nitrosodimethylamine by chloramination in sewage treatment plants and receiving rivers. WATER RESEARCH 2021; 191:116827. [PMID: 33476799 DOI: 10.1016/j.watres.2021.116827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The contribution of specific precursors to N-nitrosodimethylamine formation potential (NDMA FP) upon chloramination depends not only on their NDMA molar yields but also on their concentrations in the actual environment. We investigated the seasonal and diurnal patterns of the NDMA precursor N,N-dimethylformamide (DMF) and NDMA FP in the Yodo River basin, Japan, by examining water samples taken from inside the basin's largest sewage treatment plant (STP) as well as samples from five final effluents from four STPs, two main stream sites, and two tributary sites in the same basin. DMF and NDMA FP were found to be high in influent (raw sewage), and were found to be mostly removed during the STP treatment processes (especially with biological treatment). Nevertheless, DMF was found in concentrations of 0.06 to 31.7 µg/L in chlorinated effluents and in receiving rivers, while NDMA FP was detected in concentrations of 3.57 to 306 ng/L. Thus, STPs were shown to be an important source of DMF and NDMA FP to rivers. A strong positive correlation between NDMA FP and DMF was confirmed in the receiving river (K-M), indicating that DMF was an important NDMA precursor in the Yodo River basin. The contribution of DMF to NDMA FP was 15.8±11.2% (n = 4) in summer and 82.1±10.2% (n = 4) in winter in the main stream (site K-M) of the river due to insufficient dilution of chlorinated effluents from the largest STP. From the viewpoint of NDMA and NDMA FP control at downstream sites, monitoring and control of DMF at upstream sites are important.
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| |
Collapse
|
13
|
Zhao B, Zhou J, Nakada N. N-nitrosodimethylamine formation potential (NDMA-FP) of ranitidine remains after chlorination and/or photo-irradiation: Identification of transformation products in combination with NDMA-FP test. CHEMOSPHERE 2021; 267:129200. [PMID: 33385849 DOI: 10.1016/j.chemosphere.2020.129200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
N-nitrosodimethylamine (NDMA), a probable carcinogenic disinfection by-product, can be formed with high molar yields following chloramination of ranitidine (RNTD), a histamine H2-receptor antagonist. Although RNTD and some of its transformation products (TPs) have been studied under chlorination and photo-irradiation, the relationship between RNTD TPs and NDMA formation potential (NDMA-FP) remaining after those processes is still unclear. This study investigated the effects of chlorination and/or photo-irradiation on NDMA-FP derived from RNTD, simulating an urban water environment receiving treated wastewater. After chlorination and/or photo-irradiation of RNTD, ten TPs including five new ones were identified by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTof-MS). In addition, important RNTD TPs responsible for NDMA-FP (e.g., chlorinated and hydroxylated RNTD: TP-364) were also confirmed by the relationship between detected peak area and NDMA-FP. The results showed that NDMA-FP remained due to the presence of RNTD TPs, although RNTD itself was significantly removed by chlorination and/or photo-irradiation. TP-364 was only formed by chlorination of RNTD and could not be removed by photo-irradiation. TP-314 (a stereoisomer of RNTD), -299, and -286, which were mainly formed by photo-irradiation of RNTD but not by photo-irradiation after chlorination, had strong positive correlations with NDMA-FP (R2 > 0.90; F-test, P < 0.01).
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Jiajun Zhou
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| |
Collapse
|
14
|
Vaidya R, Wilson CA, Salazar-Benites G, Pruden A, Bott C. Factors affecting removal of NDMA in an ozone-biofiltration process for water reuse. CHEMOSPHERE 2021; 264:128333. [PMID: 33011478 DOI: 10.1016/j.chemosphere.2020.128333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
N-nitrosodimethylamine (NDMA) is a carcinogen and a disinfection byproduct that is formed by ozone and combined chlorine. Various factors affecting NDMA formation and removal were examined at pilot-scale for a treatment train consisting of ozone, biologically-active carbon (BAC) filtration, and granular activated carbon (GAC) adsorption applied to two distinct feed waters. High concentrations of ozone and monochloramine were added to the influent, demonstrating that ozone removed monochloramine precursors of NDMA. Further, longer empty bed contact times (EBCTs) of 10 min for BAC and 10 and 20 min for GAC removed NDMA to <10 ng/L for both feed waters. NDMA removal by the BAC process was most favorable >22 °C, presumably due to elevated microbial activity. A monochloramine residual of 3 mg/L-Cl2 in the BAC influent reduced NDMA removal in the 5 min EBCT BAC from 79% to 36% and in the 10 min EBCT BAC from 88.5% to 73.7%. The absence of ozone in the treatment process significantly reduced NDMA formed post ozone, but decreased NDMA removal in BAC, probably due to lower NDMA concentration in the BAC influent. Finally, adding 5 mg/L of allylthiourea, an inhibitor of ammonia-oxidizing bacteria, indicated that removal mechanisms for ammonia and NDMA are distinct. However, nitrification is still a good indicator for NDMA biodegradation potential, because nitrifying bacteria appear to flourish under similar EBCT, temperature. and monochloramine residual conditions during BAC filtration.
Collapse
Affiliation(s)
- Ramola Vaidya
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Christopher A Wilson
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA, 23455, USA
| | | | - Amy Pruden
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Charles Bott
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA, 23455, USA
| |
Collapse
|
15
|
Uzun H, Zhang W, Olivares CI, Erdem CU, Coates TA, Karanfil T, Chow AT. Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability. WATER RESEARCH 2020; 187:116385. [PMID: 32949825 DOI: 10.1016/j.watres.2020.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report for the first time the effect of prescribed fires on the export of dissolved organic matter (DOM) and precursors of disinfectant by-products (DBPs) from periodically (every 2-3 years) and seasonally (i.e., dormant and growing) burned forest fuel materials (i.e., live vegetation, woody debris, and detritus [litter and duff]) and treatability of its rainwater leachate. Periodically applied (every 2-3 years for 40 years) prescribed fires decreased total fuel load (62±10%), primarily detrital mass (75±2%). However, functional groups (i.e., phenolic compounds, proteins, carbohydrates, aromatic [1-ring], polycyclic aromatic hydrocarbons [PAHs], and lipids) attached to DOM of ground solid materials did not change significantly. Outside rainwater leaching (from forest fuel materials) experiments showed that the leaching capacity of dissolved organic carbon (DOC) from burned litter samples decreased by 40±20% regardless of burning season when compared to unburned litter samples. The leaching of total dissolved nitrogen (TDN), dissolved organic nitrogen (DON), ammonium (NH4+), and reactive phosphorus (PO43-) from burned materials decreased between 40 and 70% when compared to unburned materials. Also, DOM composition was affected by prescribed fire, which partially consumed humic-like substances based on fluorescence analyses. Thus, periodically applied prescribed fires also resulted in a reduction of trihalomethane (THM) (42±23%) and haloacetic acid (HAA) (42±20%) formation potentials (FPs), while DOC normalized reactivity of THM and HAA FPs did not change significantly. Additionally, the leaching of N-nitrosodimethylamine (NDMA) precursors, bromide ion (Br-), and selected elements (K, Ca, Mg, Mn, Fe, S, Na, B, and Al) were not significantly affected by prescribed fires. Finally, coagulant (i.e., alum and ferric) dose requirements and coagulation efficiencies were similar (i.e., removal of DOC, precursors of THMs and HAAs were 52-56%, 69-70%, 78-79%, respectively) in unburned and pre-burned leachate samples.
Collapse
Affiliation(s)
- Habibullah Uzun
- Department of Environmental Engineering, Marmara University, Istanbul 34722, Turkey
| | - Wenbo Zhang
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, SC 29442, United States
| | - Christopher I Olivares
- Department of Civil and Environmental Engineering, University of California-Berkeley, Berkeley, California 94720, United States
| | - Cagri Utku Erdem
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| | - T Adam Coates
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| | - Alex T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, SC 29442, United States; Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States.
| |
Collapse
|
16
|
Luo Q, Bei E, Liu C, Deng YL, Miao Y, Qiu Y, Lu WQ, Chen C, Zeng Q. Spatial, temporal variability and carcinogenic health risk assessment of nitrosamines in a drinking water system in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139695. [PMID: 32497885 DOI: 10.1016/j.scitotenv.2020.139695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Nitrosamines, as a class of emerging frequently detected nitrogenous disinfection byproducts (N-DBPs) in drinking water, have gained increasing attention due to their potentially high health risk. Few studies focus on the occurrence variation and carcinogenic health risk of nitrosamines in drinking water systems. Our study aimed to investigate the spatial and temporal variability of nitrosamines in a drinking water system and to conduct a carcinogenic health risk assessment. Three types of water samples, including influent water, treated water and tap water, were collected monthly during an entire year in a drinking water system utilizing a combination of chlorine dioxide and chlorine in central China, and 9 nitrosamines were measured. The nitrosamine formation potentials (FPs) in influent water were also determined. N-nitrosodimethylamine (NDMA) was the most prevalent compound and was dominant in the water samples with average concentrations ranging from 2.5 to 67.4 ng/L, followed by N-nitrosodiethylamine (NDEA) and N-nitrosopiperidine (NPIP). Nitrosamine occurrence varied monthly, and significant seasonal differences were observed in tap water (p < .05). There were decreasing mean NDMA, NDEA and NPIP concentrations from influent water to treated water to tap water, but no significant spatial variability was observed within the water distribution system (p > .05). The average and 95th percentile total lifetime cancer risks for the three main nitrosamines were 4.83 × 10-5 and 4.48 × 10-4, respectively, exceeding the negligible risk level (10-6) proposed by the USEPA. Exposure to nitrosamines in drinking water posed a higher cancer risk for children than for adults, and children aged 0.75 to 1 years suffered the highest cancer risk. These results suggest that nitrosamine occurrence in tap water varied temporally but not spatially. Exposure to drinking water nitrosamines may pose a carcinogenic risk to human health, especially to children.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
17
|
Bei E, Li X, Wu F, Li S, He X, Wang Y, Qiu Y, Wang Y, Wang C, Wang J, Zhang X, Chen C. Formation of N-nitrosodimethylamine precursors through the microbiological metabolism of nitrogenous substrates in water. WATER RESEARCH 2020; 183:116055. [PMID: 32622235 DOI: 10.1016/j.watres.2020.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
N-nitrosodimethylamine (NDMA) as one emerging disinfection by-product has been investigated globally since 1990s. However, its main precursors are still unclear. We found that NDMA formation potential (NDMAFP) of various water samples increased firstly and then decreased gradually during incubation with microorganism. We hypothesized that NDMA precursors could be produced through metabolism of nitrogenous components and then gradually be biodegraded. To verify this hypothesis, six amino acids (AAs), peptone and ammonium were separately incubated with microorganism and NDMAFP was measured regularly. The average molar yield of the substrates to NDMAFP were 60-200 × 10-6 for the AAs, 350 × 10-6 for peptone under aerobic condition. The extracellular fraction with molecular weight (MW) less than 1 k Dalton contributed the majority to NDMAFP in the peptone experiment, followed by that with MW between 10 k and 0.22 μm and the intracellular materials. Dimethylamine and methylamine were detected during the experiments but their contribution to NDMAFP is quite limited. The results indicate that the nitrosamine precursors may not be the direct metabolite of AAs or peptones but the excretion of living bacteria or the components in dead bacteria body. Our results inferred that AA metabolism may give an NDMAFP of 0.12 nmol/L (maximum) or 0.09 nmol/L (average) in water under aerobic condition. This estimation of NDMAFP from AA metabolism can account for 38% (maximum) or 27% (average) of the median NDMAFP in waters of China (0.32 nmol/L) reported before.
Collapse
Affiliation(s)
- Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiao Li
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Fuhua Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shixiang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xinsheng He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengkun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Xiaojian Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China.
| |
Collapse
|
18
|
Maqbool T, Zhang J, Qin Y, Ly QV, Asif MB, Zhang X, Zhang Z. Seasonal occurrence of N-nitrosamines and their association with dissolved organic matter in full-scale drinking water systems: Determination by LC-MS and EEM-PARAFAC. WATER RESEARCH 2020; 183:116096. [PMID: 32717651 DOI: 10.1016/j.watres.2020.116096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/23/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
N-nitrosamines have been identified as emerging contaminants with tremendous carcinogenic potential for human beings. This study examined the seasonal changes in the occurrence of N-nitrosamines and N-nitrosodimethylamine formation potential (NDMA-FP) in drinking water resources and potable water from 10 drinking water treatment plants in a southern city of China. The changes in N-nitrosamines are well correlated with dissolved organic matter (DOM), particularly fluorophores, which were measured and compared between traditional fluorescence indices and excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Four of N-nitrosamine species including N-nitrosodimethylamine (NDMA), N-Nitrosodibutylamine (NDBA), N-Nitrosopyrrolidine (NPYR), and N-Nitrosodiphenylamine (NDPhA) are found to be abundant compounds with an average of 29.5% (26.7%), 20.0% (25.2%), 18.9% (16.0%), and 9.0% (9.9%) in the source (and treated) water, respectively. The sum of N-nitrosamines concentration is recorded to be low in the wet season (July-September), whereas the dry season (October-December) provided opposite impacts. EEM-PARAFAC modeling indicated the predominance of humic-like component (C1) in the wet season while in the dry season the water was dominant in protein-like component (C2). All the N-nitrosamines excluding NDPhA and N-Nitrosomorpholine (NMOR) showed a strong association with protein-like component (C2). In contrast, humic-like C1, which was directly influenced by rainfall, was found to be a suitable proxy for NMOR and NDPhA. The results of this study are valuable to understand the correlation between different N-nitrosamines and DOM through adopting fluorescence signatures.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiaxing Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanling Qin
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Quang Viet Ly
- Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Uzun H, Dahlgren RA, Olivares C, Erdem CU, Karanfil T, Chow AT. Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters. WATER RESEARCH 2020; 181:115891. [PMID: 32464419 DOI: 10.1016/j.watres.2020.115891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
We investigated the effects of two California wildfires (Rocky and Wragg Fires, 2015) compared to an unburned reference watershed on water quality, dissolved organic matter (DOM), and precursors of disinfection by-products (DBPs) for two years' post-fire. The two burned watersheds both experienced wildfires but differed in the proportion of burned watershed areas. Burned watersheds showed rapid water quality degradation from elevated levels of turbidity, color, and suspended solids, with greater degradation in the more extensively burned watershed. During the first year's initial flushes, concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), ammonium (NH4+/NH3), and specific ultraviolet absorbance (SUVA254) were significantly higher (67 ± 40%, 418 ± 125%, 192 ± 120%, and 31 ± 17%, respectively) in the more extensively burned watershed compared to the reference watershed. These elevated values gradually declined and finally returned to levels like the reference watershed in the second year. Nitrate concentrations were near detection limits (0.01 mg-N/L) in the first year but showed a large increase in fire-impacted streams during the second rainy season, possibly due to delayed nitrification. Changes in DOM composition, especially during the initial storm events, indicated that fires can attenuate humic-like and soluble microbial by-product-like (SMP) DOM while increasing the proportion of fulvic-like, tryptophan-like, and tyrosine-like compounds. Elevated bromide (Br-) concentrations (up to 8.7 μM]) caused a shift in speciation of trihalomethanes (THMs) and haloacetic acids (HAAs) to brominated species for extended periods (up to 2 years). Wildfire also resulted in elevated concentrations of N-nitrosodimethylamine (NDMA) precursors. Such changes in THM, HAA, and NDMA precursors following wildfires pose a potential treatability challenge for drinking water treatment, but the effects are relatively short-term (≤1 year).
Collapse
Affiliation(s)
- Habibullah Uzun
- Department of Environmental Engineering, Marmara University, Istanbul, 34722, Turkey
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California, 95616, United States
| | - Christopher Olivares
- Civil and Environmental Engineering, University of California, Berkeley, California, 94720, United States
| | - Cagri Utku Erdem
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, 29625, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, 29625, United States
| | - Alex T Chow
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, 29625, United States; Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, South Carolina, 29442, United States.
| |
Collapse
|
20
|
Majidzadeh H, Uzun H, Chen H, Bao S, Tsui MTK, Karanfil T, Chow AT. Hurricane resulted in releasing more nitrogenous than carbonaceous disinfection byproduct precursors in coastal watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135785. [PMID: 31839296 DOI: 10.1016/j.scitotenv.2019.135785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The frequency of Atlantic hurricanes has been predicted to increase significantly by the end of this century. Watershed disturbance initiated by hurricanes can alter dissolved organic matter (DOM) quantity and quality in source water dramatically. DOM is an important disinfection by-product (DBP) precursor, and thus hurricanes can have a significant impact on water treatability and drinking water safety. The interactions between land use and land cover (LULC) of a watershed and DBP formation potential (FP) in source water under hurricane events have rarely been evaluated. Here, we quantified the FPs of two carbonaceous (trihalomethanes [THMs] and haloacetic acids [HAA]) and two nitrogenous (haloacetonitrile [HAN] and N-nitrosodimethylamine [NDMA]) DBPs at eighteen sub-watersheds with varying LULC along the Yadkin-Pee Dee River basin across North and South Carolina during and after the flooding condition caused by the 2016 Hurricane Matthew. Using chlorine as a disinfectant, THM FP was 238% (±117%) higher (p < .001) under the flooding condition than baseflow condition, while HAA FP did not change significantly as a result of the flooding. DOM composition under the flooding condition changed in favor of the formation of THMs rather than HAAs by a decrease of fulvic acid-like compounds and an increase in DOM aromaticity (SUVA). The FPs of studied DBPs under the flooding condition compared with the baseflow, followed the order of HAN (356.5%) > NDMA (246.4%) > THM (115.2%) using chloramine as a disinfectant. Higher HAN FP and NDMA FP compared to THM FP suggested that more nitrogenous than carbonaceous DBPs precursors were released during this hurricane event. LULC analysis revealed that forested wetlands were the major contributor of THM, HAA, and HAN precursors, whereas NDMA precursor was derived from developed areas. This unique study highlights the dynamic interplay between LULC and exports of carbonaceous and nitrogenous DBPs precursors during and after hurricanes.
Collapse
Affiliation(s)
- Hamed Majidzadeh
- Department of Sciences, Southern New Hampshire University, NH, United States; Biogeochemistry & Environmental Quality Research Group, Clemson University, SC, United States.
| | - Habibullah Uzun
- Department of Environmental Engineering, Marmara University, Istanbul, Turkey
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, SC, United States
| | - Shaowu Bao
- Department of Coastal and Marine Systems Science, Coastal Carolina University, SC, United States
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC, United States
| | - Alex T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, SC, United States; Department of Environmental Engineering and Earth Science, Clemson University, SC, United States
| |
Collapse
|
21
|
Regional and Seasonal Distributions of N-Nitrosodimethylamine (NDMA) Concentrations in Chlorinated Drinking Water Distribution Systems in Korea. WATER 2019. [DOI: 10.3390/w11122645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Volatile N-Nitrosamines (NAs), including N-nitrosodimethylamine (NDMA), an emerging contaminant in drinking water, have been reported to induce cancer in animal studies. This study aims to investigate the regional and seasonal distributions of the concentrations of NDMA, one of the most commonly found NAs with high carcinogenicity, in municipal tap water in Korea. NDMA in water samples was quantitatively determined using high-performance liquid chromatography-fluorescence detection (HPLC-FLD) as a 5-dimethylamino-1-naphthalenesulfonyl (dansyl) derivative after optimization to dry the SPE adsorbent and remove dimethylamine prior to derivatization. Tap water samples were collected from 41 sites in Korea, each of which was visited once in summer and once in winter. The average (±standard deviation) NDMA concentration among all the sites was 46.6 (±22.7) ng/L, ranging from <0.13 to 80.7 ng/L. Significant NDMA differences in the regions, excluding the Jeju region, were not found, whereas the average NDMA concentration was statistically higher in winter than in summer. A multiple regression analysis for the entire data set indicated a negative relationship between NDMA concentration and water temperature. High levels of NDMA in Korea may pose excessive cancer risks from the consumption of such drinking water.
Collapse
|
22
|
Uzun H, Kim D, Karanfil T. Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide. CHEMOSPHERE 2019; 216:224-233. [PMID: 30384291 DOI: 10.1016/j.chemosphere.2018.10.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/05/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effects of five different pre-oxidation scenarios (i.e., individual, simultaneous, and sequential applications of chlorine dioxide [ClO2] and chlorine [Cl2]) on the removal of N-nitrosodimethylamine (NDMA) formation potential (FP) from different water matrices (i.e., non-impacted natural waters, wastewater [WW]-impacted, and polymer-impacted waters) with subsequent chloramination were investigated. Practically relevant doses of ClO2 and Cl2 were applied for all scenarios to avoid the formation of disinfection by-products (DBPs) at regulatory levels. The removal efficiency of NDMA FP for all the oxidation scenarios (individual or simultaneous) was <20% in non-impacted natural water samples. In 20% WW-impacted waters, pre-oxidation with ClO2 at pH 7.8 resulted in a significant reduction in NDMA FP (56-73%), whereas pre-oxidation with Cl2 showed less removals (40-50%). For the integrated oxidation scenarios (i.e., simultaneous or sequential application), NDMA FP removals further increased (20-45%), especially, at pH 6.0 compared to individual application of oxidants in WW-impacted waters. The formation of NDMA in pre-oxidized water samples also decreased significantly under uniform formation condition (UFC). In polymer-impacted waters, integrated applications of Cl2 and ClO2 significantly improved the deactivation of polymer-derived NDMA precursors independent of oxidation time (10 vs. 60 min) and pH (6.0 vs. 7.8) compared to individual application of these oxidants. In addition, chlorite (ClO2-) formation was low and maintained well below 1 mg/L for integrated applications of Cl2 and ClO2, while chlorate (ClO3-) formation increased significantly as compared to application of ClO2 only.
Collapse
Affiliation(s)
- Habibullah Uzun
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA; Department of Environmental Engineering, Marmara University, 34722 Istanbul, Turkey
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
23
|
Uzun H, Kim D, Karanfil T. Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1383-1391. [PMID: 29710591 DOI: 10.1016/j.scitotenv.2018.04.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effect of chlorine dioxide (ClO2) oxidation on the deactivation of wastewater (WW)-derived N-nitrosodimethylamine (NDMA) precursors was investigated under various conditions (i.e., ClO2 application pH, dose and contact time). At pH 6.0, decreases in NDMA formation potentials (FPs) or occurrences (under uniform formation conditions [UFC]) were relatively low (<25%) with ClO2 oxidation regardless of WW-impact. A negative removal was also observed after ClO2 oxidation in some of the non-impacted waters. However, NDMA FP removals were significant (up to ~85%) under the same oxidation conditions in WW-impacted waters at pH 7.8. This indicates that the majority of WW-derived NDMA precursors can be deactivated with ClO2 oxidation above neutral pH. This was attributed to the better oxidative reaction of ClO2 with amines that have lone pair electrons to be shared at higher oxidation pH conditions. In addition, relatively short oxidation periods with ClO2 (i.e., ≤10 min) or low Ct (concentration × time, ~10 mg ∗ min/L) values were sufficient for the deactivation of WW-derived NDMA precursors. ClO2 oxidation was effective in freshly WW-impacted waters. Natural attenuation processes (e.g., sorption, biodegradation, etc.) can change the reactivity of WW-derived NDMA precursors for oxidation with ClO2. The effect of ClO2 on the removal of THM precursors was low (<25%) and independent of oxidation conditions. Given the low formation of regulated THMs and HAAs, ClO2 oxidation presents a viable option for the simultaneous control of NDMA and regulated DBP formation during water treatment, especially for utilities treating WW-impacted water sources.
Collapse
Affiliation(s)
- Habibullah Uzun
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court L.G. Rich Environmental Laboratory, Anderson, SC, USA.
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court L.G. Rich Environmental Laboratory, Anderson, SC, USA.
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court L.G. Rich Environmental Laboratory, Anderson, SC, USA.
| |
Collapse
|
24
|
Sgroi M, Vagliasindi FGA, Snyder SA, Roccaro P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. CHEMOSPHERE 2018; 191:685-703. [PMID: 29078192 DOI: 10.1016/j.chemosphere.2017.10.089] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/05/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1; T-Lab Building, #02-01, 117411, Singapore
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
25
|
Ruecker A, Uzun H, Karanfil T, Tsui MTK, Chow AT. Disinfection byproduct precursor dynamics and water treatability during an extreme flooding event in a coastal blackwater river in southeastern United States. CHEMOSPHERE 2017; 188:90-98. [PMID: 28881244 DOI: 10.1016/j.chemosphere.2017.08.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 05/14/2023]
Abstract
Coastal blackwater rivers, characterized by high concentrations of natural organic matter, are source water for millions of people in the southeastern US. In October 2015, large areas of coastal South Carolina were flooded by Hurricane Joaquin. This so-called "thousand-year" rainfall mobilized and flushed large amounts of terrestrial organic matter and associated pollutants (e.g. mercury) into source water, affecting water quality and safety of municipal water supply. To understand the dynamics of water quality and water treatability during this extreme flood, water samples were collected from Waccamaw River (a typical blackwater river in the southeastern US) during rising limb, peak discharge, falling limb, and base flow. Despite decreasing water flow after peak discharge, dissolved organic carbon (DOC) levels (increased by up to 125%), and formation potentials of trihalomethanes and haloacetic acids (increased by up to 150%) remained high for an extended period of time (>eight weeks after peak discharge), while variation in the N-nitrosodimethylamine (NDMA) FP was negligible. Coagulation with alum and ferric at optimal dosage significantly reduced concentrations of DOC by 51-76%, but up to 10 mg/L of DOC still remained in treated waters. For an extended period of time, elevated levels of THMs (71-448 μg/L) and HAAs (88-406 μg/L) were quantified in laboratory chlorination experiments under uniform formation conditions (UFC), exceeding the United States Environmental Protection Agency's (USEPA) maximum contaminant level of 80 and 60 μg/L, respectively. Results demonstrated that populations in coastal cities are at high risk with disinfection by-products (DBPs) under the changing climate.
Collapse
Affiliation(s)
- A Ruecker
- Biogeochemistry & Environmental Quality Research Group, Clemson University, SC, USA
| | - H Uzun
- Department of Environmental Engineering and Earth Sciences, Clemson University, SC, USA
| | - T Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, SC, USA
| | - M T K Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - A T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, SC, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, SC, USA.
| |
Collapse
|
26
|
Woods-Chabane GC, Glover CM, Marti EJ, Dickenson ERV. A novel assay to measure tertiary and quaternary amines in wastewater: An indicator for NDMA wastewater precursors. CHEMOSPHERE 2017; 179:298-305. [PMID: 28376393 DOI: 10.1016/j.chemosphere.2017.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/07/2023]
Abstract
This study examined the potential of using a novel bulk amine assay as an approximation for the tertiary and quaternary amine load in wastewaters and surface water samples, and this approximation was compared to N-nitrosodimethylamine (NDMA) formation potential using chloramines. An existing colorimetric method was examined and optimized for the detection of amines in environmental water samples. The method consists of liquid-liquid extraction followed by a catalyzed reaction to form a yet-undefined product that is known to be both a strong chromophore and fluorophore. Previous work verified that this reaction was effectively catalyzed by a number of compounds containing tertiary and quaternary amine moieties. Many tertiary and quaternary compounds are also efficient producers of NDMA under chloramination conditions, and a linear correlation was consequently derived from the bulk amine signals vs. NDMA formation potential in various wastewater samples (R2 = 0.74; n = 24; p-value < 0.05). The results provide evidence that approximately 2% of the tertiary and quaternary amines measured can form NDMA and an estimated 0.01-1.3% of nitrogen in dissolved organic nitrogen originates from these bulk amines. The normalization of NDMA concentration by the amine measurement revealed that ozone effectively destroyed those tertiary and quaternary amine structures more likely to form NDMA in treated wastewater samples. This bulk amine assay illustrates that proxy measurements of tertiary and quaternary amines can be linked to the NDMA formation potential of a given sample, and this approach may prove useful as a characterizing tool for NDMA precursors in wastewater.
Collapse
Affiliation(s)
- Gwen C Woods-Chabane
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| | - Caitlin M Glover
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Erica J Marti
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Eric R V Dickenson
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| |
Collapse
|
27
|
Yang Z, Sun YX, Ye T, Shi N, Tang F, Hu HY. Characterization of trihalomethane, haloacetic acid, and haloacetonitrile precursors in a seawater reverse osmosis system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:391-397. [PMID: 27792956 DOI: 10.1016/j.scitotenv.2016.10.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Seawater reverse osmosis (SWRO) has been extensively applied to replenish the limited freshwater resources. One concern of such technology is the formation of disinfection by-products (DBPs) during the pre-chlorination process. For the SWRO tested in this study, the concentrations of trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetonitriles (HANs) increased by 35.1, 23.7 and 4.9μg/L, respectively, after a seawater sample (with UV254/DOC of 3.7L/mg·m and Br- of 50.9mg/L) was pre-chlorinated (1-2mg-Cl2/L). The dissolved organic matter (DOM) with molecular weight (MW) <1kDa dominated the formation of total THMs, HAAs and HANs. To further investigate DBPs precursors in the seawater, the DOM with MW<1kDa was fractionated to hydrophobic acids (HOA), hydrophobic bases (HOB), hydrophobic neutrals (HON), and hydrophilic substances (HIS). The excitation emission matrix fluorescence spectra analysis showed that most aromatic protein and fulvic acid of the DOM with MW<1kDa were present in the HON and HIS fractions. The HON fraction was the dominant precursor to form THMs and HAAs, while HIS controlled the formation of HANs. Furthermore, bromo - DBPs dominated the total DBPs yields after the chlorination of HIS fraction.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Ying-Xue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Tao Ye
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Na Shi
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Fang Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
28
|
Ersan MS, Ladner DA, Karanfil T. The control of N-nitrosodimethylamine, Halonitromethane, and Trihalomethane precursors by Nanofiltration. WATER RESEARCH 2016; 105:274-281. [PMID: 27623413 DOI: 10.1016/j.watres.2016.08.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Nanofiltration (NF) is a promising technology for removing precursors of disinfection byproducts (DBPs) from source waters prior to oxidant addition in water treatment. The aims of this study were to investigate (i) the removal efficiencies of N-nitrosodimethylamine (NDMA), halonitromethane (HNM), and trihalomethane (THM) precursors by NF membranes from different source water types (i.e. surface water, wastewater impacted surface water, and municipal and industrial wastewater treatment effluents), (ii) the impact of membrane type, and (iii) the effects of background water components (i.e., pH, ionic strength, and Ca2+) on the removal of selected DBP precursors from different source waters. The results showed the overall precursor removal efficiencies were 57-83%, 48-87%, and 72-97% for NDMA, HNM, and THM precursors, respectively. The removal of NDMA precursors decreased with the increases in average molecular weight cut off and negative surface charge of NF membranes tested, while the removal of THM precursors was slightly affected. pH changes increased the removal of NDMA precursors, but pH did not affect the removal of THM and HNM precursors in municipal WWTP effluent. On the other hand, pH changes had little or no effect on DBP removal from industrial WWTP effluent. In addition, regardless of the membrane type or background water type/characteristics, ionic strength did not show any impact on DBP precursor removals. Lastly, an increase in Ca2+ concentration enhanced the removal of NDMA precursors while a slight decrease and no effect was observed for THM and HNM precursors, respectively, in municipal WWTP effluent.
Collapse
Affiliation(s)
- Mahmut S Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
29
|
Wang W, Yu J, An W, Yang M. Occurrence and profiling of multiple nitrosamines in source water and drinking water of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:489-495. [PMID: 26896577 DOI: 10.1016/j.scitotenv.2016.01.175] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of multiple nitrosamines was investigated in 54 drinking water treatment plants (DWTPs) from 30 cities across major watersheds of China, and the formation potential (FP) and cancer risk of the dominant nitrosamines were studied for profiling purposes. The results showed that N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosodi-n-butylamine (NDBA) were the most abundant in DWTPs, and the concentrations in source water and finished water samples were not detected (ND) -53.6ng/L (NDMA), ND -68.5ng/L (NDEA), ND -48.2ng/L (NDBA). The frequencies of detection in source waters were 64.8%, 61.1% and 51.8%, and 57.4%, 53.7%, and 37% for finished waters, respectively. Further study indicated that the FPs of the three main nitrosamines during chloramination were higher than those during chlorination and in drinking water. The results of Principal Components Analysis (PCA) showed that ammonia was the most closely associated factor in nitrosamine formation in the investigated source water; however, there was no significant correlation between nitrosamine-FPs and the values of dominant water-quality parameters. The advanced treatment units (i.e., ozonation and biological activated carbon) used in DWTPs were able to control the nitrosamine-FPs effectively after disinfection. The target pollutants posed median and maximum cancer risks of 2.99×10(-5) and 35.5×10(-5) to the local populations due to their occurrence in drinking water.
Collapse
Affiliation(s)
- Wanfeng Wang
- Key Laboratory of Drinking Water Science and Technology, State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
Kim D, Amy GL, Karanfil T. Disinfection by-product formation during seawater desalination: A review. WATER RESEARCH 2015; 81:343-355. [PMID: 26099832 DOI: 10.1016/j.watres.2015.05.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water.
Collapse
Affiliation(s)
- Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Gary L Amy
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
31
|
Assaad A, Pontvianne S, Corriou JP, Pons MN. Spectrophotometric characterization of dissolved organic matter in a rural watershed: the Madon River (N-E France). ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:188. [PMID: 25784610 DOI: 10.1007/s10661-015-4422-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
In the last 20 years, increasing dissolved organic carbon (DOC) concentrations have been observed in several rivers and lakes in Europe. This increase has reduced the quality of the aquatic environment. In this study, UV-vis spectroscopy and synchronous fluorescence spectroscopy with a difference of 50 nm between the excitation and emission (SF50) were used to characterize the DOC in a rural river (Madon River). The specific absorbance index at 254 nm (SUVA254) which is related to the aromaticity of DOC was extracted from UV-vis spectra, whose maximum of the second derivative (occurring near 225 nm) is related to nitrates. SF50 spectra which are characterized by well-defined peaks indicated large spatial and temporal variations. Two methods were used to analyze and compare these spectra. The first method was based on the decomposition of the SF50 spectra into four Gauss functions: B1 (related to tryptophan-like fluorescence), B2 and B3 (related to humic substances), and B4 (related to chlorophyll-like substances). The second method was principal components analysis (PCA), which results yielded three principal components that accounted for 95% of the variance. Although PCA enables the consideration of the spectra without making assumptions regarding the number of fluorophores, the results from the decomposition in Gauss function were easier to interpret.
Collapse
Affiliation(s)
- Aziz Assaad
- Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, 1 rue Grandville, BP 20451, 54001, Nancy Cedex, France
| | | | | | | |
Collapse
|