1
|
Lv Z, Pan X, Ye ZL, Xie D, Cai G, Lv N, Li Y. A novel strategy for improving ammonia resistance of acidogenesis using domesticated sludge combined with nZVI addition in an ambient anaerobic digestion system. WATER RESEARCH 2024; 268:122619. [PMID: 39461214 DOI: 10.1016/j.watres.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
High ammonia stress, which inhibited the performance and stability of anaerobic digestion (AD) systems, is considered a bottleneck problem. To improve the performance of ambient acidogenic AD system under high ammonia stress, three different strategies were developed, including native sludge with nano zero valent iron (nZVI) addition (SnZVI), domesticated sludge enriched with homoacetogens with no additive (SDomesticated) and domesticated sludge with nZVI addition (SDomesticated+nZVI). All groups were operated at ambient temperature (24 ± 1 °C). Results showed that ammonia stress restricted the acidogenic rate in ambient acidogenic system significantly. Under ammonia stress, both SDomesticated and SDomesticated+nZVI showed positive impact on acidogenesis to resist, while the nZVI solely of SnZVI couldn't relieve the ammonia stress effectively. Compared to nZVI or domesticated sludge solely added system, SDomesticated+nZVI showed highest acidogenic rate under high ammonia stress. The SDomesticated treatment increased acetic acid and ethanol production under high ammonia stress compared to the SControl. The SDomesticated+nZVI further increased the production of formic acid and H2 and reduced the generation of CO2. Microbial community analysis indicated that the relative abundances of main acidogens Bifidobacterium, Solobacterium and ethanol producing bacteria Ethanoligenens, increased in the SDomesticated and SDomesticated+nZVI groups. Moreover, SDomesticated+nZVI increased the relative abundance of relevant functional enzyme-encoding genes involved in the generation of acetic acid, formic acid and ethanol and reduced the relative abundance of key functional enzyme-encoding genes related to butyric acid production. This work could provide a novel practical strategy to improve the performance of ambient acidogenic AD system under ammonia stress.
Collapse
Affiliation(s)
- Zunjing Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Digital Technology for Territorial Space Analysis and Simulation, Fuzhou 350108, China.
| | - Donghua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Digital Technology for Territorial Space Analysis and Simulation, Fuzhou 350108, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li Z, Dou Y, Li Z, Yuan Y, Zhang Q, Cheng S, Cheng X, Luo J. Dose-dependent effects of different parabens on food waste biorefinery for volatile fatty acids production: Insight into specific fermentation processes, substrates transformation and microbial metabolic traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174319. [PMID: 38936728 DOI: 10.1016/j.scitotenv.2024.174319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Parabens are largely concentrated in food waste (FW) due to their large consumption as the widely used preservative. To date, whether and how they affect FW resource recovery via anaerobic fermentation is still largely unknown. This work unveiled the hormesis-like effects of two typical parabens (i.e., methylparaben and n-butylparaben) on VFAs production during FW anaerobic fermentation (i.e., parabens increased VFAs by 6.73-14.49 % at low dose but caused 82.51-87.74 % reduction at high dose). Mechanistic exploration revealed that the parabens facilitated the FW solubilization and enhanced the associated substrates' biodegradability. The low parabens enriched the functional microorganisms (e.g., Firmicutes and Actinobacteria) and upregulated those critical genes involved in VFAs biosynthesis (e.g., GCK and PK) by activating the microbial adaptive capacity (i.e., quorum sensing and two-component system). Consequently, the metabolism rates of fermentation substrates and subsequent VFAs production were accelerated. However, due to increased biotoxicity of high parabens, the functional microorganisms and relevant metabolic activities were depressed, resulting in the significant reduction of VFAs biosynthesis. Structural equation modeling clarified that microbial community was the predominant factor affecting VFAs generation, followed by metabolic pathways. This work elucidated the dose-dependent effects and underlying mechanisms of parabens on FW anaerobic fermentation, providing insights for the effective management of FW resource recovery.
Collapse
Affiliation(s)
- Ziyu Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Dou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenzhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yujie Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
3
|
Wang X, Han J, Zeng M, Chen Y, Jiang F, Zhang L, Zhou Y. Total ammonia nitrogen inhibits medium-chain fatty acid biosynthesis by disrupting hydrolysis, acidification, chain elongation, substrate transmembrane transport and ATP synthesis processes. BIORESOURCE TECHNOLOGY 2024; 409:131236. [PMID: 39122132 DOI: 10.1016/j.biortech.2024.131236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study used 16S rRNA gene sequencing and metatranscriptomic analysis to comprehensively illustrate how ammonia stress influenced medium-chain fatty acids (MCFA) biosynthesis. MCFA synthesis was inhibited at total ammonia nitrogen (TAN) concentrations above 1000 mg N/L. TAN stress hindered organic hydrolysis, acidification, and volatile fatty acids elongation. Chain-elongating bacteria (e.g., Clostridium_sensu_stricto_12, Clostridium_sensu_stricto_1, Caproiciproducens) abundance remained unchanged, but their activity decreased, partially due to the increased reactive oxygen species. Metatranscriptomic analysis revealed reduced activity of enzymes critical for MCFA production under TAN stress. Fatty acid biosynthesis pathway rather than reverse β-oxidation pathway primarily contributed to MCFA production, and was inhibited under TAN stress. Functional populations likely survived TAN stress through osmoprotectant generation and potassium uptake regulation to maintain osmotic pressure, with NADH-ubiquinone oxidoreductase potentially compensating for ATP loss. This study enhances understanding of MCFA biosynthesis under TAN stress, aiding MCFA production system stability and efficiency improvement.
Collapse
Affiliation(s)
- Xiuping Wang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Junjie Han
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Meihui Zeng
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Yun Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
| | - Liang Zhang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology.
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
4
|
Wang R, Nabi M, Jiang Y, Xiao K. Characterizing properties and environmental behaviors of organic matter in sludge using liquid chromatography organic carbon detection and organic nitrogen detection: A mini-review. ENVIRONMENTAL RESEARCH 2024; 262:119900. [PMID: 39233026 DOI: 10.1016/j.envres.2024.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
The presence of organic matter in sludge plays a significant role in sludge dewatering, anaerobic sludge digestion, resource (i.e., protein) recovery and pollutants removal (i.e., heavy metals) from sludge, as well as post-application of sludge liquid and solid digestate. This study summarized the current knowledge on using liquid chromatography organic carbon detection and organic nitrogen detection (LC-OCD-OND) for characterization and quantification of organic matter in sludge samples related with sludge treatment processes by fractionating organic matter into biopolymers, building blocks, humic substances, low molecular weight (LMW) acids, low LMW neutrals, and inorganic colloids. In addition, the fate, interaction, removal, and degradation of these fractions in different sludge treatment processes were summarized. A standardized extraction procedure for organic components in different extracellular polymeric substances (EPS) layers prior to the LC-OCD-OND analysis is highly recommended for future studies. The analysis of humic substances using the LC-OCD-OND analysis in sludge samples should be carefully conducted. In conclusion, this study not only provides a theoretical foundation and technical guidance for future experiments and practices in characterizing sludge organic matter using LC-OCD-OND, but also serves as a valuable resource for consulting engineers and other professionals involved in sludge treatment.
Collapse
Affiliation(s)
- Ruiyao Wang
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Yue Jiang
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
5
|
Jiang Z, Ao Z, Qiu L, Li W, Yu J, Xia Z, Qi L, Liu G, Wang H. Enhanced wastewater treatment with an AnF-AAO system for improved internal carbon source utilization. CHEMOSPHERE 2024; 363:142836. [PMID: 39004146 DOI: 10.1016/j.chemosphere.2024.142836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The main challenge in removing nutrients from municipal wastewater in China is the lack of available carbon sources. While hydrolysis acidification tanks can improve wastewater biodegradability by effectively utilizing internal carbon sources, high sludge concentrations are difficult to control in traditional tank variants. In this study, an innovative anaerobic filter (AnF) hydrolysis acidification reactor composed of a continuously stirred tank reactor (CSTR) and cloth media filter was designed to regulate and maintain high sludge concentrations in the hydrolysis acidifier. The reactor was used as a pretreatment unit for the anaerobic/anoxic/oxic (AAO) units and combined into an AnF-AAO system to explore the effectiveness of internal carbon source utilization in wastewater. The results indicate that as the sludge concentration in the hydrolysis acidifier increased, the hydrolysis and acidification processes became more efficient. The optimal sludge concentration was 40 g/L, which significantly increased the production of soluble chemical oxygen demand and volatile fatty acids. Above this concentration, the efficiency decreased. Compared to traditional AAO processes, the AnF-AAO system achieved superior total nitrogen and phosphorus removal with shorter hydraulic retention times and reduced sludge production by a significant amount of 35%. Due to its capacity for enhancing internal carbon source utilization, the AnF-AAO system constitutes a promising approach for sustainable urban wastewater treatment.
Collapse
Affiliation(s)
- Zhao Jiang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - ZiDing Ao
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Linqing Qiu
- Dongguan Water Group Co., Ltd, Dongguan, 523000, China
| | - Wei Li
- Dongguan Water Group Co., Ltd, Dongguan, 523000, China
| | - Jie Yu
- Dongguan Water Group Co., Ltd, Dongguan, 523000, China
| | - Zhiheng Xia
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Lu Qi
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Guohua Liu
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Hongchen Wang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
6
|
Mendoza MDL, Vaca L, Erazo P, Villa P. Perspectives on carboxylates generation from Ecuadorian agro-wastes. BIORESOURCE TECHNOLOGY 2024; 407:131080. [PMID: 38992479 DOI: 10.1016/j.biortech.2024.131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Carboxylates generation from banana (peel and pulp), coffee, and cacao fermentation agro-waste, upon uncontrolled and controlled pHs of 6.6 (heat-driven methanogens inactivation) and 5.2 (pH inactivation), was studied. Regarding volatile fatty acids (VFAs), acetic was the highest for cocoa (96.2 g kg-1TVS) at pH 4.5. However, butyric was relevant for banana pulp (90.7 g kg-1TVS), at controlled pH 6.6. The highest medium chain fatty acid (MCFAs) level was hexanoic (cocoa, 3.5 g kg-1TVS), while octanoic reached a maximum of 2.8 g kg-1TVS for coffee at pH 6.6. At pH 5.2 MCFAs yield was relatively low. Uncontrolled pH conditions, using banana resulted in superior VFAs production compared to controlled conditions. Thus, pH became a determining variable when deciding the time and kind of carboxylic acid to be recovered. The bacterial community at the end of the chain elongation process was dominated by phyla Firmicutes, and Clostridium as the most common genera.
Collapse
Affiliation(s)
- Maria de Lourdes Mendoza
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Luis Vaca
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Pablo Erazo
- Biosequence S.A.S Laboratory, Checoslovaquia and Eloy Alfaro E10-95, P.O. Box 170504 Quito, Ecuador
| | - Pablo Villa
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| |
Collapse
|
7
|
Gracia J, Acevedo O, Acevedo P, Mosquera J, Montenegro C, Cabeza I. Statistical modeling and optimization of volatile fatty acids production by anaerobic digestion of municipal wastewater sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34091-2. [PMID: 39198346 DOI: 10.1007/s11356-024-34091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/19/2024] [Indexed: 09/01/2024]
Abstract
Obtaining value-added products from renewable resources is limited by the lack of specific operating conditions optimized for the physico-chemical characteristics of the biomass and the desired end product. A mathematical model and statistical optimization were developed for the production of volatile fatty acids (VFAs) by anaerobic digestion of municipal sewage sludge. The experimental tests were carried out in triplicate and investigated a wide range of conditions: pH 9.5, 10.5, and 11.5; temperatures 25 °C, 35 °C, 45 °C, and 55 °C; primary sludge with organic loading (OL) of 10 and 14 g VS (volatile solids); and digested sludge with 4 and 6 g VS. Subsequently, a statistical search was performed to obtain optimal production conditions, then a statistical model of VFA production was developed and the optimal conditions were validated at pilot plant scale. The maximum VFA concentration predicted was 6975 mg COD (chemical oxygen demand)/L using primary sludge at 25 °C, initial OL of 14 g VS, and pH 10.5. The obtained third-degree model (r2 = 0.83) is a powerful tool for bioprocess scale-up, offering a promising avenue for sustainable waste management and biorefinery development.
Collapse
Affiliation(s)
- Jeniffer Gracia
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Oscar Acevedo
- Faculty of Engineering, Design, and Innovation, Politécnico Grancolombiano, 110231, Bogotá, Colombia
| | | | - Jhessica Mosquera
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Carlos Montenegro
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Ivan Cabeza
- Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Autopista Norte, Campus Universitario Puente del Común, Km 7, 250001, Chía, Colombia.
| |
Collapse
|
8
|
Chen B, Azman S, Crauwels S, Dewil R, Appels L. Mild alkaline conditions affect digester performance and community dynamics during long-term exposure. BIORESOURCE TECHNOLOGY 2024; 406:131009. [PMID: 38909869 DOI: 10.1016/j.biortech.2024.131009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
This paper examines the adaptive responses of microbial communities to gradual shifts in pH toward the mild alkaline range in anaerobic digestion (AD) systems. The results indicate that a pH of 8.0 serves as a critical upper limit for stable AD operation, beyond which microbial efficiency declines, underscoring the importance of microbial resilience against elevated pH stress. Specifically, hydrolysis genera, e.g. Eubacterium and Anaerobacterium, and syntrophic bacteria were crucial for reactor stability. Fibrobacter had also been shown to play a key role in the accumulation of propionate, thus leading to its dominance in the volatile fatty acid profile throughout the experimental phases. Overall, this investigation revealed the potential adaptability of microbial communities in AD systems to mild alkaline pH shifts, emphasizing the hydrolysis bacteria and syntrophic bacteria as key factors for maintaining metabolic function in elevated pH conditions.
Collapse
Affiliation(s)
- Boyang Chen
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Samet Azman
- Avans University of Applied Sciences, Academy of Life Sciences and Technology, Lovensdijk 61, 4818 AJ Breda, Netherlands
| | - Sam Crauwels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Centre of Microbial and Plant Genetics, Willem de Croylaan 46, 3001 Leuven, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
9
|
Chen X, He H, Zhu N, Jia P, Tian J, Song W, Cui Z, Yuan X. Food waste impact on dry anaerobic digestion of straw in a novel reactor: Biogas yield, stability, and hydrolysis-methanogenesis processes. BIORESOURCE TECHNOLOGY 2024; 406:131023. [PMID: 38914235 DOI: 10.1016/j.biortech.2024.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Gradient anaerobic digestion reactor (GADR) can improve substrate utilization efficiency by solving the problem of the "short circuit" of materials. However, the substrate's composition significantly affects the reactor's performance. This study investigated the impact of food waste (FW) levels on corn straw's dry anaerobic digestion (AD) in a novel GADR. The results show that biomethane production can be improved by coupling urban and agricultural solid waste recycling. The mechanism is to increase the hydrolysis and acid production efficiency, and the abundance of enzymes related to methanogenesis. The maximum methane yield (494.2 mL CH4/g VS) and the highest anaerobic biodegradability (85.7 %) were obtained when the FW was added at 60 %. The co-digestion of FW and straw can improve the hydrolysis and acid production efficiency and methane yield, which improves the buffering capacity and stability of the system compared with the single digestion of FW.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Huiban He
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Na Zhu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Peiqiao Jia
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jinxiang Tian
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Wenyue Song
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Wang L, Jia B, Teng Z, Cao H, Miao Y, Guo H, Li T. Iron-based materials functionalized with carbon and phosphorus recovered from sludge enhanced the formation of stable minerals to passivate lead and chromium in wastewater and soil. CHEMOSPHERE 2024; 359:142340. [PMID: 38754487 DOI: 10.1016/j.chemosphere.2024.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The bioaccumulation and toxicity of heavy metals are serious threats to human activities and ecological health. The exploitation of environmentally friendly passivated materials is major importance for the remediation of heavy metal contaminated soil. This research developed a new type of environmental functional material with a core-shell structure, which is an iron-based material functionalized with phosphorus and carbon from sludge for heavy metal pollution remediation. The results indicated that the C/P@Fe exhibits excellent heavy metal removal ability, and the maximum removal rates of the two heavy metals in simulated wastewater could reach 100% under optimum reaction conditions. It also effectively converts the labile Cr/Pb into the stable fraction after 28 days of incubation, which increased the maximum residual fraction percentage of Cr and Pb by 32.43% and 160% in soil. Further analysis found that the carbon layer wrapped around the iron base could improve the electron transport efficiency of reducing iron, phosphorus and ferrum could react with heavy metal ions to form stable minerals, such as FeCr2O4, FeO·Cr2O3, Pb5(PO4)3OH, PbCO3, 2PbCO3·Pb(OH)2 and PbS, after reacting with C/P@Fe. The study demonstrated that the Iron-based materials functionalized with carbon and phosphorus from sludge provided a more efficient way to remove heavy metals.
Collapse
Affiliation(s)
- Liyan Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Bojie Jia
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China; CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zedong Teng
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hao Cao
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Miao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China; CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiyuan Guo
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tinggang Li
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Huang P, Chen Y, Li Z, Zhang B, Yu S, Zhou Y. Ammonia-dependent reducing power redistribution for purple phototrophic bacteria culture-based biohydrogen production. WATER RESEARCH 2024; 256:121599. [PMID: 38615602 DOI: 10.1016/j.watres.2024.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The global energy crisis has intensified the search for sustainable and clean alternatives, with biohydrogen emerging as a promising solution to address environmental challenges. Leveraging photo fermentation (PF) process, purple phototrophic bacteria (PPB) can harness reducing power derived from organic substrates to facilitate hydrogen production. However, existing studies report much lower H2 yields than theoretical value when using acetate as carbon source and ammonia as nitrogen source, primarily attributed to the widely employed pulse-feeding mode which suffers from ammonia inhibition effect on nitrogenase. To address this issue, a continuous feeding mode was applied to avoid ammonia accumulation in this study. On the other hand, other pathways like carbon fixation and polyhydroxyalkanoate (PHA) formation could compete reducing power with H2 production. However, the reducing power allocation under continuous feeding mode is not yet clear. In this study, the reducing power allocation and hydrogen production performance were evaluated under various ammonia loading, using acetate as carbon source and infrared LED at around 50 W·m-2 as light source. The results show that (a) The absence of ammonia resulted in the best performance for hydrogen production, with 44 % of the reducing power distributed to H2 and the highest H2 volumetric productivity, while the allocation of reducing power to hydrogen production stopped when ammonia loading was above 7.6 mg NH4-N·L-1·d-1; (b) when PPB required to eliminate reducing power under ammonia limited conditions, PHA production was the preferred pathway followed by the hydrogen production pathway, but once PHA accumulation reached saturation, hydrogen generation pathway dominated; (c) under ammonia limited conditions, the TCA cycle was more activated rendering higher NADH (i.e. reducing power) production compared with that under ammonia sufficient conditions which was verified by metagenomics analysis, and all the hydrogen production, PHA accumulation and carbon fixation pathways were highly active to dissipate reducing power. This work provides the insight of reducing power distribution and PPB biohydrogen production variated by ammonia loading under continuous feeding mode.
Collapse
Affiliation(s)
- Peitian Huang
- Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yun Chen
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zong Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baorui Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Siwei Yu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
12
|
Wang Y, He C, Xu C, Yang J, Feng J, Wang W. Influence of oxygen partial pressure on homoacetogenesis and promotion of acetic acid accumulation through low pH regulation under microaerobic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42766-42778. [PMID: 38878240 DOI: 10.1007/s11356-024-33952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Homoacetogenesis is an important pathway for bio-utilization of CO2; however, oxygen is a key environmental influencing factor. This study explored the impact of different initial oxygen partial pressures (OPPs) on homoacetogenesis, while implementing low pH regulation enhanced acetic acid (HAc) accumulation under microaerobic conditions. Results indicated that cumulative HAc production increased by 18.2% in 5% OPP group, whereas decreases of 31.3% and 56.0% were observed in 10% and 20% OPP groups, respectively, compared to the control group. However, hydrogenotrophic methanogens adapted to microaerobic environment and competed with homoacetogens for CO2, thus limiting homoacetogenesis. Controlling influent pH 5.0 per cycle increased cumulative HAc production by 18.3% and 18.2% in 5% and 10% OPP groups, respectively, compared with the control group. Consequently, regulating low pH effectively inhibited methanogenic activity under microaerobic conditions, thus increasing HAc production. This study was expected to expand the practical application of homoacetogenesis in bio-utilization of CO2.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Changwen Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jing Yang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jingwei Feng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.
| |
Collapse
|
13
|
Chen Y, Ding W, Bai Y, Wang X, Shen N, Li L, Lu D, Zhou Y. Phosphorus release and realignment in anaerobic digestion of thermal hydrolysis pretreatment sludge - Masking effects from high ammonium. WATER RESEARCH 2024; 255:121488. [PMID: 38513371 DOI: 10.1016/j.watres.2024.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Waste activated sludge (WAS) is a significant phosphorus (P) repository, and there is a growing interest in P recovery from WAS. Typically, the commercial technology for treating WAS involves thermal hydrolysis pretreatment (THP) coupled with anaerobic digestion (AD). However, there is ongoing debate regarding the transformation and distribution of P throughout this process. To address this, a long-term THP-AD process was operated in this study to comprehensively investigate P transformation and distribution. The results revealed that a substantial biodegradation of dissolved organic nitrogen (DON) raised the pH of the digestate to 8.3 during the AD process. This increased pH facilitated the dissolution of Al, leading to a reduction of 6.92 mg/L of NaOH-P. Simultaneously, sulfate reduction contributed to a decrease of 11.04 mg/L of Bipy-P in the solid. However, the reduction of Bipy-P and NaOH-P in the solid did not result in an improved P release to the supernatant. Conversely, a decrease of 23.60 mg/L P in the aqueous phase was observed after anaerobic digestion. The disappeared P was primarily precipitated with Mg and Ca, driven by the increased pH, and it contributed to the increase of HCl-P in the solid from 107.80 to 144.52 mg/L. These findings were further confirmed by results obtained from scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. This study provides valuable insights into the mechanisms of P transformation during THP-AD process that is nearly opposite from conventional AD system.
Collapse
Affiliation(s)
- Yun Chen
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Wei Ding
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Yu Bai
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Xiao Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Nan Shen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Lei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
14
|
Yu Q, Sun C, Cao W, Liu R, Abd-Alla MH, Rasmey AHM. Rumen fluid pretreatment promotes anaerobic methane production: revealing microbial dynamics driving increased acid yield from different concentrations of corn straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33615-0. [PMID: 38733442 DOI: 10.1007/s11356-024-33615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In this work, the corn straw (CS) with concentrations of 3%, 6%, and 9% (w/v) were pretreated by rumen fluid (RF) and then used for batched mesophilic biogas production. The results showed that after a 6-day pretreatment, volatile fatty acid (VFAs) production of 3.78, 8.27, and 10.4 g/L could be found in 3%, 6%, and 9%, respectively. When concerning with biogas production, the highest accumulative methane production of 149.1 mL CH4/g volatile solid was achieved by 6% pretreated CS, which was 22% and 45% higher than 3% and 9%, respectively. Also, it was 3.6 times higher than the same concentration of unpretreated CS. The results of the microbial community structure analysis revealed that the 6% CS pretreatment not only maintained a microbial community with the highest richness and diversity, but also exhibited the highest relative abundance of Firmicutes (45%) and Euryarchaeota (3.9%). This high abundance was conducive to its elevated production of VFAs and methane. These findings provide scientific reference for the utilization of CS and support the development of agricultural waste resource utilization and environmental protection.
Collapse
Affiliation(s)
- Qing Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| |
Collapse
|
15
|
Zhong H, Wang Q, Wu M, Zhao P, Song W, Wang X. Anaerobic acidification membrane bioreactor operating at acidic condition for treating concentrated municipal wastewater: Performance and implication. BIORESOURCE TECHNOLOGY 2024; 399:130644. [PMID: 38552856 DOI: 10.1016/j.biortech.2024.130644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
To address the low-carbon treatment requirements for municipal wastewater, a novel anaerobic acidification membrane bioreactor (AAMBR) was developed for recovering organic matter in terms of volatile fatty acids (VFAs). While the AAMBR successfully generated VFAs from municipal wastewater through forward osmosis (FO) membrane concentration, its operation was limited to a single pH value of 10.0. Here, performance of the AAMBR operating at acidic condition was evaluated and compared with that at alkaline condition. The findings revealed that the AAMBR with pH 5.0 efficiently transformed organic matter into acetic acid, propionic acid, and butyric acid, resulting in a VFAs yield of 0.48 g/g-CODfeed. In comparison with the AAMBR at pH 10.0, this study achieved a similar VFAs yield, a lower fouling tendency, a lower loss of nutrients and a lower controlling cost. In conclusion, this study demonstrated that a pH of 5.0 is optimal for the AAMBR treating municipal wastewater.
Collapse
Affiliation(s)
- Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Qiming Wang
- Scientific Research Academy of GuangXi Environmental Protection, Nanning 530022, PR China
| | - Mengfei Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
16
|
Liu F, Cheng W, Xu J, Wan T, Wang M, Ren J, Ning M, Zhang H, Zhou X. Enhancing short-chain fatty acids production via acidogenic fermentation of municipal sewage sludge: Effect of sludge characteristics and peroxydisulfate pre-oxidation. Biotechnol J 2024; 19:e2300540. [PMID: 38472098 DOI: 10.1002/biot.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
This study first employed a combined pretreatment of low-dose peroxy-disulfate (PDS) and initial pH 10 to promote short-chain fatty acids (SCFAs) production via acidogenic fermentation using different types of sewage sludge as substrates. The experimental results showed that the yield of maximal SCFAs and acetate proportion after the combined pretreatment were 1513.82 ± 28.25 mg chemical oxygen demand (COD)/L and 53.64%, and promoted by 1.28 and 1.56 times higher, respectively, compared to the sole initial pH 10 pretreatment. Furthermore, in terms of the disintegration degree of sewage sludge, it increased by more than 18% with the combined pretreatment compared to the pretreatment of sole initial pH 10. Waste-activated sludge (WAS) from A2/O and Bardenpho processes were more biodegradable, explained by the 1.47- and 1.35-times higher disintegration rate than those from oxidation ditch and they favored acetate dominant fermentation. Correlation analysis revealed a strong correlation (p ≤ 0.01) between SCFAs production and soluble COD, total proteins, proteins in soluble-extracellular polymeric substances (SEPS), total polysaccharides, and polysaccharides in SEPS. Mechanism explorations showed that preoxidation with PDS enhanced the solubilization and biodegradability of complex substrates, and altered the microbial community structure during the fermentation process. Firmicutes and Tetrasphaera were proven to play a key role in improving SCFA production, especially in promoting acetate production by converting additional SCFAs into acetate. Additionally, the addition of PDS greatly promoted sulfur and iron-related metabolic activities. Finally, the combined pretreatment was estimated to be a cost-effective solution for reutilizing and treating Fe-sludge.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Maomao Ning
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xiaoping Zhou
- Power China Northeast Engineering Corporation Limited, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Chen W, Zeng Y, Liu H, Sun D, Liu X, Xu H, Wu H, Qiu B, Dang Y. Granular activated carbon enhances volatile fatty acid production in the anaerobic fermentation of garden wastes. Front Bioeng Biotechnol 2023; 11:1330293. [PMID: 38146344 PMCID: PMC10749581 DOI: 10.3389/fbioe.2023.1330293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.
Collapse
Affiliation(s)
- Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Wang X, Chen Y, Ding W, Wei L, Shen N, Bian B, Wang G, Zhou Y. Organic binding iron formation and its mitigation in cation exchange resin assisted anaerobic digestion of chemically enhanced primary sedimentation sludge. WATER RESEARCH 2023; 247:120806. [PMID: 37925860 DOI: 10.1016/j.watres.2023.120806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Fe based chemically enhanced primary sedimentation (CEPS) is an effective method of capturing the colloidal particles and inorganic phosphorous (P) from wastewater but also produces Fe-CEPS sludge. Anaerobic digestion is recommended to treat the sludge for energy and phosphorus recovery. However, the aggregated sludge flocs caused by the coagulation limited sludge hydrolysis and P release during anaerobic digestion process. In this study, cation exchange resin (CER) was employed during anaerobic digestion of Fe-CEPS sludge with aims of prompting P release and carbon recovery. CER addition effectively dispersed the sludge flocs. However, the greater dispersion of sludge flocs could not translate to higher sludge hydrolysis. The maximum hydrolysis and acidification achieved at lower CER dosage of 0.5 g CER/g TS. It was observed that the extents of sludge hydrolysis and acidification had a strongly negative correlation with the organic binding iron (OBI) concentration. The presence of CER during anaerobic digestion favored Fe(III) reduction to Fe(II), and then further induced iron phase transformation, leading to the OBI formation from the released organic matters. Meanwhile, higher CER dosage resulted in higher P release efficiency and the maximum efficiency at 4 g CER/g TS was four times than that of the control. The reduction of BD-P, NaOH-P and HCl-P in solid phase contributed most P release into the supernatant. A new two-stage treatment process was further developed to immigrate the OBI formation and improve the carbon recovery efficiency. Through this process, approximately 45% of P was released, and 63% of carbon was recovered as methane from Fe-CEPS sludge via CER pretreatment.
Collapse
Affiliation(s)
- Xiao Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yun Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Wei Ding
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Liyan Wei
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Nan Shen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
19
|
Wu R, Shen R, Liang Z, Zheng S, Yang Y, Lu Q, Adrian L, Wang S. Improve Niche Colonization and Microbial Interactions for Organohalide-Respiring-Bacteria-Mediated Remediation of Chloroethene-Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17338-17352. [PMID: 37902991 DOI: 10.1021/acs.est.3c05932] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in in situ bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a Dehalococcoides-containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of Dehalococcoides as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.
Collapse
Affiliation(s)
- Rifeng Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Rui Shen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiwei Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shengzhi Zheng
- China State Science Dingshi Environmental Engineering Co., Ltd., Beijing 100102, China
| | - Yong Yang
- China State Science Dingshi Environmental Engineering Co., Ltd., Beijing 100102, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Ma S, Xu K, Ren H. Effect of mixing intensity on volatile fatty acids production in sludge alkaline fermentation: Insights from dissolved organic matter characteristics and functional microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118801. [PMID: 37591099 DOI: 10.1016/j.jenvman.2023.118801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Alkaline fermentation for volatile fatty acids (VFAs) production has shown potential as a viable approach to treat sewage sludge. The hydrolysis and acidogenesis of sludge are greatly influenced by mixing. However, the effects of mixing intensity on VFAs production in sludge alkaline fermentation (SAF) remain poorly understood. This study investigated the impacts of mixing intensity (30, 90 and 150 rpm continuous mixing, and 150 rpm intermittent mixing) on VFAs production, dissolved organic matter (DOM) characteristics, phospholipid fatty acid profiles and microbial population distribution in SAF. Results showed that 150 rpm continuous and intermittent mixing enhanced the hydrolysis of sludge, while 150 rpm intermittent mixing resulted in the highest VFAs production (3886 ± 266.1 mg COD/L). Analysis of fluorescent and molecular characteristics of DOM revealed that 150 rpm intermittent mixing facilitated the conversion of released DOM, especially proteins-like substances, into VFAs. The abundance of unsaturated and branched fatty acids of microbes increased under 150 rpm intermittent mixing, which could aid in DOM degradation and VFAs production. Firmicutes and Tissierella were enriched at 150 rpm intermittent mixing, which favored the maximum VFAs yield. Moreover, Firmicutes were found to be the key functional microorganisms influencing the yield of VFAs during SAF. This study provides an understanding about the mixing intensity effects on VFAs production during SAF, which could be helpful to improve the yield of VFAs.
Collapse
Affiliation(s)
- Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
21
|
Chen S, Habib Z, Wang Z, Zhao P, Song W, Wang X. Integrating anaerobic acidification with two-stage forward osmosis concentration for simultaneously recovering organic matter, nitrogen and phosphorus from municipal wastewater. WATER RESEARCH 2023; 245:120595. [PMID: 37708772 DOI: 10.1016/j.watres.2023.120595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
In order to meet the demand of municipal wastewater for low-carbon treatment and resource recovery, a novel process of anaerobic acidification membrane bioreactor (AAMBR) assisted with a two-stage forward osmosis (FO) (FO-AAMBR-FO) was developed for simultaneously recovering organic matter and nutrients from municipal wastewater. The results indicated that the first FO process concentrated the municipal wastewater to one tenth of the initial volume. The corresponding chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total phosphorus (TP) concentration reached up to 2800, 200 and 33 mg/L, respectively. Subsequently, the AAMBR was operated at pH value of 10 for treating the concentration of municipal wastewater, in which the organic matter was successfully converted to acetic acid and propionic acid with a total volatile fatty acids (VFAs) concentration of 1787 mg COD/L and a VFAs production efficiency of 62.36 % during 47 days of stable operation. After that, the NH4+-N and TP concentration in the effluent of the AAMBR were further concentrated to 175 and 36.7 mg/L, respectively, by the second FO process. The struvite was successfully recovered with NH4+-N and TP recovery rate of 94.53 % and 98.59 %, respectively. Correspondingly, the VFAs, NH4+-N and TP concentrations in the residual solution were 2905 mg COD/L, 11.8 and 7.92 mg/L, respectively, which could be used as the raw material for the synthesis of polyhydroxyalkanoate (PHA). Results reported here demonstrated that the FO-AAMBR-FO is a promising wastewater treatment technology for simultaneous recovery of organic matter (in form of VFAs) and nutrients (in form of struvite).
Collapse
Affiliation(s)
- Siyi Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zunaira Habib
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; Department of Chemistry, Rawalpindi Women University, 6th Road Satellite Town, Rawalpindi 46300, Pakistan
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
22
|
Siddique MS, Lu H, Xiong X, Fareed H, Graham N, Yu W. Exploring impacts of water-extractable organic matter on pre-ozonation followed by nanofiltration process: Insights from pH variations on DBPs formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162695. [PMID: 36898544 DOI: 10.1016/j.scitotenv.2023.162695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the influence of pH (4-10) on the treatment of water-extractable organic matter (WEOM), and the associated disinfection by-products (DBPs) formation potential (FP), during the pre-ozonation/nanofiltration treatment process. At alkaline pH (9-10), a rapid decline in water flux (> 50 %) and higher membrane rejection was observed, as a consequence of the increased electrostatic repulsion forces between the membrane surface and organic species. Parallel factor analysis (PARAFAC) modeling and size exclusion chromatography (SEC) provides detailed insights into the WEOM compositional behavior at different pH levels. Ozonation at higher pH significantly reduced the apparent molecular weight (MW) of WEOM in the 4000-7000 Da range by transforming the large MW (humic-like) substances into small hydrophilic fractions. Fluorescence components C1 (humic-like) and C2 (fulvic-like) exhibited a predominant increase/decrease in concentration for all pH conditions during pre-ozonation and nanofiltration treatment process, however, the C3 (protein-like) component was found highly associated with the reversible and irreversible membrane foulants. The ratio C1/C2 provided a strong correlation with the formation of total trihalomethanes (THMs) (R2 = 0.9277) and total haloacetic acids (HAAs) (R2 = 0.5796). The formation potential of THMs increased, and HAAs decreased, with the increase of feed water pH. Ozonation markedly reduced the formation of THMs by up to 40 % at higher pH levels, but increased the formation of brominated-HAAs by shifting the formation potential of DBPs towards brominated precursors.
Collapse
Affiliation(s)
- Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hongbo Lu
- Power China Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 311122, People's Republic of China.
| | - Xuejun Xiong
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Hasan Fareed
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| |
Collapse
|
23
|
Hwan Kang K, Yang M, Raza S, Son H, Park YK, Wang J, Kim YM. Mitigation of N 2O emissions via enhanced denitrification in a biological landfill leachate treatment using external carbon from fermented sludge. CHEMOSPHERE 2023; 335:139114. [PMID: 37270035 DOI: 10.1016/j.chemosphere.2023.139114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
The effects of an external carbon source (C-source) on the mitigation of N2O gas (N2O(g)) emissions from landfill leachate were investigated via enhanced denitrification using anaerobically fermented sewage sludge. Anaerobic fermentation of sewage sludge was conducted under thermophilic conditions with progressively increasing organic loading rates (OLR). Optimal conditions for fermentation were determined based on the efficiency of hydrolysis and the concentrations of sCOD and volatile fatty acids (VFAs) as follows: at an OLR of 40.48 ± 0.77 g COD/L·d with 1.5 days of solid retention time (SRT), 14.68 ± 0.59% of efficiency of hydrolysis, 14.42 ± 0.30 g sCOD/L and 7.85 ± 0.18 g COD/L of VFAs. Analysis of the microbial community in the anaerobic fermentation reactor revealed that degradation of sewage sludge might be potentially affected by proteolytic microorganisms producing VFAs from proteinaceous materials. Sludge-fermentate (SF) retrieved from the anaerobic fermentation reactor was used as the external C-source for denitrification testing. The specific nitrate removal rate (KNR) of the SF-added condition was 7.54 mg NO3-N/g VSS·hr, which was 5.42 and 2.43 times higher than that of raw landfill leachate (LL) and a methanol-added condition, respectively. In the N2O(g) emission test, the liquid phase N2O (N2O-N(l)) of 20.15 mg N/L was emitted as N2O(g) of 19.64 ppmv under only LL-added condition. On the other hand, SF led to the specific N2O(l) reduction rate (KN2O) of 6.70 mg N/g VSS hr, resulting in mitigation of 1.72 times the N2O(g) emission compared to under the only-LL-added condition. The present study revealed that N2O(g) emissions from biological landfill leachate treatment plants can be attenuated by simultaneous reduction of NO3-N and N2O(l) during enhanced denitrification via a stable supply of an external C-source retrieved from anaerobically fermented organic waste.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minseok Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heejong Son
- Busan Water Authority, Gimhae-si, Gyeongsangnam-do, 50804, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
24
|
Xiao M, Tang X, Shi X, Zhang C. Indirect photodegradation of sulfadimidine and sulfapyridine: Influence of CDOM components and main seawater factors. CHEMOSPHERE 2023; 333:138821. [PMID: 37149098 DOI: 10.1016/j.chemosphere.2023.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/26/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
This study investigated the indirect photodegradation of sulfadimidine (SM2) and sulfapyridine (SP) in the presence of chromophoric dissolved organic matter (CDOM), and studied the influences of main marine factors (salinity, pH, NO3- and HCO3-). Reactive intermediate (RI) trapping experiments demonstrated that triplet CDOM (3CDOM*) played a major role in the photodegradation of SM2 with a 58% photolysis contribution, and the contributions to the photolysis of SP were 32%, 34% and 34% for 3CDOM*, hydroxyl radical (HO·) and singlet oxygen (1O2), respectively. Among the four CDOMs, JKHA, with the highest fluorescence efficiency, exhibited the fastest rate of SM2 and SP photolysis. The CDOMs were composed of one autochthonous humus (C1) and two allochthonous humus (C2 and C3). C3, with the strongest fluorescence intensity, had the strongest capacity to generate RIs and accounted for approximately 22%, 11%, 9% and 38% of the total fluorescence intensity of SRHA, SRFA, SRNOM and JKHA, respectively, indicating the predominance of CDOM fluorescent components in the indirect photodegradation of SM2 and SP. These results demonstrated the photolysis mechanism: The photosensitization of CDOM occurred after its fluorescence intensity decreased, and a large number of RIs (3CDOM*, HO· and 1O2, etc.) were generated by energy and electron transfer, then these RIs reacted with SM2 and SP to cause photolysis. The increase in salinity stimulated the photolysis of SM2 and SP consecutively. The photodegradation rate of SM2 first increased and then decreased with increasing pH, whereas the photolysis of SP was remarkably promoted by high pH but remained stable at low pH. NO3- and HCO3- had little effect on the indirect photodegradation of SM2 and SP. This research may contribute to a better understanding of the fate of SM2 and SP in the ocean and provide new insights into the transformation of other sulfonamides (SAs) in marine ecological environments.
Collapse
Affiliation(s)
- Mingyan Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao, 266100, PR China
| | - Xinyu Tang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao, 266100, PR China
| | - Xiaoyong Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao, 266100, PR China; National Marine Hazard Mitigation Service, Beijing, 100194, China.
| | - Chuansong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao, 266100, PR China.
| |
Collapse
|
25
|
Li Y, Huang W, Fang S, Li Z, Li Z, Wang F, Cheng X, Cao J, Feng L, Luo J, Wu Y. Zinc pyrithione induced volatile fatty acids promotion derived from sludge anaerobic digestion: Interrelating the affected steps with microbial metabolic regulation and adaptive responses. WATER RESEARCH 2023; 234:119816. [PMID: 36878152 DOI: 10.1016/j.watres.2023.119816] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 01/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The massive use of zinc pyrithione (ZPT, as broad-spectrum bactericides) resulted in its high levels in waste activated sludge (WAS) and affected subsequent WAS treatment. This work revealed the effects of ZPT on the volatile fatty acids (VFAs) during WAS anaerobic digestion, in which VFAs yield was enhanced by approximately 6-9 folds (from 353 mg COD/L in control to 2526-3318 mg COD/L with low level of ZPT (20-50 mg/g TSS)). The ZPT occurred in WAS enabled the acceleration of solubilization, hydrolysis and acidification processes while inhibited the methanogenesis. Also, the low ZPT contributed to the enrichment of functional hydrolytic-acidifying microorganisms (e.g., Ottowia and Acinetobacter) but caused the reduction of methanogens (e.g., Methanomassiliicoccus and Methanothrix). Meta-transcriptomic analysis demonstrated that the critical genes relevant to extracellular hydrolysis (i.e. CLPP and ZapA), membrane transport (i.e. gltI, and gltL), substrates metabolisms (i.e. fadj, and acd), and VFAs biosynthesis (i.e. porB and porD) were all upregulated by 25.1-701.3% with low level of ZPT. Specifically, the ZPT stimulus on amino acids metabolism for VFAs transformation was prominent over carbohydrates. Moreover, the functional species enabled to regulate the genes in QS and TCS systems to maintain favorable cell chemotaxis to adapt the ZPT stress. The cationic antimicrobial peptide resistance pathway was upregulated to blunt ZPT with the secretion of more lipopolysaccharide and activate proton pumps to maintain ions homeostasis to antagonize the ZPT toxicity for high microbial activities, the abundance of related genes was up-regulated by 60.5 to 524.5%. This work enlightened environmental behaviors of emerging pollutants on WAS anaerobic digestion process with interrelations of microbial metabolic regulation and adaptive responses.
Collapse
Affiliation(s)
- Yuxiao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Zhenzhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Ziyu Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
26
|
Castro-Fernandez A, Taboada-Santos A, Balboa S, Lema JM. Thermal hydrolysis pre-treatment has no positive influence on volatile fatty acids production from sewage sludge. BIORESOURCE TECHNOLOGY 2023; 376:128839. [PMID: 36906240 DOI: 10.1016/j.biortech.2023.128839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The study compares the potential to produce volatile fatty acids (VFA) from sewage sludge, both raw and thermally pre-treated in two modes of operation. In batch mode, raw sludge at pH 8 obtained the highest maximum VFA yield (0.41 g COD-VFA/g CODfed) whereas pre-treated sludge achieved a lower value (0.27 g COD-VFA/g CODfed). The operation of 5-L continuous reactors showed that thermal hydrolysis pre-treatment (THP) did not have any significant influence on VFA yields, averaging 15.1 % g COD-VFA/g COD with raw sludge and 16.6 % g COD-VFA/g COD with pre-treated one. Microbial community analysis showed that phylum Firmicutes was predominant in both reactors and that the enzymatic profiles involved in VFA production were very similar regardless of the substrate fed.
Collapse
Affiliation(s)
- Ander Castro-Fernandez
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Anton Taboada-Santos
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Sabela Balboa
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
27
|
Zhang L, Wang X, Chen Y, Zhang B, Xu H, Li C, Zhou Y. Medium-chain fatty acid production from thermal hydrolysed sludge without external electron donor supplementation. BIORESOURCE TECHNOLOGY 2023; 374:128805. [PMID: 36849100 DOI: 10.1016/j.biortech.2023.128805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, medium-chain fatty acid (MCFA) generation from mixed sludge (including primary sludge and waste activated sludge) was investigated without additional electron donors (EDs). 0.5 g COD/L of MCFAs was produced and the in situ generated ethanol could serve as the EDs during the anaerobic fermentation of mixed sludge without thermal hydrolysis process (THP) pretreatment. THP increased the MCFA production by approximately 128% in the anaerobic fermentation. During 102 days of operation, the fermentation of THP pre-treated mixed sludge stably generated 2.9 g COD/L MCFAs. The self-generated EDs could not maximize MCFA production, and external addition of ethanol improved MCFA yield. Caproiciproducens was the dominant chain-elongating bacteria. PICRUST2 revealed that both fatty acid biosynthesis and reverse β-oxidation pathways could participate in MCFA synthesis, and ethanol addition could enhance the contribution of the reverse β-oxidation pathway. Future studies should focus on the improvement of MCFA production from THP-assisted sludge fermentation.
Collapse
Affiliation(s)
- Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiuping Wang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yun Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Baorui Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Chenchen Li
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
28
|
Zhou X, Liu T, Zhang S, Kang B, Duan X, Yan Y, Feng L, Chen Y. Metagenomic insight of fluorene-boosted sludge acidogenic fermentation: Metabolic transformation of amino acids and monosaccharides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161122. [PMID: 36587690 DOI: 10.1016/j.scitotenv.2022.161122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Fluorene (Flu) occurs widely in various environments and its toxicity to organisms is well-known. However, the impact of Flu on complicated biochemical processes involving functional microbial community has been reported rarely. In this study, the facilitation of Flu on the volatile fatty acids (VFAs) generation executed by acidogenic microbial population during sludge acidogenic fermentation (37 °C, SRT = 8 d, pH = 10.0) was investigated. The accumulation of VFAs (particularly acetic acid) increased initially and then declined with the increasing of Flu concentration (0-500 mg/kg dry sludge), which reached a maximum (3211.1 mg COD/L) as Flu content was 200 mg/kg dry sludge. The Flu-enhanced VFAs production was primarily attributed to the shift of hydrolysis/acidification, as well as the corresponding functional microbial community and the activity of enzymes. Based on the metagenomics analysis, the conversion of organic substrates, i.e. amino acid and monosaccharide, into VFAs embraced in hydrolysis/acidification shaped by Flu was constructed at the genetic level. The relative abundances of genes included in aminotransfer and deamination process of amino acid and glycolysis of monosaccharide into VFA-precursors (pyruvate, acetyl-CoA and propionyl-CoA), and the further formation of VFAs were improved due to the Flu presence. This study shed light on the Flu-affected microbial processes at the molecular biology level during acidogenic fermentation and was of great significance in resource recovery of sludge containing persistent organic pollutants.
Collapse
Affiliation(s)
- Xiaoxuan Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Shengyi Zhang
- Staff Education and Training Center Bohai, Drilling Engineering Co., Ltd, China National Petroleum Corporation, 8 Second Street, Economic and Technological Development Zone, Tianjin 300450, PR China
| | - Bo Kang
- School of Resource and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230009, PR China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Yuanyuan Yan
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, PR China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
29
|
Kumar Pandey A, Park J, Muhorakeye A, Morya R, Kim SH. Predicting the impact of hydraulic retention time and biodegradability on the performance of sludge acidogenesis using an artificial neural network. BIORESOURCE TECHNOLOGY 2023; 372:128629. [PMID: 36646359 DOI: 10.1016/j.biortech.2023.128629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to predict volatile fatty acids (VFAs) production from SDBS-pretreated waste-activated sludge (WAS). A lab-scale continuous experiment was conducted at varying hydraulic retention times (HRTs) of 7 d to 1 d. The highest VFA yield considering the WAS biodegradability was 86.8 % based on COD at an HRT of 2 d, where the hydrolysis and acidogenesis showed the highest microbial activities. According to 16S rRNA gene analysis, the most abundant bacterial class and genus at an HRT of 2 d were Synergistia and Aminobacterium, respectively. Training regression (R) for TVFA and VFA yield was 0.9321 and 0.9679, respectively, verifying the efficiency of the ANN model in learning the relationship between the input variables and reactor performance. The prediction outcome was verified with R2 values of 0.9416 and 0.8906 for TVFA and VFA yield, respectively. These results would be useful in designing, operating, and controlling WAS treatment processes.
Collapse
Affiliation(s)
- Ashutosh Kumar Pandey
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Alice Muhorakeye
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Raj Morya
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
30
|
Yuan F, Sun Y, Jiang X, Liu T, Kang B, Freguia S, Feng L, Chen Y. Dioctyl phthalate enhances volatile fatty acids production from sludge anaerobic fermentation: Insights of electron transport and metabolic functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160102. [PMID: 36370796 DOI: 10.1016/j.scitotenv.2022.160102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As one of the most widely used phthalate plasticizers, dioctyl phthalate (DOP) has been detected in wastewater and accumulates in sludge through wastewater treatment, which may adversely affect further sludge treatment. However, the role of DOP on sludge anaerobic fermentation and its mechanism are not yet clear. Therefore, this study focused on the effect of DOP on the volatile fatty acids (VFAs) generation via the anaerobic fermentation of sludge. The results demonstrated that the presence of DOP had a considerable contribution to the generation of VFAs, and the maximum production of VFAs reached 4769 mg COD/L at 500 mg/kg DOP, which was 1.57 folds that of the control. Mechanistic investigation showed that DOP mainly enhanced the hydrolysis, acidification and related enzymes activities of sludge. VFAs-producing microorganisms (e.g., Clostridium and Conexibacter) were also enriched under DOP exposure. Importantly, the presence of DOP increased the electron transfer activity by 26 %, consequently facilitating the organics conversion and fermentation process. Notably, the functional gene expressions involved in substrate metabolism and VFAs biosynthesis were enhanced with DOP, resulting in increased VFAs production from sludge. The results obtained in this study offered a new strategy for the control of pollutants and the recycling of valuable products from sludge.
Collapse
Affiliation(s)
- Feiyi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yi Sun
- Downhole Technical Service Branch, Bohai Drilling Engineering Co., Ltd, National Petroleum Corporation, 8, Second Street, Economic and Technological Development Zone, Tianjin 300450, PR China
| | - Xiupeng Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bo Kang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
31
|
Chen W, Zhang D, Luo X, Wang J, Xu Q, Lu X, Mao J, Song H, Wu X, Zan F. In-situ sulfite treatment enhanced the production of short-chain fatty acids from waste activated sludge in the side-stream anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 370:128521. [PMID: 36565821 DOI: 10.1016/j.biortech.2022.128521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Sulfite-based technology could enhance methane production from anaerobic sludge digestion. However, its potential for in-situ direct sludge treatment without anaerobic sludge addition in the side-stream remains unclear. This study investigated the feasibility of using in-situ sulfite treating sludge for short-chain fatty acids (SCFAs) production via anaerobic fermentation of waste activated sludge (WAS) as a side-stream treatment. In-situ sulfite direct sludge treatment enhanced SCFAs and acetic acid production by 2.03 and 4.89 times at 500 mg S/L compared to the control. With in-situ sulfite treatment, WAS hydrolysis and acidification were enhanced while methanogenesis was spontaneously hindered. The in-situ sulfite treatment inactivated pathogens and improved the sludge dewatering properties. The relative abundances of SCFAs-production microbial were stimulated, facilitating the sludge bioconversion. The produced SCFAs from in-situ sulfite side-stream treatment could be applied as an "internal carbon source" to enhance biological nutrient removal to improve economic and environmental value from sludge treatment.
Collapse
Affiliation(s)
- Wei Chen
- School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Dandan Zhang
- School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China; School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Changjiang Institute of Survey, Planning, Design and Research Co., Ltd, Wuhan, China
| | - Jiale Wang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Xu
- Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Changjiang Institute of Survey, Planning, Design and Research Co., Ltd, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Mao
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjiao Song
- School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Yellezuome D, Zhu X, Liu X, Liu X, Liu R, Wang Z, Li Y, Sun C, Hemida Abd-Alla M, Rasmey AHM. Integration of two-stage anaerobic digestion process with in situ biogas upgrading. BIORESOURCE TECHNOLOGY 2023; 369:128475. [PMID: 36509302 DOI: 10.1016/j.biortech.2022.128475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
High impurity concentration of biogas limits its wide commercial utilization. Therefore, the integration of two-stage anaerobic digestion process with in situ biogas upgrading technologies is reviewed, with emphasis on their principles, main influencing factors, research success, and technical challenges. The crucial factors that influence these technologies are pH, alkalinity, and hydrogenotrophic methanogenesis. Hence, pH fluctuation and low gas-liquid mass transfer of H2 are some major technical challenges limiting the full-scale application of in situ upgrading techniques. Two-stage anaerobic digestion integration with various in situ upgrading techniques to form a hybrid system is proposed to overcome the constraints and systematically guide future research design and advance the development and commercialization of these techniques. This review intends to provide the current state of in situ biogas upgrading technologies and identify knowledge gaps that warrant further investigation to advance their development and practical implementation.
Collapse
Affiliation(s)
- Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xin Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xuwei Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Zengzhen Wang
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yingkai Li
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez 43721, Egypt
| |
Collapse
|
33
|
Liu S, Wang Q, Li Y, Ma X, Zhu W, Wang N, Sun H, Gao M. Highly efficient oriented bioconversion of food waste to lactic acid in an open system: Microbial community analysis and biological carbon fixation evaluation. BIORESOURCE TECHNOLOGY 2023; 370:128398. [PMID: 36496318 DOI: 10.1016/j.biortech.2022.128398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The valorization of organic solid waste to lactic acid (LA) in open fermentation systems has attracted tremendous interest in recent years. In this study, a highly efficient oriented LA bioconversion system from food waste (FW) in open mode was established. The maximum LA production was 115 g/L, with a high yield of 0.97 g-LA/g-total sugar. FW is a low-cost feedstock for LA production, containing indigenous hydrolysis and LA-producing bacteria (LAB). Saccharification and real-time pH control were found to be essential for maintaining LAB dominantly in open systems. Furthermore, microbial community analysis revealed that Enterococcus mundtii adapted to complex FW substrates and dominated the subsequent bioconversion process. The oriented LA bioconversion exhibited the capacity for biological carbon fixation by reducing CO2 emissions by at least 21 kg per ton of FW under anaerobic conditions.
Collapse
Affiliation(s)
- Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 10083, China
| | - Yuan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Ma
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 10083, China.
| |
Collapse
|
34
|
Zeng Y, Dong W, Wang H, Huang X, Li J. A novel strategy and mechanism for high-quality volatile fatty acids production from primary sludge: Peroxymonosulfate pretreatment combined with alkaline fermentation. ENVIRONMENTAL RESEARCH 2023; 217:114939. [PMID: 36435490 DOI: 10.1016/j.envres.2022.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
To obtain high-quality VFAs production from primary sludge, a novel strategy that combined peroxymonosulfate (PMS) pretreatment and alkaline fermentation (i.e., PMS & pH9) was proposed in the study. The results showed that PMS & pH9 was efficient in sludge solubilization and hydrolysis, resulting in a maximal VFAs yield of 401.2 mg COD/g VSS, which was 7.3-, 2.1-, and 8.8-fold higher than the sole PMS, sole pH9, and control, respectively. Acetate comprised 87.6% of VFAs in this integration system. Mechanism investigations revealed that sulfate and free radicals produced by PMS play roles in improving VFAs yield under alkaline conditions. Besides, sulfate also aided in C3∼C5 VFAs converting to acetate under alkaline conditions depending on the increase of incomplete-oxidative sulfate-reducing bacteria (iso-SRB) (i.e., Desulfobulbus and Desulfobotulus). Moreover, the relative abundances of acid-forming characteristic genera (i.e., Proteiniborus, Proteinilcasticum, and Acetoanaerobium) were higher in PMS & pH9.
Collapse
Affiliation(s)
- Yuanxin Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China
| | - Xiao Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China
| |
Collapse
|
35
|
Yuan H, Guan R, Cao C, Ji M, Gu J, Zhou L, Zuo X, Liu C, Li X, Yan B, Li J. Combined modifications of CaO and liquid fraction of digestate for augmenting volatile fatty acids production from rice straw: Microbial and proteomics insights. BIORESOURCE TECHNOLOGY 2022; 364:128089. [PMID: 36229012 DOI: 10.1016/j.biortech.2022.128089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The modification sequence of chemical (CaO) and biological (liquid fraction of digestate, LFD) for augmenting volatile fatty acids (VFAs) production from rice straw was investigated in this study. The coupling order of the modifiers influenced acidification performance, and simultaneous modification (CaO-LFD) was superior to other modes. The highest VFAs production was obtained in CaO-LFD, 51% higher than that in the LFD-first additional modification. The CaO-LFD demonstrated the highest selectivity of acetate production, accounting for 79% of the total VFAs. In addition, CaO-LFD modification changed the direction of the domestication of fermentative bacteria and increased populations of the key anaerobes (Atopostipes sp.) responsible for acidification. The synergistic effect of CaO and LFD was revealed, namely, the effective function of CaO in degrading recalcitrant rice straw, the promotion of transport/metabolism of carbohydrates and acetogenesis by LFD.
Collapse
Affiliation(s)
- Hairong Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Ruolin Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Chenxing Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Mengyuan Ji
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; Department of Biology, University of Padua, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Junyu Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Xiaoyu Zuo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Chao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| | - Xiujin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Beibei Yan
- College of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jianwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| |
Collapse
|
36
|
Faisal S, Ebaid R, Li L, Zhao F, Wang Q, Huang J, Abomohra A. Enhanced waste hot-pot oil (WHPO) anaerobic digestion for biomethane production: Mechanism and dynamics of fatty acids conversion. CHEMOSPHERE 2022; 307:135955. [PMID: 35961457 DOI: 10.1016/j.chemosphere.2022.135955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. Anaerobic digestion of bio-waste provides a unique opportunity to fulfil this objective through biogas production. The present study aimed to evaluate waste hot-pot oil (WHPO) at different feeding ratios as a novel lipidic waste for anaerobic mono-digestion. The highest recorded maximum biomethane potential (Mmax) was 274.1 L kg-1 VS at 1.2% WHPO, which showed significant differences with those of 0.8% and 1.6% (227.09 and 237.62 L kg-1 VS, respectively). The changes in volatile fatty acids (VFAs), medium chain fatty acids (MCFAs), and long-chain fatty acids (LCFAs) as intermediates of WHPO decomposition were investigated before and after anaerobic digestion. Results showed efficient production and utilization of VFAs at all studied WHPO ratios, whereas the maximum utilization of VFAs (90-95%) was recorded in the reactors with up to 1.2 %WHPO. Although lipid conversion efficiency decreased by increasing the WHPO ratio, 81.2% lipid conversion efficiency was recorded at the highest applied WHPO treatment, which confirms the potential of WHPO as a promising feedstock for anaerobic digestion. The present results will have major implications towards efficient energy recovery and biochemical management of lipidic-waste through efficient anaerobic digestion.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Reham Ebaid
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Li Li
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Feng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China.
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
37
|
Chen B, Rupani PF, Azman S, Dewil R, Appels L. A redox-based strategy to enhance propionic and butyric acid production during anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127672. [PMID: 35878771 DOI: 10.1016/j.biortech.2022.127672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the selective production of volatile fatty acids (VFAs) during anaerobic mixed-culture fermentation. The experiment used chicken manure (CM) as a potential substrate to produce high added-value propionic acid and butyric acid under an alkaline environment. The conversion of CM into selective VFAs depends highly on operational conditions such as pH and redox balance. Therefore, the current experiment is designed to employ amino acid addition and develop a redox balance control method to control the final VFA profile. This study showed that 0.2-5.0 % valine and threonine addition successfully enhanced propionic acid and butyric acid production during alkaline fermentation and hence decreased the proportion of acetic acid from 83 % to approximately 47 %. The oxidation-reduction potential (ORP) and redox cofactor ratio (NADH/NAD+) were measured to support the selective VFA production mechanism. The results obtained in this study bring extra value to the valorization of CM within the circular economy concept for selective value-added VFA production.
Collapse
Affiliation(s)
- Boyang Chen
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Samet Azman
- Avans University of Applied Sciences, Academy of Life Sciences and Technology, Lovensdijk 61, 4818 AJ Breda, Netherlands
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
38
|
Wang F, Du W, Huang W, Fang S, Cheng X, Feng L, Cao J, Luo J, Wu Y. Linkages of volatile fatty acids and polyhexamethylene guanidine stress during sludge fermentation: Metagenomic insights of microbial metabolic traits and adaptation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Su X, Xing D, Song Z, Dong W, Zhang M, Feng L, Wang M, Sun F. Understanding the effects of electrical exposure mode on membrane fouling in an electric anaerobic ceramic membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Developing an Efficient Processing System Treatment for the High Concentration of Eucalyptus Chemical Mechanical Pulp Wastewater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185774. [PMID: 36144510 PMCID: PMC9506263 DOI: 10.3390/molecules27185774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
The current wastewater treatment method shows low efficiency in treating wastewater with high concentrations of chemical mechanical pulp (CMP). Therefore, a chlorine dioxide Pretreatment Anaerobic Treatment (DPAT) was developed and applied to treat the CMP wastewater to obtain higher efficiency, obtaining the following results: The biodegradability of CMP wastewater improved after chlorine dioxide pretreatment. The COD of wastewater treated with chlorine dioxide was reduced from 5634 mg/L to 660 mg/L. The removal rate for chemical oxygen demand (COD) was 88.29%, 29.13% higher than the common anaerobic treatment. The reasons for the high efficiency of the DPAT treatment were that chlorine dioxide pretreatment removed the toxic substances in the original wastewater and thereby promoted the proliferation and growth of the anaerobe. The results show that pretreatment with chlorine dioxide can effectively enhance the biodegradability of high-concentration CMP wastewater. Therefore, DPAT treatment of high-concentration CMP wastewater is beneficial to environmental protection.
Collapse
|
41
|
Li D, Guo W, Liang D, Zhang J, Li J, Li P, Wu Y, Bian X, Ding F. Rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification and phosphorus removal aerobic granular sequence batch reactor for treating low C/N domestic wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113464. [PMID: 35623442 DOI: 10.1016/j.envres.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification, and phosphorus (P) removal aerobic granular sequence batch reactor (SNEDPR-AGSBR) is a challenge in the treatment of low carbon/nitrogen (C/N) domestic sewage. In this study, the feasibility of the SNEDPR-AGSBR process was examined in an exceedingly single-stage anaerobic/aerobic/anoxic sequencing batch reactor for treating low C/N ratio (3.3-5.0) domestic sewage. The initial results showed that accompanied by the rapid formation of the mature aerobic granular sludge based on the selection for slow-growing organisms, the rapid start-up (38 d) of the SNEDPR-AGSBR process was successfully realized. The formed mature aerobic granules had a dense structure with an average diameter of 667.7 μm and SVI30 of 30.0 mL/g. Two conditions for achieving the competitive balance between phosphorus-accumulating organisms/denitrifying phosphorus-accumulating organisms (PAOs/DPAOs) and glycogen accumulating organisms/denitrifying glycogen accumulating organisms (GAOs/DGAOs) were revealed by the long-term operation results. First, the dissolved oxygen (DO) concentration needed to be decreased to 3.0 mg/L in the aerobic phase, and then, the aerobic and anoxic phase hydraulic retention time (HRT) should be increased to 3.0 h. Notably, high removal efficiencies for NH4+-N (100%), total nitrogen (84.3%), and P (91.8%) of the SNEDPR-AGSBR process were stably obtained with a low C/N ratio of 3.9 domestic sewage. Simultaneous nitrification and endogenous denitrification (SNED) efficiency of 61.6% was achieved during a long-term operation of 142 days. Finally, microbial community analysis confirmed that GAOs (Defluviicoccus)/DGAOs (Candidatus_Competibacter) were responsible for the removal N, and PAOs (Acinetobacter, Candidatus_Accumulibacter, Hypomicrobinm)/DPAOs (Pseudomonas and Dechloromonas) ensured P removal.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Dongbo Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jing Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Peilin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xueying Bian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Fan Ding
- SDIC Xinkai Water Environment Investment Co., Ltd, Beijing, 101100, China
| |
Collapse
|
42
|
He L, Yu J, Lin Z, Huang Y, He X, Shi S, Zhou J. Organic matter removal performance, pathway and microbial community succession during the construction of high-ammonia anaerobic biosystems treating anaerobic digestate food waste effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115428. [PMID: 35649332 DOI: 10.1016/j.jenvman.2022.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to establish anaerobic biosystems which could tolerate high ammonia, and investigate the microbial community structure in these reactors. High-ammonia anaerobic biosystems that could tolerate 3600 mg L-1 total ammonia nitrogen (TAN) and 1000 mg L-1 free ammonia nitrogen (FAN) were successfully established. The removal efficiencies of COD and total volatile fatty acids (TVFAs) in R1 with dewatered sludge as inoculum were 68.8% and 69.2%, respectively. The maximum methane production rate reached 71.7 ± 1.0 mL CH4 L-1 d-1 at a TAN concentration of 3600 mg L-1. The three-dimension excitation-emission matrix analysis indicated that both easily degradable organics and refractory organics were removed from ADFE in R1 and R2. Functional microorganisms which could bear high ammonia were gradually enriched as TAN stress was elevated. Lysinibacillus, Coprothermobacter and Sporosarcina dominated the final bacterial community. Archaeal community transformed to hydrogenotrophic methanogen. The synergy of Coprothermobacter and Methanothermobacter undertook the organic matter degradation, and was enhanced by increasing TAN stress. This study offers new insights into anaerobic bioremediation of ammonia-rich wastewater.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jianbo Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
43
|
Feng S, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Zhang S, Phong Vo HN, Bui XT, Ngoc Hoang B. Volatile fatty acids production from waste streams by anaerobic digestion: A critical review of the roles and application of enzymes. BIORESOURCE TECHNOLOGY 2022; 359:127420. [PMID: 35690239 DOI: 10.1016/j.biortech.2022.127420] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Volatile fatty acids (VFAs) produced from organic-rich wastewater by anaerobic digestion attract attention due to the increasing volatile fatty acids market, sustainability and environmentally friendly characteristics. This review aims to give an overview of the roles and applications of enzymes, a biocatalyst which plays a significant role in anaerobic digestion, to enhance volatile fatty acids production. This paper systematically overviewed: (i) the enzymatic pathways of VFAs formation, competition, and consumption; (ii) the applications of enzymes in VFAs production; and (iii) feasible measures to boost the enzymatic processes. Furthermore, this review presents a critical evaluation on the major obstacles and feasible future research directions for the better applications of enzymatic processes to promote VFAs production from wastewater.
Collapse
Affiliation(s)
- Siran Feng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hoang Nhat Phong Vo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 70000, Viet Nam
| | - Bich Ngoc Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
44
|
Pereira J, de Melo MMR, Silva CM, Lemos PC, Serafim LS. Impact of a Pretreatment Step on the Acidogenic Fermentation of Spent Coffee Grounds. Bioengineering (Basel) 2022; 9:362. [PMID: 36004887 PMCID: PMC9404928 DOI: 10.3390/bioengineering9080362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/26/2022] Open
Abstract
Acidogenic fermentation (AF) is often applied to wastes to produce short-chain organic acids (SCOAs)-molecules with applications in many industries. Spent coffee grounds (SCGs) are a residue from the coffee industry that is rich in carbohydrates, having the potential to be valorized by this process. However, given the recalcitrant nature of this waste, the addition of a pretreatment step can significantly improve AF. In this work, several pretreatment strategies were applied to SCGs (acidic hydrolysis, basic hydrolysis, hydrothermal, microwave, ultrasounds, and supercritical CO2 extraction), evaluated in terms of sugar and inhibitors release, and used in AF. Despite the low yields of sugar extracted, almost all pretreatments increased SCOAs production. Milder extraction conditions also resulted in lower concentrations of inhibitory compounds and, consequently, in a higher concentration of SCOAs. The best results were obtained with acidic hydrolysis of 5%, leading to a production of 1.33 gSCOAs/L, an increase of 185% compared with untreated SCGs.
Collapse
Affiliation(s)
- Joana Pereira
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Marcelo M. R. de Melo
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Carlos M. Silva
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Paulo C. Lemos
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Luísa S. Serafim
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| |
Collapse
|
45
|
Luo J, Li Y, Huang W, Wang F, Fang S, Cheng X, Feng Q, Fang F, Cao J, Wu Y. Dissimilarity of different cephalosporins on volatile fatty acids production and antibiotic resistance genes fates during sludge fermentation and underlying mechanisms. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Li C, Maqbool T, Kang H, Zhang Z. In-Situ Sludge Reduction in Membrane-Controlled Anoxic-Oxic-Anoxic Bioreactor: Performance and Mechanism. MEMBRANES 2022; 12:membranes12070659. [PMID: 35877863 PMCID: PMC9321052 DOI: 10.3390/membranes12070659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Conventional and advanced biological wastewater treatment systems generate excess sludge, which causes socio-economic and environmental issues. This study investigated the performance of membrane-controlled anoxic-oxic-anoxic (AOA) bioreactors for in-situ sludge reduction compared to the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol). The membrane units in the AOA bioreactors were operated as anoxic reactors at lower sludge recirculation rates to achieve hydrolysis of extracellular polymeric substances (EPS) and extensive endogenous respiration. Compared to MBRcontrol, the AOA bioreactors operated with 90%, and 80% recirculation rates reduced the sludge growth up to 19% and 30%, respectively. Protein-like components were enriched in AOA bioreactors while fulvic-like components were dominant in MBRcontrol. The growth of Dechloromonas and Zoogloea genra was promoted in AOA bioreactors and thus sludge reduction was facilitated. Metagenomics analysis uncovered that AOA bioreactors exhibited higher proportions of key genes encoding enzymes involved in the glycolysis and denitrification processes, which contributed to the utilization of carbon sources and nitrogen consumption and thus sludge reduction.
Collapse
Affiliation(s)
- Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongyu Kang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
47
|
Mahato P, Rajagopal R, Goyette B, Adhikary S. Low-temperature anaerobic digestion of chicken manure at high organic and nitrogen loads - strategies for controlling short chain fatty acids. BIORESOURCE TECHNOLOGY 2022; 351:127049. [PMID: 35331887 DOI: 10.1016/j.biortech.2022.127049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Objective of this work was to investigate the technical feasibility of low-temperature, closed-loop two-stage (liquid-solid) anaerobic digesters to treat chicken-manure (TS:68%; NH3:8 g/L) as a sole-feedstock. Effect of pH, temperature, treatment-duration, organic loading rate (OLR) and inoculum-recirculation ratio on short chain fatty acids (SCFA) production was studied. Digesters were operated at 20 ± 1 °C for 282-d over 4 batch-runs (∼70-d/batch) at an OLR of 8.78-4.3 gVS/L/d. Results showed that specific methane yield above 0.6 LCH4/gVS was feasible with a methane concentration > 60%. SCFA speciation of the entire system was monitored through the liquid-digester. Among SCFA indicators, the ratios of propionic-to-acetic acids, (butyric + valeric)-to-acetic acids, and total SCFA-to-alkalinity were observed within the limit, i.e., below 1.4, 0.3 and 0.8, respectively, indicating high-digester stability. This strategy allowed early detection, diagnosis of process failures in high-solids digester in fed-batch mode, and re-evaluation of operating protocol to enrich performance with economic-benefits.
Collapse
Affiliation(s)
- Prativa Mahato
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada.
| | - Bernard Goyette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Suman Adhikary
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| |
Collapse
|
48
|
Lim EY, Lee JTE, Zhang L, Tian H, Ong KC, Tio ZK, Zhang J, Tong YW. Abrogating the inhibitory effects of volatile fatty acids and ammonia in overloaded food waste anaerobic digesters via the supplementation of nano-zero valent iron modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152968. [PMID: 35016943 DOI: 10.1016/j.scitotenv.2022.152968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The effects of different recovery strategies on inhibited anaerobic digestion (AD) of food waste (FW) was examined in this study, with the finding that dosing pine woodchip biochar could reverse the effect of volatile fatty acids (VFA) inhibition (mainly propionic acid) and yielded 105.55% more methane than the control. The addition of nano-zerovalent iron (nZVI) promoted the generation of VFA while causing a slight inhibition of the methanogens initially. In due time, the nZVI digester was able to recover and eventually produced 192.22% more methane compared to the control. Finally, nZVI-modified biochar was proved to be able to avoid the inhibitory effects brought about by the nanoparticles. The results indicated reduced dosage requirements as compared to using pristine pine woodchip biochar and accumulated 204.84% more methane than the control. The introduction of nZVI-biochar also promoted the growth of Methanosarcina species methanogens, which can perform direct-interspecies electron transfer. While all the recovery strategies using the additives were feasible, the results suggested that the use of modified biochar holds great potential as a significantly lower amount of amendment is required for the recovery of the inhibited AD system.
Collapse
Affiliation(s)
- Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore
| | - Jonathan Tian En Lee
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Le Zhang
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Hailin Tian
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Kok Chung Ong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore
| | - Zhi Kai Tio
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore; NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore.
| |
Collapse
|
49
|
Lv J, Tu M, Chen X, Li S, Li Y, Jiang J. Effect of potassium persulphate addition on sludge disintegration of a mesophilic anaerobic fermentation system. ENVIRONMENTAL TECHNOLOGY 2022; 43:1709-1722. [PMID: 33170751 DOI: 10.1080/09593330.2020.1849407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Persulphates, an advanced oxidation process, has been recently used as an alternative pretreatment method to enhance short-chain fatty acids (SCFAs) yield from waste-activated sludge (WAS) anaerobic fermentation (AF). But so far, the effects of peroxydisulphate (PDS) dosages on mesophilic anaerobic fermentation are still not studied fully. Herein, we explored the influences of potassium PDS addition on mesophilic AF of WAS. Notably, the addition of PDS could drastically accelerate WAS solubilization and hydrolysis, which was proportional to the amount of PDS. The maximal total SCFAs yield of 249.14 mg chemical oxygen demand/L was obtained with 120 mg PDS/g suspended solids addition at 6 days of AF, which was 2.2-fold that of the control one. Tightly bound extracellular polymeric substances (EPSs) were transformed into loosely bound EPS and dissolved organic matters, and aromatic proteins and humic-like substances of EPSs were disintegrated, which were caused by the devastating effects of PDS treatments on EPSs disruption. The intracellular constituents of microbial cells in the sludge were released accordingly. As a result, there was release of soluble substrates derived from the disintegration of both EPSs and cells, the amounts of which were proportional to the dose of PDS. Moreover, microbial diversity and richness were both decreased in the presence of PDS, and the relative abundance of phyla Actinobacteria increased with the increase of the PDS dosage. In addition, the stability of sludge flocs was destroyed in the presence of PDS, the distribution of particle size tended to be small and dispersive, and dewaterability of the sludge was deteriorated.
Collapse
Affiliation(s)
- Jinghua Lv
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan Province, People's Republic of China
| | - Mengmiao Tu
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Xingyue Chen
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Suzhou Li
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Yunbei Li
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan Province, People's Republic of China
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan Province, People's Republic of China
| |
Collapse
|
50
|
Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, Parchami M, Varjani S, Khanal SK, Wong J, Awasthi MK, Taherzadeh MJ. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 2022; 13:6521-6557. [PMID: 35212604 PMCID: PMC8973982 DOI: 10.1080/21655979.2022.2035986] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
In the past decades, considerable attention has been directed toward anaerobic digestion (AD), which is an effective biological process for converting diverse organic wastes into biogas, volatile fatty acids (VFAs), biohydrogen, etc. The microbial bioprocessing takes part during AD is of substantial significance, and one of the crucial approaches for the deep and adequate understanding and manipulating it toward different products is process microbiology. Due to highly complexity of AD microbiome, it is critically important to study the involved microorganisms in AD. In recent years, in addition to traditional methods, novel molecular techniques and meta-omics approaches have been developed which provide accurate details about microbial communities involved AD. Better understanding of process microbiomes could guide us in identifying and controlling various factors in both improving the AD process and diverting metabolic pathway toward production of selective bio-products. This review covers various platforms of AD process that results in different final products from microbiological point of view. The review also highlights distinctive interactions occurring among microbial communities. Furthermore, assessment of these communities existing in the anaerobic digesters is discussed to provide more insights into their structure, dynamics, and metabolic pathways. Moreover, the important factors affecting microbial communities in each platform of AD are highlighted. Finally, the review provides some recent applications of AD for the production of novel bio-products and deals with challenges and future perspectives of AD.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Milad Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jonathan Wong
- Department of Biology, Institute of Bioresource and Agriculture and, Hong Kong Baptist University, Hong Kong
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| | | |
Collapse
|