1
|
Zhang SY, Yan Q, Zhao J, Liu Y, Yao M. Distinct multitrophic biodiversity composition and community organization in a freshwater lake and a hypersaline lake on the Tibetan Plateau. iScience 2024; 27:110124. [PMID: 38957787 PMCID: PMC11217615 DOI: 10.1016/j.isci.2024.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Alpine lakes play pivotal roles in plateau hydrological processes but are highly sensitive to climate change, yet we lack comprehensive knowledge of their multitrophic biodiversity patterns. Here, we compared the biodiversity characteristics of diverse taxonomic groups across water depths and in surface sediments from a freshwater lake and a hypersaline lake on the northwestern Tibetan Plateau. Using multi-marker environmental DNA metabarcoding, we detected 134 cyanobacteria, 443 diatom, 1,519 invertebrate, and 28 vertebrate taxa. Each group had a substantially different community composition in the two lakes, and differences were also found between water and sediments within each lake. Cooccurrence network analysis revealed higher network complexity, lower modularity, and fewer negative cohesions in the hypersaline lake, suggesting that high salinity may destabilize ecological networks. Our results provide the first holistic view of Tibetan lake biodiversity under contrasting salinity levels and reveal structural differences in the ecological networks that may impact ecosystem resilience.
Collapse
Affiliation(s)
- Si-Yu Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qi Yan
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Sun X, Arnott SE. Timing determines zooplankton community responses to multiple stressors. GLOBAL CHANGE BIOLOGY 2024; 30:e17358. [PMID: 38822590 DOI: 10.1111/gcb.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, Kingston, Ontario, Canada
| | - Shelley E Arnott
- Biology Department, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Lares BA, Vignatti AM, Echaniz SA, Cabrera GC, Jofré FC, Gutierrez MF. Sensitivity of Daphnia spinulata Birabén, 1917 to glyphosate at different salinity levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35308-35319. [PMID: 38727975 DOI: 10.1007/s11356-024-33586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Daphnia spinulata Birabén, 1917 is an endemic cladoceran species, frequent in the zooplankton communities of the shallow lakes of the Pampean region of Argentina. These lakes have varying salinity levels and, being located in agricultural areas, are frequently subject to pesticide pollution. This study aimed to determine the effects of the herbicide glyphosate (Panzer Gold®) in combination with different salinity levels on the biological parameters of D. spinulata and its recovery ability after a short exposure. Three types of assays were performed: an acute toxicity test, a chronic assessment to determine survival, growth and reproduction, and recovery assays under optimal salinity conditions (1 g L-1). The LC50-48 h of glyphosate was 7.5 mg L-1 (CL 3.15 to 11.72). Longevity and the number of offspring and clutches were significantly reduced due to the combined exposure of glyphosate and increased salinity. The timing of the first offspring did not recover after glyphosate exposure. Our results reveal that D. spinulata is sensitive to the herbicide Panzer Gold® at concentrations well below those indicated in the safety data sheet of this commercial formulation, which causes stronger negative effects in conditions of higher salinity. Further research is needed to shed light on the sensitivity of this cladoceran to glyphosate and its variability under other interactive stress factors.
Collapse
Affiliation(s)
- Betsabé Ailén Lares
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Rosa, La Pampa, Argentina.
| | - Alicia María Vignatti
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Santiago Andrés Echaniz
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Gabriela Cecilia Cabrera
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Florencia Cora Jofré
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
- Instituto de Ciencias de La Tierra y Ambientales de La Pampa (CONICET-UNLPam), Santa Rosa, La Pampa, Argentina
| | - María Florencia Gutierrez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Rosa, La Pampa, Argentina
- Instituto Nacional de Limnología, CONICET-UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
4
|
Noskov YA, Manasypov RM, Ermolaeva NI, Antonets DV, Shirokova LS, Pokrovsky OS. Environmental factors controlling seasonal and spatial variability of zooplankton in thermokarst lakes along a permafrost gradient of Western Siberia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171284. [PMID: 38432389 DOI: 10.1016/j.scitotenv.2024.171284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.
Collapse
Affiliation(s)
- Yury A Noskov
- Biological Institute, BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin av., 634050 Tomsk, Russia; Institute of Systematics and Ecology of Animals SB RAS, 11 Frunze str., 630091 Novosibirsk, Russia.
| | - Rinat M Manasypov
- Biological Institute, BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin av., 634050 Tomsk, Russia
| | - Nadezhda I Ermolaeva
- Institute for Water and Environmental Problems SB RAS, 1 Molodezhnaya str., 656038 Barnaul, Russia
| | - Denis V Antonets
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Liudmila S Shirokova
- Federal Center for Integrated Arctic Research, Institute of Ecological Problem of the North, 23 Nab. Severnoi Dviny, 163000 Arkhangelsk, Russia
| | - Oleg S Pokrovsky
- GET UMR 5563 CNRS University of Toulouse (France), 14 Avenue Edouard Belin, 31400 Toulouse, France.
| |
Collapse
|
5
|
Gu P, Jia J, Qi D, Gao Q, Zhang C, Yang X, Nie M, Liu D, Luo Y. Response of phytoplankton composition to environmental stressors under humidification in three alpine lakes on the Qinghai-Tibet Plateau, China. Front Microbiol 2024; 15:1370334. [PMID: 38686112 PMCID: PMC11057515 DOI: 10.3389/fmicb.2024.1370334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Owning to their extreme environmental conditions, lakes on the Qinghai-Tibet Plateau have typically displayed a simplistic food web structure, rendering them more vulnerable to climate change compared to lakes in plains. Phytoplankton, undergoing a changing aquatic environment, play a crucial role in the material cycle and energy flow of the food chain, particularly important for the unique fish species of the Tibetan Plateau. To identify the changing environment indexes and determine the response of phytoplankton composition to the environment change in alpine lakes, three lakes-Lake Qinghai, Lake Keluke and Lake Tuosu-were selected as study areas. Seasonal sampling surveys were conducted in spring and summer annually from 2018 to 2020. Our findings revealed there were significant changes in physicochemical parameters and phytoplankton in the three lakes. Bacillariophyta was the predominant phytoplankton in Lake Qinghai from 2018 to 2020, with the genera Synedra sp., Navicula sp., Cymbella sp. and Achnanthidium sp. predominated alternately. Lake Keluke alternated between being dominated by Bacillariophyta and cyanobacteria during the same period. Dolichospermum sp., a cyanobacteria, was prevalent in the summer of 2018 and 2019 and in the spring of 2020. In Lake Tuosu, Bacillariophyta was the predominant phytoplankton from 2018 to 2020, except in the summer of 2019, which was dominated by cyanobacteria. Synedra sp., Oscillatoria sp., Pseudoanabaena sp., Chromulina sp. and Achnanthidium sp. appeared successively as the dominant genera. Analysis revealed that all three lakes exhibited higher phytoplankton abundance in 2018 that in 2019 and 2020. Concurrently, they experienced higher average temperatures in 2018 than in the subsequent years. The cyanobacteria, Bacillariophyta, Chlorophyta and overall phytoplankton increased with temperature and decreased with salinity and NH4-N. Besides, the ratios of cyanobacteria, and the ratios of Bacillariophyta accounted in total phytoplankton increased with temperature. These findings suggest that cyanobacteria and phytoplankton abundance, especially Bacillariophyta, may have an increase tendency in the three alpine lakes under warm and wet climate.
Collapse
Affiliation(s)
- Peiwen Gu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Junmei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xi Yang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Miaomiao Nie
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Dan Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yule Luo
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
6
|
Li WJ, Chen PP, Sui LY, Sun SC. Temporal genetic variation mediated by climate change-induced salinity decline, a study on Artemia (Crustacea: Anostraca) from Kyêbxang Co, a high altitude salt lake on the Qinghai-Tibet Plateau. Gene 2024; 902:148160. [PMID: 38219874 DOI: 10.1016/j.gene.2024.148160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The Qinghai-Tibet Plateau is one of the areas the richest in salt lakes and Artemia sites. As a result of climate warming and wetting, the areas of salt lakes on the plateau have been increasing, and the salinities have decreased considerably since 1990s. However, the impact of salinity change on the genetic diversity of Artemia is still unknown. Kyêbxang Co is the highest (4620 m above sea level) salt lake currently with commercial harvesting of Artemia resting eggs in the world, and harbors the largest Artemia population on the plateau. Its salinity had dropped from ∼67 ppt in 1998 to ∼39 ppt in 2019. Using 13 microsatellite markers and the mitochondrial cytochrome oxidase submit I (COI) gene, we analyzed the temporal changes of genetic diversity, effective population size and genetic structure of this Artemia population based on samples collected in 1998, 2007 and 2019. Our results revealed a steady decline of genetic diversity and significant genetic differentiation among the sampling years, which may be a consequence of genetic drift and the selection of decreased salinity. A decline of effective population size was also detected, which may be relative to the fluctuation in census population size, skewed sex ratio, and selection of the declined salinity. In 2007 and 2019, the Artemia population showed an excess of heterozygosity and significant deviation from Hardy-Weinberg Equilibrium (p < 0.001), which may be associated with the heterozygote advantage under low salinity. To comprehensively understand the impact of climate warming and wetting on Artemia populations on the plateau, further investigation with broad and intensive sampling are needed.
Collapse
Affiliation(s)
- Wen-Jie Li
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Pan-Pan Chen
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Li-Ying Sui
- Asian Regional Artemia Reference Center, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shi-Chun Sun
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
7
|
Han W, Zhang E, Sun W, Lin Q, Meng X, Ni Z, Ning D, Shen J. Anthropogenic activities altering the ecosystem in Lake Yamzhog Yumco, southern Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166715. [PMID: 37666338 DOI: 10.1016/j.scitotenv.2023.166715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Lakes on the Qinghai-Tibet Plateau (QTP) have been subject to multiple environmental pressures from rapid climate change and intensified human activity in recent decades. However, their ecological effects on the lake ecosystem remain largely unclear due to the lack of long-term monitoring data. This study presented the environmental and ecological changes of the lake Yamzhog Yumco (Southern QTP) over the past three decades based on multi-proxy analysis (geochemistry and sedaDNA) on a high-time resolution sediment core. The result showed that the lake exhibited a continuous eutrophication process from 2004 CE, which has accelerated since 2014 CE. The nutrient enrichment was mainly attributed to anthropogenic emissions from the catchment. The sedimentary ancient DNA (sedaDNA) metabarcoding data registered a sensitive response of aquatic communities to the additional nutrient supply. Eukaryotic algae and aquatic invertebrate communities exhibited similar temporal dynamics, characterized by the increase in eutrophic taxa and the decrease in oligotrophic taxa. Change points analysis suggested that lake ecosystems underwent a slight ecological shift in 2003 CE and an abrupt shift in 2012 CE driven by nutrient enrichment. Quantitative analysis revealed that nutrients and human activity accounted for 27.9 % and 21.7 % of the temporal variation in aquatic communities, whereas climate change only explained 6.9 % of the total variation. From a paleolimnological view, our study supported that regional human activity could distinctly alter the nutrient level and aquatic community structure of lake ecosystems in the QTP. Considering that anthropogenic disturbance will continuously increase, it is crucial to strengthen the field monitoring of the lakes on the plateau and make effective management measures to avoid irreversible ecological consequences.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China.
| | - Weiwei Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Xianqiang Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Zhenyu Ni
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Dongliang Ning
- School of Geography Sciences, Nantong University, Nantong, 226007, China
| | - Ji Shen
- School of Geography and Oceanography Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Ni L, Li H, Zhou L, Shi J, Nie Y, Zhao F, Li S. Structural characteristics of zooplankton communities in Hongze Lake driven by water environmental factors from 2016 to 2020. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1503. [PMID: 37987869 DOI: 10.1007/s10661-023-12092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
This study investigated zooplankton species, density, biomass, and water physicochemical factors in Hongze Lake between 2016 and 2020. The correlation between zooplankton community changes and physicochemical factors was explored using canonical correspondence analysis and Spearman correlation analysis. The investigation found 48 species of protozoa, 52 species of rotifers, 36 species of cladocera, and 32 species of copepoda. The yearly mean density fluctuated between 529.01 and 2234.51 individuals per liter. The yearly mean zooplankton biomass was 950.14 mg/L, ranging from 271.92 to 1365.835 mg/L. A high diversity of zooplankton was found in the Overwater Area, with a large proportion of protozoa and copepoda. Correlation analysis revealed that nitrogen content, pH, water temperature, chemical oxygen demand, biochemical oxygen demand, water transparency, and chlorophyll a were important factors influencing the distribution of zooplankton in Hongze Lake. These factors collectively contributed to the evolution of the zooplankton community structure in Hongze Lake.
Collapse
Affiliation(s)
- Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| | - Haoyue Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| | - Lin Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| | - Jiahui Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| | - Yun Nie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| | - Feng Zhao
- Center for River and Lake Governance and Water Resources Management, Wuxi, P. R. China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
9
|
Jiang X, Liu D, Li J, Duan H. Eutrophication and salinization elevate the dissolved organic matter content in arid lakes. ENVIRONMENTAL RESEARCH 2023; 233:116471. [PMID: 37348635 DOI: 10.1016/j.envres.2023.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Dissolved organic matter (DOM) plays an essential role in the global lake carbon cycle. Understanding DOM composition and monitoring its spatiotemporal dynamics are of great significance for understanding the lake carbon cycle, controlling water pollution, and protecting water resources. However, previous studies have focused mainly on eutrophic freshwater lakes, with limited attention given to saline lakes. Based on in situ data collected in ten lakes in northwestern China, this study reported the changes in DOM components in different lake types. Parallel factor analysis (PARAFAC) was used to analyze the three-dimensional excitation emission matrix (EEMs) to obtain the DOM fluorescence components. The contributions of different environmental factors to the changes in DOM components were quantified by the generalized linear model (GLM). The results showed that the eutrophication index was significantly positively related to dissolved organic carbon (DOC) (R2 = 0.95, p < 0.01) and colored DOM (CDOM) (R2 = 0.96, p < 0.01) concentrations. Terrestrial humic-like and tryptophan-like components, which are highly correlated with human activities, explained 62% and 64% of the variations in DOC and CDOM, respectively. In sum, the contributions of human activities to the DOC and CDOM variations were 61% and 57%, respectively. Salinity also showed significant positive correlations with both DOC (R2 = 0.88, p < 0.01) and CDOM (R2 = 0.87, p < 0.01). Lake salinization led to increases in DOM concentration, and salinity contributed 20% and 16% to the DOC and CDOM variations, respectively. Therefore, human activities and salinity codetermined the DOM concentration and its composition in the western arid lakes. Based on these findings, this study proposed a feasible flowchart for remotely estimating DOM in saline lakes using satellite data. This study is significant for the long-term monitoring of the carbon cycle and the effective protection of lake water resources in saline lakes.
Collapse
Affiliation(s)
- Xintong Jiang
- School of City and Environment, Northwest University, Xi'an, 710127, China; Key Laboratory of Watershed Geography, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Shanxi Key Laboratory of Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, 710127, China
| | - Dong Liu
- Key Laboratory of Watershed Geography, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Junli Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, 830011, China
| | - Hongtao Duan
- School of City and Environment, Northwest University, Xi'an, 710127, China; Key Laboratory of Watershed Geography, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Shanxi Key Laboratory of Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
10
|
Ouyang J, Wu H, Yang H, Wang J, Liu J, Tong Y, Wang D, Huang M. Global warming induces the succession of photosynthetic microbial communities in a glacial lake on the Tibetan Plateau. WATER RESEARCH 2023; 242:120213. [PMID: 37354841 DOI: 10.1016/j.watres.2023.120213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
As an important freshwater resource in the Qinghai-Tibet Plateau, glacial lakes are being immensely affected by global warming. Due to the lack of long-term monitoring data, the processes and driving mechanisms of the water ecology of these glacial lakes in a rapidly changing climate are poorly understood. This study, for the first time, reconstructed changes in water temperature and photosynthetic microbial communities over the past 200 years in Lake Basomtso, a glacial lake on the southeastern Tibetan Plateau. Temperatures were reconstructed using a paleotemperature proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs), the cell membrane lipids of some bacteria, and photosynthetic microbial communities were determined by high-throughput DNA sequencing. The reconstructed mean annual air temperature (MAAT) at Lake Basomtso varied between 6.9 and 8.3 °C over the past 200 years, with a rapid warming rate of 0.25 °C /10 yrs after 1950s. Carbon isotope of sediment and n-alkane analyses indicate that ≥95% of the organic matter in Lake Basomtso is derived from a mixture of terrestrial C3 plants and endogenous organic matter inputs, and the proportion of endogenous organic matter in the sediments has gradually increased since the 1960s. The sedimentary DNA analyses of the sediment core reveal that Chloracea is the most dominant prokaryotic photosynthetic microbial group (84.5%) over the past 200 years. However, the relative abundance of Cyanobacteria has increased from ≤6.8% before the 1960s to 15.5% nowadays, suggesting that warmer temperatures favor the growth of Cyanobacteria in glacial lakes. Among eukaryotic photosynthetic microorganisms, the Chlorophyceae have been gradually replaced by Dinoflagellata and Diatomacae since the 1980s, although the Chlorophyceae still had the highest average relative abundance overall (30-40%). The Pb isotopic composition, together with the total phosphorous concentration, implies that human activity exerted a minimal impact on Lake Basomtso over the past 200 yrs. However, the synchronous fluctuations of total organic carbon (TOC), total nitrogen (TN), and metal elements in sediments suggest that temperature appears to have a strong influence on nutrient input to Lake Basomtso by controlling glacial erosion. Global warming and the concurrent increase in glacial meltwater are two main factors driving changes in nutrient inputs from terrestrial sources which, in turn, increases the lake productivity, and changes microbial community composition. Our findings demonstrate the sensitive response of glacial lake ecology to global warming. It is necessary to strengthen the monitoring and research of glacial lake ecology on the Tibetan plateau, so as to more scientifically and accurately understand the response process and mechanism of the glacial lake ecosystem under global warming.
Collapse
Affiliation(s)
- Jingwu Ouyang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianbao Liu
- Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Ecological Environment, Tibet University, Lasa 850000, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Miao Huang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
11
|
Sun X, Zhang H, Wang Z, Huang T, Tian W, Huang H. Responses of Zooplankton Community Pattern to Environmental Factors along the Salinity Gradient in a Seagoing River in Tianjin, China. Microorganisms 2023; 11:1638. [PMID: 37512811 PMCID: PMC10384109 DOI: 10.3390/microorganisms11071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
As the primary consumers in aquatic organisms, zooplankton play an important role in aquatic ecosystems. It is valuable for management and researchers to have an insight into the responses of zooplankton community patterns to environmental factors. In this study, RDA and variation partitioning analysis were adopted to determine the important environmental factors affecting zooplankton abundance and biomass, as well as the relative importance of different environmental factors. The findings reveal that TN (total nitrogen), WD (water depth), pH, and SAL (salinity) were all important abiotic factors shaping the zooplankton community pattern in the study area. TN affected protozoa by influencing Stentor amethystinus, while the effects of WD on copepods may have been mainly induced by the responses of Calanus sinicus and Paracyclopina nana. By inhibiting Stentor amethystinus and Vorticella lutea, pH significantly affected protozoa. In addition, Rotifera and copepods were affected by SAL mainly through the responses of Brachionus calyciflorus, Calanus sinicus, and Ectocyclops phaleratus. Importantly, fundamental alternations in the variation trends of zooplankton abundance and biomass along the salinity gradient were found when the salinity was approximately 4-5. By combining these results with the findings on phytoplankton responses to salinity in previous studies, it can be concluded that salinity may influence the river ecosystem by influencing zooplankton abundance and biomass rather than phytoplankton.
Collapse
Affiliation(s)
- Xuewei Sun
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Tousheng Huang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Hai Huang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
12
|
Huang J, Yang J, Han M, Wang B, Sun X, Jiang H. Microbial carbon fixation and its influencing factors in saline lake water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162922. [PMID: 36933719 DOI: 10.1016/j.scitotenv.2023.162922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Microbial carbon fixation in saline lakes constitutes an important part of the global lacustrine carbon budget. However, the microbial inorganic carbon uptake rates in saline lake water and its influencing factors are still not fully understood. Here, we studied in situ microbial carbon uptake rates under light-dependent and dark conditions in the saline water of Qinghai Lake using a carbon isotopic labeling (14C-bicarbonate) technique, followed by geochemical and microbial analyses. The results showed that the light-dependent inorganic carbon uptake rates were 135.17-293.02 μg C L-1 h-1 during the summer cruise, while dark inorganic carbon uptake rates ranged from 4.27 to 14.10 μg C L-1 h-1. Photoautotrophic prokaryotes and algae (e.g. Oxyphotobacteria, Chlorophyta, Cryptophyta and Ochrophyta) may be the major contributors to light-dependent carbon fixation processes. Microbial inorganic carbon uptake rates were mainly influenced by the level of nutrients (e.g., ammonium, dissolved inorganic carbon, dissolved organic carbon, total nitrogen), with dissolved inorganic carbon content being predominant. Environmental and microbial factors jointly regulate the total, light-dependent and dark inorganic carbon uptake rates in the studied saline lake water. In summary, microbial light-dependent and dark carbon fixation processes are active and contribute significantly to carbon sequestration in saline lake water. Therefore, more attention should be given to microbial carbon fixation and its response to climate and environmental changes of the lake carbon cycle in the context of climate change.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
13
|
Wang Q, Li Y, Liu L, Cui S, Liu X, Chen F, Jeppesen E. Human impact on current environmental state in Chinese lakes. J Environ Sci (China) 2023; 126:297-307. [PMID: 36503758 DOI: 10.1016/j.jes.2022.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic and natural disturbance to inland aquatic ecosystems displays a notable spatial difference, yet data to measure these differences are scarce. This study encompasses 217 lakes distributed over five lake regions of China and elucidates the environmental factors determining the spatial variability of the water quality and trophic status. A significant correlation between human modification index in surrounding terrestrial systems (HMT) and trophic status of lake ecosystems (TSI) was found, and the regression slope in each region was similar except in the Qinghai-Tibet Plateau region. It was further noted that the pattern of environmental factor network (EF network) differed among freshwater and saline lakes. The EF network was complex for freshwater lakes in less human-influenced areas, but intensive man-made influence disrupted most relationships except for those between total nitrogen, total phosphorus, chlorophyll-a, and water turbidity. As for regions including saline lakes, correlations among water salinity and organic forms of carbon and nitrogen were apparent. Our results suggest that HMT and EF network can be useful indicators of the ecological integrity of local lake ecosystems, and integrating spatial information on a large scale provides conservation planners the option for evaluating the potential risk on inland aquatic systems.
Collapse
Affiliation(s)
- Qianhong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Le Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suzhen Cui
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research (SDC), Beijing 100049, China.
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research (SDC), Beijing 100049, China; Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
14
|
Jiang X, Liu C, Hu Y, Shao K, Tang X, Zhang L, Gao G, Qin B. Climate-induced salinization may lead to increased lake nitrogen retention. WATER RESEARCH 2023; 228:119354. [PMID: 36435160 DOI: 10.1016/j.watres.2022.119354] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Salinization caused by climate change and nitrogen (N) pollution are both important environmental threats for inland lakes. However, evaluating their interactive effects continues to be challenging. Here, field observation and microcosmic experiments were conducted in six lakes of East Asia with the different salinity and climate characteristics, to explore the response of the key N cycle processes related to N fate to the climate-induced change in salinity. The results indicated that increased salinity inhibited denitrification, which was the outcome of two cumulative effects: the long-term microbial adaptation effect and the direct salinity stress. Whereas increased salinity had unsignificant or positive effects on dissimilatory nitrate reduction to ammonium. It had caused that N retention capacity is relatively stronger in saline than freshwater lakes. Inland lakes are long-term basin-wide integrators of climatic conditions that drying (salinization) and wetting (desalination) with climate change. In semi-arid regions of East Asia, lake shrinkage, salinization and increasing temperature driven by climate warming and drying may exert a negative impact on N pollution through concentrating, decreasing denitrification and increasing ammonium release from sediment. The threat of climate change on these lakes is not just the quantity of water, but its quality.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Castellano-Hinojosa A, González-López J, Cardenas LM, Strauss SL. Editorial: Linking nitrogen cycling transformations to microbial diversity in freshwater ecosystems. Front Microbiol 2022; 13:1098905. [DOI: 10.3389/fmicb.2022.1098905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
|
16
|
Ersoy Z, Abril M, Cañedo-Argüelles M, Espinosa C, Vendrell-Puigmitja L, Proia L. Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120127. [PMID: 36089138 DOI: 10.1016/j.envpol.2022.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L-1 was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.
Collapse
Affiliation(s)
- Zeynep Ersoy
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Rui Nabeiro' Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
| | - Meritxell Abril
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Carmen Espinosa
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lidia Vendrell-Puigmitja
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|
17
|
Ren Z, Jia X, Zhang Y, Ma K, Zhang C, Li X. Biogeography and environmental drivers of zooplankton communities in permafrost-affected lakes on the Qinghai-Tibet Plateau. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Koporikov AR, Stepanov LN, Yarushina MI, Bogdanov VD. Impact of the Development of Hydrocarbon Deposits on Water Ecosystems of the Yamal Peninsula. RUSS J ECOL+ 2022. [DOI: 10.1134/s106741362204004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Jiang X, Liu C, Hu Y, Shao K, Tang X, Gao G, Qin B. Salinity-Linked Denitrification Potential in Endorheic Lake Bosten (China) and Its Sensitivity to Climate Change. Front Microbiol 2022; 13:922546. [PMID: 35910640 PMCID: PMC9329126 DOI: 10.3389/fmicb.2022.922546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Endorheic lakes in arid regions of Northwest China are generally vulnerable and sensitive to accelerated climate change and extensive human activities. Therefore, a better understanding of the self-purification capacity of ecosystems, such as denitrification, is necessary to effectively protect these water resources. In the present study, we measured unamended and amended denitrification rates of Lake Bosten by adding the ambient and extra nitrate isotopes in slurry incubations. Meanwhile, we investigated the abundances and community structure of nitrous oxide-reducing microorganisms using qPCR and high-throughput sequencing, respectively, in the surface sediments of Lake Bosten to study denitrification potential in endorheic lakes of arid regions as well as the response of those denitrifiers to climatically induced changes in lake environments. Amended denitrification rates increased by one order of magnitude compared to unamended rates in Lake Bosten. The great discrepancy between unamended and amended rates was attributed to low nitrate availability, indicating that Lake Bosten is not operating at maximum capacity of denitrification. Salinity shaped the spatial heterogeneity of denitrification potential through changes in the abundances and species diversity of denitrifiers. Climate change had a positive effect on the water quality of Lake Bosten so far, through increased runoff, decreased salinity, and enhanced denitrification. But the long-term trajectories of water quality are difficult to predict alongside future glacier shrinkage and decreased snow cover.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
- *Correspondence: Guang Gao
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| |
Collapse
|
20
|
Huo S, Zhang H, Wang J, Chen J, Wu F. Temperature and precipitation dominates millennium changes of eukaryotic algal communities in Lake Yamzhog Yumco, Southern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154636. [PMID: 35307443 DOI: 10.1016/j.scitotenv.2022.154636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Despite significant climate change on the Tibetan Plateau, the historical succession trend and underlying driving mechanism of aquatic ecosystem in alpine lake remain unclear. In this study, palaeolimnological analysis and high-throughput sequencing of sedimentary DNA were used to investigate environmental changes, primary productivity, and eukaryotic algal community succession over the past millennium in Lake Yamzhog Yumco of the southern Tibetan Plateau. Lake primary productivity significantly increased after ~1850 CE and algal community succession occurred in three stages including the Medieval Warm Periods (approximately 1000-1250 CE), the Little Ice Age (1250-1850 CE), and the Current Warm Period (1850-2020 CE). Moreover, succession was synchronous with inferred climate changes. Partial least square path modeling indicated that climate factors affected primary productivity and eukaryotic algal community structure by affecting nutrient loading. The results suggest that glacier melting and permafrost degradation caused by climate warming, combined with increased precipitation, may be the major driving factors of nutrient concentration increases, phytoplankton biomass increases, and shifts in community composition. Considering the expected trends of future climate change and continuous warming, the restoration of vegetation cover and reduction of non-point source nutrient loading in the Tibetan Plateau is urgently needed to mitigate climate change impacts on alpine lake aquatic ecosystems.
Collapse
Affiliation(s)
- Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100012, China.
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100012, China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fengchang Wu
- College of Water Sciences, Beijing Normal University, Beijing 100012, China
| |
Collapse
|
21
|
Zhang Z, Li H, Shen W, Du X, Li S, Wei Z, Zhang Z, Feng K, Deng Y. The large-scale spatial patterns of ecological networks between phytoplankton and zooplankton in coastal marine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154285. [PMID: 35248637 DOI: 10.1016/j.scitotenv.2022.154285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Although autotrophic phytoplankton and heterotrophic zooplankton both play important roles in the food web of marine ecosystem, their comprehensive interactions and spatial patterns at continental scale remain poorly studied. Here, we collected 251 seawater samples along 13,000 km of Chinese coastline, and microscopically investigated the latitudinal gradients of planktonic diversities. In total, 307 phytoplanktonic and 311 zooplanktonic species were visually identified. Using the newly developed Inter-Domain Ecological Networks (IDENs) approach, the phytoplankton-zooplankton interaction networks were constructed. We found that the phyto-zooplankton network structure was varied across three regions, more complex and numerous connections along the southern coast than in the north. In addition, some particular associations between zooplanktonic and phytoplanktonic groups were found to be localized in specific regions. Furthermore, the seawater temperature and salinity were the major driving force for shaping planktonic interaction networks. These results provide a deeper understanding of planktonic biogeography and phytoplankton-zooplankton interaction patterns.
Collapse
Affiliation(s)
- Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Wenli Shen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuzhen Li
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ziyan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
The Structuring Effects of Salinity and Nutrient Status on Zooplankton Communities and Trophic Structure in Siberian Lakes. WATER 2022. [DOI: 10.3390/w14091468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many continental saline lakes are under the effects of salinity increase and anthropogenic eutrophication exacerbated by global change. The response of the food web to these drivers of change is not straightforward. To understand the consequences of salinity and eutrophication interactive effects on the food web, we studied the seasonal dynamics of zooplankton and phytoplankton and water quality parameters in 20 lakes of different salinity (from freshwater to hypersaline) and nutrient status (from oligotrophic to eutrophic) located in southern Siberia. We observed a pronounced bottom-up effect of nutrients, which induced an increase in the biomass of phytoplankton and zooplankton and a decline in water quality. A significant decrease in the species abundance of zooplankton was observed at a threshold salinity of 3 g L−1 and the disappearance of fish at 10 g L−1. The top-down effect induced by salinity manifested itself in an increase in the biomass of zooplankton with the disappearance of fish, and in the change of the size distribution of phytoplankton particles with an increase in the proportion of cladocerans in the zooplankton. Even though we observed that with the salinity increase the food web in saline lakes transformed from three-trophic to two-trophic without fish, we conclude that in the salinity range from 10 to 20–30 g L−1 this transition in most cases will not increase the ability of zooplankton to control phytoplankton. Interactive effects of salinity and eutrophication strongly depend on the size and depth of the lake, as deep stratified lakes tend to have a better water quality with lower biomasses of both phyto- and zooplankton. Thus, the salinity per se is not the driver of the decline in water clarity or the uncontrolled development of phytoplankton. Moreover, for deep lakes, salinity may be a factor affecting the stability of stratification, which mitigates the consequences of eutrophication. Thus, small shallow lakes will be the most vulnerable to the joint effect of salinity increase and eutrophication with the degradation of ecosystem functioning and water quality at moderate salinities of 3–20 g L−1.
Collapse
|
23
|
Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053135. [PMID: 35270826 PMCID: PMC8910358 DOI: 10.3390/ijerph19053135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
In this paper, two trophic lakes: Lake Taihu and Lake Yanghe, and three alpine lakes: Lake Qinghai, Lake Keluke, and Lake Tuosu, were investigated to discover the connections between environmental factors and the phytoplankton community in lakes with differences in trophic levels and climatic conditions. Three seasonal data, including water quality and phytoplankton, were collected from the five lakes. The results demonstrated clear differences in water parameters and phytoplankton compositions in different lakes. The phytoplankton was dominated by Bacillariophyta, followed by Cyanobacteria and Chlorophyta in Lake Qinghai, Lake Keluke, and Lake Tuosu. It was dominated by Cyanobacteria (followed by Chlorophyta and Bacillariophyta in Lake Yanghe) and Cyanobacteria (followed by Chlorophyta and Cryptophyta in Lake Taihu). The temperature was an essential factor favoring the growth of Cyanobacteria, Chlorophyta, and Bacillariophyta, especially Cyanobacteria and Chlorophyta. The pH had significantly negative relationships with Cyanobacteria, Chlorophyta, and Bacillariophyta. Particularly, a high pH might be a strong and negative factor for phytoplankton growth in alpine lakes. A high salinity was also an adverse factor for phytoplankton. Those results could provide fundamental information about the phytoplankton community and their correlated factors in the alpine lakes of the Tibetan Plateau, contributing to the protection and management of alpine lakes.
Collapse
|
24
|
Wang B, He Y, Zhao Y, Cui Y. Distribution and Assemblage Variation of Benthic Macroinvertebrates: A Uniform Elevational Biodiversity Pattern Among Different Groups? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.817708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodiversity patterns along the elevational gradient of vertebrates have been widely focused on in previous studies, but they are still insufficient on invertebrates in lakes to a wide elevational extent. Based on field samplings and literature, we compared biodiversity patterns among different taxonomic groups of benthic macroinvertebrates in 104 lakes of China and India along an elevational gradient of 2–5,010 m a.s.l. and revealed the key driving factors, and then, we discussed the key mechanisms underlying elevational biodiversity patterns. We found that elevational biodiversity patterns of different taxonomic groups were not uniform, e.g., an exponentially decreasing pattern of Bivalvia, a first horizontal and then decreasing pattern of Gastropoda, and a linear decreasing pattern of Oligochaeta and Insecta. Elevation and elevation-controlled variables (temperature and salinity) were the key driving factors to biodiversity patterns. Their effects were strongest on Bivalvia and less on Gastropoda, whereas they were relatively weak on Oligochaeta and Insecta. Finally, we discussed three important mechanisms that shaped elevational biodiversity patterns and assemblage variations of benthic macroinvertebrates by linking our results with the classic hypotheses about biodiversity patterns, including climate/productivity, environmental heterogeneity, and dispersal/history. These results could improve our understanding of biodiversity patterns and biodiversity conservation.
Collapse
|
25
|
Human-Induced Sharp Salinity Changes in the World’s Largest Hypersaline Lagoon Bay Sivash (Crimea) and Their Effects on the Ecosystem. WATER 2022. [DOI: 10.3390/w14030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lakes and lagoons play an important role worldwide, and salinity fluctuations significantly affect their ecosystems. Bay Sivash, the world’s largest hypersaline water body, underwent a sharp change in salinity, induced by the closing of the North Crimean Canal. To monitor a shift in the ecosystem, a study was carried out from 2014 to 2020 at 15 sites of the lagoon. Since the closure of the canal, the average salinity increased from 22 g L−1 (2013) to 94 g L−1 (2020). Suspended solids and dissolved organic matter also increased. When salinity increased above 50 g L−1, the number of taxa significantly decreased; this was a negative linear relation. The increase in salinity significantly changed the structure of zooplankton and benthos. The most dramatic changes occurred with the salinity increase from 25 to 70 g L−1. Chironomidae larvae numbers began to increase greatly in the ecosystem of the bay, and since 2014, they have rapidly increased their contribution to the abundance of benthos and plankton. The concentration of benthic–planktonic species increased in plankton, in particular, in Harpacticoida and Chironomidae. At salinity above 80–90 g L−1, nauplii and adult brine shrimp appeared to become abundant in plankton and benthos. The transit of the ecosystem to a new alternative state occurred.
Collapse
|
26
|
Han L, Li Y, Zou Y, Gao X, Gu Y, Wang L. Relationship between lake salinity and the climatic gradient in northeastern China and its implications for studying climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150403. [PMID: 34818812 DOI: 10.1016/j.scitotenv.2021.150403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 05/13/2023]
Abstract
The rising temperatures, increased evaporation, and altered precipitation patterns associated with global warming pose threats to aquatic ecosystems, especially the salinization of lake water and changes in the terrestrial carbon budget. We studied a series of samples of catchment soils, surface sediments, and sediment cores from 51 lakes and reservoirs covering an extensive climatic range in northeastern China. Measurements included salinity indices (electrical conductivity and pH) and other physicochemical parameters, including magnetic properties and color (chroma). The results indicate that the occurrence of salt minerals and the salinity of the lake sediments are dominated by the arid climatic conditions of the region. This enabled us to develop climatic transfer functions between salinity, precipitation and evaporation, with potential applications in paleoclimatic research. As carbonates are the dominant salts in most of the studied lakes and reservoirs, past salinity variations are likely reflected by changes in HCO3- and CO32- concentrations, which provides the opportunity to study the response of water-CO2-carbonate interactions to climate change. Our findings emphasize the important role of alkaline lakes in carbon burial and carbon neutralization, in the context of ongoing global warming.
Collapse
Affiliation(s)
- Long Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Molecular Fossil Laboratory, Testing and Analysis Center, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yumei Li
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Molecular Fossil Laboratory, Testing and Analysis Center, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yafei Zou
- Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China
| | - Xinbo Gao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongjian Gu
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Molecular Fossil Laboratory, Testing and Analysis Center, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Luo Wang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
27
|
Lan B, He L, Huang Y, Guo X, Xu W, Zhu C. Tempo-spatial variations of zooplankton communities in relation to environmental factors and the ecological implications: A case study in the hinterland of the Three Gorges Reservoir area, China. PLoS One 2021; 16:e0256313. [PMID: 34407135 PMCID: PMC8372925 DOI: 10.1371/journal.pone.0256313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
To expand the knowledge on the tempo-spatial patterns of zooplankton and the key modulated factors in urban aquatic ecosystem, we investigated zooplankton and water quality from April 2018 to January 2019 in the hinterland of the Three Gorges Reservoir area, Wanzhou City of China. The results indicated that water quality indicated by the trophic state index (TSI) reached a state of mesotrophication to light eutrophication in the Yangtze River, and a state of moderate- to hyper- eutrophication in its tributaries. Based on the biomass of zooplanktons, Asplanchna priodonta was the most common specie in April; Encentrum sp., Filinia cornuta and Epiphanes senta were the most noticeable species in summer; Cyclopoida Copepodid, Sinocalanus dorrii and Philodina erythrophthalma became the dominant species in winter. Generally, rotifers prevailed in April and August, and copepods became the most popular in January. According to canonical correspondence analysis, nitrate, temperature (T), ammonia, water level and permanganate index (CODMn) significantly influenced the community structure of zooplankton (p < 0.05). The dominant species shifts of zooplankton were partly associated with nutrient level (nitrate and ammonia) under periodic water level fluctuations. Rotifers and protozoans were characterized as high T adapted and CODMn-tolerant species comparing with cladocerans and copepods. The ratio of microzooplankton to mesozooplankton (Pmicro/meso) has presented a strongly positive relationship with T (p < 0.001), as well as Pmicro/meso and CODMn (p < 0.001). It implied that zooplankton tended to miniaturize individual size via species shift under high T and/or CODMn conditions induced by global warming and human activities. The information hints us that climate change and human activities are likely to produce fundamental changes in urban aquatic ecosystem by reorganizing biomass structure of the food web in future.
Collapse
Affiliation(s)
- Bo Lan
- Research Center for Sustainable Development of the Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing, China
- College of Environment and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Liping He
- College of Environment and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yujing Huang
- College of Chinese Traditional Medicine, Chongqing Three Gorges Medical College, Chongqing, China
| | - Xianhua Guo
- College of Environment and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wenfeng Xu
- College of Environment and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Chi Zhu
- Jiangsu Environmental Engineering Technology Co. LTD, Nanjing, China
- Jiangsu Provincial Academy of Environmental Science, Nanjing, China
| |
Collapse
|
28
|
Wang H, García Molinos J, Heino J, Zhang H, Zhang P, Xu J. Eutrophication causes invertebrate biodiversity loss and decreases cross-taxon congruence across anthropogenically-disturbed lakes. ENVIRONMENT INTERNATIONAL 2021; 153:106494. [PMID: 33882434 DOI: 10.1016/j.envint.2021.106494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Eutrophication is a major problem currently impacting many surface water ecosystems. Impacts of increased nutrient concentrations on biodiversity may differ between different scales, different organism groups, and different trophic states. Surveys at different spatial scales have suggested that biodiversity of different taxa may exhibit significant cross-taxon congruence. In our study, we examined the diversity of zooplankton and zoobenthos across 261 lakes in the Lake Taihu watershed, an area that is undergoing a severe eutrophication process. We tested the cross-taxon congruence in species richness and Shannon-Wiener diversity between zooplankton and zoobenthos along a nutrient gradient across the lakes. Our findings were consistent with the intermediate disturbance hypothesis, considering nutrient input as the disturbance. Also, we found significant cross-taxon congruence between zooplankton and zoobenthos diversities. Our results confirmed that excess nutrient levels resulted in diversity loss and community simplification. Zoobenthos were more sensitive to nutrient increases compared with zooplankton, which decreased cross-taxon congruence because these organism groups did not respond similarly to the anthropogenic disturbance.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Jorge García Molinos
- Arctic Research Center, Hokkaido University, N21W11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan; Global Station for Arctic Research, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan; Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jani Heino
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China.
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China.
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China.
| |
Collapse
|
29
|
Ge Y, Meng X, Heino J, García‐Girón J, Liu Y, Li Z, Xie Z. Stochasticity overrides deterministic processes in structuring macroinvertebrate communities in a plateau aquatic system. Ecosphere 2021. [DOI: 10.1002/ecs2.3675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yihao Ge
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Xingliang Meng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Jani Heino
- Freshwater Centre Finnish Environment Institute Paavo Havaksen Tie 3P.O. Box 413 Oulu FI‐90014 Finland
| | - Jorge García‐Girón
- Group for Limnology and Environmental Biotechnology Area of Ecology Universidad de León Campus de Vegazana León Spain
| | - Yang Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| |
Collapse
|
30
|
Fu H, Özkan K, Yuan G, Johansson LS, Søndergaard M, Lauridsen TL, Jeppesen E. Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146368. [PMID: 34030386 DOI: 10.1016/j.scitotenv.2021.146368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Seasonal and annual dynamics of the zooplankton community in lakes are affected by changes in abiotic drivers, trophic interactions (e.g., changes in phytoplankton and fish communities and abundances) and habitat characteristics (e.g. macrophyte abundance and composition). However, little is known about the temporal responses of the zooplankton community to abiotic and biotic drivers across lakes at the regional scale. Using a comprehensive 20-year dataset from 20 Danish lakes in recovery from eutrophication, we assessed the seasonal and annual trends in the spatial heterogeneity of zooplankton community across lakes and related it to abiotic and biotic drivers. We found significant seasonality and inter-annual decreases in spatial zooplankton heterogeneity in both shallow and deep lakes, with the decrease in the spatial turnover dominating the temporal dynamics of the beta diversity. For the inter-annual changes, decreased spatial heterogeneity of phytoplankton, macrophytes and fish were important biotic drivers at the regional scale. Using a series of ordinary least squares regressions and model selection with model averaging approaches, we revealed that both local (e.g., total phosphorus, total nitrogen, pH, Secchi depth, alkalinity, Schmidt stability, water temperature) and regional drivers (e.g., air temperature, solar irradiance) were important variables influencing the spatial zooplankton heterogeneity, although the directions depended on the beta diversity measures and water depth. Our results highlight an important role of bottom-up forces through phytoplankton community as well as macrophytes and top-down forces via fishes in driving the temporal changes in zooplankton community composition patterns at the regional scale.
Collapse
Affiliation(s)
- Hui Fu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Korhan Özkan
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Guixiang Yuan
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | | | - Martin Søndergaard
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Torben L Lauridsen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Erik Jeppesen
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey; Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
31
|
Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10050327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Changing land-use patterns in the Qinghai–Tibet Plateau (QTP) due to natural factors and human interference have led to higher ecological vulnerability and even more underlying issues related to time and space in this alpine area. Ecological vulnerability assessment provides not only a solution to surface-feature-related problems but also insight into sustainable eco-environmental planning and resource management as a response to potential climate changes if driving factors are known. In this study, the ecological vulnerability index (EVI) of Shannan City in the core area of the QTP was assessed using a selected set of ecological, social, and economic indicators and spatial principal component analysis (SPCA) to calculate their weights. The data included Landsat images and socio-economic data from 1990 to 2015, at five-year intervals. The results showed that the total EVI remains at a medium vulnerability level, with minor fluctuations over 25 years (peaks in 2000, when there was a sudden increase in slight vulnerability, which switched to extreme vulnerability), and gradually increases from east to west. In addition, spatial analysis showed a distinct positive correlation between the EVI and land-use degree, livestock husbandry output, desertification area, and grassland area. The artificial afforestation program (AAP) has a positive effect by preventing the environment from becoming more vulnerable. The results provide practical information and suggestions for planners to take measures to improve the land-use degree in urban and pastoral areas in the QTP based on spatial-temporal heterogeneity patterns of the EVI of Shannan City.
Collapse
|
32
|
Wu Y, Wang S, Ni Z, Li H, May L, Pu J. Emerging water pollution in the world's least disturbed lakes on Qinghai-Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116032. [PMID: 33218770 DOI: 10.1016/j.envpol.2020.116032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Qinghai-Tibet Plateau (QTP) Lake Region has largest abundance and size distribution of lakes in China. Being relatively away from major human activities, the water quality of these lakes has not attracted concerns in the past. However, dramatic climate change and intensified anthropogenic activities over the past 30 years have exerted multiple pressures on the water environment of the lakes, resulting in elevated nutrient concentrations in major freshwater lakes of the region. Rapid water quality deterioration and eutrophication of the lakes were first found in Lake Hurleg in the northeast of the plateau. Analyses of driving forces associated with these changes indicate that both the intrinsic characteristics of the QTP lakes and climate change were responsible for the vulnerability to human activities than other lakes in different regions of China, with accelerated urbanization and extensive economic development in the lake basin playing a decisive role in creating water pollution events. Under combination pressures from both natural and anthropogenic effect, the increasing rate of nutrient concentrations in Lake Hurleg has been 53-346 times faster than in Lake Taihu and Lake Dianchi during the deterioration stage. The result suggests the current development mode of Lake Hurleg basin is not suitable for setting protection targets for the QTP lake region more broadly due to its extremely poor environmental carrying capacity. To stop worsening the lake water environment condition, it is necessary to review the achievements made and lessons learned from China's fight against lake pollution and take immediate measures, inform policies into the development mode in the QTP lake region, and avoid irreversible consequences and ensure good water quality in the "Asian Water Tower."
Collapse
Affiliation(s)
- Yue Wu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shengrui Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Technology Research Center of Water Science, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Zhaokui Ni
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hong Li
- Lancaster Environment Centre, Lancaster University, Library Avenue, LA1 4YQ, UK; UK Centre for Ecology & Hydrology, Wallingford, OX108BB, UK
| | - Linda May
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Jia Pu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
33
|
Golubkov SM. Effect of Climatic Fluctuations on the Structure and Functioning of Ecosystems of Continental Water Bodies. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Jeppesen E, Beklioğlu M, Özkan K, Akyürek Z. Salinization Increase due to Climate Change Will Have Substantial Negative Effects on Inland Waters: A Call for Multifaceted Research at the Local and Global Scale. ACTA ACUST UNITED AC 2020; 1:100030. [PMID: 34557708 PMCID: PMC8454634 DOI: 10.1016/j.xinn.2020.100030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erik Jeppesen
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark.,Sino-Danish Centre for Education and Research, 100049 Beijing, China.,Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey.,Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, 06800 Ankara, Turkey
| | - Meryem Beklioğlu
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey.,Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, 06800 Ankara, Turkey
| | - Korhan Özkan
- Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, 06800 Ankara, Turkey.,Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin, Turkey
| | - Zuhal Akyürek
- Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, 06800 Ankara, Turkey.,Department of Civil Engineering, Middle East Technical University, 06800 Ankara, Turkey.,Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
35
|
Lin Q, Chen Q, Peng L, Xiao L, Lei L, Jeppesen E. Do bigheaded carp act as a phosphorus source for phytoplankton in (sub)tropical Chinese reservoirs? WATER RESEARCH 2020; 180:115841. [PMID: 32422412 DOI: 10.1016/j.watres.2020.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Stocking of bigheaded carp (mainly Hypophthalmichthys nobilis and H. molitrix) is commonly used in (sub)tropical Chinese reservoirs to control phytoplankton, but with ambiguous results. Whether these carp act as a phosphorus (P) source or sink for phytoplankton is debated. We compared the trophic structures in twenty-three reservoirs with different nutrient concentrations in the flood season (after bigheaded carp introduction) with the dry season (after bigheaded carp harvesting). Fish biomass was positively related to TP, and the slope of the relationship showed no difference between seasons. Bigheaded carp harvesting exceeded the amount introduced, which may explain an observed lower intercept of the relationship and fish biomass to the TP ratio in the dry season. Fish predation pressure on zooplankton (fish: zooplankton biomass ratio as a proxy) was highest in the flood season and increased with TP in both seasons. Accordingly, zooplankton grazing effect on phytoplankton (zooplankton: phytoplankton biomass ratio as a proxy) decreased with fish biomass. Furthermore, both the zooplankton biomass and the zooplankton: phytoplankton biomass ratio were among the lowest reported in the literature for the nutrient range studied. Fish grazing effect on phytoplankton (fish: phytoplankton biomass ratio as a proxy) was also highest in the flood season and decreased with TP in both seasons. Nanoplankton was the dominant phytoplankton group in oligotrophic to mesotrophic reservoirs, while filamentous cyanobacteria dominated in eutrophic reservoirs. Chlorophyll a increased with TP and fish biomass, whereas the yield of chlorophyll a per TP (Chla: TP ratio) increased with fish biomass. Accordingly, both chlorophyll a and the Chla: TP ratio were highest in the flood season. We conclude that bigheaded carp act as P sink at the ecosystem level but as P source for phytoplankton, and enhance the yield of chlorophyll a per TP and thus eutrophication.
Collapse
Affiliation(s)
- Qiuqi Lin
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Qinghang Chen
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Liang Peng
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Lijuan Xiao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Lamei Lei
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100049, China; Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
36
|
Li X, Yang W, Li S, Sun T, Bai J, Pei J, Xie T, Cui B. Asymmetric responses of spatial variation of different communities to a salinity gradient in coastal wetlands. MARINE ENVIRONMENTAL RESEARCH 2020; 158:105008. [PMID: 32501264 DOI: 10.1016/j.marenvres.2020.105008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Various ecological communities are susceptible to the salinity gradients in coastal wetlands. Remane diagram has well described the macrozoobenthos diversity pattern along salinity gradients. Yet, further research is still needed, that is, the changes in diversity and biomass of other communities (e.g. plants, fish) along salinity gradients, and whether these changes are consistent or different among different communities. In this study, using China's Yellow River Delta wetland as a case study, we analyzed the variation of the community composition, species richness, and biomass of plant, macrozoobenthos, and fish communities along a salinity gradient from <0.5 to 30 ppt. We found that plant community composition exhibited more distinct variation along the salinity gradient than macrozoobenthos, with the least distinction for fish. Plant species richness decreased greatly along the gradient, whereas macrozoobenthos richness first decreased and then increased with increasing salinity, with the low richness occurring at a salinity of 0.9-12.3 ppt. Fish had the highest richness at a salinity of 14.8-16.0 ppt. The sum of plant, macrozoobenthos, and fish species and macrozoobenthos richness were both similar to the Remane diagram. Plants had higher biomass in low-salinity zones than in high-salinity zones, except for high biomass at a salinity of 14.8-16.0 ppt, whereas macrozoobenthos and fish showed the opposite trend. Principal-coordinate analysis showed an obvious dissimilarity map based on the composition, richness, and biomass of the plant, macrozoobenthos, and fish communities. Overall, the effects of salinity gradient differed among different communities. These findings demonstrate the asymmetric responses of different communities to salinity gradients, and have practical implications for maintaining a salinity gradient in coastal wetlands.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China.
| | - Shanze Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Jun Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Tian Xie
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| |
Collapse
|
37
|
Virdis SGP, Soodcharoen N, Lugliè A, Padedda BM. Estimation of satellite-derived lake water surface temperatures in the western Mediterranean: Integrating multi-source, multi-resolution imagery and a long-term field dataset using a time series approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135567. [PMID: 31780156 DOI: 10.1016/j.scitotenv.2019.135567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Lake surface water temperature (LSWT) is a key parameter to help study the environmental and ecological impacts of climate change. In this work, we measured the LSWT of 1 natural and 23 artificial lakes located on the island of Sardinia in the western Mediterranean, which is a region where changes in climate are projected to have significant impacts. By integrating multi-source and multi-resolution datasets of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat and long-term in situ temperature observations, we detected, measured, and analysed the LSWT trends during the period of 2000-2018 across all the investigated lakes. Methodologically, we demonstrated that a simplified approached based on Planck's equation for Landsat thermal infrared (TIR) data could be a valid alternative to radiative transfer equation retrieval methods for the retrieval of LSWT without loss of accuracy. Moreover, we demonstrated that rescaled and independently validated MOD112A-derived LSWT showed good accuracy, efficiently filled the spatial and temporal gaps in long-term in situ LSWT, and could be used for long-term LSWT trend detection and measurement. All 24 lakes showed an annual warming trend of +0.010 °C/y, warming winter trend of +0.013 °C/y, and cooling summer trend of -0.038 °C/y during the period of 2000-2018. This study demonstrated that the measured trend rates could be explained by and were strongly correlated with the climatology of Italy for the 2000-2018 period. Finally, we demonstrated the key role and the importance of the availability of long-term in situ temperature datasets. The approach used in this study is up-scalable to other medium to low-resolution TIR sensors as well as to other long-term monitoring sites, such as LTER-Italy, LTER-Europe, or ILTER sites.
Collapse
Affiliation(s)
- Salvatore G P Virdis
- Department of Information & Communication Technologies, School of Engineering and Technology (SET), AIT Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| | - Nooch Soodcharoen
- Department of Information & Communication Technologies, School of Engineering and Technology (SET), AIT Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | - Antonella Lugliè
- Department of Architecture, Design and Urban Planning (DADU), University of Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Bachisio M Padedda
- Department of Architecture, Design and Urban Planning (DADU), University of Sassari, Via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
38
|
Gao X, Chen H, Govaert L, Wang W, Yang J. Responses of zooplankton body size and community trophic structure to temperature change in a subtropical reservoir. Ecol Evol 2019; 9:12544-12555. [PMID: 31788196 PMCID: PMC6875572 DOI: 10.1002/ece3.5718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/18/2019] [Accepted: 09/15/2019] [Indexed: 01/07/2023] Open
Abstract
Understanding the effects of global warming on trait variation and trophic structure is a crucial challenge in the 21st century. However, there is a lack of general patterns that can be used to predict trait variation and community trophic structure under the ongoing environmental change. We investigated the responses of body size and community trophic structure of zooplankton to climate related factors (e.g., temperature). Isotopic niche breadth was applied to investigate the community trophic structure across a 1-year study from a subtropical reservoir (Tingxi Reservoir) in southeastern China. Body size and community isotopic niche breadth of zooplankton were larger during water mixing than stratification periods and correlated significantly with water temperature change along the time series. The contributions of intra- and intertaxonomic components to body size and community trophic structure variation showed significant relationships with the temperature change going from the mixing to stratification periods. Water temperature imposed direct effect on body size, while direct and indirect effect on the community trophic structure of zooplankton occurred through trophic redundancy along time series. Water temperature and community properties (e.g., body size, trophic redundancy, or trophic interaction) showed complex interactions and integrated to influence community trophic structure of zooplankton. Our results can expand the knowledge of how elevated temperature will alter individual trait and community trophic structure under future climate change.
Collapse
Affiliation(s)
- Xiaofei Gao
- Aquatic EcoHealth GroupKey Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- Fujian Key Laboratory of Watershed EcologyInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huihuang Chen
- Aquatic EcoHealth GroupKey Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- Fujian Key Laboratory of Watershed EcologyInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Lynn Govaert
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
| | - Wenping Wang
- Aquatic EcoHealth GroupKey Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- Fujian Key Laboratory of Watershed EcologyInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Yang
- Aquatic EcoHealth GroupKey Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- Fujian Key Laboratory of Watershed EcologyInstitute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| |
Collapse
|
39
|
Xiong W, Ni P, Chen Y, Gao Y, Li S, Zhan A. Biological consequences of environmental pollution in running water ecosystems: A case study in zooplankton. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1483-1490. [PMID: 31265959 DOI: 10.1016/j.envpol.2019.06.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Biodiversity in running water ecosystems such as streams and rivers is threatened by chemical pollution derived from anthropogenic activities. Zooplankton are ecologically indicative in aquatic ecosystems, owing to their position of linking the top-down and bottom-up regulators in aquatic food webs, and thus of great potential to assess ecological effects of human-induced pollution. Here we investigated the influence of water pollution on zooplankton communities characterized by metabarcoding in Songhua River Basin in northeast China. Our results clearly showed that varied levels of anthropogenic disturbance significantly influenced water quality, leading to distinct environmental pollution gradients (p < 0.001), particularly derived from total nitrogen, nitrate nitrogen and pH. Redundancy analysis showed that such environmental gradients significantly influenced the geographical distribution of zooplankton biodiversity (R = 0.283, p = 0.001). In addition, along with the trend of increasing environmental pollution, habitat-related indicator taxa were shifted in constituents, altering from large-sized species (e.g. arthropods) in lightly disturbed areas to small-sized organisms (e.g. rotifers and ciliates) in highly disturbed areas. All these findings clearly showed that anthropogenic activity-derived water pollution significantly influenced biological communities. Thus, biotic consequences of human-induced environmental pollution in running water ecosystems should be deeply investigated. More importantly, the findings of biotic consequences should be well integrated into existing monitoring programs to further assess impacts of anthropogenic disturbance, as well as to advance the management of running water ecosystems for conservation and ecological restoration.
Collapse
Affiliation(s)
- Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
40
|
Zhu L, Wang J, Ju J, Ma N, Zhang Y, Liu C, Han B, Liu L, Wang M, Ma Q. Climatic and lake environmental changes in the Serling Co region of Tibet over a variety of timescales. Sci Bull (Beijing) 2019; 64:422-424. [PMID: 36659789 DOI: 10.1016/j.scib.2019.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Liping Zhu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junbo Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianting Ju
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Ma
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinsheng Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boping Han
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Linshan Liu
- Institute of Geographic Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingda Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingfeng Ma
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
He H, Jin H, Jeppesen E, Li K, Liu Z, Zhang Y. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. WATER RESEARCH 2018; 144:304-311. [PMID: 30071399 DOI: 10.1016/j.watres.2018.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Although it is well established that climate warming can reinforce eutrophication in shallow lakes by altering top-down and bottom-up processes in the food web and biogeochemical cycling, recent studies in temperate zones have also shown that adverse effects of rising temperature are diminished in fishless systems. Whereas the removal of zooplanktivorous fish may be useful in attempts to mitigate eutrophication in temperate shallow lakes, it is uncertain whether similar mitigation might be achieved in warmer climates. We compared the responses of zooplankton and phytoplankton communities to climate warming in the presence and absence of fish (Aristichthys nobilis) in a 4-month mesocosm experiment at subtropical temperatures. We hypothesized that 1) fish and phytoplankton would benefit from warming, while zooplankton would suffer in fish-present mesocosms and 2) warming would favor zooplankton growth but reduce phytoplankton biomass in fish-absent mesocosms. Our results showed significant interacting effects of warming and fish presence on both phytoplankton and zooplankton. In mesocosms with fish, biomasses of fish and phytoplankton increased in heated treatments, while biomasses of Daphnia and total zooplankton declined. Warming reduced the proportion of large Daphnia in total zooplankton biomass, and reduced the zooplankton to phytoplankton biomass ratio, but increased the ratio of chlorophyll a to total phosphorus, indicating a relaxation of zooplankton grazing pressure on phytoplankton. Meanwhile, warming resulted in a 3-fold increase in TP concentrations in the mesocosms with fish present. The results suggest that climate warming has the potential to boost eutrophication in shallow lakes via both top-down (loss of herbivores) and bottom-up (elevated nutrient) effects. However, in the mesocosms without fish, there was no decline in large Daphnia or in total zooplankton biomass, supporting the conclusion that fish predation is the major driver of low large Daphnia abundance in warm lakes. In the fishless mesocosms, phytoplankton biomass and nutrient levels were not affected by temperature. Our study suggests that removing fish to mitigate warming effects on eutrophication may be potentially beneficial in subtropical lakes, though the rapid recruitment of fish in such lakes may present a challenge to success in the long-term.
Collapse
Affiliation(s)
- Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hui Jin
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, Beijing 100049, China; Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yongdong Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
42
|
Golubkov SM, Shadrin NV, Golubkov MS, Balushkina EV, Litvinchuk LF. Food Chains and Their Dynamics in Ecosystems of Shallow Lakes with Different Water Salinities. RUSS J ECOL+ 2018. [DOI: 10.1134/s1067413618050053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Xu L, Lin Q, Xu S, Gu Y, Hou J, Liu Y, Dumont HJ, Han B. Daphnia diversity on the Tibetan Plateau measured by DNA taxonomy. Ecol Evol 2018; 8:5069-5078. [PMID: 29876082 PMCID: PMC5980554 DOI: 10.1002/ece3.4071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 02/04/2023] Open
Abstract
Daphnia on the Tibetan Plateau has been little studied, and information on species diversity and biogeography is lacking. Here, we conducted a 4-year survey using the barcoding fragment of the mitochondrial COI gene to determine the distribution and diversity of Daphnia species found across the Plateau. Our results show that species richness is higher than previously thought, with total described and provisional species number doubling from 5 to 10. Six of the taxonomic units recovered by DNA taxonomy agreed well with morphology, but DNA barcoding distinguished three clades each for the D. longispina (D. galeata, D. dentifera, and D. longispina) and D. pulex (D. pulex, D. cf. tenebrosa, and D. pulicaria) complexes. The sequence divergence between congeneric species varied within a large range, from 9.25% to 30.71%. The endemic D. tibetana was the most common and widespread species, occurring in 12 hyposaline to mesosaline lakes. The lineage of D. longispina is the first confirmed occurrence in west Tibet.
Collapse
Affiliation(s)
- Lei Xu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Institute of HydrobiologyJinan UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Key Laboratory of South China Sea Fishery ResourcesDevelopment and UtilizationMinistry of AgricultureGuangzhouChina
| | - Qiuqi Lin
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| | - Shaolin Xu
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| | - Yangliang Gu
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| | - Juzhi Hou
- Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
| | - Yongqin Liu
- Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
| | | | - Bo‐Ping Han
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| |
Collapse
|