1
|
Fu J, Hu L, Pan X, Zhang D. Encapsulation and release of tetrabromobisphenol A in microplastics: Trade-off in their individual toxicity to Xenopus tropicalis tadpoles. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135649. [PMID: 39208625 DOI: 10.1016/j.jhazmat.2024.135649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The toxicity of microplastics (MPs) to aquatic animals is closely related to the presence and release kinetics of contained additives, as most plastic products contain various additives. However, the relationship between the occurrence and release of additives from MPs, and their individual or combined toxicity remains unclear. In this study, the nanoscale distribution and release of tetrabromobisphenol A (TBBPA, a common flame retardant with endocrine-disrupting effect) in polystyrene (PS) MPs, and the long-term (60 days) toxicity of TBBPA and MPs containing TBBPA (at doses of 0 %, 1 %, 10 %, w/w) to Xenopus tropicalis tadpoles were investigated. Exposure to 10 μg/L TBBPA alone was the most toxics, while the encapsulation of TBBPA in MPs significantly delayed its lethal toxicity to tadpoles by inhibiting the rapid and extensive release of TBBPA. PS MPs alone and MPs containing 10 % TBBPA exhibited delayed survival toxicity compared to TBBPA alone, whereas PS MPs containing 1 % TBBPA did not show this effect but inhibited growth. These findings suggest that chronic toxicity assessments should be based on long-term (months or even years) exposure experiments due to the encapsulation-controlled slow release of toxic additives.
Collapse
Affiliation(s)
- Juyang Fu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Zhang X, Yin Z, Xiang S, Yan H, Tian H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers (Basel) 2024; 16:2807. [PMID: 39408516 PMCID: PMC11478708 DOI: 10.3390/polym16192807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The extensive use of polymeric materials has resulted in significant environmental pollution, prompting the need for a deeper understanding of their degradation processes and impacts. This review provides a comprehensive analysis of the degradation of polymeric materials in the environment and their impact on the health of experimental animals. It identifies common polymers, delineates their degradation pathways, and describes the resulting products under different environmental conditions. The review covers physical, chemical, and biological degradation mechanisms, highlighting the complex interplay of factors influencing these processes. Furthermore, it examines the health implications of degradation products, using experimental animals as proxies for assessing potential risks to human health. By synthesizing current research, the review focuses on studies related to small organisms (primarily rodents and invertebrates, supplemented by fish and mollusks) to explore the effects of polymer materials on living organisms and underscores the urgency of developing and implementing effective polymer waste management strategies. These strategies are crucial for mitigating the adverse environmental and health impacts of polymer degradation, thus promoting a more sustainable interaction between human activities and the natural environment.
Collapse
Affiliation(s)
- Xiyu Zhang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Zhenxing Yin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Songbai Xiang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Huayu Yan
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Hailing Tian
- Laboratory Animal Center, Yanbian University, Yanji 133002, China
| |
Collapse
|
3
|
Liu H, Wen Y. Evaluation of the migration behaviour of microplastics as emerging pollutants in freshwater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58294-58309. [PMID: 39298032 DOI: 10.1007/s11356-024-34994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed in freshwater environments such as rivers and lakes, posing immeasurable potential risks to aquatic ecosystems and human health. The migration behaviour of microplastics can exacerbate the degree or scope of risk. A complete understanding of the migration behaviour of microplastics in freshwater environments, such as rivers and lakes, can help assess the state of occurrence and environmental risk of microplastics and provide a theoretical basis for microplastic pollution control. Firstly, this review presents the hazards of microplastics in freshwater environments and the current research focus. Then, this review systematically describes the migration behaviours of microplastics, such as aggregation, horizontal transport, sedimentation, infiltration, stranding, resuspension, bed load, and the affecting factors. These migration behaviours are influenced by the nature of the microplastics themselves (shape, size, density, surface modifications, ageing), environmental conditions (ionic strength, cation type, pH, co-existing pollutants, rainfall, flow regime), biology (vegetation, microbes, fish), etc. They can occur cyclically or can end spontaneously. Finally, an outlook for future research is given.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China
| |
Collapse
|
4
|
Menger F, Römerscheid M, Lips S, Klein O, Nabi D, Gandrass J, Joerss H, Wendt-Potthoff K, Bedulina D, Zimmermann T, Schmitt-Jansen M, Huber C, Böhme A, Ulrich N, Beck AJ, Pröfrock D, Achterberg EP, Jahnke A, Hildebrandt L. Screening the release of chemicals and microplastic particles from diverse plastic consumer products into water under accelerated UV weathering conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135256. [PMID: 39106725 DOI: 10.1016/j.jhazmat.2024.135256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Photodegradation of plastic consumer products is known to accelerate weathering and facilitate the release of chemicals and plastic particles into the aquatic environment. However, these processes are complex. In our presented pilot study, eight plastic consumer products were leached in distilled water under strong ultraviolet (UV) light simulating eight months of Central European climate and compared to their respective dark controls (DCs). The leachates and formed plastic particles were exploratorily characterized using a range of chemical analytical tools to describe degradation and leaching processes. These techniques covered (a) microplastic analysis, showing substantial liberation of plastic particles further increased under UV exposure, (b) non-targeted mass spectrometric characterization of the leachates, revealing several hundreds of chemical features with typically only minor agreement between the UV exposure and the corresponding DCs, (c) target analysis of 71 organic analytes, of which 15 could be detected in at least one sample, and (d) metal(loid) analysis, which revealed substantial release of toxic metal(loid)s further enhanced under UV exposure. A data comparison with the US-EPA's ToxVal and ToxCast databases showed that the detected metals and organic additives might pose substantial health and environmental concerns, requiring further study and comprehensive impact assessments.
Collapse
Affiliation(s)
- Frank Menger
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Mara Römerscheid
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Lips
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ole Klein
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Deedar Nabi
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Jürgen Gandrass
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Hanna Joerss
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Katrin Wendt-Potthoff
- Department of Lake Research, Helmholtz-Centre for Environmental Research - UFZ, Brueckstr. 3 a, 39114 Magdeburg, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Tristan Zimmermann
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Mechthild Schmitt-Jansen
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carolin Huber
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Daniel Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52047 Aachen, Germany.
| | - Lars Hildebrandt
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
5
|
Kumar BSK, Chari NVHK, Reddy KK, Cheriyan E, Sherin CK, Rao DB, Elangovan SS, Reddy BB, Gupta GVM. Natural light driven plastic leaching effects on carbon chemistry in the tropical coastal waters of eastern Arabian sea: An experimental study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124948. [PMID: 39265767 DOI: 10.1016/j.envpol.2024.124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
This study examined the effects of solar light driven plastic degradation on carbon chemistry in the coastal waters of eastern Arabian Sea along the west coast of India. The research was conducted through experimental incubations exposed to natural sunlight at multiple locations between December 2023-February 2024. Photodegradation induced a significant pH decrease (up to 0.38 ± 0.02) between controls and plastic incubations ranging from 8.17 ± 0.01 to 7.54 ± 0.02 with the highest variation in the Mumbai coast ranging from 8.13 ± 0.01 to 7.75 ± 0.03. pH variations are primarily caused by the leaching of organic acids and CO2 release during solar irradiated incubation. Plastic leaching due to natural light irradiation and subsequent changes in the water chemistry is of prime significance with dissolved organic carbon (DOC) leaching of 0.002-0.03% of plastic weight into the coastal waters. Our estimations suggest 15-75 metric tonnes (MT) of DOC release per year by plastic pollution in the eastern Arabian Sea coastal waters. Further, the fluorescent dissolved organic matter (FDOM) fragmentation, a part of DOC, may act as an organic source of synthetic contaminants and would promote heterotrophic microbial action in the coastal waters. Photodegradation of plastic and the interaction of natural DOC and plastic-derived DOC resulted in longer wavelengths FDOM, which may affect the penetration of photosynthetically active radiation in the water column, thereby impacting primary production. Finally, future research work focussing on the role of plastic pollution in coastal ocean acidification and vice-versa is essential and will be increasingly intense in the upcoming decades.
Collapse
Affiliation(s)
- B S K Kumar
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India.
| | - N V H K Chari
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - Kiran Kumar Reddy
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - Eldhose Cheriyan
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - C K Sherin
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - D Bhaskara Rao
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - S Sai Elangovan
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - B Bikram Reddy
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - G V M Gupta
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| |
Collapse
|
6
|
Zheng H, Zhang G, Zhang C, Zhang S. Unravelling structural features of small molecules for photochemical transformation of environmental contaminants. WATER RESEARCH 2024; 261:122015. [PMID: 38996734 DOI: 10.1016/j.watres.2024.122015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Small molecules, including natural metabolites, organic matter decomposition products, and engineered oxidation byproducts, are widespread in aquatic environment. However, the limited understanding of the photochemical interactions of these small molecules with water pollutants hampers the development of effective environmental protection strategies. This study explores the structural features governing the photochemical transformation of toxic oxyanions by α- and β-dicarbonyl compounds. By integrating experimental observations with quantum chemical calculations, a robust correlation network was constructed. The correlation network reveals that the reactivity of small organic molecules with oxyanions could be quantitively predicted by their intrinsic properties, such as electronic transition energy, bond dissociation energy, molecular softness, molecular orbital gap, atomic charge, and molecular surface local ionization energy. This network maps the relationship between the molecular architecture of chemicals and their photochemical behaviors. This perspective offers fresh insights into the photochemical behaviors of small molecules in diverse environmental and chemical contexts and are helpful for developing advanced water treatment strategies toward a sustainable future.
Collapse
Affiliation(s)
- Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Li J, Li X, Luo J, Huang P, Ge C, Yang X, Wang H. Effects of polypropylene films and leached dissolved organic matters on bacterial community structure in mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173516. [PMID: 38802011 DOI: 10.1016/j.scitotenv.2024.173516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Over the past decades, the accumulation of plastics in mangrove ecosystems has emerged as a significant environmental concern, primarily due to anthropogenic activities. Polypropylene (PP) films, one of the plastic types with the highest detection rate, tend to undergo intricate aging processes in mangrove ecosystems, leading to the release of dissolved organic matter (DOM) that may further influence the local bacterial communities. Yet, the specific effects of new and weathered (aged) plastic films and the associated leached DOM on bacterial consortia in mangrove sediments remain poorly understood. In this study, an incubation experiment was conducted to elucidate the immediate effects and mechanisms of the new and relatively short-term (45 or 90 days) aged PP films, as well as their leached DOM (PDOM), on characteristics of DOM and the bacterial community structure in mangrove sediments under different tidal conditions. Surface morphology and functional group analyses showed that both new and aged PP films exhibited comparable degradation profiles under different tidal conditions over the incubation period. As compared to the new PP film treatments, the introduction of the short-term aged PP films significantly affected the content of humic-like compounds in sediments, and such effects were partially ascribed to the release of PDOM during the incubation. Although the addition of PP films and PDOM showed minor effects on the overall diversity and composition of bacterial communities in the sediments, the abundance of some dominant phyla exhibited a growth or reduction tendency, possibly changing their ecological functions. This study was an effective attempt to investigate the relationship among plastic surface characteristics, sedimentary physicochemical properties, and bacterial communities in mangrove sediments. It revealed the ecological ramifications of new and short-term plastic pollution and its leachates in mangrove seedtimes, enhancing our understating of their potential impacts on the health of mangrove ecosystems.
Collapse
Affiliation(s)
- Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xue Li
- School of Life and Health, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Peng Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Feng Y, Duan J, Yang C, Zou Q, Chen Z, Pu J, Xiang Y, Chen M, Fan M, Zhang H. Microplastics and benthic animals reshape the geochemical characteristics of dissolved organic matter by inducing changes in keystone microbes in riparian sediments. ENVIRONMENTAL RESEARCH 2024; 262:119806. [PMID: 39151559 DOI: 10.1016/j.envres.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Dissolved organic matter (DOM) in riparian sediments plays a vital role in regulating element cycling and pollutant behavior of river ecosystems. Microplastics (MPs) and benthic animals (BAs) have been frequently detected in riparian sediments, influencing the substance transformation in river ecosystems. However, there is still a lack of systematic investigation on the effects of MPs and BAs on sediment DOM. This study investigated the impact of MPs and BAs on the geochemical characteristics of DOM in riparian sediments and their microbial mechanisms. The results showed that MPs and BAs increased sediment DOC concentration by 34.24%∼232.97% and promoted the conversion of macromolecular components to small molecular components, thereby reducing the humification degree of DOM. Mathematical model verified that the changes of keystone microbes composition in sediments were direct factors affecting the characteristics of DOM in riparian sediment. Especially, MPs tolerant microbes, including Planctomicrobium, Rhodobacter, Hirschia and Lautropia, significantly increased DOC concentration and decreased humification degree (P < 0.05). In addition, MPs and BAs could also influence keystone microbes in sediments by altering the structure of microbial network, thereby indirectly affecting DOM characteristics. The study demonstrates the pollution behavior of MPs in river ecosystems and provides a basis for protecting the ecological function of riparian sediments from MPs pollution.
Collapse
Affiliation(s)
- Yuanyuan Feng
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jinjiang Duan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qingping Zou
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ziwei Chen
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
9
|
Zjacić JP, Katančić Z, Kovacic M, Kusic H, Hrnjak Murgić Z, Dionysiou DD, Karamanis P, Loncaric Bozic A. Fragmentation of polypropylene into microplastics promoted by photo-aging; release of metals, toxicity and inhibition of biodegradability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173344. [PMID: 38772480 DOI: 10.1016/j.scitotenv.2024.173344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
The widespread presence of microplastics (MP) in water represents an environmental problem, not only because of the harmful effects of their size and potential to vector other pollutants, but also because of the release of additives, degradation products and residues contained in the polymer matrix. The latter includes metallic catalysts, which are often overlooked. This study focuses on the photo-aging of polypropylene (PP) and the resulting structural changes that promote its fragmentation microplastics (PP-MPs) and release of metals, as well as the resulting toxicity of leachates and their potential to inhibit biodegradation of organics in water. The pristine, photo-aged and waste PP are ground under the same regime to assess susceptibility to fragmentation. Obtained PP-MPs are submitted to leaching tests; the release of organics and metals is monitored by Total Organic Carbon (TOC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis, respectively. The leachates are assessed for their toxicity against Vibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata and their influence on the biodegradability of the glucose solution. Photo-aging induced changes in the crystallinity and morphology of the PP and manifested in the abundance of smaller MPs, as revealed by the particle size distribution. In the case of pristine PP, all particles were > 100 μm in size, while aged PP yielded significant mass fraction of MPs <100 μm. The toxicity of leachates from aged PP-MPs is higher than that of pristine and exhibits a positive correlation with portion of metals released. The biodegradability of glucose is strongly inhibited by PP-MPs leachates containing a mixture of metals in trace concentrations.
Collapse
Affiliation(s)
- Josipa Papac Zjacić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovacic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Hrvoje Kusic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia.
| | - Zlata Hrnjak Murgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Panaghiotis Karamanis
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Hélioparc Pau Pyrénées, 2 Rue de president Angot, 64053 Pau, France
| | - Ana Loncaric Bozic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Corti A, Mugnaioli E, Manariti A, Paoli G, Petri F, Tersigni PFM, Ceccarini A, Castelvetro V. Natural iron-containing minerals catalyze the degradation of polypropylene microplastics: a route to self-remediation learnt from the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45162-45176. [PMID: 38958859 PMCID: PMC11512828 DOI: 10.1007/s11356-024-34120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Virgin and environmentally aged polypropylene (PP) micropowders (V-PP and E-PP, respectively) were used as reference microplastics (MPs) in comparative photo- and thermo-oxidative ageing experiments performed on their mixtures with a natural ferrous sand (NS) and with a metal-free silica sand (QS). The ferrous NS was found to catalyze the photo-oxidative degradation of V-PP after both UV and simulated solar light irradiation. The catalytic activity in the V-PP/NS mixture was highlighted by the comparatively higher fraction of photo-oxidized PP extracted in dichloromethane, and the higher carbonyl index of the bulk polymer extracted with boiling xylene, when compared with the V-PP/QS mixture. Similarly, NS showed a catalytic effect on the thermal degradation (at T = 60 °C) of E-PP. The results obtained indicate that, under suitable environmental conditions (in this case, an iron-containing sediment or soil matrix, combined with simulated solar irradiation), the degradation of some types of MPs could be much faster than anticipated. Given the widespread presence of iron minerals (including the magnetite and iron-rich serpentine found in NS) in both coastal and mainland soils and sediments, a higher than expected resilience of the environment to the contamination by this class of pollutants is anticipated, and possible routes to remediation of polluted natural environments by eco-compatible iron-based minerals are envisaged.
Collapse
Affiliation(s)
- Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Enrico Mugnaioli
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
- Department of Earth Science, University of Pisa, Via S Maria 53, 56126, Pisa, Italy
| | - Antonella Manariti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Gabriele Paoli
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Filippo Petri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
| | | | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy.
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy.
| |
Collapse
|
11
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
12
|
Deakin K, Savage G, Jones JS, Porter A, Muñoz-Pérez JP, Santillo D, Lewis C. Sea surface microplastics in the Galapagos: Grab samples reveal high concentrations of particles <200 μm in size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171428. [PMID: 38438045 DOI: 10.1016/j.scitotenv.2024.171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Plastic pollution in the oceans is increasing, yet most global sea surface data is collected using plankton nets which limits our knowledge of the smaller and more bioaccessible size fraction of microplastics (<5 mm). We sampled the biodiverse coastal waters of the Galapagos Island of San Cristobal, comparing two different microplastic sampling methodologies; 1 l whole seawater grab samples filtered to 1.2 μm and sea surface plankton tows with a net mesh size of 200 μm. Our data reveal high concentrations of microplastics in Galapagos coastal waters surrounding the urban area, averaging 11.5 ± 1.48 particles l-1, with a four-order of magnitude increase in microplastic abundance observed using grab sampling compared with 200 μm plankton nets. This increase was greater when including anthropogenic cellulose particles, averaging 19.8 ± 1.86 particles l-1. Microplastic and anthropogenic cellulose particles smaller than 200 μm comprised 44 % of the particles from grab samples, suggesting previous estimates of microplastic pollution based on plankton nets likely miss and therefore underestimate these smaller particles. The particle characteristics and distribution of these smaller particles points strongly to a local input of cellulosic fibres in addition to the microplastic particles transported longer distances via the Humbolt current found across the surface seawater of the Galapagos. Improving our understanding of particle characteristics and distributions to highlight likely local sources will facilitate the development of local mitigation and management plans to reduce the input and impacts of microplastics to marine species, not just in the Galapagos but globally.
Collapse
Affiliation(s)
- Katie Deakin
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Georgie Savage
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jen S Jones
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK; Galapagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, UK
| | - Adam Porter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Juan Pablo Muñoz-Pérez
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito, Ecuador; School of Science, Technology and Engineering, University of the Sunshine Coast UniSC, Hervey Bay, QLD, Australia
| | - David Santillo
- Greenpeace Research Laboratories, School of Biosciences, Innovation Centre Phase 2, University of Exeter, Exeter EX4 4RN, UK
| | - Ceri Lewis
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
13
|
Saygin H, Tilkili B, Kayisoglu P, Baysal A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. ENVIRONMENTAL RESEARCH 2024; 248:118349. [PMID: 38309565 DOI: 10.1016/j.envres.2024.118349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Climate change and plastic pollution are the big environmental problems that the environment and humanity have faced in the past and will face in many decades to come. Sediments are affected by many pollutants and conditions, and the behaviors of microorganisms in environment may be influenced due to changes in sediments. Therefore, the current study aimed to explore the differential effects of various microplastics and temperature on different sediments through the metabolic and oxidative responses of gram-negative Pseudomonas aeruginosa. The sediments collected from various fields including beaches, deep-sea discharge, and marine industrial areas. Each sediment was extracted and then treated with various microplastics under different temperature (-18, +4, +20 and 35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed sediment samples were incubated with Pseudomonas aeruginosa to test bacterial activity, biofilm, and oxidative characteristics. The results showed that both the activity and the biofilm formation of Pseudomonas aeruginosa increased with the temperature of microplastic treatment in the experimental setups at the rates between an average of 2-39 % and 5-27 %, respectively. The highest levels of bacterial activity and biofilm formation were mainly observed in the beach area (average rate +25 %) and marine industrial (average rate +19 %) sediments with microplastic contamination, respectively. Moreover, oxidative characteristics significantly linked the bacterial activities and biofilm formation. The oxidative indicators of Pseudomonas aeruginosa showed that catalase and glutathione reductase were more influenced by microplastic contamination of various sediments than superoxide dismutase activities. For instance, catalase and glutathione reductase activities were changed between -37 and +169 % and +137 to +144 %, respectively; however, the superoxide dismutase increased at a rate between +1 and + 21 %. This study confirmed that global warming as a consequence of climate change might influence the effect of microplastic on sediments regarding bacterial biochemical responses and oxidation characteristics.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Pinar Kayisoglu
- Deptment of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
14
|
S Gomes R, Fernandes AN, Waldman WR. How to Measure Polymer Degradation? An Analysis of Authors' Choices When Calculating the Carbonyl Index. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7609-7616. [PMID: 38624261 DOI: 10.1021/acs.est.3c10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The carbonyl index aims to measure the degradation level and is used in plastic degradation research as a proxy for the general degradation level of collected plastic pieces. According to the choices for carbonyl index calculation, comparison using this index is prevented and must be unveiled by the authors, which does not always happen. In order to study the proper usage of the carbonyl index, regarding the choice of the reference band and the usage of the band intensity or the absorption area, we systematically reviewed the methodologies used for polypropylene as a case study. Based on 95 studies gathered from 2000 to 2024, two main methods were used to determine the carbonyl index: the ratio between the carbonyl band area and the reference band area (33.68%) and the ratio between the highest intensity of the carbonyl band and the reference band (66.31%). The reference band of choice and the type of calculation method produce different carbonyl index values for the same spectra and mean different information, preventing comparison among works with different calculations.
Collapse
Affiliation(s)
- Raimara S Gomes
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brasil
| | - Andreia N Fernandes
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brasil
| | - Walter R Waldman
- Centro de Ciências e Tecnologia para Sustentabilidade, Universidade Federal de São Carlos (UFSCar), Rodovia SP-264, km 110, Sorocaba, SP 18052-780, Brasil
| |
Collapse
|
15
|
Saygin H, Tilkili B, Karniyarik S, Baysal A. Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171103. [PMID: 38402970 DOI: 10.1016/j.scitotenv.2024.171103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Temperature changes due to climate change and microplastic contamination are worldwide concerns, creating various problems in the marine environment. Therefore, this study was carried out to discover the impact of different temperatures of seawater exposed to different types of plastic materials on culture dependent bacterial responses and oxidative characteristics. Seawater was exposed to microplastics obtained from various plastic materials at different temperature (-18, +4, +20, and +35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed seawater samples were analyzed for bacterial activity, biofilm formation and oxidative characteristics (antioxidant, catalase, glutathione, and superoxide dismutase) using Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The results showed that the activity and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus were affected through oxidative stress by catalase, glutathione, and superoxide dismutase due to the microplastic deformation by temperature changes. This study confirms that temperature changes as a result of climate change might influence microplastic degradation and their contamination impact in seawater in terms of bacterial metabolic and oxidation reactions.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Sinem Karniyarik
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
16
|
Niu S, Liu C, Yang C, Liu H. Microplastic pollution in urban stormwater inlet sediments influenced by land use type of runoff drainage area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170003. [PMID: 38218469 DOI: 10.1016/j.scitotenv.2024.170003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Since the urban stormwater inlet (USI) acts as a link in the migration of microplastics (MPs) in stormwater, sufficient information on MPs in USI sediments is very important for understanding urban diffuse microplastic pollution. In this study, the abundance and characteristics of MPs in the USI sediments of Ma'anshan City, China, were analyzed based on urban land use type. MPs were prevalent in the USI sediments, with the average abundances of 536.77 ± 313.92 items·kg-1 for commercial areas, 505.64 ± 400.82 items·kg-1 for campuses, 694.71 ± 219.95 items·kg-1 for industrial areas, 526.41 ± 152.34 items·kg-1 for residential areas, and 1107.75 ± 422.10 items·kg-1 for main roads, indicating a high microplastic pollution in the USI sediments from main roads. The microplastic polymers were mainly polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS), accounting for 46.75 %-100.00 %, with PP MPs being the most abundant. Fiber MPs had the highest proportion in USI sediments from both campuses (35.30 %) and industrial areas (38.19 %), while film MPs were the most abundant for both commercial areas (39.91 %) and residential areas (35.65 %). The average proportions of fiber (27.29 %), fragment (29.18 %), and film (28.68 %) were almost equal for main roads, unlike other land use types. Except for campuses, transparent MPs were the most common for all land use types, with average proportions of 29.60 %-42.70 %. The proportions of MPs with sizes of <1000 μm were 72.54 % for commercial areas, 77.11 % for campuses, 76.05 % for industrial areas, 70.76 % for residential areas, and 74.29 % for main roads, respectively, with a consistent result with previous study that the MPs of <1000 μm are the predominant in the environment. This study enriches the knowledge of microplastic pollution in USI sediments and will benefit the mitigation of diffuse microplastic pollution.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China.
| | - Chaoge Liu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Cuihe Yang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Hui Liu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China.
| |
Collapse
|
17
|
Wang Q, Chen M, Min Y, Shi P. Aging of polystyrene microplastics by UV/Sodium percarbonate oxidation: Organic release, mechanism, and disinfection by-product formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132934. [PMID: 37976854 DOI: 10.1016/j.jhazmat.2023.132934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The occurrence and transformation of microplastics (MPs) in environment has attracted considerable attention. However, the release characteristics of MP-derived dissolved organic matter (MP-DOM) under oxidation conditions and the effect of DOM on subsequent chlorination disinfection by-product (DBP) still lacks relevant information. This study focused on the conversion of polystyrene microplastics (PSMPs) in the advanced oxidation of ultraviolet-activated sodium percarbonate (UV/SPC-AOP) and the release characteristics of MP-DOM. The DBP formation potential of MP-DOM was also investigated. As a result, UV/SPC significantly enhanced the aging and fragmentation of PSMPs. Under UV irradiation, the fluorescence peak intensity and position of humus-like and protein-like components of MP-DOM were correlated with SPC concentration. The aging MP suspension was analyzed by gas chromatography-mass spectrometry (GC-MS), and various alkyl-cleavage and oxidation products were identified. Quenching experiments and electron paramagnetic resonance (EPR) detection confirmed that carbonate and hydroxyl radicals jointly dominated the conversion of PSMPs. The formation of DBP was related to the components of MP-DOM. Overall, these results help to understand the aging behavior of MPs in AOP. Moreover, MP-DOM released by MPs after AOP oxidation may be a precursor of DBPs, which deserved more attention.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China.
| |
Collapse
|
18
|
Li Y, Liu C, Yang H, He W, Li B, Zhu X, Liu S, Jia S, Li R, Tang KHD. Leaching of chemicals from microplastics: A review of chemical types, leaching mechanisms and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167666. [PMID: 37820817 DOI: 10.1016/j.scitotenv.2023.167666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
It is widely known that microplastics are present everywhere and they pose certain risks to the ecosystem and humans which are partly attributed to the leaching of additives and chemicals from them. However, the leaching mechanisms remain insufficiently understood. This review paper aims to comprehensively and critically illustrate the leaching mechanisms in biotic and abiotic environments. It analyzes and synthesizes the factors influencing the leaching processes. It achieves the aims by reviewing >165 relevant scholarly papers published mainly in the past 10 years. According to this review, flame retardants, plasticizers and antioxidants are the three main groups of additives in microplastics with the potentials to disrupt endocrine functions, reproduction, brain development and kidney functions. Upon ingestion, the MPs are exposed to digestive fluids containing enzymes and acids which facilitate their degradation and leaching of chemicals. Fats and oils in the digestive tracts also aid the leaching and transport of these chemicals particularly the fat-soluble ones. Leaching is highly variable depending on chemical properties and bisphenols leach to a larger extent than other endocrine disrupting chemicals. However, the rates of leaching remain poorly understood, owing probably to multiple factors at play. Diffusion and partitioning are two main mechanisms of leaching in biotic and abiotic environments. Photodegradation is more predominant in the latter, generating reactive oxygen species which cause microplastic aging and leaching with minimal destruction of the chemicals leached. Effects of microplastic sizes on leaching are governed by Sherwood number, thickness of aqueous boundary layer and desorption half-life. This review contributes to better understanding of leaching of chemicals from microplastics which affect their ecotoxicities and human toxicity.
Collapse
Affiliation(s)
- Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Chen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Haotian Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Wenhui He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Beibei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Xinyi Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shuyan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shihao Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
19
|
Bridson JH, Masterton H, Theobald B, Risani R, Doake F, Wallbank JA, Maday SDM, Lear G, Abbel R, Smith DA, Kingsbury JM, Pantos O, Northcott GL, Gaw S. Leaching and transformation of chemical additives from weathered plastic deployed in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115810. [PMID: 38006872 DOI: 10.1016/j.marpolbul.2023.115810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Plastic pollution causes detrimental environmental impacts, which are increasingly attributed to chemical additives. However, the behaviour of plastic additives in the marine environment is poorly understood. We used a marine deployment experiment to examine the impact of weathering on the extractables profile, analysed by liquid chromatography-mass spectrometry, of four plastics at two locations over nine months in Aotearoa/New Zealand. The concentration of additives in polyethylene and oxo-degradable polyethylene were strongly influenced by artificial weathering, with deployment location and time less influential. By comparison, polyamide 6 and polyethylene terephthalate were comparatively inert with minimal change in response to artificial weathering or deployment time. Non-target analysis revealed extensive differentiation between non-aged and aged polyethylene after deployment, concordant with the targeted analysis. These observations highlight the need to consider the impact of leaching and weathering on plastic composition when quantifying the potential impact and risk of plastic pollution within receiving environments.
Collapse
Affiliation(s)
- James H Bridson
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Hayden Masterton
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Beatrix Theobald
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Regis Risani
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Jessica A Wallbank
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Stefan D M Maday
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Robert Abbel
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Dawn A Smith
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
20
|
Yu Y, Yao Y, Adyel TM, Shahid Iqbal S, Wu J, Miao L, Hou J. Characterization of the dynamic aging and leached dissolved organic carbon from biodegradable and conventional plastics under photooxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119561. [PMID: 37980792 DOI: 10.1016/j.jenvman.2023.119561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/28/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Biodegradable plastics have been regarded as promising candidates in the struggle against plastic pollution. However, the aging and dynamic leaching process of biodegradable and conventional plastics under photooxidation is still unclear. Herein, three types of non-biodegradable plastics (polypropylene, polyethylene, and polyethylene terephthalate), and two types of biodegradable plastics (polylactic acid and cornstarch-based plastics) were treated with 21 days of photooxidation followed by 13 days of dark conditions. Scanning electron microscopy was applied to display the morphological changes. Also, the carbonyl index, oxygen-to-carbon ratio, and contact angle were utilized to characterize the aging degree of the plastic surface. Unexpectedly, biodegradable plastics did not always display a greater aging degree than non-biodegradable plastics. Moreover, the dissolved organic carbon during the leaching process was identified using excitation-emission matrix fluorescence spectroscopy. The findings suggested that biodegradable plastics showed the potential to release more dissolved organic carbon. Particularly, the polylactic acid plastic displayed higher concentrations and more types of dissolved organic carbon release than that of conventional plastics in our experiment. This research highlights the necessity for monitoring the aging process of both biodegradable and non-biodegradable plastics and the non-negligible ecological risk of leached organic pollutants due to plastic degradation.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, 8093, Switzerland
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia
| | - Sayyed Shahid Iqbal
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
21
|
Corti A, Pagano G, Lo Giudice A, Papale M, Rizzo C, Azzaro M, Vinciguerra V, Castelvetro V, Giannarelli S. Marine sponges as bioindicators of pollution by synthetic microfibers in Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166043. [PMID: 37544451 DOI: 10.1016/j.scitotenv.2023.166043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Different marine sponge species from Tethys Bay, Antarctica, were analyzed for contamination by polyester and polyamide microplastics (MPs). The PISA (Polymer Identification and Specific Analysis) procedure was adopted as it provides, through depolymerization and HPLC analysis, highly sensitive mass-based quantitative data. The study focused on three analytes resulting from the hydrolytic depolymerization of polyesters and polyamides: terephthalic acid (TPA), 6-aminohexanoic acid (AHA), and 1-6-hexanediamine (HMDA). TPA is a comonomer found in the polyesters poly(ethylene terephthalate) (PET) and poly(butylene adipate co terephthalate) (PBAT), and in polyamides such as poly(1,4-p-phenylene terephthalamide) (Kevlar™ and Twaron™ fibers) and poly(hexamethylene terephthalamide) (nylon 6 T). AHA is the monomer of nylon 6. HMDA is a comonomer of the aliphatic nylon 6,6 (HMDA-co-adipic acid) and of semi-aromatic polyamides such as, again, nylon 6 T (HMDA-co-TPA). Except for the biodegradable PBAT, these polymers exhibit high to extreme mechanical, thermal and chemical resistance. Indeed, they are used as technofibers in protective clothing able to withstand extreme conditions as those typical of Antarctica. Of the two amine monomers, only HMDA was found above the limit of quantification, and only in specimens of Haliclona (Rhizoniera) scotti, at a concentration equivalent to 27 μg/kg of nylon 6,6 in the fresh sponge. Comparatively higher concentrations, corresponding to 2.5-4.1 mg/kg of either PBAT or PPTA, were calculated from the concentration of TPA detected in all sponge species. Unexpectedly, TPA did not originate from PET (the most common textile fiber) as it was detected in the acid hydrolysate, whereas the PISA procedure results in effective PET depolymerization only under alkaline conditions. The obtained results showed that sponges, by capturing and concentrating MPs from large volumes of filtered marine waters, may be considered as effective indicators of the level and type of pollution by MPs and provide early warnings of increasing levels of pollution even in remote areas.
Collapse
Affiliation(s)
- Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy.
| | - Giulia Pagano
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy; Sicily Marine Centre, Department Ecosustainable Marine Biotechnology (BIOTEC), Stazione Zoologica Anton Dohrn, National Institute of Biology, Ecology and Marine Biotechnology, 98167 Messina, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy
| | - Virginia Vinciguerra
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
22
|
Bridson JH, Abbel R, Smith DA, Northcott GL, Gaw S. Impact of accelerated weathering on the leaching kinetics of stabiliser additives from microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132303. [PMID: 37595471 DOI: 10.1016/j.jhazmat.2023.132303] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
The release of additives from microplastics is known to harm organisms. In the environment, microplastics are exposed to weathering processes which are suspected to influence additive leaching kinetics, the extent and mechanism of which remain poorly understood. We examined the impact of weathering on stabiliser additive leaching kinetics using environmentally relevant accelerated weathering and leaching procedures. Nine binary polymer-additive formulations were specifically prepared, weathered, analysed, and evaluated for their leaching characteristics. Cumulative additive release (Ce) varied widely between formulations, ranging from 0.009 to 1162 µg/g. Values of Ce generally increased by polymer type in the order polyethylene terephthalate < polyamide 6 < polyethylene. The change in leaching kinetics after accelerated weathering was incongruous across the nine formulations, with a significant change in Ce only observed for three out of nine formulations. Physicochemical characterisation of the microplastics demonstrated that additive blooming was the primary mechanism influencing the leaching response to weathering. These findings highlight the dependency of additive fate on the polymer type, additive chemistry, and the extent of weathering exposure. This has significant implications for risk assessment and mitigation, where the general assumption that polymer weathering increases additive leaching may be too simplistic.
Collapse
Affiliation(s)
- James H Bridson
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Robert Abbel
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Dawn A Smith
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
23
|
Huang Q, Pan L, Luo G, Jiang R, Ouyang G, Ye Y, Cai J, Guo P. Exploring the release of hazardous volatile organic compounds from face masks and their potential health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122042. [PMID: 37328128 DOI: 10.1016/j.envpol.2023.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Hazardous chemicals released from the petroleum-derived face mask can be inhaled by wearers and cause adverse health effects. Here, we first used headspace solid-phase microextraction coupled with GC-MS to comprehensively analyze the volatile organic compounds (VOCs) released from 26 types of face masks. The results showed that total concentrations and peak numbers ranged from 3.28 to 197 μg/mask and 81 to 162, respectively, for different types of mask. Also, light exposure could affect the chemical composition of VOCs, particularly increasing the concentrations of aldehydes, ketones, organic acids and esters. Of these detected VOCs, 142 substances were matched to a reported database of chemicals associated with plastic packaging; 30 substances were identified by the International Agency for Research on Cancer (IARC) as potential carcinogenic to humans; 6 substances were classified in the European Union as persistent, bioaccumulative, and toxic, or very persistent, very bioaccumulative substance. Reactive carbonyls were ubiquitous in masks, especially after exposure to light. The potential risk of VOCs released from the face masks were then accessed by assuming the extreme scenario that all the VOC residues were released into the breathing air within 3 h. The result showed that the average total concentration of VOCs (17 μg/m3) was below the criterion for hygienic air, but seven substances, 2-ethylhexan-1-ol, benzene, isophorone, heptanal, naphthalene, benzyl chloride, and 1,2-dichloropropane exceeded the non-cancer health guidelines for lifetime exposure. This finding suggested that specific regulations should be adopted to improve the chemical safety of face masks.
Collapse
Affiliation(s)
- Qi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Li Pan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Gan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China.
| | - Gangfeng Ouyang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanjian Ye
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511400, China
| | - Jin'an Cai
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511400, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| |
Collapse
|
24
|
Wang J, Tao J, Ji J, Wu M, Sun Y, Li J, Gan J. Use of a Dual-Labeled Bioaccumulation Method to Quantify Microplastic Vector Effects for Hydrophobic Organic Contaminants in Soil. ACS ENVIRONMENTAL AU 2023; 3:233-241. [PMID: 37483307 PMCID: PMC10360207 DOI: 10.1021/acsenvironau.3c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Although in vitro simulation and in vivo feeding experiments are commonly used to evaluate the carrier role of microplastics in the bioaccumulation of toxic chemicals, there is no direct method for quantitatively determining their vector effect. In this study, we propose a dual-labeled method based on spiking unlabeled hydrophobic organic contaminants (HOCs) into soils and spiking their respective isotope-labeled reference compounds into microplastic particles. The bioaccumulation of the unlabeled and isotope-labeled HOCs in Eisenia fetida earthworms was compared. Earthworms can assimilate both unlabeled and isotope-labeled HOCs via three routes: dermal uptake, soil ingestion, and microplastic ingestion. After 28 days of exposure, the relative fractions of bioaccumulated isotope-labeled HOCs in the soil treated with 1% microplastics ranged from 15.5 to 55.8%, which were 2.9-47.6 times higher than those in the soils treated with 0.1% microplastics. Polyethylene microplastics were observed to have higher relative fractions of bioaccumulated isotope-labeled HOCs, potentially because of their surface hydrophobicity and amorphous rubbery state. The general linear models suggested that the vector effects were mainly due to the microplastic concentration, followed by polymer properties and HOC hydrophobicity. This proposed method and the derived empirical formula contribute to a more comprehensive understanding of the vector effects of microplastics for HOC bioaccumulation.
Collapse
Affiliation(s)
- Jie Wang
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianguo Tao
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianghao Ji
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mochen Wu
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanze Sun
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Li
- State
Key Laboratory of Biogeology and Environmental Geology, School of
the Earth Sciences and Resources, China
University of Geosciences, Beijing 100083, China
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
25
|
Guo S, Mu L, Sun S, Hou X, Yao M, Hu X. Concurrence of microplastics and heat waves reduces rice yields and disturbs the agroecosystem nitrogen cycle. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131340. [PMID: 37027913 DOI: 10.1016/j.jhazmat.2023.131340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Microplastic pollution and heat waves, as damaging aspects of human activities, have been found to affect crop production and nitrogen (N) cycling in agroecosystems. However, the impacts of the combination of heat waves and microplastics on crop production and quality have not been analyzed. We found that heat waves or microplastics alone had slight effects on rice physiological parameters and soil microbial communities. However, under heat wave conditions, the typical low-density polyethylene (LDPE) and polylactic acid (PLA) microplastics decreased the rice yields by 32.1% and 32.9%, decreased the grain protein level by 4.5% and 2.8%, and decreased the lysine level by 91.1% and 63.6%, respectively. In the presence of heat waves, microplastics increased the allocation and assimilation of N in roots and stems but decreased those in leaves, which resulted in a reduction in photosynthesis. In soil, the concurrence of microplastics and heat waves induced the leaching of microplastics, which resulted in decreased microbial N functionality and disturbed N metabolism. In summary, heat waves amplified the disturbance induced by microplastics on the agroecosystem N cycle and therefore exacerbated the decreases in rice yield and nutrients induced by microplastics, which indicates that the environmental and food risks of microplastics deserve to be reconsidered.
Collapse
Affiliation(s)
- Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-Environment and Safe-Product, Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Li Mu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-Environment and Safe-Product, Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| | - Shan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingqi Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
26
|
Xiao C, Zhang M, Ding L, Qiu X, Guo X. New sight of microplastics aging: Reducing agents promote rapid aging of microplastics under anoxic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131123. [PMID: 36871465 DOI: 10.1016/j.jhazmat.2023.131123] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The aging of microplastics (MPs) occurs extensively in the environment, and understanding the aging mechanisms of MPs is essential to study the properties, fate and environmental impact of MPs. We proposed a creative hypothesis that polyethylene terephthalate (PET) can be aged by reducing reactions with reducing agents. Simulation experiments based on the principle of reduction of carbonyl by NaBH4 were conducted to test the correctness of this hypothesis. The results showed that after 7 days of experiments, physical damage and chemical transformation occurred in the PET-MPs. The particle size of MPs was reduced by 34.95-55.93 %, and the C/O ratio was increased by 2.97-24.14 %. The changing order of surface functional groups (CO > C-O > C-H > C-C) was obtained. The occurrence of reductive aging and electron transfer of MPs was further supported by electrochemical characterization experiments. These results together reveal the reductive aging mechanism of PET-MPs: CO is firstly reduced to C-O by BH4- attack, and then further reduced to ·R. The resulting ·R recombines to form new C-H and C-C. This study is beneficial to deepen the understanding of the chemical aging of MPs, and can provide a theoretical basis for further research on the reactivity of oxygenated MPs with reducing agents.
Collapse
Affiliation(s)
- Chuanqi Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
27
|
Novotna K, Pivokonska L, Cermakova L, Prokopova M, Fialova K, Pivokonsky M. Continuous long-term monitoring of leaching from microplastics into ambient water - A multi-endpoint approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130424. [PMID: 36410247 DOI: 10.1016/j.jhazmat.2022.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Widespread pollution of aquatic environments by microplastics (MPs) is a serious environmental threat. Despite the knowledge of their occurrence and properties rapidly evolving, the potential leaching from MPs remains largely unexplored. In this study, 16 different types of MPs prepared from consumer products were kept in long-term contact with water, while the leachates were continuously analysed. Most of the MPs released significant amounts of dissolved organic carbon, up to approximately 65 mg per g MPs after 12 weeks of leaching, and some MPs also released dissolved inorganic carbon. Other elements identified in the leachates were Al, Ba, Ca, Fe, K, Mg, Mn, Na, Si, and Zn. Of those, Ca, K, and Na were detected most frequently, while Ca reached the highest amounts (up to almost 2.5 mg per g MPs). Additionally, 80 organic individuals were tentatively identified in the leachates, mostly esters, alcohols, and carboxylic acids. Some compounds considered harmful to human health and/or the environment were detected, e.g., bisphenol A or phthalate esters. The current results provide insight into the transfer of various compounds from MPs to ambient water, which might have consequences on the fluxes of carbon and metals, as well as of specific organic contaminants.
Collapse
Affiliation(s)
- Katerina Novotna
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Lenka Pivokonska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Lenka Cermakova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Michaela Prokopova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Fialova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic.
| |
Collapse
|
28
|
Lou H, Fu R, Long T, Fan B, Guo C, Li L, Zhang J, Zhang G. Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158604. [PMID: 36089048 DOI: 10.1016/j.scitotenv.2022.158604] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/15/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The widespread use of polyethylene (PE) causes a large amount of indigestible plastic waste. Waxworms (the larvae of Plodia interpunctella) can eat PE, but the degradation principle of PE under the action of intestinal microorganisms is still unclear, especially the insufficient research on key degradable PE strains. In this study, we fed waxworms with PE. Two strains with high PE degradation efficiency were isolated and purified, and the effects of single and microbial consortia on PE degradation were evaluated by water contact angle (WCA), FTIR, GC-MS, SEM and RT-qPCR. The results showed that Meyerozyma guilliermondii ZJC1 (MgZJC1) and Serratia marcescens ZJC2 (SmZJC2) could degrade PE. However, the degradation efficiency of the microbial consortium was higher, and the weight loss rate of PE was 15.87 %. In addition, the PE degradation products of MgZJC1 were C9H10O, C20H15NO, C28H44O3 and C16H32O2, and the PE degradation products of SmZJC2 were C16H18O, C14H18N2O7 and C31H48O6. The PE degradation products of the microbial consortium were C11H24, C19H10O, C15H32, C14H30, C16H34, C25H52 and C27H56. RT-qPCR results showed that SmZJC2 promoted PE degradation by upregulating the expression of multiple genes, such as multicopper oxidase genes (PiSm-CueO). MgZJC1 responded to carbon deficiency by upregulating the expression of multiple genes, such as key enzyme genes in the tricarboxylic acid (TCA) cycle. This study can be used to develop an efficient microbial consortium for PE degradation and provide a basis for the reuse of PE waste. It can also provide a research basis for the joint degradation of PE by microbial consortia composed of bacteria and fungi.
Collapse
Affiliation(s)
- Hu Lou
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Rao Fu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Tianyi Long
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Baozhen Fan
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chao Guo
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin 150040, China
| | - Jie Zhang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
29
|
Chun S, Muthu M, Gopal J. Mass Spectrometry as an Analytical Tool for Detection of Microplastics in the Environment. CHEMOSENSORS 2022; 10:530. [DOI: 10.3390/chemosensors10120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plastic particles smaller than 5 mm accumulate in aqueous, terrestrial, and atmospheric environments and their discovery has been a serious concern when it comes to eco-toxicology and human health risk assessment. In the following review, the potential of mass spectrometry (MS) for the detection of microplastic (MP) pollutants has been elaborately reviewed. The use of various mass spectrometric techniques ranging from gas chromatography–mass spectrometry (GC-MS), liquid chromatographic mass spectrometric (LC-MS) to matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), including their variants, have been reviewed. The lapses in the detection system have been addressed and future recommendations proposed. The challenges facing microplastics and their detection have been discussed and future directions, including mitigation methods, have been presented.
Collapse
|
30
|
Padermshoke A, Kajiwara T, An Y, Takigawa M, Van Nguyen T, Masunaga H, Kobayashi Y, Ito H, Sasaki S, Takahara A. Characterization of photo-oxidative degradation process of polyolefins containing oxo-biodegradable additives. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Chen M, Xu J, Tang R, Yuan S, Min Y, Xu Q, Shi P. Roles of microplastic-derived dissolved organic matter on the photodegradation of organic micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129784. [PMID: 36029735 DOI: 10.1016/j.jhazmat.2022.129784] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic-derived dissolved organic matter (MP-DOM) is ubiquitous in water environment and exhibits photosensitivity. However, little is known about the effects of MP-DOM on the photodegradation of organic micropollutants in natural water. In this study, we investigated the effect of MP-DOM derived from two typical plastics, i.e., polystyrene (PS), and polyethylene (PE), on the photodegradation of a typical organic micropollutants sulfamethoxazole (SMX) in a simulative natural water system. MP-DOM exerted a significant inhibition on the SMX photodegradation, mainly attributed to the direct photolysis inhibition of SMX caused by the inner filter effect and the complexation effect. Despite the enhanced reactive oxygen species (ROS) generation with the increase of their steady-state concentration by 41.1 - 160.7 %, PS-DOM exhibited high oxidation resistance, causing an inhibition on the photodegradation of SMX probably through transferring electrons to the SMX intermediates. This study helps to deepen the understanding of microplastic photochemical behavior in natural water.
Collapse
Affiliation(s)
- Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Jihong Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Rui Tang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China.
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China.
| |
Collapse
|
32
|
Chaiyasat P, Kamlangmak N, Hangmi K, Rattanawongwiboon T, Chaiyasat A. Fabrication of cellulose-based particles/capsules using gamma radiation-initiated radical precipitation polymerization. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2132249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Preeyaporn Chaiyasat
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
- Faculty of Science and Technology, Advanced Materials Design and Development (AMDD) Research Unit, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Netnapha Kamlangmak
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Kanokporn Hangmi
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | | | - Amorn Chaiyasat
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
- Faculty of Science and Technology, Advanced Materials Design and Development (AMDD) Research Unit, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|