1
|
Lin H, Zhang CJ. Discovery of Fluorescent Naturally-Occurring Inhibitor of SARS-CoV-2 Main Protease by AIE Fluorescent Probe. ChemMedChem 2024; 19:e202400311. [PMID: 38973697 DOI: 10.1002/cmdc.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Target-based high-throughput screening (HTS) is an efficient way to identify potent drugs. However, the accuracy of HTS could be affected by Pan-Assay Interference Compounds (PAINS). One reason for the generation of PAINS is that the inherent photophysical property of screened compounds could interfere with typically used assay signals including absorption and fluorescence. Our previous studies indicate that the fluorescent probe based on the fluorophore with characteristics of aggregation-induced emission (AIE) could provide high accuracy of HTS, especially for the fluorescent natural products. Herein, we report an AIE-based fluorescent probe for the main protease (Mpro) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We designed and synthesized an AIE fluorescent probe ZLHG5, which has a site that can be specifically cleaved by Mpro to produce a light-up fluorescence. Thanks to the large Stokes shift of AIE fluorophore (~200 nm), the probe could be effectively used for HTS of Mpro inhibitors. After screening a library of fluorescent natural products with ZLHG5, we obtained two coumarin-originated natural compounds with potent inhibitory activity towards Mpro protease. This study provides both useful fluorescent HTS probe and potent inhibitors for Mpro protease.
Collapse
Affiliation(s)
- Hao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical sciences, Beijing, 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical sciences, Beijing, 100050, China
| |
Collapse
|
2
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Li J, Wang K, Li X, Wang S, Guo G, Zheng Q, Zhang M, Zeng J. Near-infrared responsive gold nanorods for highly sensitive colorimetric and photothermal lateral flow immuno-detection of SARS-CoV-2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2597-2605. [PMID: 38618693 DOI: 10.1039/d4ay00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The highly infectious characteristics of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the necessity of sensitive and rapid nucleocapsid (N) protein-based antigen testing for early triage and epidemic management. In this study, a colorimetric and photothermal dual-mode lateral flow immunoassay (LFIA) platform for the rapid and sensitive detection of the SARS-CoV-2 N protein was developed based on gold nanorods (GNRs), which possessed tunable local surface plasma resonance (LSPR) absorption peaks from UV-visible to near-infrared (NIR). The LSPR peak was adjusted to match the NIR emission laser 808 nm by controlling the length-to-diameter ratio, which could maximize the photothermal conversion efficiency and achieve photothermal detection signal amplification. Qualitative detection of SARS-CoV-2 N protein was achieved by observing the strip color, and the limit of detection was 2 ng mL-1, while that for photothermal detection was 0.096 ng mL-1. Artificial saliva samples spiked with the N protein were analyzed with the recoveries ranging from 84.38% to 107.72%. The intra-assay and inter-assay coefficients of variation were 6.76% and 10.39%, respectively. We further evaluated the reliability of this platform by detecting 40 clinical samples collected from nasal swabs, and the results matched well with that of nucleic acid detection (87.5%). This method shows great promise in early disease diagnosis and screening.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jingwen Li
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Kun Wang
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiang Li
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Shenming Wang
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Gengchen Guo
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Qiaowen Zheng
- College of Chemistry and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Maosheng Zhang
- College of Chemistry and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Jingbin Zeng
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
4
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
6
|
Sun Q, Ning Q, Li T, Jiang Q, Feng S, Tang N, Cui D, Wang K. Immunochromatographic enhancement strategy for SARS-CoV-2 detection based on nanotechnology. NANOSCALE 2023; 15:15092-15107. [PMID: 37676509 DOI: 10.1039/d3nr02396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) has been catastrophic to both human health and social development. Therefore, developing highly reliable and sensitive point-of-care testing (POCT) for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a priority. Among all available POCTs, the lateral flow immunoassay (LFIA, also known as immunochromatography) has proved to be effective due to its accuracy, portability, convenience, and speed. In areas with a scarcity of laboratory resources and medical personnel, the LFIA provides an affordable option for the diagnosis of COVID-19. This review offers a comprehensive overview of methods for improving the sensitivity of SARS-CoV-2 detection using immunochromatography based on nanotechnology, sorted according to the different detection targets (antigens, antibodies, and nucleic acids). It also looks into the performance and properties of the various sensitivity enhancement strategies, before delving into the remaining challenges in COVID-19 diagnosis through LFIA. Ultimately, it seeks to provide helpful guidance in selecting an appropriate strategy for SARS-CoV-2 immunochromatographic detection based on nanotechnology.
Collapse
Affiliation(s)
- Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ning Tang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| |
Collapse
|
7
|
Lai W, Xu Y, Liu L, Cao H, Yang B, Luo J, Fei Y. Simultaneous and Visual Detection of KPC and NDM Carbapenemase-Encoding Genes Using Asymmetric PCR and Multiplex Lateral Flow Strip. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:9975620. [PMID: 37520816 PMCID: PMC10386901 DOI: 10.1155/2023/9975620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/03/2023] [Accepted: 06/17/2023] [Indexed: 08/01/2023]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) infections constitute a threat to public health, and KPC and NDM are the major carbapenemases of concern. Rapid diagnostic tests are highly desirable in point-of-care (POC) and emergency laboratories with limited resources. Here, we developed a multiplex lateral flow assay based on asymmetric PCR and barcode capture probes for the simultaneous detection of KPC-2 and NDM-1. Biotinylated barcode capture probes corresponding to the KPC-2 and NDM-1 genes were designed and cast onto two different sensing zones of a nitrocellulose membrane after reacting with streptavidin to prepare a multiplex lateral flow strip. Streptavidin-coated gold nanoparticles (SA-AuNPs) were used as signal reporters. In response to the target carbapenemase genes, biotin-labelled ssDNA libraries were produced by asymmetric PCR, which bond to SA-AuNPs via biotin and hybridise with the barcode capture probe via a complementary sequence, thereby bridging SA-AuNPs and the barcode capture probe to form visible red lines on the detection zones. The signal intensities were proportional to the number of resistance genes tested. The strip sensor showed detection limits of 0.03 pM for the KPC-2 and 0.07 pM for NDM-1 genes, respectively, and could accurately distinguish between KPC-2 and NDM-1 genes in CRE strains. For the genotyping of clinical isolates, our strip exhibited excellent consistency with real-time fluorescent quantitative PCR and gene sequencing. Given its simplicity, cost-effectiveness, and rapid analysis accomplished by the naked eye, the multiplex strip is promising auxiliary diagnostic tool for KPC-2 and NDM-1 producers in routine clinical laboratories.
Collapse
Affiliation(s)
- Wei Lai
- School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yongjie Xu
- NHC Key Laboratory of Pulmonary Immunological-Related Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Lin Liu
- NHC Key Laboratory of Pulmonary Immunological-Related Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Huijun Cao
- School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou, China
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Bin Yang
- NHC Key Laboratory of Pulmonary Immunological-Related Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Jie Luo
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang 550002, China
| | - Ying Fei
- School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou, China
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
8
|
Maher S, Kamel M, Demerdash Z, El Baz H, Sayyouh O, Saad A, Ali N, Salah F, Atta S. Gold conjugated nanobodies in a signal-enhanced lateral flow test strip for rapid detection of SARS-CoV-2 S1 antigen in saliva samples. Sci Rep 2023; 13:10643. [PMID: 37391465 PMCID: PMC10313708 DOI: 10.1038/s41598-023-37347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Despite the transfer of COVID-19 from the pandemic to control, we are still in a state of uncertainty about long-term success. Therefore, there is a great need for rapid and sensitive diagnostics to sustain the control status. After several optimization trials, we developed lateral flow test (LFT) strips for rapid detection of SARS-CoV-2 spike 1 (S1) antigen in saliva samples. For signal enhancement of our developed strips, we applied dual gold conjugates. Gold-labeled anti-S1 nanobodies (Nbs) were employed as S1 detector conjugate, while gold-labeled angiotensin-converting enzyme 2 (ACE2) was used as S1 capturing conjugate. In a parallel strip design, we used an anti-S1 monoclonal antibody (mAb) as an antigen detector instead of anti-S1 Nbs. Saliva samples were collected from 320 symptomatic subjects (180 RT-PCR confirmed positive cases and 140 confirmed negative cases) and were tested with the developed strips. In early detection for positive samples with cycle threshold (Ct ≤ 30), Nbs-based LFT strips showed higher sensitivity (97.14%) and specificity (98.57%) than mAb-based strips which gave 90.04% sensitivity and 97.86% specificity. Moreover, the limit of detection (LoD) for virus particles was lower for Nbs-based LFT (0.4 × 104 copies/ml) than for the mAb-based test (1.6 × 104 copies/ml). Our results are in favor of the use of dual gold Nbs and ACE2 conjugates in LFT strips. These signal-enhanced strips offer a sensitive diagnostic tool for rapid screening of SARS-CoV-2 S1 antigen in the easily collected saliva samples.
Collapse
Affiliation(s)
- Sara Maher
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Manal Kamel
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Zeinab Demerdash
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hanan El Baz
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Omar Sayyouh
- Infection Control and Clinical Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Amany Saad
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha Ali
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Faten Salah
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
9
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
10
|
Zhang Z, Deng Z, Zhu L, Zeng J, Cai XM, Qiu Z, Zhao Z, Tang BZ. Aggregation-induced emission biomaterials for anti-pathogen medical applications: detecting, imaging and killing. Regen Biomater 2023; 10:rbad044. [PMID: 37265605 PMCID: PMC10229374 DOI: 10.1093/rb/rbad044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023] Open
Abstract
Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.
Collapse
Affiliation(s)
- Zicong Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lixun Zhu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jialin Zeng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xu Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Correspondence address. E-mail: (Z.Z.); (B.Z.T.)
| | | |
Collapse
|
11
|
Lai S, Liu Y, Fang S, Wu Q, Fan M, Lin D, Lin J, Feng S. Ultrasensitive detection of SARS-CoV-2 antigen using surface-enhanced Raman spectroscopy-based lateral flow immunosensor. JOURNAL OF BIOPHOTONICS 2023:e202300004. [PMID: 36999175 DOI: 10.1002/jbio.202300004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The fast spread and transmission of the coronavirus 2019 (COVID-19) has become one of serious global public health problems. Herein, a surface enhanced Raman spectroscopy-based lateral flow immunoassay (LFA) was developed for the detection of SARS-CoV-2 antigen. Using uniquely designed core-shell nanoparticle with embedded Raman probe molecules as the indicator to reveal the concentration of target protein, excellent quantitative performance with a limit of detection (LOD) of 0.03 ng/mL and detection range of 10-1000 ng/mL can be achieved within 15 min. Besides, the detection of spiked virus protein in human saliva was also performed with a portable Raman spectrometer, proposing the feasibility of the method in practical applications. This easy-to-use, rapid and accurate method would provide a point-of-care testing way as the ideal alternative for current detection requirement of virus-related biomarkers.
Collapse
Affiliation(s)
- Shuxia Lai
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yi Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shubin Fang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Chen X, Wei X, Cheng S, Liu Z, Su Y, Xiong Y, Huang X. High-performance green-emitting AIE nanoparticles for lateral flow immunoassay applications. Mikrochim Acta 2023; 190:56. [PMID: 36645516 DOI: 10.1007/s00604-022-05616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023]
Abstract
Ultrabright green-emissive AIE nanoparticles (AIENPs) were used as signal-amplification probes to enhance the detectability of lateral flow immunoassay (LFIA). The detection performances of the green-emissive AIENP probes in both sandwich and competitive LFIA formats were systematically evaluated. Benefiting from its remarkable fluorescent brightness, the developed AIENP-LFIA showed versatile applicability for the detection of small molecules and macromolecules by using ochratoxin A (OTA) and procalcitonin (PCT) as model analytes, respectively. Under the optimum conditions, the detection limits (LODs) of the fabricated AIENP-LFIA for OTA and PCT were 0.043 ng mL-1 and 0.019 ng mL-1, respectively. These LOD values are significantly lower than those of conventional LFIA methods using gold nanoparticles as signal reporters. In addition, we demonstrated the practical application potential of AIENP-LFIA for the detection of OTA in real maize samples and PCT in real serum samples. These results indicated that the ultrabright green-emissive AIENPs were promising as signal output materials for building high-performance LFIA platform and broadening the application scenarios of LFIA.
Collapse
Affiliation(s)
- Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Song Cheng
- Guangzhou Development District, AIE Institute, Guangzhou, 510530, Huangpu, People's Republic of China
| | - Zilong Liu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yu Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
13
|
Abstract
Luminogens with aggregation-induced emission (AIEgens) properties have numerous broad applications in fields of chemical and biological analyses due to their exceptional photostability, excellent signal reliability, high quantum yield, and large Stokes' shift. In particular, AIEgens also bring new blood for immunoassay. Since publication of the first 2004 paper, AIEgens-based immunoassays have received significant attention because of their high sensitivity, specificity, accuracy, and reliability. However, until now, there have been no comprehensive literature reviews focused on the evolving field of AIEgens-based immunoassays. Thus, we have extensively reviewed AIEgens-based immunoassays from their basic working principles to specific applications. We focus on several fundamental elements of AIEgens-based immunoassays, including the typical structures of AIEgens, emission mechanism of AIEgens probes, function of AIEgens in immunoassays, and platform of AIEgens-based immunoassays. Then, the representative applications of AIEgens-based immunoassays in food safety, medical diagnostics, and environmental monitoring are explored. Thus, proposals on how to further improve the AIEgens-based immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to provide brief and valid guidelines for choosing suitable AIEgens-based immunoassays according to specific application requirements.
Collapse
Affiliation(s)
- Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
14
|
Wang T, Gao Z, Zhang Y, Hong Y, Tang Y, Shan K, Kong X, Wang Z, Shi Y, Ding D. A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor. J Control Release 2022; 351:272-283. [PMID: 36116581 DOI: 10.1016/j.jconrel.2022.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Triple negative breast cancer (TNBC) is an immunosuppressive "cold" tumor that lacks immune cell infiltration and activation, resulting in a poor response to immune checkpoint blockade (ICB) therapies. In addition, TNBC is poorly responsive to targeted therapies due to the absence of efficient molecular targets. A strategy that can block molecular signal transduction, stimulate immunogenicity, and activate the immune response is a promising approach to achieve ideal clinical benefit. Herein, we designed and synthesized an aggregation-induced emission luminogen (AIEgen)-conjugated self-assembling peptide that targets epidermal growth factor receptor (EGFR), named TPA-FFG-LA. TPA-FFG-LA peptides form nanoassemblies on the surface of EGFR-positive TNBC cells and are internalized into cells through endocytosis, which inhibit EGFR signaling transduction and provoke lysosomal membrane permeabilization (LMP). Upon light irradiation, the aggregated AIEgens produce massive reactive oxygen species (ROS) to exacerbate LMP and trigger immunogenic cell death (ICD), resulting in elimination of residual EGFR-negative tumor cells and exerting long-term antitumor effects. The in vitro and in vivo experiments verified that TPA-FFG-LA nanoassemblies suppress tumor growth, provoke immune cell activation and infiltration, and cause EGFR degradation and LMP. These results suggest that the combination of supramolecular assembly induced molecular targeting effects and lysosome dysfunction with ICD-stimulated immune activation is a plausible strategy for the efficient therapy of immunosuppressive TNBC.
Collapse
Affiliation(s)
- Tianjiao Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Youhong Tang
- Australia-China Joint Centre for Personal Health Technologies, Medical Device Research Institute, Flinders University, South Australia 5042, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Zhiming Wang
- AIE Institute, Center for Aggregation-Induced Emission, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Shi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
Shellaiah M, Sun KW. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. BIOSENSORS 2022; 12:bios12070550. [PMID: 35884351 PMCID: PMC9313392 DOI: 10.3390/bios12070550] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/06/2023]
Abstract
Aggregation-induced emission (AIE) is a unique research topic and property that can lead to a wide range of applications, including cellular imaging, theranostics, analyte quantitation and the specific detection of biologically important species. Towards the development of the AIE-active materials, many aromatic moieties composed of tetraphenylethylene, anthracene, pyrene, etc., have been developed. Among these aromatic moieties, pyrene is an aromatic hydrocarbon with a polycyclic flat structure containing four fused benzene rings to provide an unusual electron delocalization feature that is important in the AIE property. Numerous pyrene-based AIE-active materials have been reported with the AIE property towards sensing, imaging and theranostics applications. Most importantly, these AIE-active pyrene moieties exist as small molecules, Schiff bases, polymers, supramolecules, metal-organic frameworks, etc. This comprehensive review outlines utilizations of AIE-active pyrene-based materials on the imaging and theranostics studies. Moreover, the design and synthesis of these pyrene-based molecules are delivered with discussions on their future scopes.
Collapse
|