1
|
Funa NS, Mjoseng HK, de Lichtenberg KH, Raineri S, Esen D, Egeskov-Madsen ALR, Quaranta R, Jørgensen MC, Hansen MS, van Cuyl Kuylenstierna J, Jensen KB, Miao Y, Garcia KC, Seymour PA, Serup P. TGF-β modulates cell fate in human ES cell-derived foregut endoderm by inhibiting Wnt and BMP signaling. Stem Cell Reports 2024; 19:973-992. [PMID: 38942030 PMCID: PMC11252478 DOI: 10.1016/j.stemcr.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024] Open
Abstract
Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor β1 (TGF-β1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-β1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-β1-treated cells refractory to Wnt signaling. Subsequently, TGF-β1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-β1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic β cell yield for cell-based therapeutic applications.
Collapse
Affiliation(s)
- Nina Sofi Funa
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Heidi Katharina Mjoseng
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Honnens de Lichtenberg
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Silvia Raineri
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Deniz Esen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Roberto Quaranta
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Skjøtt Hansen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonas van Cuyl Kuylenstierna
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; BRIC - Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
van Soldt BJ, Metscher BD, Richardson MK, Cardoso WV. Sox9 is associated with two distinct patterning events during snake lung morphogenesis. Dev Biol 2024; 506:7-19. [PMID: 37995917 PMCID: PMC10872300 DOI: 10.1016/j.ydbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
The evolutionary forces that allowed species adaptation to different terrestrial environments and led to great diversity in body shape and size required acquisition of innovative strategies of pattern formation during organogenesis. An extreme example is the formation of highly elongated viscera in snakes. What developmental patterning strategies allowed to overcome the space constraints of the snake's body to meet physiological demands? Here we show that the corn snake uses a Sox2-Sox9 developmental tool kit common to other species to generate and shape the lung in two phases. Initially Sox9 was found at low levels at the tip of the primary lung bud during outgrowth and elongation of the bronchial bud, without driving branching programs characteristic of mammalian lungs. Later, Sox9 induction is recapitulated in the formation of an extensive network of radial septae emerging along the elongated bronchial bud that generates the respiratory region. We propose that altogether these represent key patterning events for formation of both the respiratory faveolar and non-respiratory posterior compartments of the snake's lung.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, and Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, 1030, Austria
| | | | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, and Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Ori C, Ansari M, Angelidis I, Olmer R, Martin U, Theis FJ, Schiller HB, Drukker M. Human pluripotent stem cell fate trajectories toward lung and hepatocyte progenitors. iScience 2023; 26:108205. [PMID: 38026193 PMCID: PMC10663741 DOI: 10.1016/j.isci.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we interrogate molecular mechanisms underlying the specification of lung progenitors from human pluripotent stem cells (hPSCs). We employ single-cell RNA-sequencing with high temporal precision, alongside an optimized differentiation protocol, to elucidate the transcriptional hierarchy of lung specification to chart the associated single-cell trajectories. Our findings indicate that Sonic hedgehog, TGF-β, and Notch activation are essential within an ISL1/NKX2-1 trajectory, leading to the emergence of lung progenitors during the foregut endoderm phase. Additionally, the induction of HHEX delineates an alternate trajectory at the early definitive endoderm stage, preceding the lung pathway and giving rise to a significant hepatoblast population. Intriguingly, neither KDR+ nor mesendoderm progenitors manifest as intermediate stages in the lung and hepatic lineage development. Our multistep model offers insights into lung organogenesis and provides a foundation for in-depth study of early human lung development and modeling using hPSCs.
Collapse
Affiliation(s)
- Chaido Ori
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Fabian J. Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| |
Collapse
|
4
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
5
|
van der Sande M, Frölich S, van Heeringen SJ. Computational approaches to understand transcription regulation in development. Biochem Soc Trans 2023; 51:1-12. [PMID: 36695505 PMCID: PMC9988001 DOI: 10.1042/bst20210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Gene regulatory networks (GRNs) serve as useful abstractions to understand transcriptional dynamics in developmental systems. Computational prediction of GRNs has been successfully applied to genome-wide gene expression measurements with the advent of microarrays and RNA-sequencing. However, these inferred networks are inaccurate and mostly based on correlative rather than causative interactions. In this review, we highlight three approaches that significantly impact GRN inference: (1) moving from one genome-wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to measure cell type-specific signals and predict context-specific GRNs, and (3) neural networks as flexible models. Together, these experimental and computational developments have the potential to significantly impact the quality of inferred GRNs. Ultimately, accurately modeling the regulatory interactions between transcription factors and their target genes will be essential to understand the role of transcription factors in driving developmental gene expression programs and to derive testable hypotheses for validation.
Collapse
Affiliation(s)
| | | | - Simon J. van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
7
|
Tel2 regulates redifferentiation of bipotential progenitor cells via Hhex during zebrafish liver regeneration. Cell Rep 2022; 39:110596. [PMID: 35385752 DOI: 10.1016/j.celrep.2022.110596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/27/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Upon extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs via biliary epithelial cell (BEC) transdifferentiation, which includes dedifferentiation of BECs into bipotential progenitor cells (BP-PCs) and then redifferentiation of BP-PCs to nascent hepatocytes and BECs. This BEC-driven liver regeneration involves reactivation of hepatoblast markers, but the underpinning mechanisms and their effects on liver regeneration remain largely unknown. Using a zebrafish extensive hepatocyte ablation model, we perform an N-ethyl-N-nitrosourea (ENU) forward genetic screen and identify a liver regeneration mutant, liver logan (lvl), in which the telomere maintenance 2 (tel2) gene is mutated. During liver regeneration, the tel2 mutation specifically inhibits transcriptional activation of a hepatoblast marker, hematopoietically expressed homeobox (hhex), in BEC-derived cells, which blocks BP-PC redifferentiation. Mechanistic studies show that Tel2 associates with the hhex promoter region and promotes hhex transcription. Our results reveal roles of Tel2 in the BP-PC redifferentiation process of liver regeneration by activating hhex.
Collapse
|
8
|
Vick P, Eberle B, Choukair D, Weiss B, Roeth R, Schneider I, Paramasivam N, Bettendorf M, Rappold GA. Identification of ZBTB26 as a Novel Risk Factor for Congenital Hypothyroidism. Genes (Basel) 2021; 12:genes12121862. [PMID: 34946811 PMCID: PMC8701029 DOI: 10.3390/genes12121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital primary hypothyroidism (CH; OMIM 218700) is characterized by an impaired thyroid development, or dyshormonogenesis, and can lead to intellectual disability and growth retardation if untreated. Most of the children with congenital hypothyroidism present thyroid dysgenesis, a developmental anomaly of the thyroid. Various genes have been associated with thyroid dysgenesis, but all known genes together can only explain a small number of cases. To identify novel genetic causes for congenital hypothyroidism, we performed trio whole-exome sequencing in an affected newborn and his unaffected parents. A predicted damaging de novo missense mutation was identified in the ZBTB26 gene (Zinc Finger A and BTB Domain containing 26). An additional cohort screening of 156 individuals with congenital thyroid dysgenesis identified two additional ZBTB26 gene variants of unknown significance. To study the underlying disease mechanism, morpholino knock-down of zbtb26 in Xenopus laevis was carried out, which demonstrated significantly smaller thyroid anlagen in knock-down animals at tadpole stage. Marker genes expressed in thyroid tissue precursors also indicated a specific reduction in the Xenopus ortholog of human Paired-Box-Protein PAX8, a transcription factor required for thyroid development, which could be rescued by adding zbtb26. Pathway and network analysis indicated network links of ZBTB26 to PAX8 and other genes involved in thyroid genesis and function. GWAS associations of ZBTB26 were found with height. Together, our study added a novel genetic risk factor to the list of genes underlying congenital primary hypothyroidism and provides additional support that de novo mutations, together with inherited variants, might contribute to the genetic susceptibility to CH.
Collapse
Affiliation(s)
- Philipp Vick
- Department of Zoology, University of Hohenheim, 70599 Stuttgart, Germany; (P.V.); (I.S.)
| | - Birgit Eberle
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany; (B.E.); (B.W.); (R.R.)
| | - Daniela Choukair
- Division of Paediatric Endocrinology, Children’s Hospital, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany; (D.C.); (M.B.)
| | - Birgit Weiss
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany; (B.E.); (B.W.); (R.R.)
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany; (B.E.); (B.W.); (R.R.)
| | - Isabelle Schneider
- Department of Zoology, University of Hohenheim, 70599 Stuttgart, Germany; (P.V.); (I.S.)
| | - Nagarajan Paramasivam
- Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ (German Cancer Research Center), 69120 Heidelberg, Germany;
| | - Markus Bettendorf
- Division of Paediatric Endocrinology, Children’s Hospital, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany; (D.C.); (M.B.)
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany; (B.E.); (B.W.); (R.R.)
- Correspondence: ; Tel.: +49-6221-56-5153
| |
Collapse
|
9
|
Larson EL, Joo DJ, Nelson ED, Amiot BP, Aravalli RN, Nyberg SL. Fumarylacetoacetate hydrolase gene as a knockout target for hepatic chimerism and donor liver production. Stem Cell Reports 2021; 16:2577-2588. [PMID: 34678209 PMCID: PMC8581169 DOI: 10.1016/j.stemcr.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.
Collapse
Affiliation(s)
- Ellen L Larson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Jin Joo
- Department of Surgery, Division of Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Erek D Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce P Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Huang L, Bai F, Zhang Y, Zhang S, Jin T, Wei X, Zhou X, Lin M, Xie Y, He C, Lin Q, Xie T, Ding Y. Preliminary study of genome-wide association identified novel susceptibility genes for thyroid-related hormones in Chinese population. Genes Genomics 2021; 44:1031-1038. [PMID: 34533693 DOI: 10.1007/s13258-021-01165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thyroid hormones are critical regulators of metabolism, development and growth in mammals. However, the genetic association of thyroid-related hormones in the Chinese Han population is not fully understood. OBJECTIVE We aimed to identify the genetic loci associated with circulating thyroid-related hormones concentrations in the healthy Chinese Han population. METHODS Genotyping was performed in 124 individuals using Applied Biosystems™ Axiom™ PMDA, and 796,288 single nucleotide polymorphisms (SNPs) were available for the GWAS analysis. For replication, eleven SNPs were selected as candidate loci for genotyping by Agena MassARRAY platform in additional samples (313 subjects). The values of p < 5 × 10- 6 suggest a suggestively significant genome-wide association with circulating thyroid-related hormones concentrations. RESULTS We identified that rs11178277 (PTPRB, p = 4.88 × 10- 07) and rs7320337 (LMO7DN-KCTD12, p = 1.22 × 10- 06) were associated with serum FT3 level. Three SNPs (rs4850041 in LOC105373394-LINC01249: p = 3.55 × 10- 06, rs6867291 in LINC02208: p = 2.40 × 10- 06 and rs79508321 in WWOX: p = 3.35 × 10- 06) were related to circulating T3 level. Rs12474167 (LOC105373394-LINC01249, p = 1.65 × 10- 06) and rs1864553 (IWS1, p = 2.00 × 10- 06) were associated with circulating T4 concentration. The association with TGA concentration was for rs17163542 in DISP1 (p = 3.46 × 10- 06) and rs12601151 in NOG-C17orf67 (p = 2.72 × 10- 07). Two genome-level significant SNPs (rs2114707 in LINC01314, p = 1.69 × 10- 06 and rs12601151, p = 1.41 × 10- 07) associated with serum TMA concentration were identified. Moreover, rs6083269 (CST1-CST2, p = 3.36 × 10- 06) was a significant locus for circulating TSH level. In replication, rs12601151 in NOG-C17orf67 was still associated with serum TGA level (p = 0.012). CONCLUSIONS The GWAS reported 11 new suggestively significant loci associated with circulating thyroid-related hormones levels among the Chinese Han population. These findings represented suggestively biological candidates for circulating thyroid-related hormones levels and provided new insights into the mechanisms of regulating serum TGA concentration.
Collapse
Affiliation(s)
- Liang Huang
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Xincun Central Health Center, Lingshui Li Autonomous County, Lingshui, 572426, Hainan, People's Republic of China
| | - Fenghua Bai
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Science and Education Office, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Yutian Zhang
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Shanshan Zhang
- Xi'an 21st Century Biological Science and Technology Co., Ltd, Xi'an, 712000, Shaanxi, People's Republic of China
| | - Tianbo Jin
- Xi'an 21st Century Biological Science and Technology Co., Ltd, Xi'an, 712000, Shaanxi, People's Republic of China
| | - Xingwei Wei
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Xiaoli Zhou
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Mei Lin
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Yufei Xie
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Chanyi He
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Qi Lin
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China
| | - Tian Xie
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China.
| | - Yipeng Ding
- Hainan Affiliated Hospital of Hainan Medical University, #19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China.
- Department of General Practice, Hainan General Hospital, Haikou, 570311, Hainan, People's Republic of China.
| |
Collapse
|
11
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
12
|
Gao C, Huang W, Gao Y, Lo LJ, Luo L, Huang H, Chen J, Peng J. Zebrafish hhex-null mutant develops an intrahepatic intestinal tube due to de-repression of cdx1b and pdx1. J Mol Cell Biol 2020; 11:448-462. [PMID: 30428031 PMCID: PMC6604603 DOI: 10.1093/jmcb/mjy068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
The hepatopancreatic duct (HPD) system links the liver and pancreas to the intestinal tube and is composed of the extrahepatic biliary duct, gallbladder, and pancreatic duct. Haematopoietically expressed-homeobox (Hhex) protein plays an essential role in the establishment of HPD; however, the molecular mechanism remains elusive. Here, we show that zebrafish hhex-null mutants fail to develop the HPD system characterized by lacking the biliary marker Annexin A4 and the HPD marker sox9b. The hepatobiliary duct part of the mutant HPD system is replaced by an intrahepatic intestinal tube characterized by expressing the intestinal marker fatty acid-binding protein 2a (fabp2a). Cell lineage analysis showed that this intrahepatic intestinal tube is not originated from hepatocytes or cholangiocytes. Further analysis revealed that cdx1b and pdx1 are expressed ectopically in the intrahepatic intestinal tube and knockdown of cdx1b and pdx1 could restore the expression of sox9b in the mutant. Chromatin-immunoprecipitation analysis showed that Hhex binds to the promoters of pdx1 and cdx1b genes to repress their expression. We therefore propose that Hhex, Cdx1b, Pdx1, and Sox9b form a genetic network governing the patterning and morphogenesis of the HPD and digestive tract systems in zebrafish.
Collapse
Affiliation(s)
- Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Weidong Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Lingfei Luo
- College of Life Sciences, Southwest University, Chongqing, China
| | - Honghui Huang
- College of Life Sciences, Southwest University, Chongqing, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| |
Collapse
|
13
|
Lorberbaum DS, Kishore S, Rosselot C, Sarbaugh D, Brooks EP, Aragon E, Xuan S, Simon O, Ghosh D, Mendelsohn C, Gadue P, Sussel L. Retinoic acid signaling within pancreatic endocrine progenitors regulates mouse and human β cell specification. Development 2020; 147:dev.189977. [PMID: 32467243 DOI: 10.1242/dev.189977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA) signaling is essential for multiple developmental processes, including appropriate pancreas formation from the foregut endoderm. RA is also required to generate pancreatic progenitors from human pluripotent stem cells. However, the role of RA signaling during endocrine specification has not been fully explored. In this study, we demonstrate that the disruption of RA signaling within the NEUROG3-expressing endocrine progenitor population impairs mouse β cell differentiation and induces ectopic expression of crucial δ cell genes, including somatostatin. In addition, the inhibition of the RA pathway in hESC-derived pancreatic progenitors downstream of NEUROG3 induction impairs insulin expression. We further determine that RA-mediated regulation of endocrine cell differentiation occurs through Wnt pathway components. Together, these data demonstrate the importance of RA signaling in endocrine specification and identify conserved mechanisms by which RA signaling directs pancreatic endocrine cell fate.
Collapse
Affiliation(s)
- David S Lorberbaum
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Siddharth Kishore
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19102, USA.,Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolina Rosselot
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eloise Aragon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shouhong Xuan
- Department of Medicine Hematology and Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Olivier Simon
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cathy Mendelsohn
- Department of Urology, Columbia University, New York, NY 10032, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19102, USA.,Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Paraiso KD, Cho JS, Yong J, Cho KWY. Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Curr Top Dev Biol 2020; 139:35-60. [PMID: 32450966 PMCID: PMC11344482 DOI: 10.1016/bs.ctdb.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Jin S Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Junseok Yong
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States.
| |
Collapse
|
15
|
Endosome-Mediated Epithelial Remodeling Downstream of Hedgehog-Gli Is Required for Tracheoesophageal Separation. Dev Cell 2019; 51:665-674.e6. [PMID: 31813796 DOI: 10.1016/j.devcel.2019.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
The trachea and esophagus arise from the separation of a common foregut tube during early fetal development. Mutations in key signaling pathways such as Hedgehog (HH)/Gli can disrupt tracheoesophageal (TE) morphogenesis and cause life-threatening birth defects (TEDs); however, the underlying cellular mechanisms are unknown. Here, we use mouse and Xenopus to define the HH/Gli-dependent processes orchestrating TE morphogenesis. We show that downstream of Gli the Foxf1+ splanchnic mesenchyme promotes medial constriction of the foregut at the boundary between the presumptive Sox2+ esophageal and Nkx2-1+ tracheal epithelium. We identify a unique boundary epithelium co-expressing Sox2 and Nkx2-1 that fuses to form a transient septum. Septum formation and resolution into distinct trachea and esophagus requires endosome-mediated epithelial remodeling involving the small GTPase Rab11 and localized extracellular matrix degradation. These are disrupted in Gli-deficient embryos. This work provides a new mechanistic framework for TE morphogenesis and informs the cellular basis of human TEDs.
Collapse
|
16
|
Deregulated NKL Homeobox Genes in B-Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11121874. [PMID: 31779217 PMCID: PMC6966443 DOI: 10.3390/cancers11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, we have described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis. We identified nine genes which constitute the so-called NKL-code. Aberrant overexpression of code-members or ectopically activated non-code NKL homeobox genes are described in T-cell leukemia and in T- and B-cell lymphoma, highlighting their oncogenic role in lymphoid malignancies. Here, we introduce the NKL-code in normal hematopoiesis and focus on deregulated NKL homeobox genes in B-cell lymphoma, including HLX, MSX1 and NKX2-2 in Hodgkin lymphoma; HLX, NKX2-1 and NKX6-3 in diffuse large B-cell lymphoma; and NKX2-3 in splenic marginal zone lymphoma. Thus, the roles of various members of the NKL homeobox gene subclass are considered in normal and pathological hematopoiesis in detail.
Collapse
|
17
|
Abstract
The freshwater cnidarian Hydra has been studied for centuries for its unique regenerative capacities. Whole-body single-cell transcriptomics now reveal cellular lineages and gene regulatory networks that build the Hydra polyp. For the first time, transcription factor signatures allow direct comparison of the polyp body plan between Hydra and sea anemone.
Collapse
|
18
|
Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, Tan J, Pan B, Lee JJH, Lum JJ, Lim CYY, Yeo IKX, Wong CJY, Liu M, Oh JLL, Chia CPL, Loh CH, Chen A, Chen Q, Weissman IL, Loh KM, Lim B. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep 2019; 22:2190-2205. [PMID: 29466743 PMCID: PMC5854481 DOI: 10.1016/j.celrep.2018.01.087] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs). Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines) are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah-/-Rag2-/-Il2rg-/- mouse model of liver failure.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| | - Antson Kiat Yee Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Matias I Autio
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Su Hua Goh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Siew Hua Choo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianmin Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Bangfen Pan
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Jane Jia Hui Lee
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jen Jen Lum
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Christina Ying Yan Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Isabelle Kai Xin Yeo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chloe Jin Yee Wong
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Min Liu
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jueween Ling Li Oh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Cheryl Pei Lynn Chia
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chet Hong Loh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| |
Collapse
|
19
|
Yasuoka Y, Taira M. Microinjection of DNA Constructs into Xenopus Embryos for Gene Misexpression and cis-Regulatory Module Analysis. Cold Spring Harb Protoc 2019; 2019:pdb.prot097279. [PMID: 30131366 DOI: 10.1101/pdb.prot097279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introducing exogenous DNA into an embryo can promote misexpression of a gene of interest via transcription regulated by an attached enhancer-promoter. This protocol describes plasmid DNA microinjection into Xenopus embryos for misexpression of genes after zygotic gene expression begins. It also describes a method for coinjecting a reporter plasmid with mRNA or antisense morpholinos to perform luciferase reporter assays, which are useful for quantitative analysis of cis-regulatory sequences responding to endogenous or exogenous stimuli in embryos.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Hashemitabar M, Heidari E. Redefining the signaling pathways from pluripotency to pancreas development: In vitro β-cell differentiation. J Cell Physiol 2018; 234:7811-7827. [PMID: 30480819 DOI: 10.1002/jcp.27736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells are destroyed by the immune system, in type 1 diabetes (T1D) and are impaired by glucose insensitivity in type 2 diabetes (T2D). Islet-cells transplantation is a promising therapeutic approach based on in vitro differentiation of pluripotent stem cells (PSCs) to insulin-producing cells (IPCs). According to evolutionary stages in β-cell development, there are several distinct checkpoints; each one has a unique characteristic, including definitive endoderm (DE), primitive gut (PG), posterior foregut (PF), pancreatic epithelium (PE), endocrine precursor (EP), and immature β-cells up to functional β-cells. A better understanding of the gene regulatory networks (GRN) and associated transcription factors in each specific developmental stage, guarantees the achievement of the next successful checkpoints and ensures an efficient β-cell differentiation procedure. The new findings in signaling pathways, related to the development of the pancreas are discussed here, including Wnt, Activin/Nodal, FGF, BMP, retinoic acid (RA), sonic hedgehog (Shh), Notch, and downstream regulators, required for β-cell commitment. We also summarized different approaches in the IPCs protocol to conceptually define a standardized system, leading to the creation of a reproducible method for β-cell differentiation. To normalize blood glucose level in diabetic mice, the replacement therapy in the early differentiation stage, such as EP stages was associated with better outcome when compared with the fully differentiated β-cells' graft.
Collapse
Affiliation(s)
- Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Heidari
- Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
22
|
DeLay BD, Corkins ME, Hanania HL, Salanga M, Deng JM, Sudou N, Taira M, Horb ME, Miller RK. Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9. Genetics 2018; 208:673-686. [PMID: 29187504 PMCID: PMC5788530 DOI: 10.1534/genetics.117.300468] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/18/2017] [Indexed: 11/18/2022] Open
Abstract
Studying genes involved in organogenesis is often difficult because many of these genes are also essential for early development. The allotetraploid frog, Xenopus laevis, is commonly used to study developmental processes, but because of the presence of two homeologs for many genes, it has been difficult to use as a genetic model. Few studies have successfully used CRISPR in amphibians, and currently there is no tissue-targeted knockout strategy described in Xenopus The goal of this study is to determine whether CRISPR/Cas9-mediated gene knockout can be targeted to the Xenopus kidney without perturbing essential early gene function. We demonstrate that targeting CRISPR gene editing to the kidney and the eye of F0 embryos is feasible. Our study shows that knockout of both homeologs of lhx1 results in the disruption of kidney development and function but does not lead to early developmental defects. Therefore, targeting of CRISPR to the kidney may not be necessary to bypass the early developmental defects reported upon disruption of Lhx1 protein expression or function by morpholinos, antisense RNA, or dominant negative constructs. We also establish a control for CRISPR in Xenopus by editing a gene (slc45a2) that when knocked out results in albinism without altering kidney development. This study establishes the feasibility of tissue-specific gene knockout in Xenopus, providing a cost-effective and efficient method for assessing the roles of genes implicated in developmental abnormalities that is amenable to high-throughput gene or drug screening techniques.
Collapse
Affiliation(s)
- Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
| | - Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
| | - Hannah L Hanania
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
- Program in Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | - Matthew Salanga
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Jian Min Deng
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, 162-8666, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-8654, Japan
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, Texas 77030
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
23
|
Eicher AK, Berns HM, Wells JM. Translating Developmental Principles to Generate Human Gastric Organoids. Cell Mol Gastroenterol Hepatol 2018; 5:353-363. [PMID: 29552623 PMCID: PMC5852324 DOI: 10.1016/j.jcmgh.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
Abstract
Gastric diseases, including peptic ulcer disease and gastric cancer, are highly prevalent in human beings. Despite this, the cellular biology of the stomach remains poorly understood relative to other gastrointestinal organs such as the liver, intestine, and colon. In particular, little is known about the molecular basis of stomach development and the differentiation of gastric lineages. Although animal models are useful for studying gastric development, function, and disease, there are major structural and physiological differences in human stomachs that render these models insufficient. To look at gastric development, function, and disease in a human context, a model system of the human stomach is imperative. This review details how this was achieved through the directed differentiation of human pluripotent stem cells in a 3-dimensional environment into human gastric organoids (HGOs). Similar to previous work that has generated human intestine, colon, and lung tissue in vitro, HGOs were generated in vitro through a step-wise differentiation designed to mimic the temporal-spatial signaling dynamics that control stomach development in vivo. HGOs can be used for a variety of purposes, including genetic modeling, drug screening, and potentially even in future patient transplantation. Moreover, HGOs are well suited to study the development and interactions of nonepithelial cell types, such as endothelial, neuronal, and mesenchymal, which remain almost completely unstudied. This review discusses the basics of stomach morphology, function, and developmental pathways involved in generating HGOs. We also highlight important gaps in our understanding of how epithelial and mesenchymal interactions are essential for the development and overall function of the human stomach.
Collapse
Key Words
- 3-D, 3-dimensional
- BMP, bone morphogenetic protein
- Directed Differentiation
- ECL, enterochromaffin-like
- ENCC, enteric neural crest cell
- ENS, enteric nervous system
- Endoderm
- GI, gastrointestinal
- Gastric Development
- HDGC, hereditary diffuse gastric cancer
- HGO, human gastric organoid
- Organoids
- PSC, pluripotent stem cell
- Pluripotent Stem Cells
- Shh, Sonic hedgehog
- e, embryonic day
- hPSC, human pluripotent stem cell
Collapse
Affiliation(s)
- Alexandra K. Eicher
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - H. Matthew Berns
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Correspondence Address correspondence to: James M. Wells, PhD, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229. fax: (513) 636-4317.Cincinnati Children's Hospital Medical Center3333 Burnet AvenueCincinnatiOhio 45229
| |
Collapse
|
24
|
Jaramillo M, Yeh H, Yarmush ML, Uygun BE. Decellularized human liver extracellular matrix (hDLM)-mediated hepatic differentiation of human induced pluripotent stem cells (hIPSCs). J Tissue Eng Regen Med 2018; 12:e1962-e1973. [PMID: 29222839 DOI: 10.1002/term.2627] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022]
Abstract
Liver tissue engineering has emerged as a promising approach in organ transplantation but has been hampered by the lack of a reliable and readily available cell source. Human induced pluripotent stem cells hiPSCs have been highlighted as a desirable source, due to their differentiation potential, ability to self-renew, and the possibility of making patient-specific cells. We developed a decellularization protocol that efficiently removes cellular material while retaining extracellular matrix components. Subsequently, hiPSCs were differentiated on decellularized human liver extracellular matrix (hDLM) scaffolds using an established hepatic differentiation protocol. We demonstrate that using hDLM leads to upregulation markers of hepatic functions when compared with standard differentiation conditions. In addition, expression of a number of hepatic transcription and nuclear factors were found to be within levels comparable with those of primary human adult hepatocytes. Analysis of progression of differentiation on hDLM demonstrated that hepatic developmental marker expression was consistent with hepatic development. The hDLM-derived cells exhibited key hepatic characteristics that were comparable with those observed in primary neonatal human hepatocytes. We investigated the optimal timing of the introduction of hDLM into the differentiation protocol and found that the best results are obtained when cells are plated on hDLM since the earliest stages and accompanied by a progressive loss of sensitivity to substrate composition at later stages. The significance of this work is that it allows for the development of differentiation protocols that take into account signals from extracellular matrix, closely recapitulating of the in vivo micro-environment and resulting in cells that are phenotypically closer to mature hepatocytes.
Collapse
Affiliation(s)
- Maria Jaramillo
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
25
|
Rankin SA, McCracken KW, Luedeke DM, Han L, Wells JM, Shannon JM, Zorn AM. Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis. Dev Biol 2017; 434:121-132. [PMID: 29217200 DOI: 10.1016/j.ydbio.2017.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification.
Collapse
Affiliation(s)
- Scott A Rankin
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - David M Luedeke
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lu Han
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - James M Wells
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - John M Shannon
- Pulmonary Biology, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Aaron M Zorn
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
26
|
Khedgikar V, Abbruzzese G, Mathavan K, Szydlo H, Cousin H, Alfandari D. Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a. eLife 2017; 6:26898. [PMID: 28829038 PMCID: PMC5601995 DOI: 10.7554/elife.26898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023] Open
Abstract
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.
Collapse
Affiliation(s)
- Vikram Khedgikar
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Genevieve Abbruzzese
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Ketan Mathavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology graduate program, University of Massachusetts, Amherst, United States
| | - Hannah Szydlo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology graduate program, University of Massachusetts, Amherst, United States
| |
Collapse
|
27
|
Fisher JB, Pulakanti K, Rao S, Duncan SA. GATA6 is essential for endoderm formation from human pluripotent stem cells. Biol Open 2017; 6:1084-1095. [PMID: 28606935 PMCID: PMC5550920 DOI: 10.1242/bio.026120] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression. Summary: Using the differentiation of huESCs as a model for endoderm formation, we reveal that the transcription factor GATA6 regulates the onset of endoderm gene expression and is required for its viability.
Collapse
Affiliation(s)
- J B Fisher
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - K Pulakanti
- Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - S Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
28
|
Identification and comparative analyses of Siamois cluster genes in Xenopus laevis and tropicalis. Dev Biol 2017; 426:374-383. [PMID: 27522305 DOI: 10.1016/j.ydbio.2016.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 11/21/2022]
Abstract
Two siamois-related homeobox genes siamois (sia1) and twin (sia2), have been reported in Xenopus laevis. These genes are expressed in the blastula chordin- and noggin-expressing (BCNE) center and the Nieuwkoop center, and have complete secondary axis-inducing activity when over-expressed on the ventral side of the embryo. Using whole genome sequences of X. tropicalis and X. laevis, we identified two additional siamois-related genes, which are tandemly duplicated near sia1 and sia2 to form the siamois gene cluster. Four siamois genes in X. tropicalis are transcribed at blastula to gastrula stages. In X. laevis, the siamois gene cluster is present on both homeologous chromosomes, XLA3L and XLA3S. Transcripts from seven siamois genes (three on XLA3L and four on XLA3S) in X. laevis were detected at blastula to gastrula stages. A transcribed gene, sia1p. S, encodes an inactive protein without a homeodomain. When over-expressed ventrally, all siamois-related genes tested in this study except for sia1p. S induced a complete secondary axis, indicating that X. tropicalis and X. laevis have four and six active siamois-related genes, respectively. Of note, each gene required different amounts of mRNA for full activity. These results suggest the possibility that siamois cluster genes have functional redundancy to endow robustness and quickness to organizer formation in Xenopus species.
Collapse
|
29
|
Tandon P, Conlon F, Furlow JD, Horb ME. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 2017; 426:325-335. [PMID: 27109192 PMCID: PMC5074924 DOI: 10.1016/j.ydbio.2016.04.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.
Collapse
Affiliation(s)
- Panna Tandon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | - Frank Conlon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States
| | - J David Furlow
- Deparment of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| |
Collapse
|
30
|
Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, Kanton S, Kageyama J, Damm G, Seehofer D, Belicova L, Bickle M, Barsacchi R, Okuda R, Yoshizawa E, Kimura M, Ayabe H, Taniguchi H, Takebe T, Treutlein B. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017; 546:533-538. [PMID: 28614297 DOI: 10.1038/nature22796] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor-ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.
Collapse
Affiliation(s)
- J Gray Camp
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tobias Gerber
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, Leipzig University, 16 Härtelstrasse, Leipzig 04107, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, Leipzig University, 16 Härtelstrasse, Leipzig 04107, Germany
| | - Malgorzata Gac
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Sabina Kanton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Jorge Kageyama
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Georg Damm
- Department of Hepatobiliary and Transplantation Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig 04103, Germany.,Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 55 Philipp-Rosenthal-Strasse, Leipzig 04103, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary and Transplantation Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig 04103, Germany.,Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 55 Philipp-Rosenthal-Strasse, Leipzig 04103, Germany
| | - Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| | - Rico Barsacchi
- Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| | - Ryo Okuda
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Masaki Kimura
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroaki Ayabe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA
| | - Barbara Treutlein
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| |
Collapse
|
31
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
32
|
Hawkins F, Kramer P, Jacob A, Driver I, Thomas DC, McCauley KB, Skvir N, Crane AM, Kurmann AA, Hollenberg AN, Nguyen S, Wong BG, Khalil AS, Huang SX, Guttentag S, Rock JR, Shannon JM, Davis BR, Kotton DN. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest 2017; 127:2277-2294. [PMID: 28463226 DOI: 10.1172/jci89950] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However, this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity, these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support, this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively, when recombined with fetal mouse lung mesenchyme, the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved, stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted, patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.
Collapse
Affiliation(s)
- Finn Hawkins
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Philipp Kramer
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anjali Jacob
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ian Driver
- Department of Anatomy, UCSF, San Francisco, California, USA
| | | | - Katherine B McCauley
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anita A Kurmann
- Center for Regenerative Medicine, and.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Brandon G Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Sarah Xl Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA.,Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA
| | - Susan Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason R Rock
- Department of Anatomy, UCSF, San Francisco, California, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol 2017; 66:36-42. [PMID: 28238948 DOI: 10.1016/j.semcdb.2017.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
The stomach is a digestive organ that has important roles in human physiology and pathophysiology. The developmental origin of the stomach is the embryonic foregut, which also gives rise a number of other structures. There are several signaling pathways and transcription factors that are known to regulate stomach development at different stages, including foregut patterning, stomach specification, and gastric regionalization. These developmental events have important implications in later homeostasis and disease in the adult stomach. Here we will review the literature that has shaped our current understanding of the molecular mechanisms that coordinate gastric organogenesis. Further we will discuss how developmental paradigms have guided recent efforts to differentiate stomach tissue from pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - James M Wells
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Endocrinology Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
35
|
Stevens ML, Chaturvedi P, Rankin SA, Macdonald M, Jagannathan S, Yukawa M, Barski A, Zorn AM. Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs. Development 2017; 144:1283-1295. [PMID: 28219948 DOI: 10.1242/dev.145789] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
Digestive system development is orchestrated by combinatorial signaling interactions between endoderm and mesoderm, but how these signals are interpreted in the genome is poorly understood. Here we identified the transcriptomes of Xenopus foregut and hindgut progenitors, which are conserved with mammals. Using RNA-seq and ChIP-seq we show that BMP/Smad1 regulates dorsal-ventral gene expression in both the endoderm and mesoderm, whereas Wnt/β-catenin acts as a genome-wide toggle between foregut and hindgut programs. Unexpectedly, β-catenin and Smad1 binding were associated with both transcriptional activation and repression, with Wnt-repressed genes often lacking canonical Tcf DNA binding motifs, suggesting a novel mode of direct repression. Combinatorial Wnt and BMP signaling was mediated by Smad1 and β-catenin co-occupying hundreds of cis-regulatory DNA elements, and by a crosstalk whereby Wnt negatively regulates BMP ligand expression in the foregut. These results extend our understanding of gastrointestinal organogenesis and of how Wnt and BMP might coordinate genomic responses in other contexts.
Collapse
Affiliation(s)
- Mariana L Stevens
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Melissa Macdonald
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Masashi Yukawa
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
36
|
Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol 2017; 66:81-93. [PMID: 28161556 DOI: 10.1016/j.semcdb.2017.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes.
Collapse
Affiliation(s)
- Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan Aurora
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
37
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
38
|
Tarnowski M, Malinowski D, Safranow K, Dziedziejko V, Czerewaty M, Pawlik A. Hematopoietically expressed homeobox (HHEX) gene polymorphism (rs5015480) is associated with increased risk of gestational diabetes mellitus. Clin Genet 2016; 91:843-848. [PMID: 27684496 DOI: 10.1111/cge.12875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder that occurs during pregnancy. HHEX and PROX1 are genetic loci associated with diabetes mellitus type 2. HHEX and PROX1 play significant roles in carbohydrate intolerance and diabetes because these transcription factors may be involved in the regulation of insulin secretion and in glucose and lipid metabolism. The aim of this study was to examine the association between HHEX (rs5015480) and PROX1 (rs340874) gene polymorphisms and GDM. This study included 204 pregnant women with GDM and 207 pregnant women with the normal glucose tolerance (NGT). The diagnosis of GDM was based on a 75-g oral glucose tolerance test at 24-28 weeks' gestation. There was a statistically significant prevalence of the HHEX rs5015480 CC genotype and C allele among women with GDM (C vs T allele, p = 0.021, odds ratio OR = 1.40, 95% CI: 1.05-1.87). Statistically significant higher increase of body mass and BMI during pregnancy was found in women with the HHEX rs5015480 CC genotype. The results of our study suggest an association between the HHEX gene rs5015480 polymorphism and risk of GDM. The HHEX gene rs5015480 C allele may be a risk allele of GDM that is associated with increased BMI during pregnancy.
Collapse
Affiliation(s)
- M Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - D Malinowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - K Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - V Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - M Czerewaty
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - A Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
39
|
Lin H, Min Z, Tao Q. The MLL/Setd1b methyltransferase is required for the Spemann's organizer gene activation in Xenopus. Mech Dev 2016; 142:1-9. [DOI: 10.1016/j.mod.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023]
|
40
|
Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ. A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo. Dev Biol 2016; 426:409-417. [PMID: 27475627 PMCID: PMC5596316 DOI: 10.1016/j.ydbio.2016.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Gene regulatory networks (GRNs) involve highly combinatorial interactions between transcription factors and short sequence motifs in cis-regulatory modules of target genes to control cellular phenotypes. The GRNs specifying most cell types are largely unknown and are the subject of wide interest. A catalog of transcription factors is a valuable tool toward obtaining a deeper understanding of the role of these critical effectors in any biological setting. Here we present a comprehensive catalog of the transcription factors for the diploid frog Xenopus tropicalis. We identify 1235 genes encoding DNA-binding transcription factors, comparable to the numbers found in typical mammalian species. In detail, the repertoire of X. tropicalis transcription factor genes is nearly identical to human and mouse, with the exception of zinc finger family members, and a small number of species/lineage-specific gene duplications and losses relative to the mammalian repertoires. We applied this resource to the identification of transcription factors differentially expressed in the early gastrula stage embryo. We find transcription factor enrichment in Spemann's organizer, the ventral mesoderm, ectoderm and endoderm, and report 218 TFs that show regionalized expression patterns at this stage. Many of these have not been previously reported as expressed in the early embryo, suggesting thus far unappreciated roles for many transcription factors in the GRNs regulating early development. We expect our transcription factor catalog will facilitate myriad studies using Xenopus as a model system to understand basic biology and human disease.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States.
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| | - Ilya Patrushev
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway Mill Hill, London NW7 1AA, UK
| | - William T Y Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States.
| | - Michael J Gilchrist
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
41
|
Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR. LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation. Cell Mol Gastroenterol Hepatol 2016; 2:648-662.e8. [PMID: 28078320 PMCID: PMC5042889 DOI: 10.1016/j.jcmgh.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic contexts in mice. However, the function of LGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail. METHODS We interrogated the function and expression of LGR family members using human pluripotent stem cell-derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5-GFP-IRES-CreERT2 mice. RESULTS We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4 and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human-mouse species-specific differences at later time points of embryonic development. CONCLUSIONS Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.
Collapse
Key Words
- CDX2, caudal type homeobox2
- ChIPseq, chromatin immunoprecipitation sequencing
- Ct, cycle threshold
- DE, definitive endoderm
- E, embryonic day
- Endoderm
- GFP, green fluorescent protein
- Intestine
- LGR5
- Organoid
- Pluripotent Stem Cells
- Rspo, R-spondin protein
- WNT
- creER, cre recombinase protein fused to estrogen receptor
- hESC, human embryonic stem cell
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - David R. Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Namit Kumar
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alana M. Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Briana R. Dye
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Melinda S. Nagy
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael P. Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan,Correspondence Address correspondence to: Jason R. Spence, PhD, Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109. fax: (734) 763-4686.Division of GastroenterologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan 48109
| |
Collapse
|
42
|
Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 2016; 150:1098-1112. [PMID: 26774180 PMCID: PMC4842135 DOI: 10.1053/j.gastro.2015.12.042] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
We have greatly advanced our ability to grow a diverse range of tissue-derived and pluripotent stem cell-derived gastrointestinal (GI) tissues in vitro. These systems, broadly referred to as organoids, have allowed the field to move away from the often nonphysiological, transformed cell lines that have been used for decades in GI research. Organoids are derived from primary tissues and have the capacity for long-term growth. They contain varying levels of cellular complexity and physiological similarity to native organ systems. We review the latest discoveries from studies of tissue-derived and pluripotent stem cell-derived intestinal, gastric, esophageal, liver, and pancreatic organoids. These studies have provided important insights into GI development, tissue homeostasis, and disease and might be used to develop personalized medicines.
Collapse
Affiliation(s)
- Priya H. Dedhia
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio.
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Authors for Correspondence: Jason R. Spence – , Twitter: @TheSpenceLab, Yana Zavros –
| |
Collapse
|
43
|
Kofent J, Zhang J, Spagnoli FM. The histone methyltransferase Setd7 promotes pancreatic progenitor identity. Development 2016; 143:3573-3581. [DOI: 10.1242/dev.136226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022]
Abstract
Cell fate specification depends on transcriptional activation driven by lineage-specific transcription factors as well as changes in chromatin organization. To date, the interplay between transcription factors and chromatin modifiers during development is not well understood. We focus here on the initiation of the pancreatic program from multipotent endodermal progenitors. Transcription factors that play key roles in regulating pancreatic progenitor state have been identified, but the chromatin regulators that help establishing and maintaining pancreatic fate are less well known. Using a comparative approach, we identify a critical role for the histone methyltransferase Setd7 in establishing pancreatic cell identity. We show that Setd7 is expressed in the prospective pancreatic endoderm of Xenopus and mouse embryos prior to Pdx1 induction. Importantly, we demonstrate that setd7 is sufficient and required for pancreatic cell fate specification in Xenopus. Functional and biochemical approaches in Xenopus and mouse endoderm support that Setd7 modulates methylation marks at pancreatic regulatory regions, possibly through interaction with the transcription factor Foxa2. Together, these results demonstrate that Setd7 acts as a central component of the transcription complex initiating the pancreatic program.
Collapse
Affiliation(s)
- Julia Kofent
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrück Center for Molecular Medicine, Robert-Roessle strasse 10, Berlin 13125, Germany
| | - Juan Zhang
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrück Center for Molecular Medicine, Robert-Roessle strasse 10, Berlin 13125, Germany
| | - Francesca M. Spagnoli
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrück Center for Molecular Medicine, Robert-Roessle strasse 10, Berlin 13125, Germany
| |
Collapse
|
44
|
Cvoro A, Devito L, Milton FA, Noli L, Zhang A, Filippi C, Sakai K, Suh JH, H Sieglaff D, Dhawan A, Sakai T, Ilic D, Webb P. A thyroid hormone receptor/KLF9 axis in human hepatocytes and pluripotent stem cells. Stem Cells 2015; 33:416-28. [PMID: 25330987 PMCID: PMC6317531 DOI: 10.1002/stem.1875] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 08/21/2014] [Accepted: 09/13/2014] [Indexed: 12/15/2022]
Abstract
Biological processes require close cooperation of multiple transcription factors that integrate different signals. Thyroid hormone receptors (TRs) induce Krüppel-like factor 9 (KLF9) to regulate neurogenesis. Here, we show that triiodothyronine (T3) also works through TR to induce KLF9 in HepG2 liver cells, mouse liver, and mouse and human primary hepatocytes and sought to understand TR/KLF9 network function in the hepatocyte lineage and stem cells. Knockdown experiments reveal that KLF9 regulates hundreds of HepG2 target genes and modulates T3 response. Together, T3 and KLF9 target genes influence pathways implicated in stem cell self-renewal and differentiation, including Notch signaling, and we verify that T3 and KLF9 cooperate to regulate key Notch pathway genes and work independently to regulate others. T3 also induces KLF9 in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSC) and this effect persists during differentiation to definitive endoderm and hiPSC-derived hepatocytes. Microarray analysis reveals that T3 regulates hundreds of hESC and hiPSC target genes that cluster into many of the same pathways implicated in TR and KLF9 regulation in HepG2 cells. KLF9 knockdown confirms that TR and KLF9 cooperate to regulate Notch pathway genes in hESC and hiPSC, albeit in a partly cell-specific manner. Broader analysis of T3 responsive hESC/hiPSC genes suggests that TRs regulate multiple early steps in ESC differentiation. We propose that TRs cooperate with KLF9 to regulate hepatocyte proliferation and differentiation and early stages of organogenesis and that TRs exert widespread and important influences on ESC biology.
Collapse
Affiliation(s)
- Aleksandra Cvoro
- Genomic Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Diseases affecting endodermal organs like the pancreas, lung and gastrointestinal (GI) tract have a substantial impact on human welfare. Since many of these are congenital defects that arise as a result of defects during development broad efforts are focused on understanding the development of these organs so as to better identify risk factors, disease mechanisms and therapeutic targets. Studies implementing model systems, like the amphibian Xenopus, have contributed immensely to our understanding of signaling (e.g. Wnt, FGF, BMP, RA) pathways and gene regulation (e.g. hhex, ptf1a, ngn3) that underlie normal development as well as disease progression. Recent advances in genome engineering further enhance the capabilities of the Xenopus model system for pursuing biomedical research, and will undoubtedly result in a boom of new information underlying disease mechanisms ultimately leading to advancements in diagnosis and therapy.
Collapse
|
46
|
Sinagoga KL, Wells JM. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J 2015; 34:1149-63. [PMID: 25792515 DOI: 10.15252/embj.201490686] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host-parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
47
|
Abstract
With the high prevalence of gastrointestinal disorders, there is great interest in establishing in vitro models of human intestinal disease and in developing drug-screening platforms that more accurately represent the complex physiology of the intestine. We will review how recent advances in developmental and stem cell biology have made it possible to generate complex, three-dimensional, human intestinal tissues in vitro through directed differentiation of human pluripotent stem cells. These are currently being used to study human development, genetic forms of disease, intestinal pathogens, metabolic disease and cancer.
Collapse
Affiliation(s)
- James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
48
|
Boerner BP, George NM, Targy NM, Sarvetnick NE. TGF-β superfamily member Nodal stimulates human β-cell proliferation while maintaining cellular viability. Endocrinology 2013; 154:4099-112. [PMID: 23970788 PMCID: PMC3800770 DOI: 10.1210/en.2013-1197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In an effort to expand human islets and enhance allogeneic islet transplant for the treatment of type 1 diabetes, identifying signaling pathways that stimulate human β-cell proliferation is paramount. TGF-β superfamily members, in particular activin-A, are likely involved in islet development and may contribute to β-cell proliferation. Nodal, another TGF-β member, is present in both embryonic and adult rodent islets. Nodal, along with its coreceptor, Cripto, are pro-proliferative factors in certain cell types. Although Nodal stimulates apoptosis of rat insulinoma cells (INS-1), Nodal and Cripto signaling have not been studied in the context of human islets. The current study investigated the effects of Nodal and Cripto on human β-cell proliferation, differentiation, and viability. In the human pancreas and isolated human islets, we observed Nodal mRNA and protein expression, with protein expression observed in β and α-cells. Cripto expression was absent from human islets. Furthermore, in cultured human islets, exogenous Nodal stimulated modest β-cell proliferation and inhibited α-cell proliferation with no effect on cellular viability, apoptosis, or differentiation. Nodal stimulated the phosphorylation of mothers against decapentaplegic (SMAD)-2, with no effect on AKT or MAPK signaling, suggesting phosphorylated SMAD signaling was involved in β-cell proliferation. Cripto had no effect on human islet cell proliferation, differentiation, or viability. In conclusion, Nodal stimulates human β-cell proliferation while maintaining cellular viability. Nodal signaling warrants further exploration to better understand and enhance human β-cell proliferative capacity.
Collapse
Affiliation(s)
- Brian P Boerner
- MD, and Nora E. Sarvetnick, PhD, University of Nebraska Medical Center, 985965 Nebraska Medical Center, Omaha, Nebraska 68198-5965. ; or
| | | | | | | |
Collapse
|
49
|
Kozmikova I, Candiani S, Fabian P, Gurska D, Kozmik Z. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Dev Biol 2013; 382:538-54. [DOI: 10.1016/j.ydbio.2013.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
|
50
|
Zhang T, Guo X, Chen Y. Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification. PLoS One 2013; 8:e65058. [PMID: 23741453 PMCID: PMC3669096 DOI: 10.1371/journal.pone.0065058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/22/2013] [Indexed: 12/14/2022] Open
Abstract
How cells integrate multiple patterning signals to achieve early endoderm regionalization remains largely unknown. Between gastrulation and neurulation, retinoic acid (RA) signaling is required, while Wnt/β-catenin signaling has to be repressed for the specification of the pancreas, oesophagus, stomach, and duodenum primordia in Xenopus embryos. In attempt to screen for RA regulated genes in Xenopus endoderm, we identified a direct RA target gene, N-myc downstream regulated gene 1a (ndrg1a) that showed expression early in the archenteron roof endoderm and late in the developing pancreas, oesophagus, stomach, and duodenum. Both antisense morpholino oligonucleotide mediated knockdown of ndrg1a in Xenopus laevis and the transcription activator-like effector nucleases (TALEN) mediated disruption of ndrg1 in Xenopus tropicalis demonstrate that like RA signaling, Ndrg1a is specifically required for the specification of Xenopus pancreas, oesophagus, stomach, and duodenum primordia. Immunofluorescence data suggest that RA-activated Ndrg1a suppresses Wnt/β-catenin signaling in Xenopus archenteron roof endoderm cells. Blocking Wnt/β-catenin signaling rescued Ndrg1a knockdown phenotype. Furthermore, overexpression of the putative Wnt/β-catenin target gene Atf3 phenocopied knockdown of Ndrg1a or inhibition of RA signaling, while Atf3 knockdown can rescue Ndrg1a knockdown phenotype. Lastly, the pancreas/stomach/duodenum transcription factor Pdx1 was able to rescue Atf3 overexpression or Ndrg1a knockdown phenotype. Together, we conclude that RA activated Ndrg1a represses Wnt/β-catenin signaling to allow the specification of pancreas, oesophagus, stomach, and duodenum progenitor cells in Xenopus embryos.
Collapse
Affiliation(s)
- Tiejun Zhang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Guo
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- * E-mail:
| |
Collapse
|