1
|
Ibarra-García-Padilla R, Nambiar A, Hamre TA, Singleton EW, Uribe RA. Expansion of a neural crest gene signature following ectopic MYCN expression in sympathoadrenal lineage cells in vivo. PLoS One 2024; 19:e0310727. [PMID: 39292691 PMCID: PMC11410271 DOI: 10.1371/journal.pone.0310727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
Neural crest cells (NCC) are multipotent migratory stem cells that originate from the neural tube during early vertebrate embryogenesis. NCCs give rise to a variety of cell types within the developing organism, including neurons and glia of the sympathetic nervous system. It has been suggested that failure in correct NCC differentiation leads to several diseases, including neuroblastoma (NB). During normal NCC development, MYCN is transiently expressed to promote NCC migration, and its downregulation precedes neuronal differentiation. Overexpression of MYCN has been linked to high-risk and aggressive NB progression. For this reason, understanding the effect overexpression of this oncogene has on the development of NCC-derived sympathoadrenal progenitors (SAP), which later give rise to sympathetic nerves, will help elucidate the developmental mechanisms that may prime the onset of NB. Here, we found that overexpressing human EGFP-MYCN within SAP lineage cells in zebrafish led to the transient formation of an abnormal SAP population, which displayed expanded and elevated expression of NCC markers while paradoxically also co-expressing SAP and neuronal differentiation markers. The aberrant NCC signature was corroborated with in vivo time-lapse confocal imaging in zebrafish larvae, which revealed transient expansion of sox10 reporter expression in MYCN overexpressing SAPs during the early stages of SAP development. In these aberrant MYCN overexpressing SAP cells, we also found evidence of dampened BMP signaling activity, indicating that BMP signaling disruption occurs following elevated MYCN expression. Furthermore, we discovered that pharmacological inhibition of BMP signaling was sufficient to create an aberrant NCC gene signature in SAP cells, phenocopying MYCN overexpression. Together, our results suggest that MYCN overexpression in SAPs disrupts their differentiation by eliciting abnormal NCC gene expression programs, and dampening BMP signaling response, having developmental implications for the priming of NB in vivo.
Collapse
Affiliation(s)
- Rodrigo Ibarra-García-Padilla
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, United States of America
| | - Annika Nambiar
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Thomas A Hamre
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Eileen W Singleton
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Rosa A Uribe
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
2
|
Jevans B, Cooper F, Fatieieva Y, Gogolou A, Kang YN, Restuadi R, Moulding D, Vanden Berghe P, Adameyko I, Thapar N, Andrews PW, De Coppi P, Tsakiridis A, McCann CJ. Human enteric nervous system progenitor transplantation improves functional responses in Hirschsprung disease patient-derived tissue. Gut 2024; 73:1441-1453. [PMID: 38816188 PMCID: PMC11347211 DOI: 10.1136/gutjnl-2023-331532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.
Collapse
Affiliation(s)
- Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Fay Cooper
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Yuliia Fatieieva
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Wien, Austria
| | - Antigoni Gogolou
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Centre for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Restuadi Restuadi
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Dale Moulding
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Centre for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Cell and Tissue Imaging Cluster (CIC), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Igor Adameyko
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Wien, Austria
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital UQ Faculty, South Brisbane, Queensland, Australia
| | - Peter W Andrews
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK
| | - Anestis Tsakiridis
- School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
3
|
Karas Kuželički N, Doljak B. Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles. Genes (Basel) 2024; 15:872. [PMID: 39062651 PMCID: PMC11276067 DOI: 10.3390/genes15070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Congenital heart disease is one of the most common congenital malformations and thus represents a considerable public health burden. Hence, the identification of individuals and families with an increased genetic predisposition to congenital heart disease (CHD) and its possible prevention is important. Even though CHD is associated with the lack of folate during early pregnancy, the genetic background of folate and methionine metabolism perturbations and their influence on CHD risk is not clear. While some genes, such as those coding for cytosolic enzymes of folate/methionine cycles, have been extensively studied, genetic studies of folate transporters (de)glutamation enzymes and mitochondrial enzymes of the folate cycle are lacking. Among genes coding for cytoplasmic enzymes of the folate cycle, MTHFR, MTHFD1, MTR, and MTRR have the strongest association with CHD, while among genes for enzymes of the methionine cycle BHMT and BHMT2 are the most prominent. Among mitochondrial folate cycle enzymes, MTHFD2 plays the most important role in CHD formation, while FPGS was identified as important in the group of (de)glutamation enzymes. Among transporters, the strongest association with CHD was demonstrated for SLC19A1.
Collapse
Affiliation(s)
- Nataša Karas Kuželički
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Bojan Doljak
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
4
|
Hanscom M, Morales-Soto W, Watts SW, Jackson WF, Gulbransen BD. Innervation of adipocytes is limited in mouse perivascular adipose tissue. Am J Physiol Heart Circ Physiol 2024; 327:H155-H181. [PMID: 38787382 PMCID: PMC11380956 DOI: 10.1152/ajpheart.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Perivascular adipose tissue (PVAT) regulates vascular tone by releasing anticontractile factors. These anticontractile factors are driven by processes downstream of adipocyte stimulation by norepinephrine; however, whether norepinephrine originates from neural innervation or other sources is unknown. The goal of this study was to test the hypothesis that neurons innervating PVAT provide the adrenergic drive to stimulate adipocytes in aortic and mesenteric perivascular adipose tissue (aPVAT and mPVAT), and white adipose tissue (WAT). Healthy male and female mice (8-13 wk) were used in all experiments. Expression of genes associated with synaptic transmission were quantified by qPCR and adipocyte activity in response to neurotransmitters and neuron depolarization was assessed in AdipoqCre+;GCaMP5g-tdTf/WT mice. Immunostaining, tissue clearing, and transgenic reporter lines were used to assess anatomical relationships between nerves and adipocytes. Although synaptic transmission component genes are expressed in adipose tissues (aPVAT, mPVAT, and WAT), strong nerve stimulation with electrical field stimulation does not significantly trigger calcium responses in adipocytes. However, norepinephrine consistently elicits strong calcium responses in adipocytes from all adipose tissues studied. Bethanechol induces minimal adipocyte responses. Imaging neural innervation using various techniques reveals that nerve fibers primarily run alongside blood vessels and rarely branch into the adipose tissue. Although nerve fibers are associated with blood vessels in adipose tissue, they demonstrate limited anatomical and functional interactions with adjacent adipocytes, challenging the concept of classical innervation. These findings dispute the significant involvement of neural input in regulating PVAT adipocyte function and emphasize alternative mechanisms governing adrenergic-driven anticontractile functions of PVAT.NEW & NOTEWORTHY This study challenges prevailing views on neural innervation in perivascular adipose tissue (PVAT) and its role in adrenergic-driven anticontractile effects on vasculature. Contrary to existing paradigms, limited anatomical and functional connections were found between PVAT nerve fibers and adipocytes, underscoring the importance of exploring alternative mechanistic pathways. Understanding the mechanisms involved in PVAT's anticontractile effects is critical for developing potential therapeutic interventions against dysregulated vascular tone, hypertension, and cardiovascular disease.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Wilmarie Morales-Soto
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
5
|
Knyazeva A, Dyachuk V. Neural crest and sons: role of neural crest cells and Schwann cell precursors in development and gland embryogenesis. Front Cell Dev Biol 2024; 12:1406199. [PMID: 38989061 PMCID: PMC11233730 DOI: 10.3389/fcell.2024.1406199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
In this review, we consider the multipotency of neural crest cells (NCCs), Schwann cell precursors (SCPs), and their role in embryogenesis base on genetic tracing and knock out model animals and single cell transcriptomic analysis. In particular, we summarize and analyze data on the contribution of NCCs and SCPs to the gland development and functions.
Collapse
|
6
|
McCluskey KE, Stovell KM, Law K, Kostyanovskaya E, Schmidt J, Exner CRT, Dea J, Brimble E, State MW, Willsey AJ, Willsey HR. Autism gene variants disrupt enteric neuron migration and cause gastrointestinal dysmotility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.593642. [PMID: 38854068 PMCID: PMC11160671 DOI: 10.1101/2024.05.28.593642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The comorbidity of autism spectrum disorders and severe gastrointestinal symptoms is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence large-effect autism risk genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons as well as their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated pathogenic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen of these genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using the high-throughput diploid frog Xenopus tropicalis , we individually target five of these genes ( SYNGAP1, CHD8, SCN2A, CHD2 , and DYRK1A ) and observe disrupted enteric neuronal progenitor migration for each. More extensive analysis of DYRK1A reveals that perturbation causes gut dysmotility in vivo , which can be ameliorated by treatment with a selective serotonin reuptake inhibitor (escitalopram) or a serotonin receptor 6 agonist, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that increasing serotonin signaling may be a productive therapeutic avenue.
Collapse
|
7
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
8
|
Uribe RA. Genetic regulation of enteric nervous system development in zebrafish. Biochem Soc Trans 2024; 52:177-190. [PMID: 38174765 PMCID: PMC10903509 DOI: 10.1042/bst20230343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
Collapse
Affiliation(s)
- Rosa A. Uribe
- Biosciences Department, Rice University, Houston, TX 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
9
|
Agerskov RH, Nyeng P. Innervation of the pancreas in development and disease. Development 2024; 151:dev202254. [PMID: 38265192 DOI: 10.1242/dev.202254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The autonomic nervous system innervates the pancreas by sympathetic, parasympathetic and sensory branches during early organogenesis, starting with neural crest cell invasion and formation of an intrinsic neuronal network. Several studies have demonstrated that signals from pancreatic neural crest cells direct pancreatic endocrinogenesis. Likewise, autonomic neurons have been shown to regulate pancreatic islet formation, and have also been implicated in type I diabetes. Here, we provide an overview of recent progress in mapping pancreatic innervation and understanding the interactions between pancreatic neurons, epithelial morphogenesis and cell differentiation. Finally, we discuss pancreas innervation as a factor in the development of diabetes.
Collapse
Affiliation(s)
- Rikke Hoegsberg Agerskov
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| | - Pia Nyeng
- Roskilde University, Department of Science and Environment, Universitetsvej 1, building 28, Roskilde 4000, Denmark
| |
Collapse
|
10
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
García-Reyes B, Kuzmanov I, Schneider R, Schneiker B, Efferz P, Kalff JC, Wehner S. Glial cell-derived soluble factors increase the metastatic potential of pancreatic adenocarcinoma cells and induce epithelial-to-mesenchymal transition. J Cancer Res Clin Oncol 2023; 149:14315-14327. [PMID: 37572121 PMCID: PMC10590291 DOI: 10.1007/s00432-023-05133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive types of cancer, characterized by the spreading of highly metastatic cancer cells, including invasion into surrounding nerves and perineural spaces. Nerves, in turn, can invade the tumor tissue and, through the secretion of neurotrophic factors, chemokines, and cytokines, contribute to PDAC progression. However, the contribution of the nerve-associated glial cells to PDAC progression is not well characterized. METHODS Two murine PDAC cell lines were cultured with the conditioned media (CM) of primary enteric glial cells or IMS32 Schwann cells (SCs). Different properties of PDAC cells, such as invasiveness, migratory capacity, and resistance to gemcitabine, were measured by RT-qPCR, microscopy, and MTT assays. Using a neuronal cell line, the observed effects were confirmed to be specific to the glial lineage. RESULTS Compared to the control medium, PDAC cells in the glial cell-conditioned medium showed increased invasiveness and migratory capacity. These cells showed reduced E-cadherin and increased N-cadherin and Vimentin levels, all markers of epithelial-mesenchymal transition (EMT). Primary enteric glial cell CM inhibited the proliferation of PDAC cells but preserved their viability, upregulated transcription factor Snail, and increased their resistance to gemcitabine. The conditioned medium generated from the IMS32 SCs produced comparable results. CONCLUSION Our data suggest that glial cells can increase the metastatic potential of PDAC cells by increasing their migratory capacity and inducing epithelial-to-mesenchymal transition, a re-programming that many solid tumors use to undergo metastasis. Glial cell-conditioned medium also increased the chemoresistance of PDAC cells. These findings may have implications for future therapeutic strategies, such as targeting glial cell-derived factor signaling in PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Ivan Kuzmanov
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Reiner Schneider
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Bianca Schneiker
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Patrik Efferz
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Jörg C Kalff
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Tanjore Ramanathan J, Zárybnický T, Filppu P, Monzo HJ, Monni O, Tervonen TA, Klefström J, Kerosuo L, Kuure S, Laakkonen P. Immunoglobulin superfamily member 3 is required for the vagal neural crest cell migration and enteric neuronal network organization. Sci Rep 2023; 13:17162. [PMID: 37821496 PMCID: PMC10567708 DOI: 10.1038/s41598-023-44093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The immunoglobulin (Ig) superfamily members are involved in cell adhesion and migration, complex multistep processes that play critical roles in embryogenesis, wound healing, tissue formation, and many other processes, but their specific functions during embryonic development remain unclear. Here, we have studied the function of the immunoglobulin superfamily member 3 (IGSF3) by generating an Igsf3 knockout (KO) mouse model with CRISPR/Cas9-mediated genome engineering. By combining RNA and protein detection methodology, we show that during development, IGSF3 localizes to the neural crest and a subset of its derivatives, suggesting a role in normal embryonic and early postnatal development. Indeed, inactivation of Igsf3 impairs the ability of the vagal neural crest cells to migrate and normally innervate the intestine. The small intestine of Igsf3 KO mice shows reduced thickness of the muscularis externa and diminished number of enteric neurons. Also, misalignment of neurons and smooth muscle cells in the developing intestinal villi is detected. Taken together, our results suggest that IGSF3 functions contribute to the formation of the enteric nervous system. Given the essential role of the enteric nervous system in maintaining normal gastrointestinal function, our study adds to the pool of information required for further understanding the mechanisms of gut innervation and etiology behind bowel motility disorders.
Collapse
Affiliation(s)
| | - Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hector J Monzo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Topi A Tervonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish genome editing center (FinGEEC), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- GM-unit, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Flagship Program, University of Helsinki, Helsinki, Finland.
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Nikaido M, Shirai A, Mizumaki Y, Shigenobu S, Ueno N, Hatta K. Intestinal expression patterns of transcription factors and markers for interstitial cells in the larval zebrafish. Dev Growth Differ 2023; 65:418-428. [PMID: 37452633 DOI: 10.1111/dgd.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The osr2 is expressed in the anterior part, while foxP4 in its distal part. Also, we reported the expression pattern of pdgfra for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.
Collapse
Affiliation(s)
| | - Ayaka Shirai
- School of Science, University of Hyogo, Ako-gun, Japan
| | | | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Naoto Ueno
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
- Unit of Quantitative and Imaging Biology, International Research Collaboration Center, National Institute of Natural Sciences, Okazaki, Japan
| | - Kohei Hatta
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
14
|
Tani-Matsuhana S, Kawata Y, Inoue K. The cardiac neural crest gene MafB ectopically directs CXCR4 expression in the trunk neural crest. Dev Biol 2023; 495:1-7. [PMID: 36565839 DOI: 10.1016/j.ydbio.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The cardiac neural crest is a subpopulation of cells arising from the caudal hindbrain. The delaminated cardiac neural crest cells migrate to the heart using the CXCR/SDF1 chemokine signaling system. These cells contribute to the formation of the cardiovascular system, including the septation of the outflow tract, which is unique to these cells. Here, we investigated the effect of ectopic expression of the cardiac neural crest gene MafB on trunk neural crest cells. First, we found that MafB has the potential to activate its own cis-regulatory element in enteric and trunk neural crest cells but not in cranial neural crest cells. Forced expression of two cardiac neural crest genes, Ets1 and Sox8, together with or without MafB, induced ectopic Sox10E2 enhancer activity in the trunk region. Finally, we uncovered that the expression of MafB, Ets1 and Sox8 can induce ectopic CXCR4 expression in the trunk neural crest cells, resulting in acquisition of responsiveness to the SDF1 signal. These results demonstrate that MafB, Ets1 and Sox8 are critical components for generation of the identity of the cardiac neural crest, especially the cell migration property.
Collapse
Affiliation(s)
- Saori Tani-Matsuhana
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| | - Yuga Kawata
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
15
|
Baker PA, Ibarra-García-Padilla R, Venkatesh A, Singleton EW, Uribe RA. In toto imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development 2022; 149:278609. [PMID: 36300492 PMCID: PMC9686996 DOI: 10.1242/dev.200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/27/2022] [Indexed: 01/19/2023]
Abstract
The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.
Collapse
Affiliation(s)
- Phillip A. Baker
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | - Rodrigo Ibarra-García-Padilla
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | | | | | - Rosa. A. Uribe
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA,Author for correspondence ()
| |
Collapse
|
16
|
Goldsteen PA, Sabogal Guaqueta AM, Mulder PPMFA, Bos IST, Eggens M, Van der Koog L, Soeiro JT, Halayko AJ, Mathwig K, Kistemaker LEM, Verpoorte EMJ, Dolga AM, Gosens R. Differentiation and on axon-guidance chip culture of human pluripotent stem cell-derived peripheral cholinergic neurons for airway neurobiology studies. Front Pharmacol 2022; 13:991072. [PMID: 36386177 PMCID: PMC9651921 DOI: 10.3389/fphar.2022.991072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Airway cholinergic nerves play a key role in airway physiology and disease. In asthma and other diseases of the respiratory tract, airway cholinergic neurons undergo plasticity and contribute to airway hyperresponsiveness and mucus secretion. We currently lack human in vitro models for airway cholinergic neurons. Here, we aimed to develop a human in vitro model for peripheral cholinergic neurons using human pluripotent stem cell (hPSC) technology. hPSCs were differentiated towards vagal neural crest precursors and subsequently directed towards functional airway cholinergic neurons using the neurotrophin brain-derived neurotrophic factor (BDNF). Cholinergic neurons were characterized by ChAT and VAChT expression, and responded to chemical stimulation with changes in Ca2+ mobilization. To culture these cells, allowing axonal separation from the neuronal cell bodies, a two-compartment PDMS microfluidic chip was subsequently fabricated. The two compartments were connected via microchannels to enable axonal outgrowth. On-chip cell culture did not compromise phenotypical characteristics of the cells compared to standard culture plates. When the hPSC-derived peripheral cholinergic neurons were cultured in the chip, axonal outgrowth was visible, while the somal bodies of the neurons were confined to their compartment. Neurons formed contacts with airway smooth muscle cells cultured in the axonal compartment. The microfluidic chip developed in this study represents a human in vitro platform to model neuro-effector interactions in the airways that may be used for mechanistic studies into neuroplasticity in asthma and other lung diseases.
Collapse
Affiliation(s)
- P. A. Goldsteen
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- GRIAC, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | | | - P. P. M. F. A. Mulder
- Department of Pharmaceutical Analysis, University of Groningen, Groningen, Netherlands
| | - I. S. T. Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- GRIAC, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - M. Eggens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - L. Van der Koog
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- GRIAC, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - J. T. Soeiro
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - A. J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - K. Mathwig
- Department of Pharmaceutical Analysis, University of Groningen, Groningen, Netherlands
| | - L. E. M. Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- GRIAC, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
- Aquilo BV, Groningen, Netherlands
| | - E. M. J. Verpoorte
- Department of Pharmaceutical Analysis, University of Groningen, Groningen, Netherlands
| | - A. M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- GRIAC, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
- *Correspondence: R. Gosens, ; A. M. Dolga,
| | - R. Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- GRIAC, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
- *Correspondence: R. Gosens, ; A. M. Dolga,
| |
Collapse
|
17
|
Li Z, Sau-Wai Ngan E. New insights empowered by single-cell sequencing: from neural crest to enteric nervous system. Comput Struct Biotechnol J 2022; 20:2464-2472. [PMID: 35664232 PMCID: PMC9133688 DOI: 10.1016/j.csbj.2022.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022] Open
|
18
|
Howard AGA, Nguyen AC, Tworig J, Ravisankar P, Singleton EW, Li C, Kotzur G, Waxman JS, Uribe RA. Elevated Hoxb5b Expands Vagal Neural Crest Pool and Blocks Enteric Neuronal Development in Zebrafish. Front Cell Dev Biol 2022; 9:803370. [PMID: 35174164 PMCID: PMC8841348 DOI: 10.3389/fcell.2021.803370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb. Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b+ enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.
Collapse
Affiliation(s)
| | - Aaron C. Nguyen
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua Tworig
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Priya Ravisankar
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Allen Institute of Immunology, Seattle, WA, United States
| | | | - Can Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Grayson Kotzur
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rosa A. Uribe
- BioSciences Department, Rice University, Houston, TX, United States
- *Correspondence: Rosa A. Uribe,
| |
Collapse
|
19
|
Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front Cell Dev Biol 2022; 9:775102. [PMID: 35111752 PMCID: PMC8801887 DOI: 10.3389/fcell.2021.775102] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Amelia Nash
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kinga R. Tasnády
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, Taiwan
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
21
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
22
|
Cerritelli F, Frasch MG, Antonelli MC, Viglione C, Vecchi S, Chiera M, Manzotti A. A Review on the Vagus Nerve and Autonomic Nervous System During Fetal Development: Searching for Critical Windows. Front Neurosci 2021; 15:721605. [PMID: 34616274 PMCID: PMC8488382 DOI: 10.3389/fnins.2021.721605] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
The autonomic nervous system (ANS) is one of the main biological systems that regulates the body's physiology. Autonomic nervous system regulatory capacity begins before birth as the sympathetic and parasympathetic activity contributes significantly to the fetus' development. In particular, several studies have shown how vagus nerve is involved in many vital processes during fetal, perinatal, and postnatal life: from the regulation of inflammation through the anti-inflammatory cholinergic pathway, which may affect the functioning of each organ, to the production of hormones involved in bioenergetic metabolism. In addition, the vagus nerve has been recognized as the primary afferent pathway capable of transmitting information to the brain from every organ of the body. Therefore, this hypothesis paper aims to review the development of ANS during fetal and perinatal life, focusing particularly on the vagus nerve, to identify possible "critical windows" that could impact its maturation. These "critical windows" could help clinicians know when to monitor fetuses to effectively assess the developmental status of both ANS and specifically the vagus nerve. In addition, this paper will focus on which factors-i.e., fetal characteristics and behaviors, maternal lifestyle and pathologies, placental health and dysfunction, labor, incubator conditions, and drug exposure-may have an impact on the development of the vagus during the above-mentioned "critical window" and how. This analysis could help clinicians and stakeholders define precise guidelines for improving the management of fetuses and newborns, particularly to reduce the potential adverse environmental impacts on ANS development that may lead to persistent long-term consequences. Since the development of ANS and the vagus influence have been shown to be reflected in cardiac variability, this paper will rely in particular on studies using fetal heart rate variability (fHRV) to monitor the continued growth and health of both animal and human fetuses. In fact, fHRV is a non-invasive marker whose changes have been associated with ANS development, vagal modulation, systemic and neurological inflammatory reactions, and even fetal distress during labor.
Collapse
Affiliation(s)
- Francesco Cerritelli
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Martin G. Frasch
- Department of Obstetrics and Gynecology and Center on Human Development and Disability, University of Washington, Seattle, WA, United States
| | - Marta C. Antonelli
- Facultad de Medicina, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Chiara Viglione
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Stefano Vecchi
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Marco Chiera
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Andrea Manzotti
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
- Department of Pediatrics, Division of Neonatology, “V. Buzzi” Children's Hospital, Azienda Socio-Sanitaria Territoriale Fatebenefratelli Sacco, Milan, Italy
- Research Department, Istituto Osteopatia Milano, Milan, Italy
| |
Collapse
|
23
|
Piacentino ML, Hutchins EJ, Bronner ME. Essential function and targets of BMP signaling during midbrain neural crest delamination. Dev Biol 2021; 477:251-261. [PMID: 34102166 PMCID: PMC8277753 DOI: 10.1016/j.ydbio.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
BMP signaling plays iterative roles during vertebrate neural crest development from induction through craniofacial morphogenesis. However, far less is known about the role of BMP activity in cranial neural crest epithelial-to-mesenchymal transition and delamination. By measuring canonical BMP signaling activity as a function of time from specification through early migration of avian midbrain neural crest cells, we found elevated BMP signaling during delamination stages. Moreover, inhibition of canonical BMP activity via a dominant negative mutant Type I BMP receptor showed that BMP signaling is required for neural crest migration from the midbrain, independent from an effect on EMT and delamination. Transcriptome profiling on control compared to BMP-inhibited cranial neural crest cells identified novel BMP targets during neural crest delamination and early migration including targets of the Notch pathway that are upregulated following BMP inhibition. These results suggest potential crosstalk between the BMP and Notch pathways in early migrating cranial neural crest and provide novel insight into mechanisms regulated by BMP signaling during early craniofacial development.
Collapse
Affiliation(s)
- Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Erica J Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
24
|
The Cardiac Neural Crest Cells in Heart Development and Congenital Heart Defects. J Cardiovasc Dev Dis 2021; 8:jcdd8080089. [PMID: 34436231 PMCID: PMC8397082 DOI: 10.3390/jcdd8080089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
The neural crest (NC) is a multipotent and temporarily migratory cell population stemming from the dorsal neural tube during vertebrate embryogenesis. Cardiac neural crest cells (NCCs), a specified subpopulation of the NC, are vital for normal cardiovascular development, as they significantly contribute to the pharyngeal arch arteries, the developing cardiac outflow tract (OFT), cardiac valves, and interventricular septum. Various signaling pathways are shown to orchestrate the proper migration, compaction, and differentiation of cardiac NCCs during cardiovascular development. Any loss or dysregulation of signaling pathways in cardiac NCCs can lead to abnormal cardiovascular development during embryogenesis, resulting in abnormalities categorized as congenital heart defects (CHDs). This review focuses on the contributions of cardiac NCCs to cardiovascular formation, discusses cardiac defects caused by a disruption of various regulatory factors, and summarizes the role of multiple signaling pathways during embryonic development. A better understanding of the cardiac NC and its vast regulatory network will provide a deeper insight into the mechanisms of the associated abnormalities, leading to potential therapeutic advancements.
Collapse
|
25
|
Gogolou A, Frith TJR, Tsakiridis A. Generating Enteric Nervous System Progenitors from Human Pluripotent Stem Cells. Curr Protoc 2021; 1:e137. [PMID: 34102038 DOI: 10.1002/cpz1.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intrinsic innervation of the gastrointestinal (GI) tract is comprised of enteric neurons and glia, which are buried within the wall of the bowel and organized into two concentric plexuses that run along the length of the gut forming the enteric nervous system (ENS). The ENS regulates vital GI functions including gut motility, blood flow, fluid secretion, and absorption and thus maintains gut homeostasis. During vertebrate development it originates predominantly from the vagal neural crest (NC), a multipotent cell population that emerges from the caudal hindbrain region, migrates to and within the gut to ultimately generate neurons and glia in response to gut-derived signals. Loss of GI innervation due to congenital or acquired defects in ENS development causes enteric neuropathies which lack curative treatment. Human pluripotent stem cells (hPSCs) offer a promising in vitro source of enteric neurons for modeling human ENS development and pathology and potential use in cell therapy applications. Here we describe in detail a differentiation strategy for the derivation of enteric neural progenitors and neurons from hPSCs through a vagal NC intermediate. Using a combination of instructive signals and retinoic acid in a dose/time dependent manner, vagal NC cells commit into the ENS lineage and develop into enteric neurons and glia upon culture in neurotrophic media. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of vagal neural crest/early ENS progenitors from hPSCs Basic Protocol 2: Differentiation of hPSC-derived vagal NC/early ENS progenitors to enteric neurons and glia.
Collapse
Affiliation(s)
- Antigoni Gogolou
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | | | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, Kelenis DP, Whitney CP, Guthrie MR, Wait SJ, Soltero D, Witt BL, Quaranta V, Johnson JE, Oliver TG. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev 2021; 35:847-869. [PMID: 34016693 PMCID: PMC8168563 DOI: 10.1101/gad.348295.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karine Pozo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
- ARUP Laboratories at University of Utah, Salt Lake City, Utah 84108, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
27
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
28
|
Clonal analysis and dynamic imaging identify multipotency of individual Gallus gallus caudal hindbrain neural crest cells toward cardiac and enteric fates. Nat Commun 2021; 12:1894. [PMID: 33767165 PMCID: PMC7994390 DOI: 10.1038/s41467-021-22146-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Neural crest stem cells arising from caudal hindbrain (often called cardiac and posterior vagal neural crest) migrate long distances to form cell types as diverse as heart muscle and enteric ganglia, abnormalities of which lead to common congenital birth defects. Here, we explore whether individual caudal hindbrain neural crest precursors are multipotent or predetermined toward these particular fates and destinations. To this end, we perform lineage tracing of chick neural crest cells at single-cell resolution using two complementary approaches: retrovirally mediated multiplex clonal analysis and single-cell photoconversion. Both methods show that the majority of these neural crest precursors are multipotent with many clones producing mesenchymal as well as neuronal derivatives. Time-lapse imaging demonstrates that sister cells can migrate in distinct directions, suggesting stochasticity in choice of migration path. Perturbation experiments further identify guidance cues acting on cells in the pharyngeal junction that can influence this choice; loss of CXCR4 signaling results in failure to migrate to the heart but no influence on migration toward the foregut, whereas loss of RET signaling does the opposite. Taken together, the results suggest that environmental influences rather than intrinsic information govern cell fate choice of multipotent caudal hindbrain neural crest cells. Neural crest stem cells formed from the caudal hindbrain migrate long distances to the heart and gut, but how cell fate is determined is unclear. Here, the authors use multiplex clonal analysis and single-cell photoconversion lineage tracing to show environmental not intrinsic factors affect the cell fate of multipotent caudal hindbrain cells in the chick.
Collapse
|
29
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
30
|
Hutchins EJ, Bronner ME. A Spectrum of Cell States During the Epithelial-to-Mesenchymal Transition. Methods Mol Biol 2021; 2179:3-6. [PMID: 32939707 DOI: 10.1007/978-1-0716-0779-4_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) encompasses a complex cascade of events through which a cell transits to reduce its epithelial characteristics and become migratory. Classically, this transition has been considered complete upon loss of molecular markers characteristic of an "epithelial" state and acquisition of those associated with "mesenchymal" cells. Recently, however, evidence from both developmental and cancer EMT contexts suggest that cells undergoing EMT are often heterogeneous, concomitantly expressing both epithelial and mesenchymal markers to varying degrees; rather, cells frequently display a "partial" EMT phenotype and do not necessarily require full "mesenchymalization" to become migratory. Here, we offer a brief perspective on recent important advances in our fundamental understanding of the spectrum of cellular states that occur during partial EMT in the context of development and cancer metastasis.
Collapse
Affiliation(s)
- Erica J Hutchins
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marianne E Bronner
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
31
|
Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2020; 10:E47. [PMID: 33396231 PMCID: PMC7823798 DOI: 10.3390/cells10010047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) constitutes the largest part of the peripheral nervous system. In recent years, ENS development and its neurogenetic capacity in homeostasis and allostasishave gained increasing attention. Developmentally, the neural precursors of the ENS are mainly derived from vagal and sacral neural crest cell portions. Furthermore, Schwann cell precursors, as well as endodermal pancreatic progenitors, participate in ENS formation. Neural precursorsenherite three subpopulations: a bipotent neuron-glia, a neuronal-fated and a glial-fated subpopulation. Typically, enteric neural precursors migrate along the entire bowel to the anal end, chemoattracted by glial cell-derived neurotrophic factor (GDNF) and endothelin 3 (EDN3) molecules. During migration, a fraction undergoes differentiation into neurons and glial cells. Differentiation is regulated by bone morphogenetic proteins (BMP), Hedgehog and Notch signalling. The fully formed adult ENS may react to injury and damage with neurogenesis and gliogenesis. Nevertheless, the origin of differentiating cells is currently under debate. Putative candidates are an embryonic-like enteric neural progenitor population, Schwann cell precursors and transdifferentiating glial cells. These cells can be isolated and propagated in culture as adult ENS progenitors and may be used for cell transplantation therapies for treating enteric aganglionosis in Chagas and Hirschsprung's diseases.
Collapse
Affiliation(s)
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany;
| |
Collapse
|
32
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
33
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
34
|
Manohar S, Camacho-Magallanes A, Echeverria C, Rogers CD. Cadherin-11 Is Required for Neural Crest Specification and Survival. Front Physiol 2020; 11:563372. [PMID: 33192560 PMCID: PMC7662130 DOI: 10.3389/fphys.2020.563372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023] Open
Abstract
Neural crest (NC) cells are multipotent embryonic cells that form melanocytes, craniofacial bone and cartilage, and the peripheral nervous system in vertebrates. NC cells express many cadherin proteins, which control their specification, epithelial to mesenchymal transition (EMT), migration, and mesenchymal to epithelial transition. Abnormal NC development leads to congenital defects including craniofacial clefts as well as NC-derived cancers. Here, we identify the role of the type II cadherin protein, Cadherin-11 (CDH11), in early chicken NC development. CDH11 is known to play a role in NC cell migration in amphibian embryos as well as cell survival, proliferation, and migration in cancer cells. It has also been linked to the complex neurocristopathy disorder, Elsahy-Waters Syndrome, in humans. In this study, we knocked down CDH11 translation at the onset of its expression in the NC domain during NC induction. Loss of CDH11 led to a reduction of bonafide NC cells in the dorsal neural tube combined with defects in cell survival and migration. Loss of CDH11 increased p53-mediated programmed-cell death, and blocking the p53 pathway rescued the NC phenotype. Our findings reveal an early requirement for CDH11 in NC development and demonstrated the complexity of the mechanisms that regulate NC development, where a single cell-cell adhesion protein simultaneous controls multiple essential cellular functions to ensure proper specification, survival, and transition to a migratory phase in the dorsal neural tube. Our findings may also increase our understanding of early cadherin-related NC developmental defects.
Collapse
Affiliation(s)
- Subrajaa Manohar
- Department of Biology, School of Math and Science, California State University Northridge, Northridge, CA, United States
| | - Alberto Camacho-Magallanes
- Department of Biology, School of Math and Science, California State University Northridge, Northridge, CA, United States
| | - Camilo Echeverria
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, United States
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, United States
| |
Collapse
|
35
|
Sox10 Is a Specific Biomarker for Neural Crest Stem Cells in Immunohistochemical Staining in Wistar Rats. DISEASE MARKERS 2020; 2020:8893703. [PMID: 32908618 PMCID: PMC7477616 DOI: 10.1155/2020/8893703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Objective Neural crest stem cells (NCSCs) are prototypically migratory cells immigrating from the dorsal neural tube to specific embryonic sites where they generate a variety of cell types. A lot of biomarkers for NCSCs have been identified. However, which biomarkers are the most specific is still unclear. Methods The rat embryos harvested in embryonic day 9 (E9), E9.5, E10, E10.5, E11, E12, E13, and E14 were paraffin-embedded and sectioned in transverse. NCSCs were spatiotemporally demonstrated by immunohistochemical staining with RET, p75NTR, Pax7, and Sox10. NCSCs were isolated, cultured, and stained with RET, p75NTR, Pax7, and Sox10. Results In the paraffin sections of rat embryos, the immunohistochemical staining of RET, p75NTR, and Sox10 can all be used in demonstrating NCSCs. Sox10 was positive mainly in NCSCs while RET and p75NTR were positive not only in NCSCs but also in other tissue cells. In primary culture cells, Sox10 was mainly in the nucleus of NCSCs, RET was mainly in the membrane, and p75NTR was positive in cytoplasm and membrane. Conclusions Sox10 is the specific marker for immunohistochemical staining of NCSCs in paraffin sections. In cultured cells, Sox10, p75NTR, and RET presented a similar staining effect.
Collapse
|
36
|
Frith TJR, Gogolou A, Hackland JOS, Hewitt ZA, Moore HD, Barbaric I, Thapar N, Burns AJ, Andrews PW, Tsakiridis A, McCann CJ. Retinoic Acid Accelerates the Specification of Enteric Neural Progenitors from In-Vitro-Derived Neural Crest. Stem Cell Reports 2020; 15:557-565. [PMID: 32857978 PMCID: PMC7486303 DOI: 10.1016/j.stemcr.2020.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS. Retinoic acid alters the axial identity of hPSC-derived neural crest cells ENS progenitor markers are upregulated in response to RA ENS progenitors are capable of generating enteric neurons in vitro hPSC ENS progenitors colonize the ENS of mice following long-term transplantation
Collapse
Affiliation(s)
- Thomas J R Frith
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Antigoni Gogolou
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - James O S Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Zoe A Hewitt
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Harry D Moore
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Ivana Barbaric
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Neurogastroenterology and Motility Unit, Great Ormond Street Hospital, London, UK; Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia; Prince Abdullah Ben Khalid Celiac Research Chair, College of Medicine, King Saud University, Riyadh, KSA
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter W Andrews
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Anestis Tsakiridis
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
37
|
Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest. Curr Opin Cell Biol 2020; 66:43-50. [PMID: 32531659 DOI: 10.1016/j.ceb.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration.
Collapse
|
38
|
Jin Y, Ran C, Li F, Cheng N. Melanoma of unknown primary in the pancreas: should it be considered primary? BMC Surg 2020; 20:76. [PMID: 32299408 PMCID: PMC7164174 DOI: 10.1186/s12893-020-00731-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/27/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Malignant melanoma is characterized as highly malignant due to its rapid growth and early metastasis. Metastatic melanoma from occult primary is rare. Melanoma of unknown primary in pancreas are even rear. But it is a biologically ill-defined and clinically understudied concept.
Case presentation
In this report, a 43-year-old man was diagnosed with pancreatic carcinoma. Extended total pancreatectomy together with portal vein reconstruction and extensive lymphadenectomy were performed in our hospital. The patient was diagnosed with pancreatic malignant melanoma after pathological examination. He was still alive 20 months after the operation without any evidence of recurrence.
Conclusion
The described case highlights the possibility of primary pancreatic malignant melanoma and the treatment strategies of this rare carcinoma.
Collapse
|
39
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
40
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|
42
|
Early expression of Tubulin Beta-III in avian cranial neural crest cells. Gene Expr Patterns 2019; 34:119067. [PMID: 31369820 PMCID: PMC6878122 DOI: 10.1016/j.gep.2019.119067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
Neural crest cells are a transient stem-like cell population that forms in the dorsal neural tube of vertebrate embryos and then migrates to various locations to differentiate into diverse derivatives such as craniofacial bone, cartilage, and the enteric and peripheral nervous systems. The current dogma of neural crest cell development suggests that there is a specific hierarchical gene regulatory network (GRN) that controls the induction, specification, and differentiation of these cells at specific developmental times. Our lab has identified that a marker of differentiated neurons, Tubulin Beta-III (TUBB3), is expressed in premigratory neural crest cells. TUBB3 has previously been identified as a major constituent of microtubules and is required for the proper guidance and maintenance of axons during development. Using the model organism, Gallus gallus, we have characterized the spatiotemporal localization of TUBB3 in early stages of development. Here we show TUBB3 is expressed in the developing neural plate, is upregulated in the pre-migratory cranial neural crest prior to cell delamination and migration, and it is maintained or upregulated in neurons in later developmental stages. We believe that TUBB3 likely has a role in early neural crest formation and migration separate from its role in neurogenesis.
Collapse
|
43
|
Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian X, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 2019; 364:364/6444/eaas9536. [DOI: 10.1126/science.aas9536] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 12/12/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Neural crest cells are embryonic progenitors that generate numerous cell types in vertebrates. With single-cell analysis, we show that mouse trunk neural crest cells become biased toward neuronal lineages when they delaminate from the neural tube, whereas cranial neural crest cells acquire ectomesenchyme potential dependent on activation of the transcription factor Twist1. The choices that neural crest cells make to become sensory, glial, autonomic, or mesenchymal cells can be formalized as a series of sequential binary decisions. Each branch of the decision tree involves initial coactivation of bipotential properties followed by gradual shifts toward commitment. Competing fate programs are coactivated before cells acquire fate-specific phenotypic traits. Determination of a specific fate is achieved by increased synchronization of relevant programs and concurrent repression of competing fate programs.
Collapse
|
44
|
Simkin JE, Zhang D, Stamp LA, Newgreen DF. Fine scale differences within the vagal neural crest for enteric nervous system formation. Dev Biol 2019; 446:22-33. [DOI: 10.1016/j.ydbio.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
|