1
|
Fajardo JB, Vianna MH, Polo AB, Cordeiro Comitre MR, de Oliveira DA, Ferreira TG, de Oliveira Lemos AS, Souza TDF, Campos LM, de Lima Paula P, Barbosa AF, Geraldo de Carvalho M, Machado Resende Guedes MC, Coimbra ES, da Costa Macedo G, Tavares GD, Barradas TN, Fabri RL. Insights into the bioactive potential of the Amazonian species Acmella oleracea leaves extract: A focus on wound healing applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118866. [PMID: 39357584 DOI: 10.1016/j.jep.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea is traditionally used by Amazonian folks to treat skin and mucous wounds, influenza, cough, toothache, bacterial and fungal infections. Its phytoconstituents, such as alkylamides, phenolic compounds, and terpenes, are reported to produce therapeutic effects, which justify the medicinal use of A. oleracea extracts. However, the scientific evidence supporting the application A. oleracea bioactive products for wound treatment of remains unexplored so far. OBJECTIVE This work aimed to characterize the phytochemical composition of methanolic extract of A. oleracea leaves (AOM) and to investigate their antioxidant, anti-inflammatory, antimicrobial and healing potential focusing on its application for wound healing. MATERIAL AND METHODS The dried leaves from A. oleracea submitted to static maceration in methanol for 40 days. The phytochemical constitution of AOM was analyzed based on the total phenolic dosage method and by UFLC-QTOF-MS analysis. Antioxidant activity was assessed by DPPH and NO scavenging activities, as well as MDA formation, evaluation of ROS levels, and phosphomolybdenum assays. In vitro anti-inflammatory activities were assessed by reduction of NO, IL-6, and TNF-α production and accumulation of LDs in peritoneal macrophages cells. Antimicrobial activity was evaluated by determining MIC and MBC/MFC values against P. aeruginosa, E. coli, S. epidermidis, S. aureus and C. albicans, bacterial killing assay, and biofilm adhesion assessment. In vitro wound healing activity was determined by means of the scratch assay with L929 fibroblasts. RESULTS Vanillic acid, quercetin, and seven other alkamides, including spilanthol, were detected in the UFLC-QTOF-MS spectrum of AOM. Regarding the biocompatibility, AOM did not induce cytotoxicity in L929 fibroblasts and murine macrophages. The strong anti-inflammatory activity was evidenced by the fact that AOM reduced the cellular production of inflammatory mediators IL-6, TNF-α, NO, and LDs in macrophages by 100%, 96.66 ± 1.95%, 99.21 ± 3.82%, and 67.51 ± 0.72%, respectively. The antioxidant effects were confirmed, since AOM showed IC50 values of 44.50 ± 4.46 and 127.60 ± 14.42 μg/mL in the DPPH and NO radical inhibition assays, respectively. Additionally, AOM phosphomolybdenium reducing power was 63.56 ± 13.01 (RAA% of quercetin) and 104.01 ± 21.29 (RAA% of rutin). Finally, in the MDA quantification assay, AOM showed 63,69 ± 3.47% of lipid peroxidation inhibition. It was also observed that the production of ROS decreased by 69.03 ± 3.85%. The MIC values of AOM ranged from 1000 to 125 μg/mL. Adhesion of S. aureus, P. Aeruginosa, and mixed biofilms was significantly reduced by 44.71 ± 4.44%, 95.50 ± 6.37 %, and 51.83 ± 1.50%, respectively. AOM also significantly inhibited the growth of S. aureus (77.17 ± 1.50 %) and P. aeruginosa (62.36 ± 1.01%). Furthermore, AOM significantly enhanced the in vitro migration of L929 fibroblasts by 97.86 ± 0.82% compared to the control (P < 0.05). CONCLUSIONS This study is the first to report total antioxidant capacity and intracellular LD reduction by AOM. The results clearly demonstrated that AOM exerts potent anti-inflammatory, antioxidant, antimicrobial, and wound healing effects, encouraging its further investigation and promising application in wound treatment.
Collapse
Affiliation(s)
- Júlia Bertolini Fajardo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Hauck Vianna
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ana Barbara Polo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariane Rocha Cordeiro Comitre
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Débora Almeida de Oliveira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thayná Gomes Ferreira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thalita de Freitas Souza
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lara Melo Campos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Lima Paula
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alan Franco Barbosa
- Federal Institute of Education, Science and Technology of Mato Grosso, Sorriso, MG, Brazil
| | - Mário Geraldo de Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Maria Clara Machado Resende Guedes
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilson da Costa Macedo
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Rodrigo Luiz Fabri
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Melo RCN, Silva TP. Eosinophil activation during immune responses: an ultrastructural view with an emphasis on viral diseases. J Leukoc Biol 2024; 116:321-334. [PMID: 38466831 DOI: 10.1093/jleuko/qiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
3
|
Tazhitdinova R, Cristiano S, Yi J, Zhurov V, DeKoter RP, Timoshenko AV. Expression and secretion of galectin-12 in the context of neutrophilic differentiation of human promyeloblastic HL-60 cells. J Cell Physiol 2024; 239:e31288. [PMID: 38685860 DOI: 10.1002/jcp.31288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Galectin-12 is a tissue-specific galectin that has been largely defined by its role in the regulation of adipocyte differentiation and lipogenesis. This study aimed to evaluate the role of galectin-12 in the differentiation and polarization of neutrophils within a model of acute myeloid leukemia HL-60 cells. All-trans retinoic acid and dimethyl sulfoxide were used to induce differentiation of HL-60 cells which led to the generation of two phenotypes of neutrophil-like cells with opposite changes in galectin-12 gene (LGALS12) expression and different functional responses to N-formyl- l-methionyl- l-leucyl- l-phenylalanine. These phenotypes showed significant differences of differentially expressed genes on a global scale based on bioinformatics analysis of available Gene Expression Omnibus (GEO) data sets. We also demonstrated that HL-60 cells could secrete and accumulate galectin-12 in cell culture medium under normal growth conditions. This secretion was found to be entirely inhibited upon neutrophilic differentiation and was accompanied by an increase in intracellular lipid droplet content and significant enrichment of 22 lipid gene ontology terms related to lipid metabolism in differentiated cells. These findings suggest that galectin-12 could serve as a marker of neutrophilic plasticity or polarization into different phenotypes and that galectin-12 secretion may be influenced by lipid droplet biogenesis.
Collapse
Affiliation(s)
- Rada Tazhitdinova
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Sara Cristiano
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Joshua Yi
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
4
|
Sternak M, Stojak M, Banasik T, Kij A, Bar A, Pacia MZ, Wojnar-Lason K, Chorazy N, Mohaissen T, Marczyk B, Czyzynska-Cichon I, Berkimbayeva Z, Mika A, Chlopicki S. Vascular ATGL-dependent lipolysis and the activation of cPLA 2-PGI 2 pathway protect against postprandial endothelial dysfunction. Cell Mol Life Sci 2024; 81:125. [PMID: 38467757 PMCID: PMC10927860 DOI: 10.1007/s00018-024-05167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.
Collapse
Affiliation(s)
- M Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland.
| | - M Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - T Banasik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - A Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - A Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - M Z Pacia
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - K Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
- Medical College, Chair of Pharmacology, Jagiellonian University, Grzegorzecka 16, Krakow, Poland
| | - N Chorazy
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, Poland
| | - T Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - B Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - I Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - Z Berkimbayeva
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - A Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, Gdansk, Poland
| | - S Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland.
- Medical College, Chair of Pharmacology, Jagiellonian University, Grzegorzecka 16, Krakow, Poland.
| |
Collapse
|
5
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Phillips ME, Adekanye O, Borazjani A, Crow JA, Ross MK. CES1 Releases Oxylipins from Oxidized Triacylglycerol (oxTAG) and Regulates Macrophage oxTAG/TAG Accumulation and PGE 2/IL-1β Production. ACS Chem Biol 2023; 18:1564-1581. [PMID: 37348046 PMCID: PMC11131412 DOI: 10.1021/acschembio.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Triacylglycerols (TAGs) are storage forms of fat, primarily found in cytoplasmic lipid droplets in cells. TAGs are broken down to their component free fatty acids by lipolytic enzymes when fuel reserves are required. However, polyunsaturated fatty acid (PUFA)-containing TAGs are susceptible to nonenzymatic oxidation reactions, leading to the formation of oxylipins that are esterified to the glycerol backbone (termed oxTAGs). Human carboxylesterase 1 (CES1) is a member of the serine hydrolase superfamily and defined by its ability to catalyze the hydrolysis of carboxyl ester bonds in both toxicants and lipids. CES1 is a bona fide TAG hydrolase, but it is unclear which specific fatty acids are preferentially released during lipolysis. To better understand the biochemical function of CES1 in immune cells, such as macrophages, its substrate selectivity when it encounters oxidized PUFAs in TAG lipid droplets requires study. We sought to identify those esterified oxidized fatty acids liberated from oxTAGs by CES1 because their release can activate signaling pathways that enforce the development of lipid-driven inflammation. Gaining this knowledge will help fill data gaps that exist between CES1 and the lipid-sensing nuclear receptors, PPARγ and LXRα, which are important drivers of lipid metabolism and inflammation in macrophages. Oxidized forms of triarachidonoylglycerol (oxTAG20:4) or trilinoleoylglycerol (oxTAG18:2), which contain physiologically relevant levels of oxidized PUFAs (<5 mol %), were incubated with recombinant CES1 to release oxylipins and nonoxidized arachidonic acid (AA) or linoleic acid (LA). CES1 hydrolyzed each oxTAG, yielding regioisomers of hydroxyeicosatetraenoic acids (5-, 11-, 12-, and 15-HETE) and hydroxyoctadecadienoic acids (9- and 13-HODE). Furthermore, human THP-1 macrophages with deficient CES1 levels exhibited a differential response to extracellular stimuli (oxTAGs, lipopolysaccharide, and 15-HETE) as compared to those with normal CES1 levels, including enhanced oxTAG/TAG lipid accumulation and altered cytokine and prostaglandin E2 profiles. This study suggests that CES1 can metabolize oxTAG lipids to release oxylipins and PUFAs, and it further specifies the substrate selectivity of CES1 in the metabolism of bioactive lipid mediators. We suggest that the accumulation of oxTAGs/TAGs within lipid droplets that arise due to CES1 deficiency enforces an inflammatory phenotype in macrophages.
Collapse
Affiliation(s)
- Maggie E Phillips
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Oluwabori Adekanye
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - J Allen Crow
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
7
|
Mangini M, Ferrara MA, Zito G, Managò S, Luini A, De Luca AC, Coppola G. Cancer metabolic features allow discrimination of tumor from white blood cells by label-free multimodal optical imaging. Front Bioeng Biotechnol 2023; 11:1057216. [PMID: 36815877 PMCID: PMC9928723 DOI: 10.3389/fbioe.2023.1057216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have penetrated the circulatory system preserving tumor properties and heterogeneity. Detection and characterization of CTCs has high potential clinical values and many technologies have been developed for CTC identification. These approaches remain challenged by the extraordinary rarity of CTCs and the difficulty of efficiently distinguishing cancer from the much larger number of white blood cells in the bloodstream. Consequently, there is still a need for efficient and rapid methods to capture the broad spectrum of tumor cells circulating in the blood. Herein, we exploit the peculiarities of cancer metabolism for discriminating cancer from WBCs. Using deuterated glucose and Raman microscopy we show that a) the known ability of cancer cells to take up glucose at greatly increased rates compared to non-cancer cells results in the lipid generation and accumulation into lipid droplets and, b) by contrast, leukocytes do not appear to generate visible LDs. The difference in LD abundance is such that it provides a reliable parameter for distinguishing cancer from blood cells. For LD sensitive detections in a cell at rates suitable for screening purposes, we test a polarization-sensitive digital holographic imaging (PSDHI) technique that detects the birefringent properties of the LDs. By using polarization-sensitive digital holographic imaging, cancer cells (prostate cancer, PC3 and hepatocarcinoma cells, HepG2) can be rapidly discriminated from leukocytes with reliability close to 100%. The combined Raman and PSDHI microscopy platform lays the foundations for the future development of a new label-free, simple and universally applicable cancer cells' isolation method.
Collapse
Affiliation(s)
- Maria Mangini
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy
| | - Maria Antonietta Ferrara
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy
| | - Gianluigi Zito
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy
| | - Stefano Managò
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy
| | - Alberto Luini
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| | - Anna Chiara De Luca
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| | - Giuseppe Coppola
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| |
Collapse
|
8
|
Pirone D, Sirico DG, Mugnano M, Del Giudice D, Kurelac I, Cavina B, Memmolo P, Miccio L, Ferraro P. Finding intracellular lipid droplets from the single-cell biolens' signature in a holographic flow-cytometry assay. BIOMEDICAL OPTICS EXPRESS 2022; 13:5585-5598. [PMID: 36733743 PMCID: PMC9872869 DOI: 10.1364/boe.460204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 05/08/2023]
Abstract
In recent years, intracellular LDs have been discovered to play an important role in several pathologies. Therefore, detection of LDs would provide an in-demand diagnostic tool if coupled with flow-cytometry to give significant statistical analysis and especially if the diagnosis is made in full non-invasive mode. Here we combine the experimental results of in-flow tomographic phase microscopy with a suited numerical simulation to demonstrate that intracellular LDs can be easily detected through a label-free approach based on the direct analysis of the 2D quantitative phase maps recorded by a holographic flow cytometer. In fact, we demonstrate that the presence of LDs affects the optical focusing lensing features of the embracing cell, which can be considered a biological lens. The research was conducted on white blood cells (i.e., lymphocytes and monocytes) and ovarian cancer cells. Results show that the biolens properties of cells can be a rapid biomarker that aids in boosting the diagnosis of LDs-related pathologies by means of the holographic flow-cytometry assay for fast, non-destructive, and high-throughput screening of statistically significant number of cells.
Collapse
Affiliation(s)
- Daniele Pirone
- Department of Electrical Engineering and Information Technologies, University of Naples "Federico II", via Claudio 21, 80125 Napoli, Italy
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- contributed equally
| | - Daniele G Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- DICMaPI, Department of Chemical, Materials and Production Engineering, University of Naples Federico II", Piazzale Tecchio 80, 80125 Napoli, Italy
- contributed equally
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Danila Del Giudice
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca (CSR) sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), Centro di Studio e Ricerca (CSR) sulle Neoplasie Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
9
|
Farías MA, Diethelm-Varela B, Navarro AJ, Kalergis AM, González PA. Interplay between Lipid Metabolism, Lipid Droplets, and DNA Virus Infections. Cells 2022; 11:2224. [PMID: 35883666 PMCID: PMC9324743 DOI: 10.3390/cells11142224] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
Lipid droplets (LDs) are cellular organelles rich in neutral lipids such as triglycerides and cholesterol esters that are coated by a phospholipid monolayer and associated proteins. LDs are known to play important roles in the storage and availability of lipids in the cell and to serve as a source of energy reserve for the cell. However, these structures have also been related to oxidative stress, reticular stress responses, and reduced antigen presentation to T cells. Importantly, LDs are also known to modulate viral infection by participating in virus replication and assembly. Here, we review and discuss the interplay between neutral lipid metabolism and LDs in the replication cycle of different DNA viruses, identifying potentially new molecular targets for the treatment of viral infections.
Collapse
Affiliation(s)
- Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| | - Areli J. Navarro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; (M.A.F.); (B.D.-V.); (A.J.N.); (A.M.K.)
| |
Collapse
|
10
|
Pressly JD, Gurumani MZ, Varona Santos JT, Fornoni A, Merscher S, Al-Ali H. Adaptive and maladaptive roles of lipid droplets in health and disease. Am J Physiol Cell Physiol 2022; 322:C468-C481. [PMID: 35108119 PMCID: PMC8917915 DOI: 10.1152/ajpcell.00239.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.
Collapse
Affiliation(s)
- Jeffrey D. Pressly
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Z. Gurumani
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier T. Varona Santos
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Hassan Al-Ali
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida,3Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida,4The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida,5Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
11
|
Identification of inflammatory markers in eosinophilic cells of the immune system: fluorescence, Raman and CARS imaging can recognize markers but differently. Cell Mol Life Sci 2021; 79:52. [PMID: 34936035 PMCID: PMC8739296 DOI: 10.1007/s00018-021-04058-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022]
Abstract
Eosinophils (Eos) play an important role in the immune system’s response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1β, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation.
Collapse
|
12
|
Lipid Droplets, Phospholipase A 2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121891. [PMID: 34944707 PMCID: PMC8699036 DOI: 10.3390/biomedicines9121891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets, classically regarded as static storage organelles, are currently considered as dynamic structures involved in key processes of lipid metabolism, cellular homeostasis and signaling. Studies on the inflammatory state of atherosclerotic plaques suggest that circulating monocytes interact with products released by endothelial cells and may acquire a foamy phenotype before crossing the endothelial barrier and differentiating into macrophages. One such compound released in significant amounts into the bloodstream is arachidonic acid, the common precursor of eicosanoids, and a potent inducer of neutral lipid synthesis and lipid droplet formation in circulating monocytes. Members of the family of phospholipase A2, which hydrolyze the fatty acid present at the sn-2 position of phospholipids, have recently emerged as key controllers of lipid droplet homeostasis, regulating their formation and the availability of fatty acids for lipid mediator production. In this paper we discuss recent findings related to lipid droplet dynamics in immune cells and the ways these organelles are involved in regulating arachidonic acid availability and metabolism in the context of atherosclerosis.
Collapse
|
13
|
Metabolic orchestration of the wound healing response. Cell Metab 2021; 33:1726-1743. [PMID: 34384520 DOI: 10.1016/j.cmet.2021.07.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Wound healing requires cooperation between different cell types, among which macrophages play a central role. In particular, inflammatory macrophages are engaged in the initial response to wounding, and alternatively activated macrophages are essential for wound closure and the resolution of tissue repair. The links between temporal activation-induced changes in the metabolism of such macrophages and the influence this has on their functional states, along with the realization that metabolites play both intrinsic and extrinsic roles in the cells that produce them, has focused attention on the metabolism of wound healing. Here, we discuss macrophage metabolism during distinct stages of normal healing and its related pathologic processes, such as during cancer and fibrosis. Further, we frame these insights in a broader context of the current understanding of macrophage metabolic reprogramming linked to cellular activation and function. Finally, we discuss parallels between the metabolism of macrophages and fibroblasts, the latter being a key stromal cell type in wound healing, and consider the importance of the metabolic interplay between different cell types in the wound microenvironment.
Collapse
|
14
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
15
|
Wang M, Yan Y, Zhang Z, Yao X, Duan X, Jiang Z, An J, Zheng P, Han Y, Wu H, Wang Z, Glauben R, Qin Z. Programmed PPAR-α downregulation induces inflammaging by suppressing fatty acid catabolism in monocytes. iScience 2021; 24:102766. [PMID: 34286232 PMCID: PMC8273418 DOI: 10.1016/j.isci.2021.102766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 01/07/2023] Open
Abstract
Inflammaging is associated with an increased risk of chronic disease. Monocytes are the principal immune cells for the production of inflammatory cytokines and contribute to inflammaging in the elderly. However, the underlying mechanisms remain largely unknown. Here, we found that monocytes from aged individuals contained high levels of lipid droplets (LDs), and this increase was correlated with impaired fatty acid oxidation. Downregulated peroxisome proliferator-activated receptor (PPAR)-α may be responsible for the pro-inflammatory phenotype of monocytes in aged individuals, as it was positively correlated with LD accumulation and increasing TNF-α concentration. Interestingly, interventions that result in PPAR-α upregulation, such as fenofibrate treatment, TNF-α neutralization, or calorie restriction, reversed the effect of aging on monocytes. Thus the downregulation of PPAR-α and LD levels in monocytes represents a novel biomarker for inflammaging. Furthermore, PPAR-α activation in the elderly may also alleviate long-term inflammaging, preventing the development of life-limiting chronic diseases. Monocytes from aged individuals contained high levels of lipid droplets (LDs) Downregulated PPAR-α is responsible for the aged monocytes profiles TNF-α might accelerate monocyte aging by downregulating PPAR-α expression PPAR-α activation in the elderly may also alleviate long-term inflammaging
Collapse
Affiliation(s)
- Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhengguo Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ziming Jiang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfeng An
- School of Yunkang Medical and Health Management, Nanfang College of SUN Yat-Sen University, Guangzhou city, Guangdong 510970, China
| | - Peiguo Zheng
- Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yijie Han
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Wu
- Würzburg Institute of Systems Immunology, Max-planck Research Group, University Würzburg, Germany
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rainer Glauben
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Basic Medical Sciences, the Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
16
|
de Souza G, Silva RJ, Milián ICB, Rosini AM, de Araújo TE, Teixeira SC, Oliveira MC, Franco PS, da Silva CV, Mineo JR, Silva NM, Ferro EAV, Barbosa BF. Cyclooxygenase (COX)-2 modulates Toxoplasma gondii infection, immune response and lipid droplets formation in human trophoblast cells and villous explants. Sci Rep 2021; 11:12709. [PMID: 34135407 PMCID: PMC8209052 DOI: 10.1038/s41598-021-92120-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Congenital toxoplasmosis is represented by the transplacental passage of Toxoplasma gondii from the mother to the fetus. Our studies demonstrated that T. gondii developed mechanisms to evade of the host immune response, such as cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) induction, and these mediators can be produced/stored in lipid droplets (LDs). The aim of this study was to evaluate the role of COX-2 and LDs during T. gondii infection in human trophoblast cells and villous explants. Our data demonstrated that COX-2 inhibitors decreased T. gondii replication in trophoblast cells and villous. In BeWo cells, the COX-2 inhibitors induced an increase of pro-inflammatory cytokines (IL-6 and MIF), and a decrease in anti-inflammatory cytokines (IL-4 and IL-10). In HTR-8/SVneo cells, the COX-2 inhibitors induced an increase of IL-6 and nitrite and decreased IL-4 and TGF-β1. In villous explants, the COX-2 inhibitors increased MIF and decreased TNF-α and IL-10. Furthermore, T. gondii induced an increase in LDs in BeWo and HTR-8/SVneo, but COX-2 inhibitors reduced LDs in both cells type. We highlighted that COX-2 is a key factor to T. gondii proliferation in human trophoblast cells, since its inhibition induced a pro-inflammatory response capable of controlling parasitism and leading to a decrease in the availability of LDs, which are essentials for parasite growth.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Mário Cézar Oliveira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil.
| |
Collapse
|
17
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Boucher DM, Vijithakumar V, Ouimet M. Lipid Droplets as Regulators of Metabolism and Immunity. IMMUNOMETABOLISM 2021; 3. [DOI: 10.20900/immunometab20210021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2025]
Abstract
Abstract
A hallmark of sterile and nonsterile inflammation is the increased accumulation of cytoplasmic lipid droplets (LDs) in non-adipose cells. LDs are ubiquitous organelles specialized in neutral lipid storage and hydrolysis. Originating in the ER, LDs are comprised of a core of neutral lipids (cholesterol esters, triglycerides) surrounded by a phospholipid monolayer and several LD-associated proteins. The perilipin (PLIN1-5) family are the most abundant structural proteins present on the surface of LDs. While PLIN1 is primarily expressed in adipocytes, PLIN2 and PLIN3 are ubiquitously expressed. LDs also acquire a host of enzymes and proteins that regulate LD metabolism. Amongst these are neutral lipases and selective lipophagy factors that promote hydrolysis of LD-associated neutral lipid. In addition, LDs physically associate with other organelles such as mitochondria through inter-organelle membrane contact sites that facilitate lipid transport. Beyond serving as a source of energy storage, LDs participate in inflammatory and infectious diseases, regulating both innate and adaptive host immune responses. Here, we review recent studies on the role of LDs in the regulation of immunometabolism.
Collapse
Affiliation(s)
- Dominique M. Boucher
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Viyashini Vijithakumar
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mireille Ouimet
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
19
|
Yan M, Wu Y, Peng W, Fu C, Giunta S, Chang M, Zhang G, Dou M, Xia S, Li H, Zhou J, Shen Y. Exposure to particulate matter 2.5 and cigarette smoke induces the synthesis of lipid droplets by glycerol kinase 5. Clin Exp Pharmacol Physiol 2021; 48:498-507. [PMID: 33462866 DOI: 10.1111/1440-1681.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022]
Abstract
Particulate matter (PM2.5) and cigarette smoke exposure are leading factors contributing to various diseases, especially respiratory diseases. The purpose of this research was to study the effects of PM2.5 and cigarette smoke on glycerol kinase 5 (GK5) expression and the possible mechanisms by which GK5 participates in lipid droplet (LD) synthesis in alveolar epithelial A549 cells. Real-time polymerase chain reaction (RT-PCR) and western blotting have been used for the detection of messenger RNA (mRNA) and protein expression respectively. GK5 overexpressing cells were established by lentivirus transfection, whereby lentiviral vectors deliver the gene into chromosomes, allowing stable expression. Affymetrix microarray analysis, a widely used tool for measuring genome-wide gene expression, has been used to explore differential gene expression profiles. A549 cells stimulated with PM2.5 and cigarette smoke extract (CSE) showed elevated GK5 expression in a dose-dependent manner. Transmission electron microscopy and oil red O staining were used to observe LDs in cells. Further, GK5 overexpressing cells showed increased LDs and upregulation of genes and proteins related to lipogenesis and lipid transportation. Affymetrix microarray analysis revealed that GK5 overexpression resulted in the differential expression of more than 109 genes, which were mainly involved in the regulation of cell death, cell survival, cellular movement and migration, and those involved in cellular growth and proliferation pathways. Overall, this study demonstrates that GK5 is upregulated during PM2.5 and cigarette smoke exposure and induces LD synthesis.
Collapse
Affiliation(s)
- Mengnan Yan
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Wu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjun Peng
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuiping Fu
- Department of Pulmonary Medicine, The First Hospital Affiliated to Soochow University, Suzhou, China
| | - Sergio Giunta
- Casa di Cura Prof. Nobili-GHC Garofalo Health Care, Bologna, Italy
| | - Meijia Chang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ge Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Maosen Dou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Huayin Li
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Shen
- Department of Pulmonary Medicine, Pudong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
20
|
Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol 2020; 30:979-989. [DOI: 10.1016/j.tcb.2020.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
|
21
|
Jin Y, Tan Y, Zhao P, Ren Z. SEIPIN: A Key Factor for Nuclear Lipid Droplet Generation and Lipid Homeostasis. Int J Mol Sci 2020; 21:ijms21218208. [PMID: 33147895 PMCID: PMC7663086 DOI: 10.3390/ijms21218208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Lipid homeostasis is essential for normal cell physiology. Generally, lipids are stored in a lipid droplet (LD), a ubiquitous organelle consisting of a neutral lipid core and a single layer of phospholipid membrane. It is thought that LDs are generated from the endoplasmic reticulum and then released into the cytosol. Recent studies indicate that LDs can exist in the nucleus, where they play an important role in the maintenance of cell phospholipid homeostasis. However, the details of nuclear lipid droplet (nLD) generation have not yet been clearly characterized. SEIPIN is a nonenzymatic protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene. It is associated with lipodystrophy diseases. Many recent studies have indicated that SEIPIN is essential for LDs generation. Here, we review much of this research in an attempt to explain the role of SEIPIN in nLD generation. From an integrative perspective, we conclude by proposing a theoretical model to explain how SEIPIN might participate in maintaining homeostasis of lipid metabolism.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Correspondence:
| |
Collapse
|
22
|
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells 2020; 9:cells9092041. [PMID: 32906767 PMCID: PMC7563840 DOI: 10.3390/cells9092041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocytes are a part of the immune system that plays an important role in the host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells’ types. To prove this hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
Collapse
|
23
|
Castoldi A, Monteiro LB, van Teijlingen Bakker N, Sanin DE, Rana N, Corrado M, Cameron AM, Hässler F, Matsushita M, Caputa G, Klein Geltink RI, Büscher J, Edwards-Hicks J, Pearce EL, Pearce EJ. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun 2020; 11:4107. [PMID: 32796836 PMCID: PMC7427976 DOI: 10.1038/s41467-020-17881-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Foamy macrophages, which have prominent lipid droplets (LDs), are found in a variety of disease states. Toll-like receptor agonists drive triacylglycerol (TG)-rich LD development in macrophages. Here we explore the basis and significance of this process. Our findings indicate that LD development is the result of metabolic commitment to TG synthesis on a background of decreased fatty acid oxidation. TG synthesis is essential for optimal inflammatory macrophage activation as its inhibition, which prevents LD development, has marked effects on the production of inflammatory mediators, including IL-1β, IL-6 and PGE2, and on phagocytic capacity. The failure of inflammatory macrophages to make PGE2 when TG-synthesis is inhibited is critical for this phenotype, as addition of exogenous PGE2 is able to reverse the anti-inflammatory effects of TG synthesis inhibition. These findings place LDs in a position of central importance in inflammatory macrophage activation.
Collapse
Affiliation(s)
- Angela Castoldi
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Lauar B Monteiro
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Nisha Rana
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Mauro Corrado
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Alanna M Cameron
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Fabian Hässler
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - George Caputa
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Ramon I Klein Geltink
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Jörg Büscher
- Metabolomics Facility, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany.
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
24
|
Hine PM. Haplosporidian host:parasite interactions. FISH & SHELLFISH IMMUNOLOGY 2020; 103:190-199. [PMID: 32437861 DOI: 10.1016/j.fsi.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The host:parasite interactions of the 3 serious haplosporidian pathogens of oysters, on which most information exists, are reviewed. They are Bonamia ostreae in Ostrea spp. and Crassostrea gigas; Bonamia exitiosa in Ostrea spp.; and Haplosporidium nelsoni in Crassostrea spp. Understanding the haemocytic response to pathogens is constrained by lack of information on haematopoiesis, haemocyte identity and development. Basal haplospridians in spot prawns are probably facultative parasites. H. nelsoni and a species infecting Haliotis iris in New Zealand (NZAP), which have large extracellular plasmodia that eject haplosporosomes or their contents, lyse surrounding cells and are essentially extracellular parasites. Bonamia spp. have small plasmodia that are phagocytosed, haplosporosomes are not ejected and they are intracellular obligate parasites. Phagocytosis by haemocytes is followed by formation of a parasitophorous vacuole, blocking of haemocyte lysosomal enzymes and the endolysosomal pathway. Reactive oxygen species (ROS) are blocked by antioxidants, and host cell apoptosis may occur. Unlike susceptible O. edulis, the destruction of B. ostreae by C. gigas may be due to higher haemolymph proteins, higher rates of granulocyte binding and phagocytosis, production of ROS, the presence of plasma β-glucosidase, antimicrobial peptides and higher levels of haemolymph and haemocyte enzymes. In B.exitiosa infection of Ostrea chilensis, cytoplasmic lipid bodies (LBs) containing lysosomal enzymes accumulate in host granulocytes and in B. exitiosa following phagocytosis. Their genesis and role in innate immunity and inflammation appears to be the same as in vertebrate granulocytes and macrophages, and other invertebrates. If so, they are probably the site of eicosanoid synthesis from arachidonic acid, and elevated numbers of LBs are probably indicative of haemocyte activation. It is probable that the molecular interaction, and role of LBs in the synthesis and storage of eicosanoids from arachidonic acid, is conserved in innate immunity in vertebrates and invertebrates. However, it seems likely that haplosporidians are more diverse than realized, and that there are many variations in host parasite interactions and life cycles.
Collapse
Affiliation(s)
- P M Hine
- 73, rue de la Fée au Bois, 17450, Fouras, France.
| |
Collapse
|
25
|
Lin CJ, Tien PT, Chang CH, Hsia NY, Yang YC, Lai CT, Bair H, Chen HS, Tsai YY. Relationship between Uveitis and Thyroid Disease: A 13-Year Nationwide Population-based Cohort Study in Taiwan. Ocul Immunol Inflamm 2020; 29:1292-1298. [PMID: 32643974 DOI: 10.1080/09273948.2020.1762899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate whether patients with thyroid disease are at increased risk of uveitis. METHODS Data was collected from the Taiwan National Health Insurance system and included patients newly diagnosed with thyroid disease from 2000 to 2012. The endpoint of interest was a diagnosis of uveitis. RESULTS In analyzing 21,396 patients with thyroid disease, yielding 85,584 matched comparisons, patients with thyroid disease to have a significantly higher cumulative incidence of uveitis when compared to the control cohort with the Kaplan-Meier analysis. This result was further confirmed by Cox regression analysis. The increased risk was persistent in both genders. The association between thyroid disease and uveitis was stronger in patients without diabetes or hypertension. CONCLUSION Patients with thyroid disease were found to have a higher risk for uveitis. For certain age groups or patients without diabetes or hypertension, the role of thyroid disease might be more crucial for uveitis development.
Collapse
Affiliation(s)
- Chun-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan
| | - Peng-Tai Tien
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Hsien Chang
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan
| | - Ning-Yi Hsia
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Cih Yang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Ting Lai
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Henry Bair
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Stanford University School of Medicine, Stanford, CA, USA
| | - Huan-Sheng Chen
- An-Shin Dialysis Center, NephroCare Ltd., Fresenius Medical Care, Taichung, Taiwan
| | - Yi-Yu Tsai
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Jin C, Yuan P. Implications of lipid droplets in lung cancer: Associations with drug resistance. Oncol Lett 2020; 20:2091-2104. [PMID: 32782526 PMCID: PMC7399769 DOI: 10.3892/ol.2020.11769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells usually show different metabolic patterns compared with healthy cells due to the reprogramming of metabolic processes. The process of lipid metabolism undergoes notable changes, leading to the accumulation of lipid droplets in cells. Additionally, this phenotype is considered an important marker of cancer cells. Lipid droplets are a highly dynamic type of organelle in the cell, which is composed of a neutral lipid core, a monolayer phospholipid membrane and lipid droplet-related proteins. Lipid droplets are involved in several biological processes, including cell proliferation, apoptosis, lipid metabolism, stress, immunity, signal transduction and protein trafficking. Epidermal growth factor receptor (EGFR)-activating mutations are currently the most effective therapeutic targets for non-small cell lung cancer. Several EGFR tyrosine kinase inhibitors (EGFR-TKIs) that target these mutations, including gefitinib, erlotinib, afatinib and osimertinib, have been widely used clinically. However, the development of acquired resistance has a major impact on the efficacy of these drugs. A number of previous studies have reported that the expression of lipid droplets in the tumor tissues of patients with lung cancer are elevated, whereas the association between elevated numbers of lipid droplets and drug resistance has received little attention. The present review describes the potential association between lipid droplets and drug resistance. Furthermore, the mechanisms and implications of lipid droplet accumulation in cancer cells are analyzed, as wells as the mechanism by which lipid droplets suppress endoplasmic reticulum stress and apoptosis, which are essential for the development and treatment of lung cancer.
Collapse
Affiliation(s)
- Chunlai Jin
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Peng Yuan
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
27
|
Rodríguez JP, Leiguez E, Guijas C, Lomonte B, Gutiérrez JM, Teixeira C, Balboa MA, Balsinde J. A Lipidomic Perspective of the Action of Group IIA Secreted Phospholipase A 2 on Human Monocytes: Lipid Droplet Biogenesis and Activation of Cytosolic Phospholipase A 2α. Biomolecules 2020; 10:biom10060891. [PMID: 32532115 PMCID: PMC7355433 DOI: 10.3390/biom10060891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Phospholipase A2s constitute a wide group of lipid-modifying enzymes which display a variety of functions in innate immune responses. In this work, we utilized mass spectrometry-based lipidomic approaches to investigate the action of Asp-49 Ca2+-dependent secreted phospholipase A2 (sPLA2) (MT-III) and Lys-49 sPLA2 (MT-II), two group IIA phospholipase A2s isolated from the venom of the snake Bothrops asper, on human peripheral blood monocytes. MT-III is catalytically active, whereas MT-II lacks enzyme activity. A large decrease in the fatty acid content of membrane phospholipids was detected in MT III-treated monocytes. The significant diminution of the cellular content of phospholipid-bound arachidonic acid seemed to be mediated, in part, by the activation of the endogenous group IVA cytosolic phospholipase A2α. MT-III triggered the formation of triacylglycerol and cholesterol enriched in palmitic, stearic, and oleic acids, but not arachidonic acid, along with an increase in lipid droplet synthesis. Additionally, it was shown that the increased availability of arachidonic acid arising from phospholipid hydrolysis promoted abundant eicosanoid synthesis. The inactive form, MT-II, failed to produce any of the effects described above. These studies provide a complete lipidomic characterization of the monocyte response to snake venom group IIA phospholipase A2, and reveal significant connections among lipid droplet biogenesis, cell signaling and biochemical pathways that contribute to initiating the inflammatory response.
Collapse
Affiliation(s)
- Juan P. Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina
| | - Elbio Leiguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Laboratorio de Farmacologia, Instituto Butantan, Sao Paulo 01000, Brazil;
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501–2060, Costa Rica; (B.L.); (J.M.G.)
| | - José M. Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501–2060, Costa Rica; (B.L.); (J.M.G.)
| | - Catarina Teixeira
- Laboratorio de Farmacologia, Instituto Butantan, Sao Paulo 01000, Brazil;
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-423-062
| |
Collapse
|
28
|
Rapid exposure of macrophages to drugs resolves four classes of effects on the leading edge sensory pseudopod: Non-perturbing, adaptive, disruptive, and activating. PLoS One 2020; 15:e0233012. [PMID: 32469878 PMCID: PMC7259666 DOI: 10.1371/journal.pone.0233012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Leukocyte migration is controlled by a membrane-based chemosensory pathway on the leading edge pseudopod that guides cell movement up attractant gradients during the innate immune and inflammatory responses. This study employed single cell and population imaging to investigate drug-induced perturbations of leading edge pseudopod morphology in cultured, polarized RAW macrophages. The drugs tested included representative therapeutics (acetylsalicylic acid, diclofenac, ibuprofen, acetaminophen) as well as control drugs (PDGF, Gö6976, wortmannin). Notably, slow addition of any of the four therapeutics to cultured macrophages, mimicking the slowly increasing plasma concentration reported for standard oral dosage in patients, yielded no detectable change in pseudopod morphology. This finding is consistent with the well established clinical safety of these drugs. However, rapid drug addition to cultured macrophages revealed four distinct classes of effects on the leading edge pseudopod: (i) non-perturbing drug exposures yielded no detectable change in pseudopod morphology (acetylsalicylic acid, diclofenac); (ii) adaptive exposures yielded temporary collapse of the extended pseudopod and its signature PI(3,4,5)P3 lipid signal followed by slow recovery of extended pseudopod morphology (ibuprofen, acetaminophen); (iii) disruptive exposures yielded long-term pseudopod collapse (Gö6976, wortmannin); and (iv) activating exposures yielded pseudopod expansion (PDGF). The novel observation of adaptive exposures leads us to hypothesize that rapid addition of an adaptive drug overwhelms an intrinsic or extrinsic adaptation system yielding temporary collapse followed by adaptive recovery, while slow addition enables gradual adaptation to counteract the drug perturbation in real time. Overall, the results illustrate an approach that may help identify therapeutic drugs that temporarily inhibit the leading edge pseudopod during extreme inflammation events, and toxic drugs that yield long term inhibition of the pseudopod with negative consequences for innate immunity. Future studies are needed to elucidate the mechanisms of drug-induced pseudopod collapse, as well as the mechanisms of adaptation and recovery following some inhibitory drug exposures.
Collapse
|
29
|
Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis. Vaccines (Basel) 2020; 8:vaccines8020246. [PMID: 32456126 PMCID: PMC7350023 DOI: 10.3390/vaccines8020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is a disease caused by pathogenic trypanosomes which affects millions of livestock every year causing huge economic losses in agricultural production especially in sub-Saharan Africa. The disease is spread by the tsetse fly which carries the parasite in its saliva. During the disease progression, the cattle are prominently subjected to anaemia, weight loss, intermittent fever, chills, neuronal degeneration, congestive heart failure, and finally death. According to their different genetic programs governing the level of tolerance to AAT, cattle breeds are classified as either resistant or susceptible. In this study, we focus on the cattle breeds N’Dama and Boran which are known to be resistant and susceptible to trypanosomiasis, respectively. Despite the rich literature on both breeds, the gene regulatory mechanisms of the underlying biological processes for their resistance and susceptibility have not been extensively studied. To address the limited knowledge about the tissue-specific transcription factor (TF) cooperations associated with trypanosomiasis, we investigated gene expression data from these cattle breeds computationally. Consequently, we identified significant cooperative TF pairs (especially DBP−PPARA and DBP−THAP1 in N’Dama and DBP−PAX8 in Boran liver tissue) which could help understand the underlying AAT tolerance/susceptibility mechanism in both cattle breeds.
Collapse
|
30
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
31
|
Amorim NRT, Souza-Almeida G, Luna-Gomes T, Bozza PT, Canetti C, Diaz BL, Maya-Monteiro CM, Bandeira-Melo C. Leptin Elicits In Vivo Eosinophil Migration and Activation: Key Role of Mast Cell-Derived PGD 2. Front Endocrinol (Lausanne) 2020; 11:572113. [PMID: 33117286 PMCID: PMC7551309 DOI: 10.3389/fendo.2020.572113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Eosinophils are key regulators of adipose tissue homeostasis, thus characterization of adipose tissue-related molecular factors capable of regulating eosinophil activity is of great interest. Leptin is known to directly activate eosinophils in vitro, but leptin ability of inducing in vivo eosinophilic inflammatory response remains elusive. Here, we show that leptin elicits eosinophil influx as well as its activation, characterized by increased lipid body biogenesis and LTC4 synthesis. Such leptin-triggered eosinophilic inflammatory response was shown to be dependent on activation of the mTOR signaling pathway, since it was (i) inhibited by rapamycin pre-treatment and (ii) reduced in PI3K-deficient mice. Local infiltration of activated eosinophils within leptin-driven inflammatory site was preceded by increased levels of classical mast cell-derived molecules, including TNFα, CCL5 (RANTES), and PGD2. Thus, mice were pre-treated with a mast cell degranulating agent compound 48/80 which was capable to impair leptin-induced PGD2 release, as well as eosinophil recruitment and activation. In agreement with an indirect mast cell-driven phenomenon, eosinophil accumulation induced by leptin was abolished in TNFR-1 deficient and also in HQL-79-pretreated mice, but not in mice pretreated with neutralizing antibodies against CCL5, indicating that both typical mast cell-driven signals TNFα and PGD2, but not CCL5, contribute to leptin-induced eosinophil influx. Distinctly, leptin-induced eosinophil lipid body (lipid droplet) assembly and LTC4 synthesis appears to depend on both PGD2 and CCL5, since both HQL-79 and anti-CCL5 treatments were able to inhibit these eosinophil activation markers. Altogether, our data show that leptin triggers eosinophilic inflammation in vivo via an indirect mechanism dependent on activation of resident mast cell secretory activity and mediation by TNFα, CCL5, and specially PGD2.
Collapse
Affiliation(s)
- Natália R. T. Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glaucia Souza-Almeida
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz - IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunoinflamação, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | - Tatiana Luna-Gomes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz - IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz - IOC, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Christianne Bandeira-Melo, ; Clarissa M. Maya-Monteiro,
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Christianne Bandeira-Melo, ; Clarissa M. Maya-Monteiro,
| |
Collapse
|
32
|
Aldan JT, Jansen C, Speck M, Maaetoft-Udsen K, Cordasco EA, Faiai M, Shimoda LM, Greineisen WE, Turner H, Stokes AJ. Insulin-induced lipid body accumulation is accompanied by lipid remodelling in model mast cells. Adipocyte 2019; 8:265-279. [PMID: 31311389 PMCID: PMC6768188 DOI: 10.1080/21623945.2019.1636624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mast cell lipid bodies are key to initiation, maintenance and resolution of inflammatory responses in tissue. Mast cell lines, primary bone marrow-derived mast cells and peripheral blood basophils present a ‘steatotic’ phenotype in response to chronic insulin exposure, where cells become loaded with lipid bodies. Here we show this state is associated with reduced histamine release, but increased capacity to release bioactive lipids. We describe the overall lipid phenotype of mast cells in this insulin-induced steatotic state and the consequences for critical cellular lipid classes involved in stages of inflammation. We show significant insulin-induced shifts in specific lipid classes, especially arachidonic acid derivatives, MUFA and PUFA, the EPA/DHA ratio, and in cardiolipins, especially those conjugated to certain DHA and EPAs. Functionally, insulin exposure markedly alters the FcϵRI-induced release of Series 4 leukotriene LTC4, Series 2 prostaglandin PGD2, Resolvin-D1, Resolvin-D2 and Resolvin-1, reflecting the expanded precursor pools and impact on both the pro-inflammation and pro-resolution bioactive lipids that are released during mast cell activation. Chronic hyperinsulinemia is a feature of obesity and progression to Type 2 Diabetes, these data suggest that mast cell release of key lipid mediators is altered in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Johnny T. Aldan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Chad Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | | | - Edward A. Cordasco
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Mata’Uitafa Faiai
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Lori M.N. Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - William E. Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Alexander J. Stokes
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| |
Collapse
|
33
|
Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, Brunazzi EA, Vignali KM, Sun M, Stolz DB, Lafyatis RA, Chen W, Delgoffe GM, Workman CJ, Wendell SG, Vignali DAA. Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-Promoting Macrophages via Repression of CD8 + T Cell-Derived Interferon-γ. Immunity 2019; 51:381-397.e6. [PMID: 31350177 DOI: 10.1016/j.immuni.2019.06.017] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 04/19/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
Regulatory T (Treg) cells are crucial for immune homeostasis, but they also contribute to tumor immune evasion by promoting a suppressive tumor microenvironment (TME). Mice with Treg cell-restricted Neuropilin-1 deficiency show tumor resistance while maintaining peripheral immune homeostasis, thereby providing a controlled system to interrogate the impact of intratumoral Treg cells on the TME. Using this and other genetic models, we showed that Treg cells shaped the transcriptional landscape across multiple tumor-infiltrating immune cell types. Treg cells suppressed CD8+ T cell secretion of interferon-γ (IFNγ), which would otherwise block the activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated fatty acid synthesis in immunosuppressive (M2-like) tumor-associated macrophages (TAMs). Thus, Treg cells indirectly but selectively sustained M2-like TAM metabolic fitness, mitochondrial integrity, and survival. SREBP1 inhibition augmented the efficacy of immune checkpoint blockade, suggesting that targeting Treg cells or their modulation of lipid metabolism in M2-like TAMs could improve cancer immunotherapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rahul Deshpande
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ashley V Menk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ting Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert A Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wei Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Stacy G Wendell
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
34
|
Harsh S, Heryanto C, Eleftherianos I. Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila. Biol Open 2019; 8:bio.039040. [PMID: 31278163 PMCID: PMC6679391 DOI: 10.1242/bio.039040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipid droplets (LDs) are lipid-carrying multifunctional organelles, which might also interact with pathogens and influence the host immune response. However, the exact nature of these interactions remains currently unexplored. Here we show that systemic infection of Drosophila adult flies with non-pathogenic Escherichia coli, the extracellular bacterial pathogen Photorhabdus luminescens or the facultative intracellular pathogen Photorhabdus asymbiotica results in intestinal steatosis marked by lipid accumulation in the midgut. Accumulation of LDs in the midgut also correlates with increased whole-body lipid levels characterized by increased expression of genes regulating lipogenesis. The lipid-enriched midgut further displays reduced expression of the enteroendocrine-secreted hormone, Tachykinin. The observed lipid accumulation requires the Gram-negative cell wall pattern recognition molecule, PGRP-LC, but not PGRP-LE, for the humoral immune response. Altogether, our findings indicate that Drosophila LDs are inducible organelles, which can serve as markers for inflammation and, depending on the nature of the challenge, they can dictate the outcome of the infection. Summary: Lipid droplets are inducible organelles, act as inflammatory markers and, depending on the nature of challenge, can dictate the outcome of the infection.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Christa Heryanto
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
35
|
Leyrolle Q, Layé S, Nadjar A. Direct and indirect effects of lipids on microglia function. Neurosci Lett 2019; 708:134348. [PMID: 31238131 DOI: 10.1016/j.neulet.2019.134348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Microglia are key players in brain function by maintaining brain homeostasis across lifetime. They participate to brain development and maturation through their ability to release neurotrophic factors, to remove immature synapses or unnecessary neural progenitors. They modulate neuronal activity in healthy adult brains and they also orchestrate the neuroinflammatory response in various pathophysiological contexts such as aging and neurodegenerative diseases. One of the main features of microglia is their high sensitivity to environmental factors, partly via the expression of a wide range of receptors. Recent data pinpoint that dietary fatty acids modulate microglia function. Both the quantity and the type of fatty acid are potent modulators of microglia physiology. The present review aims at dissecting the current knowledge on the direct and indirect mechanisms (focus on gut microbiota and hormones) through which fatty acids influence microglial physiology. We summarize main discoveries from in vitro and in vivo models on fatty acid-mediated microglial modulation. All these studies represent a promising field of research that could promote using nutrition as a novel therapeutic or preventive tool in diseases involving microglia dysfunctions.
Collapse
Affiliation(s)
- Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
36
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The key microRNA on lipid droplet formation during adipogenesis from human mesenchymal stem cells. J Cell Physiol 2019; 235:328-338. [PMID: 31210354 DOI: 10.1002/jcp.28972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
37
|
Rygula A, Fernandes RF, Grosicki M, Kukla B, Leszczenko P, Augustynska D, Cernescu A, Dorosz A, Malek K, Baranska M. Raman imaging highlights biochemical heterogeneity of human eosinophils versus human eosinophilic leukaemia cell line. Br J Haematol 2019; 186:685-694. [PMID: 31134616 DOI: 10.1111/bjh.15971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
Eosinophils are acidophilic granulocytes that develop in the bone marrow. Although their population contributes only to approximately 1-6% of all leucocytes present in the human blood, they possess a wide range of specific functions. They play a key role in inflammation-regulating processes, when their numbers can increased to above 5 × 109 /l of peripheral blood. Their characteristic feature is the presence of granules containing eosinophil peroxidase (EPO), the release of which can trigger a cascade of events promoting oxidative stress, apoptosis or necrosis, leading finally to cell death. Raman spectroscopy is a powerful technique to detect EPO, which comprises a chromophore protoporphyrin IX. Another cell structure associated with inflammation processes are lipid bodies (lipid-rich organelles), also well recognized and imaged using high resolution confocal Raman spectroscopy. In this work, eosinophils isolated from the blood of a human donor were analysed versus their model, EoL-1 human eosinophilic leukaemia cell line, by Raman spectroscopic imaging. We showed that EPO was present only in primary cells and not found in the cell line. Eosinophils were activated using phorbol 12-myristate 13-acetate, which resulted in lipid bodies formation. An effect of cells stimulation was studied and compared for eosinophils and EoL-1.
Collapse
Affiliation(s)
- Anna Rygula
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Rafaella F Fernandes
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.,Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Bozena Kukla
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Dominika Augustynska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | | | - Aleksandra Dorosz
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
38
|
Lipid Droplets: A Significant but Understudied Contributor of Host⁻Bacterial Interactions. Cells 2019; 8:cells8040354. [PMID: 30991653 PMCID: PMC6523240 DOI: 10.3390/cells8040354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid droplets (LDs) are cytosolic lipid storage organelles that are important for cellular lipid metabolism, energy homeostasis, cell signaling, and inflammation. Several bacterial, viral and protozoal pathogens exploit host LDs to promote infection, thus emphasizing the importance of LDs at the host–pathogen interface. In this review, we discuss the thus far reported relation between host LDs and bacterial pathogens including obligate and facultative intracellular bacteria, and extracellular bacteria. Although there is less evidence for a LD–extracellular bacterial interaction compared to interactions with intracellular bacteria, in this review, we attempt to compare the bacterial mechanisms that target LDs, the host signaling pathways involved and the utilization of LDs by these bacteria. Many intracellular bacteria employ unique mechanisms to target host LDs and potentially obtain nutrients and lipids for vacuolar biogenesis and/or immune evasion. However, extracellular bacteria utilize LDs to either promote host tissue damage or induce host death. We also identify several areas that require further investigation. Along with identifying LD interactions with bacteria besides the ones reported, the precise mechanisms of LD targeting and how LDs benefit pathogens should be explored for the bacteria discussed in the review. Elucidating LD–bacterial interactions promises critical insight into a novel host–pathogen interaction.
Collapse
|
39
|
Hayek I, Berens C, Lührmann A. Modulation of host cell metabolism by T4SS-encoding intracellular pathogens. Curr Opin Microbiol 2019; 47:59-65. [PMID: 30640035 DOI: 10.1016/j.mib.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022]
Abstract
Intracellular bacterial pathogens intimately interact with the infected host cell to prevent elimination and to ensure survival. One group of intracellular pathogens, including Coxiella burnetii, Legionella pneumophila, Brucella spp., Anaplasma phagocytophilum, and Ehrlichia chaffeensis, utilizes a type IV secretion system (T4SS) that injects effectors to modulate host cell signalling, vesicular trafficking, autophagy, cell death and transcription to ensure survival [1]. So far, little emphasis has been directed towards understanding how these bacteria manipulate host cell metabolism. This manipulation is not only important for gaining access to nutrients, but also for regulating specific virulence programs [2,3]. Here, we will summarize recent progress made in characterizing the manipulation of host cell metabolism by C. burnetii and other intracellular pathogens utilizing a T4SS.
Collapse
Affiliation(s)
- Inaya Hayek
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Christian Berens
- Institut für molekulare Pathogenese, Friedrich-Loeffler-Institut, Naumburger Str. 96a, D-07743 Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany.
| |
Collapse
|
40
|
Scott CC, Vossio S, Rougemont J, Gruenberg J. TFAP2 transcription factors are regulators of lipid droplet biogenesis. eLife 2018; 7:36330. [PMID: 30256193 PMCID: PMC6170152 DOI: 10.7554/elife.36330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
How trafficking pathways and organelle abundance adapt in response to metabolic and physiological changes is still mysterious, although a few transcriptional regulators of organellar biogenesis have been identified in recent years. We previously found that the Wnt signaling directly controls lipid droplet formation, linking the cell storage capacity to the established functions of Wnt in development and differentiation. In the present paper, we report that Wnt-induced lipid droplet biogenesis does not depend on the canonical TCF/LEF transcription factors. Instead, we find that TFAP2 family members mediate the pro-lipid droplet signal induced by Wnt3a, leading to the notion that the TFAP2 transcription factor may function as a 'master' regulator of lipid droplet biogenesis.
Collapse
Affiliation(s)
- Cameron C Scott
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Stefania Vossio
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Jacques Rougemont
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
42
|
den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid Droplets as Immune Modulators in Myeloid Cells. Trends Immunol 2018; 39:380-392. [DOI: 10.1016/j.it.2018.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022]
|
43
|
Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth. PLoS One 2018; 13:e0192215. [PMID: 29390006 PMCID: PMC5794150 DOI: 10.1371/journal.pone.0192215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-negative endocarditis. While C. burnetii initially infects alveolar macrophages, it has also been found in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis patients. In addition, transcriptional studies of C. burnetii-infected macrophages reported differential regulation of the LD coat protein-encoding gene perilipin 2 (plin-2). To further investigate the relationship between LDs and C. burnetii, we compared LD numbers using fluorescence microscopy in mock-infected and C. burnetii-infected alveolar macrophages. On average, C. burnetii-infected macrophages contained twice as many LDs as mock-infected macrophages. LD numbers increased as early as 24 hours post-infection, an effect reversed by blocking C. burnetii protein synthesis. The observed LD accumulation was dependent on the C. burnetii Type 4B Secretion System (T4BSS), a major virulence factor that manipulates host cellular processes by secreting bacterial effector proteins into the host cell cytoplasm. To determine the importance of LDs during C. burnetii infection, we manipulated LD homeostasis and assessed C. burnetii intracellular growth. Surprisingly, blocking LD formation with the pharmacological inhibitors triacsin C or T863, or knocking out acyl-CoA transferase-1 (acat-1) in alveolar macrophages, increased C. burnetii growth at least 2-fold. Conversely, preventing LD lipolysis by inhibiting adipose triglyceride lipase (ATGL) with atglistatin almost completely blocked bacterial growth, suggesting LD breakdown is essential for C. burnetii. Together these data suggest that maintenance of LD homeostasis, possibly via the C. burnetii T4BSS, is critical for bacterial growth.
Collapse
|
44
|
O’Connor D, Byrne A, Dolan C, Keyes TE. Phase partitioning, solvent-switchable BODIPY probes for high contrast cellular imaging and FCS. NEW J CHEM 2018. [DOI: 10.1039/c7nj04604a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipophilic BODIPY fluorphores, in which the BODIPY core bears pendant dipyrido[3,2-a:2′,3′-c]phenazine (Dppz) or naphthyridyl and cholesterol substituents were designed and prepared as lipid probes for both liposomes and live cell imaging.
Collapse
Affiliation(s)
- Darragh O’Connor
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| | - Aisling Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| | - Ciarán Dolan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| | - Tia E. Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
45
|
Tirinato L, Pagliari F, Limongi T, Marini M, Falqui A, Seco J, Candeloro P, Liberale C, Di Fabrizio E. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells. Stem Cells Int 2017; 2017:1656053. [PMID: 28883835 PMCID: PMC5572636 DOI: 10.1155/2017/1656053] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes.
Collapse
Affiliation(s)
- L. Tirinato
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - F. Pagliari
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - T. Limongi
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - M. Marini
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - A. Falqui
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - J. Seco
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - P. Candeloro
- BioNEM Lab, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - C. Liberale
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - E. Di Fabrizio
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
46
|
A snake venom group IIA PLA 2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ 2 in macrophages. Sci Rep 2017. [PMID: 28642580 PMCID: PMC5481388 DOI: 10.1038/s41598-017-04498-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Crotoxin B (CB) is a catalytically active group IIA sPLA2 from Crotalus durissus terrificus snake venom. In contrast to most GIIA sPLA2s, CB exhibits anti-inflammatory effects, including the ability to inhibit leukocyte functions. Lipid droplets (LDs) are lipid-rich organelles associated with inflammation and recognized as a site for the synthesis of inflammatory lipid mediators. Here, the ability of CB to induce formation of LDs and the mechanisms involved in this effect were investigated in isolated macrophages. The profile of CB-induced 15-d-PGJ2 (15-Deoxy-Delta-12,14-prostaglandin J2) production and involvement of LDs in 15-d-PGJ2 biosynthesis were also investigated. Stimulation of murine macrophages with CB induced increased number of LDs and release of 15-d-PGJ2. LDs induced by CB were associated to PLIN2 recruitment and expression and required activation of PKC, PI3K, MEK1/2, JNK, iPLA2 and PLD. Both 15-d-PGJ2 and COX-1 were found in CB-induced LDs indicating that LDs contribute to the inhibitory effects of CB by acting as platform for synthesis of 15-d-PGJ2, a pro-resolving lipid mediator. Together, our data indicate that an immunomodulatory GIIA sPLA2 can directly induce LD formation and production of a pro-resolving mediator in an inflammatory cell and afford new insights into the roles of LDs in resolution of inflammatory processes.
Collapse
|
47
|
Rodríguez NE, Lockard RD, Turcotte EA, Araújo-Santos T, Bozza PT, Borges VM, Wilson ME. Lipid bodies accumulation in Leishmania infantum-infected C57BL/6 macrophages. Parasite Immunol 2017; 39. [PMID: 28518475 DOI: 10.1111/pim.12443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Lipid bodies (LBs) are intracellular accumulations of neutral lipids surrounded by a single membrane. These organelles are involved in the production of eicosanoids, which modulate immunity by either promoting or dampening inflammatory responses. Leishmania infantum, the etiological agent of visceral leishmaniasis in Brazil, is an intracellular parasite that causes disease by suppressing macrophage microbicidal responses. C57BL/6 mouse bone marrow-derived macrophages infected with L. infantum strain LcJ had higher numbers of LB+ cells (P<.0001) and total LBs than noninfected cultures. Large (>3 μm) LBs were present inside parasitophorous vacuoles (PVs). These results contrast with those of L. infantum-infected BALB/c macrophages, in which the only LBs are derived from parasite, not macrophage origin. Increased LBs in C57BL/6 macrophages in close association with parasites would position host LBs where they could modulate L. infantum infection. These results imply a potential influence of the host genetics on the role of LBs in host-pathogen interactions. Overall, our data support a model in which the expression, and the role of LBs upon infection, ultimately depends on the specific combination of host-pathogen interactions.
Collapse
Affiliation(s)
- N E Rodríguez
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - R D Lockard
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - E A Turcotte
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - T Araújo-Santos
- Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), Barreiras, BA, Brazil
| | - P T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - V M Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil
| | - M E Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA.,Veterans' Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
48
|
The size matters: regulation of lipid storage by lipid droplet dynamics. SCIENCE CHINA-LIFE SCIENCES 2016; 60:46-56. [PMID: 27981432 DOI: 10.1007/s11427-016-0322-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
Adequate energy storage is essential for sustaining healthy life. Lipid droplet (LD) is the subcellular organelle that stores energy in the form of neutral lipids and releases fatty acids under energy deficient conditions. Energy storage capacity of LDs is primarily dependent on the sizes of LDs. Enlargement and growth of LDs is controlled by two molecular pathways: neutral lipid synthesis and atypical LD fusion. Shrinkage of LDs is mediated by the degradation of neutral lipids under energy demanding conditions and is controlled by neutral cytosolic lipases and lysosomal acidic lipases. In this review, we summarize recent progress regarding the regulatory pathways and molecular mechanisms that control the sizes and the energy storage capacity of LDs.
Collapse
|
49
|
Amaral KB, Silva TP, Malta KK, Carmo LAS, Dias FF, Almeida MR, Andrade GFS, Martins JS, Pinho RR, Costa-Neto SF, Gentile R, Melo RCN. Natural Schistosoma mansoni Infection in the Wild Reservoir Nectomys squamipes Leads to Excessive Lipid Droplet Accumulation in Hepatocytes in the Absence of Liver Functional Impairment. PLoS One 2016; 11:e0166979. [PMID: 27880808 PMCID: PMC5120838 DOI: 10.1371/journal.pone.0166979] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease of a significant public health impact. The water rat Nectomys squamipes is one of the most important non-human hosts in the schistosomiasis mansoni transmission in Brazil, being considered a wild reservoir. Cellular mechanisms that contribute to the physiological adaptation of this rodent to the Schistosoma mansoni parasite are poorly understood. Here we identified, for the first time, that a hepatic steatosis, a condition characterized by excessive lipid accumulation with formation of lipid droplets (LDs) within hepatocytes, occurs in response to the natural S. mansoni infection of N. squamipes, captured in an endemic region. Significant increases of LD area in the hepatic tissue and LD numbers/hepatocyte, detected by quantitative histopathological and ultrastructural analyses, were paralleled by increased serum profile (total cholesterol and triglycerides) in infected compared to uninfected animals. Raman spectroscopy showed high content of polyunsaturated fatty acids (PUFAs) in the liver of both groups. MALDI-TOFF mass spectroscopy revealed an amplified pool of omega-6 PUFA arachidonic acid in the liver of infected animals. Assessment of liver functional activity by the levels of hepatic transaminases (ALT and AST) did not detect any alteration during the natural infection. In summary, this work demonstrates that the natural infection of the wild reservoir N. squamipes with S. mansoni elicits hepatic steatosis in the absence of liver functional harm and that accumulation of lipids, markedly PUFAs, coexists with low occurrence of inflammatory granulomatous processes, suggesting that lipid stores may be acting as a protective mechanism for dealing with the infection.
Collapse
Affiliation(s)
- Kátia B. Amaral
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Thiago P. Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Kássia K. Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Lívia A. S. Carmo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Felipe F. Dias
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Mariana R. Almeida
- Laboratory of Plasmonic Nanostructures, Molecular Spectroscopy and Structure Group, Department of Chemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Gustavo F. S. Andrade
- Laboratory of Plasmonic Nanostructures, Molecular Spectroscopy and Structure Group, Department of Chemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Jefferson S. Martins
- Department of Physics, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Roberto R. Pinho
- Department of Physics, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
| | - Sócrates F. Costa-Neto
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rosana Gentile
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil, 36036–900
- * E-mail:
| |
Collapse
|
50
|
Roingeard P, Melo RCN. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 2016; 19. [PMID: 27794207 DOI: 10.1111/cmi.12688] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Lipid droplets were long considered to be simple storage structures, but they have recently been shown to be dynamic organelles involved in diverse biological processes, including emerging roles in innate immunity. Various intracellular pathogens, including viruses, bacteria, and parasites, specifically target host lipid droplets during their life cycle. Viruses such as hepatitis C, dengue, and rotaviruses use lipid droplets as platforms for assembly. Bacteria, such as mycobacteria and Chlamydia, and parasites, such as trypanosomes, use host lipid droplets for nutritional purposes. The possible use of lipid droplets by intracellular pathogens, as part of an anti-immunity strategy, is an intriguing question meriting further investigation in the near future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U966 and IBiSA Electron Microscopy Facility, François Rabelais University and CHRU de Tours, Tours, France
| | - Rossana C N Melo
- Laboratory of Cell Biology, Institute of Biological Sciences, Federal University of Juiz de Fora-UFJF, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|