1
|
Anwar S, Lin PCP, Pacheco L, Imai K, Tan Z, Song Z, Wakamatsu Y, Minamiya Y, Cheng J, Ko C, Inoue M. Decreased lymph node estrogen levels cause nonremitting progressive experimental autoimmune encephalomyelitis disease. PNAS NEXUS 2025; 4:pgaf010. [PMID: 39871825 PMCID: PMC11770340 DOI: 10.1093/pnasnexus/pgaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Estrogen, a steroid hormone synthesized by both gonadal and nongonadal tissues, plays a pivotal role in modulating immune responses, including reducing relapse rates in relapsing-remitting multiple sclerosis (MS). This study explored the expression of aromatase, the enzyme responsible for estrogen synthesis, in lymph nodes (LNs) and its potential role in the pathogenesis of MS using a mouse model. We utilized Cyp19-RFP mice where cells that express or have previously expressed the Cyp19 gene (encoding aromatase) are marked by red fluorescent protein (RFP). RFP was detected in the high endothelial venules of all morphologically identifiable LNs, indicating aromatase activity within these tissues. We discovered that LNs actively synthesize 17β-estradiol, but this activity declines with age. Targeted delivery of an aromatase inhibitor specifically to LNs induced an interferon-β-resistant experimental autoimmune encephalomyelitis (EAE) phenotype. This phenotype was accompanied by significant gray matter atrophy in the spinal cord. These findings underscore LNs as crucial sites of de novo 17β-estradiol production, potentially contributing to nonremitting EAE phenotypes. The observed decline in 17β-estradiol likely exacerbates MS pathogenesis in aging mice. Importantly, aromatase expression in human cervical LNs suggests that these sites may similarly contribute to estrogen synthesis in humans, potentially opening new avenues for understanding and treating MS.
Collapse
Affiliation(s)
- Shehata Anwar
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
- Faculty of Veterinary Medicine, Department of Pathology, Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Lazaro Pacheco
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Zhengzhong Tan
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Ziyuan Song
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Yuki Wakamatsu
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Jianjun Cheng
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - CheMyong Ko
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
2
|
Shaw GA, Wegener AJ, Neigh GN. Chronic corticosterone administration alters synaptic mitochondrial function within the hippocampus of C57Bl/6NTac mice. Physiol Behav 2024; 287:114681. [PMID: 39209050 DOI: 10.1016/j.physbeh.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic activation of the hypothalamic-pituitary-adrenal axis increases circulating corticosterone levels, causing a host of downstream behavioral, molecular, and metabolic changes. Here, we assess the effects of chronic exogenous CORT administration on changes in behavior and mitochondrial respiration in hippocampal synaptosomes of male and female mice. Adult male (n = 15) and female (n = 17) C57Bl/6NTac mice were given 35ug/mL CORT or vehicle dissolved in their drinking water for 21 consecutive days. Chronic CORT increased piloerection in males only. Although volume of CORT-containing water consumed was similar between males and females, circulating plasma and fecal corticosterone levels were only elevated in CORT-exposed males. Behavioral effects of CORT were evident in the Y-maze such that CORT caused a decrease in direct revisits in both sexes. There was no observed presentation of anxiety-like behavior following chronic CORT administration. Functional hippocampal synaptosomes were analyzed for mitochondrial respiration using Agilent's Cell Mito Stress test. Chronic CORT caused a decrease in synaptic mitochondria basal respiration, maximal respiration, proton leak, and ATP production in both sexes. Despite only observing an effect of chronic CORT on corticosterone concentrations in fecal and blood samples of males, chronic CORT induced marked changes in hippocampal synaptic mitochondrial function of both sexes. These data highlight the importance of considering effects of stress hormone exposure on neural function even in the absence of measurable peripheral elevations in females.
Collapse
Affiliation(s)
- Gladys A Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy J Wegener
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Martínez-Martos JM, Cantón-Habas V, Rich-Ruíz M, Reyes-Medina MJ, Ramírez-Expósito MJ, Carrera-González MDP. Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications. Life (Basel) 2024; 14:1547. [PMID: 39768255 PMCID: PMC11677427 DOI: 10.3390/life14121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity. Adult neurogenesis in the dentate gyrus, dendritic spine density, and electrophysiological plasticity contribute to the hippocampus' remarkable plasticity. Glucose transporters GLUT3 and GLUT4 are expressed in human hippocampal neurons, with proper glucose metabolism being crucial for learning and memory. Sex hormones play a major role, with the aromatase enzyme that generates estradiol increasing in neurons and astrocytes as an endogenous neuroprotective mechanism. Inhibition of aromatase increases gliosis and neurodegeneration after brain injury. Genetic variants of aromatase may confer higher Alzheimer's risk. Estrogen replacement therapy in postmenopausal women prevents hippocampal hypometabolism and preserves memory. Insulin is also a key regulator of hippocampal glucose metabolism and cognitive processes. Dysregulation of the insulin-sensitive glucose transporter GLUT4 may explain the comorbidity between type II diabetes and Alzheimer's. GLUT4 colocalizes with the insulin-regulated aminopeptidase IRAP in neuronal vesicles, suggesting an activity-dependent glucose uptake mechanism. Sex differences in brain metabolism are an important factor in understanding neurodegenerative diseases, and future research must elucidate the underlying mechanisms and potential therapeutic implications of these differences.
Collapse
Affiliation(s)
- José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
| | - Vanesa Cantón-Habas
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| | - Manuel Rich-Ruíz
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| | - María José Reyes-Medina
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
| | - María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
| | - María del Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| |
Collapse
|
4
|
Wang L, Gao F, Chen L, Sun W, Liu H, Yang W, Zhang X, Bai J, Wang R. Remote Ischemia Postconditioning Mitigates Hippocampal Neuron Impairment by Modulating Cav1.2-CaMKIIα-Aromatase Signaling After Global Cerebral Ischemia in Ovariectomized Rats. Mol Neurobiol 2024; 61:6511-6527. [PMID: 38321351 PMCID: PMC11339123 DOI: 10.1007/s12035-024-03930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Brain-derived estrogen (BDE2) is gaining attention as an endogenous neurotransmitter. Recent research has revealed that selectively removing the aromatase gene, the pivotal enzyme responsible for BDE2 synthesis, in forebrain neurons or astrocytes can lead to synaptic loss and cognitive impairment. It is worth noting that remote ischemia post-conditioning (RIP), a non-invasive technique, has been shown to activate natural protective mechanisms against severe ischemic events. The aim of our study was to investigate whether RIP triggers aromatase-BDE2 signaling, shedding light on its neuroprotective mechanisms after global cerebral ischemia (GCI) in ovariectomized rats. Our findings are as follows: (1) RIP was effective in mitigating ischemic damage in hippocampal CA1 neurons and improved cognitive function after GCI. This was partially due to increased Aro-BDE2 signaling in CA1 neurons. (2) RIP intervention efficiently enhanced pro-survival kinase pathways, such as AKT, ERK1/2, CREB, and suppressed CaMKIIα signaling in CA1 astrocytes induced by GCI. Remarkably, inhibiting CaMKIIα activity led to elevated Aro-BDE2 levels and replicated the benefits of RIP. (3) We also identified the positive mediation of Cav1.2, an LVGCC calcium channel, on CaMKIIα-Aro/BDE2 pathway response to RIP intervention. (4) Significantly, either RIP or CaMKIIα inhibition was found to alleviate reactive astrogliosis, which was accompanied by increased pro-survival A2-astrocyte protein S100A10 and decreased pro-death A1-astrocyte marker C3 levels. In summary, our study provides compelling evidence that Aro-BDE2 signaling is a critical target for the reparative effects of RIP following ischemic insult. This effect may be mediated through the CaV1.2-CaMKIIα signaling pathway, in collaboration with astrocyte-neuron interactions, thereby maintaining calcium homeostasis in the neuronal microenvironment and reducing neuronal damage after ischemia.
Collapse
Affiliation(s)
- Lu Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Lingling Chen
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Wuxiang Sun
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Huiyu Liu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Wei Yang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Xin Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China.
| |
Collapse
|
5
|
L Tait J, M Bulmer S, M Drake J, R Drain J, C Main L. Impact of 12 weeks of basic military training on testosterone and cortisol responses. BMJ Mil Health 2024; 170:325-330. [PMID: 36316059 DOI: 10.1136/military-2022-002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Military personnel train and operate in challenging multistressor environments, which can affect hormonal levels, and subsequently compromise performance and recovery. The aims of this project were to evaluate concentrations of cortisol and testosterone and subjective perceptions of stress and recovery across basic military training (BMT). METHODS 32 male recruits undergoing BMT were tracked over a 12-week course. Saliva samples were collected weekly, on waking, 30 min postwaking and bedtime. Perceptions of stress and recovery were collected weekly. Daily physical activity (steps) were measured via wrist-mounted accelerometers across BMT. Physical fitness was assessed via the multistage fitness test and push-ups in weeks 2 and 8. RESULTS Concentrations of testosterone and cortisol, and the testosterone:cortisol ratio changed significantly across BMT, with variations in responses concurrent with programmatic demands. Perceptions of stress and recovery also fluctuated according to training elements. Recruits averaged 17 027 steps per day between weeks 2 and 12, with week-to-week variations. On average, recruits significantly increased predicted VO2max (3.6 (95% CI 1.0 to 6.1) mL/kg/min) and push-ups (5. 5 (95% CI 1.4 to 9.7) repetitions) between weeks 2 and 8. CONCLUSIONS Recruit stress responses oscillated over BMT in line with programmatic demands indicating that BMT was, at a group level, well-tolerated with no signs of enduring physiological strain or overtraining. The sensitivity of cortisol, testosterone and the testosterone:cortisol ratio to the stressors of military training, suggest they may have a role in monitoring physiological strain in military personnel. Subjective measures may also have utility within a monitoring framework to help ensure adaptive, rather than maladaptive (eg, injury, attrition), outcomes in military recruits.
Collapse
Affiliation(s)
- Jamie L Tait
- Deakin University, Institute for Physical Activity and Nutrition (IPAN), Burwood, Victoria, Australia
| | - S M Bulmer
- Deakin University, School of Exercise and Nutrition Sciences, Burwood, Victoria, Australia
| | - J M Drake
- Deakin University, School of Exercise and Nutrition Sciences, Burwood, Victoria, Australia
| | - J R Drain
- Defence Science and Technology Group, Melbourne, Victoria, Australia
| | - L C Main
- Deakin University, Institute for Physical Activity and Nutrition (IPAN), Burwood, Victoria, Australia
| |
Collapse
|
6
|
Talwalkar A, Haden G, Duncan KA. Chondroitin sulfate proteoglycans mRNA expression and degradation in the zebra finch following traumatic brain injury. J Chem Neuroanat 2024; 138:102418. [PMID: 38621597 DOI: 10.1016/j.jchemneu.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. From minutes to months following damage, injury can result in a complex pathophysiology that can lead to temporary or permanent deficits including an array of neurodegenerative symptoms. These changes can include behavioral dysregulation, memory dysfunctions, and mood changes including depression. The nature and severity of impairments resulting from TBIs vary widely given the range of injury type, location, and extent of brain tissue involved. In response to the injury, the brain induces structural and functional changes to promote repair and minimize injury size. Despite its high prevalence, effective treatment strategies for TBI are limited. PNNs are part of the neuronal extracellular matrix (ECM) that mediate synaptic stabilization in the adult brain and thus neuroplasticity. They are associated mostly with inhibitory GABAergic interneurons and are thought to be responsible for maintaining the excitatory/inhibitory balance of the brain. The major structural components of PNNs include multiple chondroitin sulfate proteoglycans (CSPGs) as well as other structural proteins. Here we examine the effects of injury on CSPG expression, specifically around the changes in the side change moieties. To investigate CSPG expression following injury, adult male and female zebra finches received either a bilateral penetrating, or no injury and qPCR analysis and immunohistochemistry for components of the CSPGs were examined at 1- or 7-days post-injury. Next, to determine if CSPGs and thus PNNs should be a target for therapeutic intervention, CSPG side chains were degraded at the time of injury with chondroitinase ABC (ChABC) CSPGs moieties were examined. Additionally, GABA receptor mRNA and aromatase mRNA expression was quantified following CSPG degradation as they have been implicated in neuronal survival and neurogenesis. Our data indicate the CSPG moieties change following injury, potentially allowing for a brief period of synaptic reorganization, and that treatments that target CSPG side chains are successful in further targeting this brief critical period by decreasing GABA mRNA receptor expression, but also decreasing aromatase expression.
Collapse
Affiliation(s)
- Adam Talwalkar
- Program in Biochemistry, Vassar College, Poughkeepsie, NY 12604, USA
| | - Gage Haden
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kelli A Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA; Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
7
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
8
|
Khaw YM, Anwar S, Zhou J, Kawano T, Lin P, Otero A, Barakat R, Drnevich J, Takahashi T, Ko CJ, Inoue M. Estrogen receptor alpha signaling in dendritic cells modulates autoimmune disease phenotype in mice. EMBO Rep 2023; 24:e54228. [PMID: 36633157 PMCID: PMC9986829 DOI: 10.15252/embr.202154228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
Estrogen is a disease-modifying factor in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) via estrogen receptor alpha (ERα). However, the mechanisms by which ERα signaling contributes to changes in disease pathogenesis have not been completely elucidated. Here, we demonstrate that ERα deletion in dendritic cells (DCs) of mice induces severe neurodegeneration in the central nervous system in a mouse EAE model and resistance to interferon beta (IFNβ), a first-line MS treatment. Estrogen synthesized by extragonadal sources is crucial for controlling disease phenotypes. Mechanistically, activated ERα directly interacts with TRAF3, a TLR4 downstream signaling molecule, to degrade TRAF3 via ubiquitination, resulting in reduced IRF3 nuclear translocation and transcription of membrane lymphotoxin (mLT) and IFNβ components. Diminished ERα signaling in DCs generates neurotoxic effector CD4+ T cells via mLT-lymphotoxin beta receptor (LTβR) signaling. Lymphotoxin beta receptor antagonist abolished EAE disease symptoms in the DC-specific ERα-deficient mice. These findings indicate that estrogen derived from extragonadal sources, such as lymph nodes, controls TRAF3-mediated cytokine production in DCs to modulate the EAE disease phenotype.
Collapse
Affiliation(s)
- Yee Ming Khaw
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Shehata Anwar
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of Pathology, Faculty of Veterinary MedicineBeni‐Suef University (BSU)Beni‐SuefEgypt
| | - Jinyan Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Tasuku Kawano
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Po‐Ching Lin
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Ashley Otero
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Radwa Barakat
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of Toxicology and Forensic MedicineCollege of Veterinary Medicine, Benha UniversityQalyubiaEgypt
| | - Jenny Drnevich
- Roy J. Carver Biotechnology CenterUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - CheMyong Jay Ko
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Makoto Inoue
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUrbanaILUSA
| |
Collapse
|
9
|
Immunofluorescent Evidence for Nuclear Localization of Aromatase in Astrocytes in the Rat Central Nervous System. Int J Mol Sci 2022; 23:ijms23168946. [PMID: 36012212 PMCID: PMC9408820 DOI: 10.3390/ijms23168946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Estrogens regulate a variety of neuroendocrine, reproductive and also non-reproductive brain functions. Estradiol biosynthesis in the central nervous system (CNS) is catalyzed by the enzyme aromatase, which is expressed in several brain regions by neurons, astrocytes and microglia. In this study, we performed a complex fluorescent immunocytochemical analysis which revealed that aromatase is colocalized with the nuclear stain in glial fibrillary acidic protein (GFAP) positive astrocytes in cell cultures. Confocal immunofluorescent Z-stack scanning analysis confirmed the colocalization of aromatase with the nuclear DAPI signal. Nuclear aromatase was also detectable in the S100β positive astrocyte subpopulation. When the nuclear aromatase signal was present, estrogen receptor alpha was also abundant in the nucleus. Immunostaining of frozen brain tissue sections showed that the nuclear colocalization of the enzyme in GFAP-positive astrocytes is also detectable in the adult rat brain. CD11b/c labelled microglial cells express aromatase, but the immunopositive signal was distributed only in the cytoplasm both in the ramified and amoeboid microglial forms. Immunostaining of rat ovarian tissue sections and human granulosa cells revealed that aromatase was present only in the cytoplasm. This novel observation suggests a new unique mechanism in astrocytes that may regulate certain CNS functions via estradiol production.
Collapse
|
10
|
Factors Predicting Training Delays and Attrition of Recruits during Basic Military Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127271. [PMID: 35742522 PMCID: PMC9223722 DOI: 10.3390/ijerph19127271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/22/2023]
Abstract
Ensuring a balance between training demands and recovery during basic military training (BMT) is necessary for avoiding maladaptive training responses (e.g., illness or injury). These can lead to delays in training completion and to training attrition. Previously identified predictors of injury and attrition during BMT include demographic and performance data, which are typically collected at a single time point. The aim of this study was to determine individual risk factors for injury and training delays from a suite of measures collected across BMT. A total of 46 male and female recruits undertaking the 12-week Australian Army BMT course consented to this study. Injury, illness, attrition, and demographic data were collected across BMT. Objective measures included salivary cortisol and testosterone, step counts, cardiorespiratory fitness, and muscular endurance. Perceptions of well-being, recovery, workload, fatigue, and sleep were assessed with questionnaires. Baseline and mean scores across BMT were evaluated as predictors of injury and attrition using generalized linear regressions, while repeated-measures ANOVA was used for the group comparisons. From the 46 recruits, 36 recruits completed BMT on time; 10 were delayed in completion or discharged. Multiple risk factors for injury during BMT included higher subjective ratings of training load, fatigue, and stress, lower sleep quality, and higher cortisol concentrations. Higher ratings of depression, anxiety, and stress, and more injuries were associated with a higher risk of delayed completion. Higher concentrations of testosterone and higher levels of fitness upon entry to BMT were associated with reduced risk of injury and delayed completion of BMT. Ongoing monitoring with a suite of easily administered measures may have utility in forewarning risk of training maladaptation in recruits and may complement strategies to address previously identified demographic and performance-based risk factors to mitigate injury, training delays, and attrition.
Collapse
|
11
|
Gray SL, Soma KK, Duncan KA. Steroid profiling in brain and plasma of adult zebra finches following traumatic brain injury. J Neuroendocrinol 2022; 34:e13151. [PMID: 35608024 DOI: 10.1111/jne.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
Traumatic brain injury (TBI) is a serious health concern and a leading cause of death. Emerging evidence strongly suggests that steroid hormones (estrogens, androgens, and progesterone) modulate TBI outcomes by regulating inflammation, oxidative stress, free radical production, and extracellular calcium levels. Despite this growing body of evidence on steroid-mediated neuroprotection, very little is known about the local synthesis of these steroids following injury. Here, we examine the effect of TBI on local neurosteroid levels around the site of injury and in plasma in adult male and female zebra finches. Using ultrasensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined estrogens, androgens, and progesterone in the entopallium and plasma of injured and uninjured animals. Three days after injury, elevated levels of 17β-estradiol (E2 ), estrone (E1 ), and testosterone (T) were detected near injured brain tissue with a corresponding increase in E2 also detected in plasma. Taken together, these results provide further evidence that TBI alters neurosteroid levels and are consistent with studies showing that neurosteroids provide neuroprotection following injury.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelli A Duncan
- Department of Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA
| |
Collapse
|
12
|
Tait JL, Drain JR, Corrigan SL, Drake JM, Main LC. Impact of military training stress on hormone response and recovery. PLoS One 2022; 17:e0265121. [PMID: 35271678 PMCID: PMC8912193 DOI: 10.1371/journal.pone.0265121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
Military personnel are required to train and operate in challenging multi-stressor environments, which can affect hormonal levels, and subsequently compromise performance and recovery. The aims of this project were to 1) assess the impact of an eight-day military training exercise on salivary cortisol and testosterone, 2) track the recovery of these hormones during a period of reduced training.
Methods
This was a prospective study whereby 30 soldiers (n = 27 men, n = 3 women) undergoing the Australian Army combat engineer ‘Initial Employment Training’ course were recruited and tracked over a 16-day study period which included an eight-day military training exercise. Non-stimulated saliva samples were collected at waking, 30 min post waking, and bedtime on days 1, 5, 9, 13, 15; measures of subjective load were collected on the same days. Sleep was measured continuously via actigraphy, across four sequential study periods; 1) baseline (PRE: days 1–4), 2) field training with total sleep deprivation (EX-FIELD: days 5–8), 3) training at simulated base camp with sleep restriction (EX-BASE: days 9–12), and 4) a three-day recovery period (REC: days 13–15).
Results
Morning cortisol concentrations were lower following EX-FIELD (p<0.05) compared to the end of REC. Training in the field diminished testosterone concentrations (p<0.05), but levels recovered within four days. Bedtime testosterone/cortisol ratios decreased following EX-FIELD and did not return to pre-training levels.
Conclusions
The sensitivity of testosterone levels and the testosterone/cortisol ratio to the period of field training suggests they may be useful indicators of a soldier’s state of physiological strain, or capacity, however inter-individual differences in response to a multi-stressor environment need to be considered.
Collapse
Affiliation(s)
- Jamie L. Tait
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- * E-mail:
| | - Jace R. Drain
- Defence Science and Technology Group, Fisherman’s Bend, Australia
| | - Sean L. Corrigan
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jeremy M. Drake
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Luana C. Main
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
13
|
Koszegi Z, Cheong RY. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front Endocrinol (Lausanne) 2022; 13:999236. [PMID: 36187099 PMCID: PMC9521328 DOI: 10.3389/fendo.2022.999236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogens can alter the biology of various tissues and organs, including the brain, and thus play an essential role in modulating homeostasis. Despite its traditional role in reproduction, it is now accepted that estrogen and its analogues can exert neuroprotective effects. Several studies have shown the beneficial effects of estrogen in ameliorating and delaying the progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease and various forms of brain injury disorders. While the classical effects of estrogen through intracellular receptors are more established, the impact of the non-classical pathway through receptors located at the plasma membrane as well as the rapid stimulation of intracellular signaling cascades are still under active research. Moreover, it has been suggested that the non-classical estrogen pathway plays a crucial role in neuroprotection in various brain areas. In this mini-review, we will discuss the use of compounds targeting the non-classical estrogen pathway in their potential use as treatment in neurodegenerative diseases and brain injury disorders.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Y. Cheong
- Timeline Bioresearch AB, Medicon Village, Lund, Sweden
- *Correspondence: Rachel Y. Cheong,
| |
Collapse
|
14
|
Maioli S, Leander K, Nilsson P, Nalvarte I. Estrogen receptors and the aging brain. Essays Biochem 2021; 65:913-925. [PMID: 34623401 PMCID: PMC8628183 DOI: 10.1042/ebc20200162] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERβ) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
15
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
16
|
Antipsychotics increase steroidogenic enzyme gene expression in the rat brainstem. Mol Biol Rep 2021; 49:1601-1608. [PMID: 34797492 PMCID: PMC8825390 DOI: 10.1007/s11033-021-06943-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022]
Abstract
Background Neurosteroids are involved in several important brain functions and have recently been considered novel players in the mechanic actions of neuropsychiatric drugs. There are no reports of murine studies focusing on the effect of chronic neurosteroid treatment in parallel with antipsychotics on key steroidogenic enzyme expression and we therefore focused on steroidogenic enzyme gene expression in the brainstem of rats chronically treated with olanzapine and haloperidol. Methods and results Studies were carried out on adult, male Sprague–Dawley rats which were divided into 3 groups: control and experimental animals treated with olanzapine or haloperidol. Total mRNA was isolated from homogenized brainstem samples for RealTime-PCR to estimate gene expression of related aromatase, 3β-HSD and P450scc. Long-term treatment with the selected antipsychotics was reflected in the modulation of steroidogenic enzyme gene expression in the examined brainstem region; with both olanzapine and haloperidol increasing aromatase, 3β-HSD and P450scc gene expression. Conclusions The present findings shed new light on the pharmacology of antipsychotics and suggest the existence of possible regulatory interplay between neuroleptic action and steroidogenesis at the level of brainstem neuronal centres.
Collapse
|
17
|
Bottenfield KR, Bowley BGE, Pessina MA, Medalla M, Rosene DL, Moore TL. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biol Sex Differ 2021; 12:54. [PMID: 34627376 PMCID: PMC8502310 DOI: 10.1186/s13293-021-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke disproportionately affects men and women, with women over 65 years experiencing increased severity of impairment and higher mortality rates than men. Human studies have explored risk factors that contribute to these differences, but additional research is needed to investigate how sex differences affect functional recovery and hence the severity of impairment. In the present study, we used our rhesus monkey model of cortical injury and fine motor impairment to compare sex differences in the rate and degree of motor recovery following this injury. METHODS Aged male and female rhesus monkeys were trained on a task of fine motor function of the hand before undergoing surgery to produce a cortical lesion limited to the hand area representation of the primary motor cortex. Post-operative testing began two weeks after the surgery and continued for 12 weeks. All trials were video recorded and latency to retrieve a reward was quantitatively measured to assess the trajectory of post-operative response latency and grasp pattern compared to pre-operative levels. RESULTS Postmortem analysis showed no differences in lesion volume between male and female monkeys. However, female monkeys returned to their pre-operative latency and grasp patterns significantly faster than males. CONCLUSIONS These findings demonstrate the need for additional studies to further investigate the role of estrogens and other sex hormones that may differentially affect recovery outcomes in the primate brain.
Collapse
Affiliation(s)
- Karen R Bottenfield
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.
| | - Bethany G E Bowley
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Monica A Pessina
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Maria Medalla
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
18
|
Shaw GA, Hyer MM, Dustin E, Dyer SK, Targett IL, Neigh GN. Acute LPS exposure increases synaptosomal metabolism during estrus but not diestrus. Physiol Behav 2021; 239:113523. [PMID: 34229031 DOI: 10.1016/j.physbeh.2021.113523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 11/15/2022]
Abstract
The hormones estrogen and progesterone alter physiological functions, including the estrus cycle and relevant neurological and synaptic activity. Here, we determined the extent to which estrus cycle stage interacts with an inflammatory stimulus, lipopolysaccharide (LPS), to alter synaptic mitochondrial respiration in female rats. LPS elevated synaptic mitochondrial respiration of rats in estrus, but not diestrus. Likewise, estrogen concentration correlated with multiple respiratory metrics in LPS treated females in estrus. These data suggest estrogen likely modulates synaptic mitochondrial respiration in a high progesterone environment.
Collapse
Affiliation(s)
- Gladys A Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Molly M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Elizabeth Dustin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Samya K Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Imogen L Targett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, United States.
| |
Collapse
|
19
|
Carruba G. Estrogens in Hepatocellular Carcinoma: Friends or Foes? Cancers (Basel) 2021; 13:cancers13092085. [PMID: 33925807 PMCID: PMC8123464 DOI: 10.3390/cancers13092085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Today, we know that estrogen hormones are required for the development and function of many organs, such as the liver, in both males and females. However, in some circumstances, estrogen excess may be implicated in the appearance of various chronic diseases, including cancer. This review will inspect the results of several studies to better understand the mechanisms responsible for estrogens to change from protective into harmful hormones in human liver. Abstract Estrogens are recognized as key players in physiological regulation of various, classical and non-classical, target organs, and tissues, including liver development, homeostasis, and function. On the other hand, multiple, though dispersed, experimental evidence is highly suggestive for the implication of estrogen in development and progression of hepatocellular carcinoma. In this paper, data from our own studies and the current literature are reviewed to help understanding this apparent discrepancy.
Collapse
Affiliation(s)
- Giuseppe Carruba
- Servizio di Internazionalizzazione e Ricerca Sanitaria (SIRS), Azienda di Rilievo Nazionale e di Alta Specializzazione (ARNAS)-Civico, Di Cristina, Benfratelli-Palermo, Piazza N. Leotta 2, 90127 Palermo, Italy
| |
Collapse
|
20
|
Iglesias-Osma MC, Blanco EJ, Carretero-Hernández M, Catalano-Iniesta L, García-Barrado MJ, Sánchez-Robledo V, Blázquez JL, Carretero J. The lack of Irs2 induces changes in the immunocytochemical expression of aromatase in the mouse retina. Ann Anat 2021; 239:151726. [PMID: 33798691 DOI: 10.1016/j.aanat.2021.151726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023]
Abstract
Insulin receptor substrate (Irs) belongs to a family of proteins that mediate the intracellular signaling of insulin and IGF-1. Insulin receptor substrate 2 (Irs2) is necessary for retinal function, since its failure in Irs2-deficient mice in hyperglycemic situation promotes photoreceptor degeneration and visual dysfunction, like in diabetic retinopathy. The expression of P450 aromatase, which catalyzes androgen aromatization to form 17ß-estradiol, increases in some neurodegenerative diseases thus promoting the local synthesis of neuroestrogens that exert relevant neuroprotective functions. Aromatase is also expressed in neurons and glial cells of the central nervous system (CNS), including the retina. To further understand the role of Irs2 at the retinal level, we performed an immunocytochemical study in adult normoglycemic Irs2-deficient mice. For this aim, the retinal immunoexpression of neuromodulators, such as aromatase, glutamine synthetase (GS), and tyrosine hydroxylase (TH) was analyzed, joint to a morphometric and planimetric study of the retinal layers. Comparing with wild-type (WT) control mice, the Irs2-knockout (Irs2-KO) animals showed a significant increase in the immunopositivity to aromatase in almost all of the retinal layers. Besides, Irs2-KO mice exhibited a decreased immunopositive reaction for GS and TH, in Müller and amacrine cells, respectively; morphological variations were also found in these retinal cell types. Furthermore, the retina of Irs2-KO mice displayed alterations in the structural organization, and a generalized decrease in the retinal thickness was observed in each of the layers, except for the inner nuclear layer. Our findings suggest that the absence of Irs2 induces retinal neurodegenerative changes in Müller and amacrine cells that are unrelated to hyperglycemia. Accordingly, in the Irs2-KO mice, the increased retinal immunocytochemical reactivity of aromatase could be associated with an attempt to repair such neural retina injuries by promoting local neuroprotective mediators.
Collapse
Affiliation(s)
- Maria Carmen Iglesias-Osma
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain.
| | - Enrique J Blanco
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain
| | - Marta Carretero-Hernández
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain
| | - Leonardo Catalano-Iniesta
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - Maria Jose García-Barrado
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - Virginia Sánchez-Robledo
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - Juan Luis Blázquez
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain
| | - Jose Carretero
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain.
| |
Collapse
|
21
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
22
|
Hoffman JR, Zuckerman A, Ram O, Sadot O, Cohen H. Changes in Hippocampal Androgen Receptor Density and Behavior in Sprague-Dawley Male Rats Exposed to a Low-Pressure Blast Wave. Brain Plast 2020; 5:135-145. [PMID: 33282677 PMCID: PMC7685673 DOI: 10.3233/bpl-200107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective The purpose of this study was to examine the effect of exposure of a low-intensity blast wave on androgen receptor (AR) density in the hippocampus and the potential influence on behavioral and cognitive responses. Methods Sprague-Dawley rats were randomly assigned to either a blast exposed group (n = 27) or an unexposed (control) group (n = 10). Animals were treated identically, except that rats within the control group were not exposed to any of the characteristics of the blast wave. Behavior measures were conducted on day seven post-exposure. The rats were initially assessed in the elevated plus maze followed by the acoustic startle response paradigm. Spatial memory performance using the Morris water-maze test was assessed at 8-days post-exposure, for seven consecutive days. Following all behavioral tests AR immunofluorescence staining was performed in different hippocampal subregions. Results A significant elevation in anxiety index (p < 0.001) and impaired learning (p < 0.015) and spatial memory (p < 0.0015) were noted in exposed rats. In addition, a significant attenuation of the AR was noted in the CA1 (p = 0.006) and dentate gyrus (p = 0.031) subregions of the hippocampus in blast exposed animals. Correlational analyses revealed significant associations between AR and both anxiety index (r = -.36, p = 0.031) and memory (r = -0.38, p = 0.019). Conclusions The results of this study demonstrate that exposure to a low-pressure blast wave resulted in a decrease in AR density, which was associated with significant behavioral and cognitive changes.
Collapse
Affiliation(s)
- Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Amitai Zuckerman
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Faculty of Health Sciences, Division of Psychiatry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omri Ram
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Oren Sadot
- Department of Mechanical Engineering, Ben-Gurion University, Israel
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Faculty of Health Sciences, Division of Psychiatry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
23
|
Gazioglu S, Alkan I, Karaman AG, Boz C. Decreased second to fourth digit ratios in female multiple sclerosis patients. Early Hum Dev 2020; 144:105039. [PMID: 32304983 DOI: 10.1016/j.earlhumdev.2020.105039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sex-related differences in multiple sclerosis (MS) suggest a possible role of prenatal sex hormones in the pathogenesis. The aim of this study was to investigate whether the 2D:4D ratio, considered a predictor of prenatal hormonal exposure, in MS patients differ from that in healthy controls. METHODS Two hundred MS patients and one hundred seventy healthy control subjects with similar age and sex distribution enrolled. All participants were right-handed. The right hands of all participants were scanned using a digital scanner. Measurements of second and fourth digit lengths were made from digital scans. The 2D:4D ratio was calculated by dividing the length of the second digit by the length of the fourth digit. RESULTS A total of 171 MS patients' and 159 healthy controls' digit scans included in the study. The MS group consisted of 94 females (mean age 38.32 ± 10.5) and 77 males (mean age 42.06 ± 11.8) and the control group of 86 females (mean age 40.24 ± 9.7) and 73 males (mean age 38.49 ± 11.6). 2D:4D ratios of female MS patients were significantly lower than those of healthy females (p=0.004). Although 2D:4D ratios of male patients with MS were lower than those of healthy males, this difference was not statistically significant (p=0.33). There was no significant correlation between the 2D:4D ratio, EDSS levels or duration of the disease in male or female MS patients (p<0.05). CONCLUSION Although our results suggest that a prenatal hormonal balance in favor of androgenic activity may be a risk factor for MS, complex factors mediating the actions of sex hormones on target cells should always be considered when evaluating the effects of sex hormones.
Collapse
Affiliation(s)
- Sibel Gazioglu
- Department of Neurology, Karadeniz Technical University Medical Faculty, 61080 Trabzon, Turkey.
| | - Ismail Alkan
- Department of Neurology, Karadeniz Technical University Medical Faculty, 61080 Trabzon, Turkey
| | - Ayse Gul Karaman
- Department of Neurology, Karadeniz Technical University Medical Faculty, 61080 Trabzon, Turkey
| | - Cavit Boz
- Department of Neurology, Karadeniz Technical University Medical Faculty, 61080 Trabzon, Turkey
| |
Collapse
|
24
|
PFEIFFER RUTHM, MAYER BERND, KUNCL RALPHW, CHECK DAVIDP, CAHOON ELIZABETHK, RIVERA DONNAR, FREEDMAN DMICHAL. Identifying potential targets for prevention and treatment of amyotrophic lateral sclerosis based on a screen of medicare prescription drugs. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:235-245. [PMID: 31684770 PMCID: PMC9930913 DOI: 10.1080/21678421.2019.1682613] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Few well-established factors are associated with risk of amyotrophic lateral sclerosis (ALS). We comprehensively evaluate prescription drugs use in administrative health claims from U.S. Medicare beneficiaries in relation to ALS risk to generate hypotheses for further research. Methods: This is a population-based case-control study of 10,450 U.S. Medicare participants (ages 66-89 years) diagnosed with ALS, based on Medicare Parts A and B fee-for-service claims, between 1 January 2008, and 31 December 2014, and 104,500 controls (1:10 ratio) frequency-matched on age, sex, and selection year. Odds ratios (ORs) for the ALS association with 685 prescription drugs were estimated using logistic regression models for both a one- and three-year lag period. Covariates included demographic characteristics and key comorbidities, among other factors. Prescription drug use was based on Medicare Part D claims. We adjusted for multiple comparisons using a Bonferroni correction. Additional a priori analyses of sex hormone drugs were also undertaken. Results: In the large drug screen, we found 10 drugs significantly associated with lower ALS risk after the multiple-testing correction in a one-year and three-year lag analysis. These included several drugs for hypertension, diabetes, and cardiovascular disease. In a separate a priori inquiry of sex hormone drugs, tamoxifen was related to lower ALS risk, and testosterone to a higher risk in women. Conclusions: These associations warrant replication in databases that include information on the severity and duration of medical conditions underlying drug use, and drug use over a longer portion of individuals' lifespans, to further help evaluate confounding by indication.
Collapse
Affiliation(s)
- RUTH M. PFEIFFER
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, MD, USA
| | - BERND MAYER
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - RALPH W. KUNCL
- Department of Biology, University of the Redlands, Redlands, CA, USA
| | - DAVID P. CHECK
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, MD, USA
| | - ELIZABETH K. CAHOON
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, MD, USA
| | - DONNA R. RIVERA
- National Cancer Institute, Division of Cancer Control and Population Sciences, NIH, DHHS, Bethesda, MD, USA
| | - D. MICHAL FREEDMAN
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
25
|
Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Sex-specific estrogen regulation of hypothalamic astrocyte estrogen receptor expression and glycogen metabolism in rats. Mol Cell Endocrinol 2020; 504:110703. [PMID: 31931041 PMCID: PMC7325597 DOI: 10.1016/j.mce.2020.110703] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Brain astrocytes are implicated in estrogenic neuroprotection against bio-energetic insults, which may involve their glycogen energy reserve. Forebrain estrogen receptors (ER)-alpha (ERα) and -beta (ERβ) exert differential control of glycogen metabolic enzyme [glycogen synthase (GS); phosphorylase (GP)] expression in hypoglycemic male versus female rats. Studies were conducted using a rat hypothalamic astrocyte primary culture model along with selective ER agonists to investigate the premise that estradiol (E2) exerts sex-dimorphic control over astrocyte glycogen mass and metabolism. Female astrocyte GS and GP profiles are more sensitive to E2 stimulation than the male. E2 did not regulate expression of phospho-GS (inactive enzyme form) in either sex. Data also show that transmembrane G protein-coupled ER-1 (GPER) signaling is implicated in E2 control of GS profiles in each sex and alongside ERα, GP expression in females. E2 increases total 5'-AMP-activated protein kinase (AMPK) protein in female astrocytes, but stimulated pAMPK (active form) expression with equivalent potency via GPER in females and ERα in males. In female astrocytes, ERα protein was up-regulated at a lower E2 concentration and over a broader dosage range compared to males, whereas ERβ was increased after exposure to 1-10 nM versus 100 pM E2 levels in females and males, respectively. GPER profiles were stimulated by E2 in female, but not male astrocytes. E2 increased astrocyte glycogen content in female, but not male astrocytes; selective ERβ or ERα stimulation elevated glycogen levels in the female and male, respectively. Outcomes imply that dimorphic astrocyte ER and glycogen metabolic responses to E2 may reflect, in part, differential steroid induction of ER variant expression and/or regulation of post-receptor signaling in each sex.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
26
|
Arndtsen C, Ballon J, Blackshear K, Corbett CB, Lee K, Peyer J, Holloway KS, Duncan KA. Atypical gene expression of neuroinflammatory and steroid related genes following injury in the photoperiodic Japanese quail. Gen Comp Endocrinol 2020; 288:113361. [PMID: 31830471 DOI: 10.1016/j.ygcen.2019.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Clara Arndtsen
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Jason Ballon
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Katie Blackshear
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Cali B Corbett
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kenneth Lee
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Jordan Peyer
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kevin S Holloway
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA; Psychological Science, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kelli A Duncan
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA; Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
27
|
Duncan KA. Estrogen Formation and Inactivation Following TBI: What we Know and Where we Could go. Front Endocrinol (Lausanne) 2020; 11:345. [PMID: 32547495 PMCID: PMC7272601 DOI: 10.3389/fendo.2020.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.
Collapse
|
28
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
29
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
30
|
Kranz TM, Lent KL, Miller KE, Chao MV, Brenowitz EA. Rapamycin blocks the neuroprotective effects of sex steroids in the adult birdsong system. Dev Neurobiol 2019; 79:794-804. [PMID: 31509642 DOI: 10.1002/dneu.22719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022]
Abstract
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase-dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α-dihydrotestosterone (DHT) and 17 β-estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3-kinase (PI3K)-Akt (a serine/threonine kinase)-mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.
Collapse
Affiliation(s)
- Thorsten M Kranz
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Karin L Lent
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Kimberly E Miller
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Moses V Chao
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Eliot A Brenowitz
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
31
|
Kandasamy M, Radhakrishnan RK, Poornimai Abirami GP, Roshan SA, Yesudhas A, Balamuthu K, Prahalathan C, Shanmugaapriya S, Moorthy A, Essa MM, Anusuyadevi M. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res 2019; 44:1781-1795. [PMID: 31254250 DOI: 10.1007/s11064-019-02833-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
|
32
|
Yan L, Qi W, Liu Y, Zhou F, Wang Y, Bai L, Zhou X, Sun C, Nie X, Duan S, Ran J, Chen J, Ji Y, Liu Y, Li Z, Li Y, Wang Q. The Protective Effect of Aromatase on NSC-34 Cells with Stably Expressed hSOD1-G93A. Neuroscience 2019; 411:37-46. [DOI: 10.1016/j.neuroscience.2019.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 01/15/2023]
|
33
|
Chronic Antipsychotic Treatment Modulates Aromatase (CYP19A1) Expression in the Male Rat Brain. J Mol Neurosci 2019; 68:311-317. [PMID: 30968339 PMCID: PMC6511348 DOI: 10.1007/s12031-019-01307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/20/2019] [Indexed: 01/20/2023]
Abstract
Antipsychotic drugs, known as the antagonists of dopaminergic receptors, may also affect a large spectrum of other molecular signaling pathways in the brain. Despite the numerous ongoing studies on neurosteroid action and regulation, there are no reports regarding the influence of extended treatment with typical and atypical neuroleptics on brain aromatase (CYP19A1) expression. In the present study, we assessed for the first time aromatase mRNA and protein levels in the brain of rats chronically (28 days) treated with olanzapine, clozapine, and haloperidol using quantitative real-time PCR, end-point RT-PCR, and Western blotting. Both clozapine and haloperidol, but not olanzapine treatment, led to an increase of aromatase mRNA expression in the rat brain. On the other hand, aromatase protein level remained unchanged after drug administration. These results cast a new light on the pharmacology of examined antipsychotics and contribute to a better understanding of the mechanisms responsible for their action. The present report also underlines the complex nature of potential interactions between neuroleptic pharmacological effects and physiology of brain neurosteroid pathways.
Collapse
|
34
|
Aromatase expression and function in the brain and behavior: A comparison across communication systems in teleosts. J Chem Neuroanat 2018; 94:139-153. [DOI: 10.1016/j.jchemneu.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/09/2018] [Accepted: 10/14/2018] [Indexed: 11/18/2022]
|
35
|
Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int 2018; 127:38-55. [PMID: 30471324 DOI: 10.1016/j.neuint.2018.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia. While males overall appear to be at a slightly higher risk for VCID throughout most of the lifespan (up to age 85), some risk factors for VCID more adversely affect women. These include female-specific risk factors associated with pregnancy related disorders (e.g. preeclampsia), menopause, and poorly timed hormone replacement. Further, presence of certain co-morbid risk factors, such as diabetes, obesity and hypertension, also may more adversely affect women than men. In contrast, some risk factors more greatly affect men, such as hyperlipidemia, myocardial infarction, and heart disease. Further, stroke, one of the leading risk factors for VCID, has a higher incidence in men than in women throughout much of the lifespan, though this trend is reversed at advanced ages. This review will highlight the need to take biological sex and common co-morbidities for VCID into account in both preclinical and clinical research. Given that there are currently no treatments available for VCID, it is critical that we understand how to mitigate risk factors for this devastating disease in both sexes.
Collapse
Affiliation(s)
- O J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - L S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - A J Custozzo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - K L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
36
|
Nikray N, Karimi I, Siavashhaghighi Z, Becker LA, Mofatteh MM. An effort toward molecular biology of food deprivation induced food hoarding in gonadectomized NMRI mouse model: focus on neural oxidative status. BMC Neurosci 2018; 19:59. [PMID: 30249177 PMCID: PMC6154416 DOI: 10.1186/s12868-018-0461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/20/2018] [Indexed: 12/03/2022] Open
Abstract
Background Environmental uncertainty, such as food deprivation, may alter internal milieu of nervous system through various mechanisms. In combination with circumstances of stress or aging, high consumption of unsaturated fatty acids and oxygen can make neural tissues sensitive to oxidative stress (OS). For adult rats, diminished level of gonadal steroid hormones accelerates OS and may result in special behavioral manifestations. This study was aimed to partially answer the question whether OS mediates trade-off between food hoarding and food intake (fat hoarding) in environmental uncertainty (e.g., fluctuations in food resource) within gonadectomized mouse model in the presence of food deprivation-induced food hoarding behavior. Results Hoarding behavior was not uniformly expressed in all male mice that exposed to food deprivation. Extended phenotypes including hoarder and non-hoarder mice stored higher and lower amounts of food respectively as compared to that of low-hoarder mice (normal phenotype) after food deprivation. Results showed that neural oxidative status was not changed in the presence of hoarding behavior in gonadectomized mice regardless of tissue type, however, glutathione levels of brain tissues were increased in the presence of hoarding behavior. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde in brain tissues of gonadectomized mice were also seen. Conclusions Although, food deprivation-induced hoarding behavior is a strategic response to food shortage in mice, it did not induce the same amount of hoarding across all colony mates. Hoarding behavior, in this case, is a response to the environmental uncertainty of food shortage, therefore is not an abnormal behavior. Hoarding behavior induced neural OS with regard to an increase in brain glutathione levels but failed to show other markers of neural OS. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde levels in brain tissues of gonadectomized mice could be a hallmark of debilitated antioxidative defense and more lipid peroxidation due to reduced amount of gonadal steroid hormones during aging.
Collapse
Affiliation(s)
- Noushin Nikray
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran. .,Department of Biology, Faculty of Science, Razi University, Kermanshah, 67149-67346, Iran.
| | | | - Lora A Becker
- Department of Psychology, University of Evansville, Evansville, IN, 47722, USA
| | - Mohammad Mehdi Mofatteh
- Department of Accounting, School of Economics and Accounting, Islamic Azad University South Tehran Branch, Tehran, Iran
| |
Collapse
|
37
|
Ozcan-Sezer S, Ince E, Akdemir A, Ceylan ÖÖ, Suzen S, Gurer-Orhan H. Aromatase inhibition by 2-methyl indole hydrazone derivatives evaluated via molecular docking and in vitro activity studies. Xenobiotica 2018; 49:549-556. [DOI: 10.1080/00498254.2018.1482029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Senem Ozcan-Sezer
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, Izmir, Turkey
| | - Elif Ince
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, Izmir, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Turkey
| | - Özlem Öztürk Ceylan
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel Suzen
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Hande Gurer-Orhan
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, Izmir, Turkey
| |
Collapse
|
38
|
Molina A, Abril N, Morales-Prieto N, Monterde J, Ayala N, Lora A, Moyano R. Hypothalamic-pituitary-ovarian axis perturbation in the basis of bisphenol A (BPA) reproductive toxicity in female zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:116-124. [PMID: 29549734 DOI: 10.1016/j.ecoenv.2018.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Thousands of safety-related studies have been published on bisphenol A (BPA), an ubiquitous environmental pollutant with estrogenic activity and many other potential biological effects. In recent years, BPA exposure has been shown to cause anovulation and infertility through irreversible alteration of the hypothalamic-pituitary-gonadal axis in several organisms, including fish and mammals. Recently, the European Chemical Agency classified BPA as a "substance of very high concern" because of its endocrine-disrupting properties, which have serious effects on human health. Given the risk of exposure to BPA as a pollutant in the environment, food, and drinking water, the objective of our study was to assess the effects of this compound on the adeno-hypophysis by means of a histopathological and morphometric study of the gonadotroph cells. In addition, using quantitative real-time PCR (qRT-PCR) assays, we analyzed the changes in the expression of Cyp19b (an aromatase gene). Zebrafish were randomly distributed into five groups: a control group and 4 treated groups which were exposed to different BPA concentrations (1, 10, 100 and 1000 µg/L). The effects of the different doses on Cyp19b mRNA molecules followed a non-monotonic curve, with the 1 and 1000 µg/L doses causing dramatic decreases in the number of Cyp19b transcripts while the doses of 10 and 100 µg/L caused important increases. The consequences might be deregulation of gonadotropic hormones causing degeneration of gonadotropic cells, as observed in BPA treated animals. This is the first study in which the gonadotroph cells have been evaluated using histomorphological endpoints after BPA exposure in zebrafish.
Collapse
Affiliation(s)
- Ana Molina
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain.
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain
| | - Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain
| | - José Monterde
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio de Sanidad Animal, 14071 Córdoba, Spain
| | - Nahúm Ayala
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
39
|
Liberale L, Carbone F, Montecucco F, Gebhard C, Lüscher TF, Wegener S, Camici GG. Ischemic stroke across sexes: What is the status quo? Front Neuroendocrinol 2018; 50:3-17. [PMID: 29753797 DOI: 10.1016/j.yfrne.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/11/2018] [Accepted: 05/06/2018] [Indexed: 12/15/2022]
Abstract
Stroke prevalence is expected to increase in the next decades due to the aging of the Western population. Ischemic stroke (IS) shows an age- and sex-dependent distribution in which men represent the most affected population within 65 years of age, being passed by post-menopausal women in older age groups. Furthermore, a sexual dimorphism concerning risk factors, presentation and treatment of IS has been widely recognized. In order to address these phenomena, a number of issue have been raised involving both socio-economical and biological factors. The latter can be either dependent on sex hormones or due to intrinsic factors. Although women have poorer outcomes and are more likely to die after a cerebrovascular event, they are still underrepresented in clinical trials and this is mirrored by the lack of sex-tailored therapies. A greater effort is needed in the future to ensure improved treatment and quality of life to both sexes.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Cathérine Gebhard
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
40
|
Prenatal exposure to zearalenone disrupts reproductive potential and development via hormone-related genes in male rats. Food Chem Toxicol 2018; 116:11-19. [DOI: 10.1016/j.fct.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
41
|
Liberale L, Carbone F, Montecucco F, Gebhard C, Lüscher TF, Wegener S, Camici GG. Ischemic stroke across sexes: what is the status quo? Front Neuroendocrinol 2018:S0091-3022(18)30040-2. [PMID: 29763641 DOI: 10.1016/j.yfrne.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
Stroke prevalence is expected to increase in the next decades due to the aging of the Western population. Ischemic stroke (IS) shows an age- and sex-dependent distribution in which men represent the most affected population within 65 years of age, being passed by post-menopausal women in older age groups. Furthermore, a sexual dimorphism concerning risk factors, presentation and treatment of IS has been widely recognized. In order to address these phenomena, a number of issue have been raised involving both socio-economical and biological factors. The latter can be either dependent on sex hormones or due to intrinsic factors. Although women have poorer outcomes and are more likely to die after a cerebrovascular event, they are still underrepresented in clinical trials and this is mirrored by the lack of sex-tailored therapies. A greater effort is needed in the future to ensure improved treatment and quality of life to both sexes.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Cathérine Gebhard
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
42
|
Frau R, Bortolato M. Repurposing steroidogenesis inhibitors for the therapy of neuropsychiatric disorders: Promises and caveats. Neuropharmacology 2018; 147:55-65. [PMID: 29907425 DOI: 10.1016/j.neuropharm.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022]
Abstract
Steroids exert a profound influence on behavioral reactivity, by modulating the functions of most neurotransmitters and shaping the impact of stress and sex-related variables on neural processes. This background - as well as the observation that most neuroactive steroids (including sex hormones, glucocorticoids and neurosteroids) are synthetized and metabolized by overlapping enzymatic machineries - points to steroidogenic pathways as a powerful source of targets for neuropsychiatric disorders. Inhibitors of steroidogenic enzymes have been developed and approved for a broad range of genitourinary and endocrine dysfunctions, opening to new opportunities to repurpose these drugs for the treatment of mental problems. In line with this idea, preliminary clinical and preclinical results from our group have shown that inhibitors of key steroidogenic enzymes, such as 5α-reductase and 17,20 desmolase-lyase, may have therapeutic efficacy in specific behavioral disorders associated with dopaminergic hyperfunction. While the lack of specificity of these effects raises potential concerns about endocrine adverse events, these initial findings suggest that steroidogenesis modulators with greater brain specificity may hold significant potential for the development of alternative therapies for psychiatric problems. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato CA, Italy; Tourette Syndrome Center, University of Cagliari, Monserrato CA, Italy; Sleep Medicine Center, University of Cagliari, Monserrato CA, Italy; National Institute of Neuroscience (INN), University of Cagliari, Monserrato CA, Italy.
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
43
|
Pedersen AL, Brownrout JL, Saldanha CJ. Neuroinflammation and neurosteroidogenesis: Reciprocal modulation during injury to the adult zebra finch brain. Physiol Behav 2018; 187:51-56. [DOI: 10.1016/j.physbeh.2017.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/10/2023]
|
44
|
Pedersen AL, Saldanha CJ. Reciprocal interactions between prostaglandin E2- and estradiol-dependent signaling pathways in the injured zebra finch brain. J Neuroinflammation 2017; 14:262. [PMID: 29284502 PMCID: PMC5747085 DOI: 10.1186/s12974-017-1040-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
Background Astrocytic aromatization and consequent increases in estradiol are neuroprotective in the injured brain. In zebra finches, cyclooxygenase-activity is necessary for injury-induced aromatase expression, and increased central estradiol lowers neuroinflammation. The mechanisms underlying these influences are unknown. Here, we document injury-induced, cyclooxygenase-dependent increases in glial aromatase expression and replicate previous work in our lab showing increases in central prostaglandin E2 and estradiol following brain damage. Further, we describe injury-dependent changes in E-prostanoid and estrogen receptor expression and reveal the necessity of E-prostanoid and estrogen receptors in the injury-dependent, reciprocal interactions of neuroinflammatory and neurosteroidogenic pathways. Methods Adult male and female birds were shams or received bilateral injections of the appropriate drug or vehicle into contralateral telencephalic lobes. Results Injuries sustained in the presence of indomethacin (a cyclooxygenase inhibitor) had fewer aromatase-expressing reactive astrocytes relative to injuries injected with vehicle suggesting that cyclooxygenase activity is necessary for the induction of glial aromatase around the site of damage. Injured hemispheres had higher prostaglandin E2 and estradiol content relative to shams. Importantly, injured hemispheres injected with E-prostanoid- or estrogen receptor-antagonists showed elevated prostaglandin E2 and estradiol, respectively, but lower prostaglandin E2 or estradiol-dependent downstream activity (protein kinase A or phosphoinositide-3-kinase mRNA) suggesting that receptor antagonism did not affect injury-induced prostaglandin E2 or estradiol, but inhibited the effects of these ligands. Antagonism of E-prostanoid receptors 3 or 4 prevented injury-induced increases in neural estradiol in males and females, respectively, albeit this apparent sex-difference needs to be tested more stringently. Further, estrogen receptor-α, but not estrogen receptor-β antagonism, exaggerated neural prostaglandin E2 levels relative to the contralateral lobe in both sexes. Conclusion These data suggest injury-induced, sex-specific prostaglandin E2-dependent estradiol synthesis, and estrogen receptor-α dependent decreases in neuroinflammation in the vertebrate brain.
Collapse
Affiliation(s)
- Alyssa L Pedersen
- Department of Biology, Program in Behavior, Cognition and Neuroscience, and the Center for Behavioral Neuroscience, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA
| | - Colin J Saldanha
- Department of Biology, Program in Behavior, Cognition and Neuroscience, and the Center for Behavioral Neuroscience, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA.
| |
Collapse
|
45
|
Di Nardo G, Cimicata G, Baravalle R, Dell'Angelo V, Ciaramella A, Catucci G, Ugliengo P, Gilardi G. Working at the membrane interface: Ligand-induced changes in dynamic conformation and oligomeric structure in human aromatase. Biotechnol Appl Biochem 2017; 65:46-53. [DOI: 10.1002/bab.1613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/14/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology; University of Torino; Torino Italy
- CrisDi; Interdepartmental Center for Crystallography; Torino Italy
| | - Giuseppe Cimicata
- Department of Life Sciences and Systems Biology; University of Torino; Torino Italy
| | - Roberta Baravalle
- Department of Life Sciences and Systems Biology; University of Torino; Torino Italy
| | | | - Alberto Ciaramella
- Department of Life Sciences and Systems Biology; University of Torino; Torino Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology; University of Torino; Torino Italy
| | - Piero Ugliengo
- Department of Chemistry; University of Torino; Torino Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology; University of Torino; Torino Italy
- CrisDi; Interdepartmental Center for Crystallography; Torino Italy
| |
Collapse
|
46
|
Charif SE, Inserra PIF, Schmidt AR, Di Giorgio NP, Cortasa SA, Gonzalez CR, Lux-Lantos V, Halperin J, Vitullo AD, Dorfman VB. Local production of neurostradiol affects gonadotropin-releasing hormone (GnRH) secretion at mid-gestation in Lagostomus maximus (Rodentia, Caviomorpha). Physiol Rep 2017; 5:5/19/e13439. [PMID: 29038356 PMCID: PMC5641931 DOI: 10.14814/phy2.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Females of the South American plains vizcacha, Lagostomus maximus, show peculiar reproductive features such as massive polyovulation up to 800 oocytes per estrous cycle and an ovulatory process around mid‐gestation arising from the reactivation of the hypothalamic–hypophyseal–ovary (H.H.O.) axis. Estradiol (E2) regulates gonadotropin‐releasing hormone (GnRH) expression. Biosynthesis of estrogens results from the aromatization of androgens by aromatase, which mainly occurs in the gonads, but has also been described in the hypothalamus. The recently described correlation between GnRH and ERα expression patterns in the hypothalamus of the vizcacha during pregnancy, with coexpression in the same neurons of the medial preoptic area, suggests that hypothalamic synthesis of E2 may affect GnRH neurons and contribute with systemic E2 to modulate GnRH delivery during the gestation. To elucidate this hypothesis, hypothalamic expression and the action of aromatase on GnRH release were evaluated in female vizcachas throughout pregnancy. Aromatase and GnRH expression was increased significantly in mid‐pregnant and term‐pregnant vizcachas compared to early‐pregnant and nonpregnant females. In addition, aromatase and GnRH were colocalized in neurons of the medial preoptic area of the hypothalamus throughout gestation. The blockage of the negative feedback of E2 induced by the inhibition of aromatase resulted in a significant increment of GnRH‐secreted mass by hypothalamic explants. E2 produced in the same neurons as GnRH may drive intracellular E2 to higher levels than those obtained from systemic circulation alone. This may trigger for a prompt GnRH availability enabling H.H.O. activity at mid‐gestation with ovulation and formation of accessory corpora lutea with steroidogenic activity that produce the necessary progesterone to maintain gestation to term and guarantee the reproductive success.
Collapse
Affiliation(s)
- Santiago E Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro R Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago A Cortasa
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Candela R Gonzalez
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina .,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
47
|
Massa MG, David C, Jörg S, Berg J, Gisevius B, Hirschberg S, Linker RA, Gold R, Haghikia A. Testosterone Differentially Affects T Cells and Neurons in Murine and Human Models of Neuroinflammation and Neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28634006 DOI: 10.1016/j.ajpath.2017.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high female-to-male sex ratio of multiple sclerosis (MS) prevalence has continuously confounded researchers, especially in light of male patients' accelerated disease course at later stages of MS. Although multiple studies have concentrated on estrogenic mechanisms of disease modulation, fairly little attention has been paid to androgenic effects in a female system, and even fewer studies have attempted to dissociate hormonal effects on the neurodegenerative and neuroinflammatory processes of MS. Herein, we demonstrate the differential effects of hormone treatment on the acute inflammatory and chronic neurodegenerative phases of murine experimental autoimmune encephalomyelitis. Although s.c. treatment with testosterone and aromatase inhibitor applied beginning on the day of immunization ameliorated initial course of disease, similar treatment administered therapeutically exacerbated chronic disease course. Spinal cord analyses of axonal densities reflected the clinical scores of the chronic phase. In vitro, testosterone treatment not only decreased Th1 and Th17 differentiation in an aromatase-independent fashion, but also exacerbated cell death in induced pluripotent stem cell-derived primary human neurons under oxidative stress conditions in an aromatase inhibitor-dependent manner. Thus, through the alleviation of inflammatory processes and the exacerbation of neurodegenerative processes, androgens may contribute to the epidemiologic sex differentials observed in MS prevalence and course.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Christina David
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Stefanie Jörg
- Department of Neurology, Friedrich-Alexander University-Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Berg
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Barbara Gisevius
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Sarah Hirschberg
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander University-Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, Ruhr University-Bochum, Bochum, Germany.
| |
Collapse
|
48
|
Tan W, Zhu Z, Ye L, Leung LK. Methylation dictates PI.f-specific CYP19 transcription in human glial cells. Mol Cell Endocrinol 2017; 452:131-137. [PMID: 28559115 DOI: 10.1016/j.mce.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023]
Abstract
CYP19 is the single copy gene encoding for the estrogen synthetic enzyme aromatase. Alternate splicing of the promoter is the regulatory mechanism of this gene. In the brain, estrogen is synthesized in neuronal and glial cells and the gene is mainly regulated by the alternate promoter PI.f. The hormone produced in this vicinity has been associated with maintaining normal brain functions. Previously, epigenetic regulation has been shown in the promoters PII and I.3 of CYP19 in adipocytes. In the present study, the methylation of PI.f in CYP19 was examined in glial cells. Treatment of the hypomethylating agent 5-aza-2'deoxycytidine increased CYP19 mRNA species in U87 MG cells while little changes were observed in the other glia cell lines. As PI.f is also chiefly used in T98G cells with high expression of CYP19, the methylation statuses of the promoter in these two cell models were compared. Our results showed that treating U87 MG cells with 10 μM 5-aza-2'deoxycytidine significantly induced a ∼10-fold increase in CYP19 transcription and ∼80% increase in aromatase activity. In contrast, the same treatment did not change either endpoint in T98G cells. Further investigation illustrated the CpGs in PI.f were differentially methylated in the two cell lines; 63% and 37% of the 14 CpG sites were methylated in U87 MG and T98G cells respectively. In conclusion, this study illustrated that the brain-specific PI.f derived CYP19 expression can be regulated by DNA methylation.
Collapse
Affiliation(s)
- Wenjuan Tan
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhiping Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Lai K Leung
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
49
|
Taylor MK, Padilla GA, Hernández LM. Anabolic hormone profiles in elite military men: Robust associations with age, stress, and fatigue. Steroids 2017; 124:18-22. [PMID: 28539251 DOI: 10.1016/j.steroids.2017.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023]
Abstract
We recently established stable daily profiles of the anabolic hormones dehydroepiandrosterone (DHEA) and testosterone in 57 elite military men. In this follow-on study, we explored associations of salivary anabolic hormone profiles with demographic (i.e., age, body mass index [BMI]) and biobehavioral health indices (i.e., blood pressure, sleep, perceived stress, fatigue) via correlational models. Next, nuanced patterns were constructed using quartile splits followed by one-way analysis of variance and post hoc subgroup comparisons. Both DHEA (r range: -0.33 to -0.49) and testosterone (r range: -0.19 to -0.41) were inversely associated with age. Quartile comparisons revealed that age-related declines in DHEA were linear, curvilinear, or sigmoidal, depending on the summary parameter of interest. Anabolic hormone profiles did not associate with BMI, blood pressure, or sleep efficiency. Robust linear associations were observed between testosterone and perceived stress (r range: -0.29 to -0.36); concentration-dependent patterns were less discernible. Lower DHEA (r range: -0.22 to -0.30) and testosterone (r range: -0.22 to -0.36) concentrations associated with higher fatigue. Subsequent quartile comparisons suggested a concentration-dependent threshold with respect to evening testosterone. Specifically, those individuals within the lowest quartile (≤68.4pg/mL) endorsed the highest fatigue of the four groups (p=0.01), while the remaining three groups did not differ from each other. This study not only showed that anabolic hormone profiles have distinctive age trajectories, but are also valuable predictors of stress and fatigue in elite military men. This highlights the importance of routine monitoring of anabolic hormone profiles to sustain and optimize health and readiness in chronically stressed populations.
Collapse
Affiliation(s)
- Marcus K Taylor
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA; Department of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA.
| | - Genieleah A Padilla
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
| | - Lisa M Hernández
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA; Department of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
50
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|