1
|
Wang Y, Liu X, Zheng Y, Yang Y, Chen M. Endocrine regulation of reproductive biology in echinoderms: An evolutionary perspective from closest marine invertebrate relatives to chordates. Mol Cell Endocrinol 2024; 580:112105. [PMID: 37952726 DOI: 10.1016/j.mce.2023.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Echinoderms are a phylum of invertebrate deuterostomes, which contain echinoids, asteroids, holothuroids, crinoids, and ophiuroids. Echinoderms have special evolutionary position and unique characteristics, including pentamerous radial body structure, elaborate calcareous endoskeletons, and versatile water vascular system. Echinoderms exhibit extraordinarily diverse reproductive modes: asexual reproduction, sexual reproduction, sexual reversal, etc. Endocrine regulation plays important well-known roles in sex differentiation, gonadal development and maturation, gametogenesis, and reproductive behavior in vertebrates. However, the entire picture of reproductive endocrinology in echinoderms as an evolutionary model of the closest marine invertebrate relatives to chordates has not been revealed. Here, we reviewed previous and recent research progress on reproductive endocrinology in echinoderms, mainly including two sections: Sex steroids in echinoderms and neuropeptide regulation in echinoderm reproduction. This review introduces a variety of endocrine regulatory mechanisms in reproductive biology of echinoderms. It discusses the vertebrate-like sex steroids, putative steroidogenic pathway and metabolism, and reproduction-related neuropeptides. The review will provide a deeper understanding about endocrine regulatory mechanisms of gonadal development in lower deuterostomes and the application of endocrine control in economic echinoderm species in aquaculture.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Cadena-Caballero CE, Munive-Argüelles N, Vera-Cala LM, Barrios-Hernandez C, Duarte-Bernal RO, Ayus-Ortiz VL, Pardo-Díaz LA, Agudelo-Rodríguez M, Bautista-Rozo LX, Jimenez-Gutierrez LR, Martinez-Perez F. APGW/AKH Precursor from Rotifer Brachionus plicatilis and the DNA Loss Model Explain Evolutionary Trends of the Neuropeptide LWamide, APGWamide, RPCH, AKH, ACP, CRZ, and GnRH Families. J Mol Evol 2023; 91:882-896. [PMID: 38102415 PMCID: PMC10730642 DOI: 10.1007/s00239-023-10146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023]
Abstract
In the year 2002, DNA loss model (DNA-LM) postulated that neuropeptide genes to emerged through codons loss via the repair of damaged DNA from ancestral gene namely Neuropeptide Precursor Predictive (NPP), which organization correspond two or more neuropeptides precursors evolutive related. The DNA-LM was elaborated according to amino acids homology among LWamide, APGWamide, red pigment-concentrating hormone (RPCH), adipokinetic hormones (AKHs) and in silico APGW/RPCH NPPAPGW/AKH NPP were proposed. With the above principle, it was proposed the evolution of corazonin (CRZ), gonadotropin-releasing hormone (GnRH), AKH, and AKH/CRZ (ACP), but any NPP never was considered. However, the evolutive relation via DNA-LM among these neuropeptides precursors not has been established yet. Therefore, the transcriptomes from crabs Callinectes toxotes and Callinectes arcuatus were used to characterized ACP and partial CRZ precursors, respectively. BLAST alignment with APGW/RPCH NPP and APGW/AKH NPP allow identified similar NPP in the rotifer Brachionus plicatilis and other invertebrates. Moreover, three bioinformatics algorithms and manual verification were used to purify 13,778 sequences, generating a database with 719 neuropeptide precursors. Phylogenetic trees with the DNA-LM parameters showed that some ACP, CRZ, AKH2 and two NPP share nodes with GnRH from vertebrates and some of this neuropeptide had nodes in invertebrates. Whereas the phylogenetic tree with standard parameters do not showed previous node pattern. Robinson-Foulds metric corroborates the differences among phylogenetic trees. Homology relationship showed four putative orthogroups; AKH4, CRZ, and protostomes GnRH had individual group. This is the first demonstration of NPP in species and would explain the evolution neuropeptide families by the DNA-LM.
Collapse
Affiliation(s)
- Cristian E Cadena-Caballero
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Nestor Munive-Argüelles
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Lina M Vera-Cala
- Grupo de Investigación en Demografía, Salud Pública y Sistemas de Salud (GUINDESS), Departamento de Salud Pública, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Carlos Barrios-Hernandez
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Ruben O Duarte-Bernal
- Biomedical Imaging, Vision and Learning Laboratory (BIVL2ab), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Viviana L Ayus-Ortiz
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Luis A Pardo-Díaz
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Mayra Agudelo-Rodríguez
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Lola X Bautista-Rozo
- Biomedical Imaging, Vision and Learning Laboratory (BIVL2ab), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Laura R Jimenez-Gutierrez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, 82000, Mazatlán, México
- Cátedra-CONAHCyT, Consejo Nacional de Humanidades Ciencias y Tecnología, 03940, CDMX, México
| | - Francisco Martinez-Perez
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia.
- Laboratorio de Genómica Celular Aplicada (LGCA), Grupo de Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia.
| |
Collapse
|
3
|
Ramakrishnan S, Murphy AD. Peptidergic modulation of a multi-functional central pattern generator in the pulmonate snail. J Exp Biol 2022; 225:286115. [PMID: 36533565 DOI: 10.1242/jeb.244953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Egg laying in pulmonate snails is a well-orchestrated process that involves a period of reduced locomotion, followed by substrate cleaning with rhythmic rasping of the surface to make tiny grooves, into which eggs are deposited. Although the neurohormonal control of initiating egg laying has been well established, the signals that modulate the buccal central pattern generator to substrate cleaning during egg laying are not known. Neuropeptides of the invertebrate gonadotropin-releasing hormone/corazonin family (invGnRH/CRZ) have been shown to be involved in reproduction and allied behaviors in many vertebrates and invertebrates. Here, we show that the buccal motor pattern underlying substrate cleaning during egg laying is altered by a vertebrate GnRH agonist. Signals from the intestinal nerve innervating reproductive structures, previously shown to be both necessary and sufficient for egg-laying behaviors, are blocked by a vertebrate GnRH antagonist. Further, the vertebrate GnRH-triggered response elicits rhythmic, phase 2 and non-phase 2 activity in the buccal motor pattern, with a shutdown of phase 3, indicative of repetitive rasping without accompanied swallowing behavior. Using immunohistochemistry, intracellular electrophysiology and extracellular nerve stimulation, we show that a member of the invGnRH/CRZ family of neuropeptides could be the signal that contextually switches the multifunctional buccal CPG to a biphasic rasping rhythm that underlies substrate cleaning behavior during egg laying in the pulmonate snail Planorbella (Helisoma) trivolvis.
Collapse
Affiliation(s)
- Siddharth Ramakrishnan
- Department of Biology and Neuroscience Program, University of Puget Sound, Tacoma, WA 98416, USA
| | - A Don Murphy
- Department of Biology, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Ogawa S, Yamamoto N, Hagio H, Oka Y, Parhar IS. Multiple gonadotropin-releasing hormone systems in non-mammalian vertebrates: Ontogeny, anatomy, and physiology. J Neuroendocrinol 2022; 34:e13068. [PMID: 34931380 DOI: 10.1111/jne.13068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/08/2023]
Abstract
Three paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish. The three GnRH paralogs have specific expression patterns in the brain and originate from multiple sites. In acanthopterygian teleosts (medaka, cichlid, etc.), the preoptic area (POA)-GnRH1 and terminal nerve (TN)-GnRH3 neuronal types originate from the olfactory regions. In other fish species (zebrafish, goldfish and salmon) with only two GnRH paralogs (GnRH2 and GnRH3), the TN- and POA-GnRH3 neuronal types share the same olfactory origin. However, the developmental origin of midbrain (MB)-GnRH2 neurons is debatable between mesencephalic or neural crest site. Each GnRH system has distinctive anatomical and physiological characteristics, and functions differently. The POA-GnRH1 neurons are hypophysiotropic in nature and function in the neuroendocrine control of reproduction. The non-hypophysiotropic GnRH2/GnRH3 neurons probably play neuromodulatory roles in metabolism (MB-GnRH2) and the control of motivational state for sexual behavior (TN-GnRH3).
Collapse
Affiliation(s)
- Satoshi Ogawa
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ishwar S Parhar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
Oda A, Inoue S, Kaneko R, Narita Y, Shiono S, Kaneko T, Tseng YC, Ohtani-Kaneko R. Involvement of IGF-1R-PI3K-AKT-mTOR pathway in increased number of GnRH3 neurons during androgen-induced sex reversal of the brain in female tilapia. Sci Rep 2022; 12:2450. [PMID: 35165334 PMCID: PMC8844422 DOI: 10.1038/s41598-022-06384-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
The neuroplastic mechanism of sex reversal in the fish brain remains unclear due to the difficulty in identifying the key neurons involved. Mozambique tilapia show different reproductive behaviours between sexes; males build circular breeding nests while females hold and brood fertilized eggs in their mouth. In tilapia, gonadotropin-releasing hormone 3 (GnRH3) neurons, located in the terminal nerve, regulate male reproductive behaviour. Mature males have more GnRH3 neurons than mature females, and these neurons have been indicated to play a key role in the androgen-induced female-to-male sex reversal of the brain. We aimed to elucidate the signalling pathway involved in the androgen-induced increase in GnRH3 neurons in mature female tilapia. Applying inhibitors to organotypic cultures of brain slices, we showed that the insulin-like growth factor (IGF)-1 receptor (IGF-1R)/PI3K/AKT/mTOR pathway contributed to the androgen-induced increase in GnRH3 neurons. The involvement of IGF-1 and IGF-1R in 11-ketotestosterone (11-KT)-induced development of GnRH3 neurons was supported by an increase in Igf-1 mRNA shortly after 11-KT treatment, the increase of GnRH3 neurons after IGF-1 treatment and the expression of IGF-1R in GnRH3 neurons. Our findings highlight the involvement of IGF-1 and its downstream signalling pathway in the sex reversal of the tilapia brain.
Collapse
|
6
|
Song CP, Sun LL, Zheng LB, Chi CF. Gonadotropin-releasing hormone-like gene in the cephalopod, Sepia pharaonis: characterization, expression analysis, and localization in the brain. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1935335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chang-Pu Song
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| | - Lian-lian Sun
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| | - Li-bing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| | - Chang-feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| |
Collapse
|
7
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
8
|
Breitwieser M, Bruneau M, Barbarin M, Churlaud C, Mouneyrac C, Thomas H. Is metallothionein in Mimachlamys varia a suitable biomarker of trace elements in the waters of the French Atlantic coast? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20259-20272. [PMID: 32240510 DOI: 10.1007/s11356-020-08392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The development of human activities along the Atlantic coast is responsible for the chronic pollution of the environment with organic and inorganic contaminants. In recent years, environmental regulations such as the MSFD (2008/56/EC) and the OSPAR commission have been developed to preserve coastal environments, giving rise to studies in aquatic biomonitoring. One of them is to use biomarkers to observe the pollutants impact on coastal species such as the bivalve Mimachlamys varia. A defence biomarker was considered in this research to study metal accumulation, with metallothioneins (Mts) involved in the uptake, storage and excretion of metals. To achieve this, bivalves were collected in March 2016 in seven sites along the French Atlantic coasts (open area) and in harbours (semi-open area) with contrasting levels of pollution. Biomarker assays were performed to compare the responses in several tissues (digestive glands, gonads, gills) to inorganic pollutants. The results showed that the accumulation of trace element was different depending on the site and the organ. Mts concentrations were greater in digestive gland compared with gills. Usually, Mts levels were decreased in site showing elevated levels of trace element which explained by downregulation of Mts. Furthermore, results of correlation between Mts and inorganic contaminants and the influence of abiotic factors on Mts suggested that Mts in M. varia is not a relevant biomarker in environments exposed to cocktails of contaminants.
Collapse
Affiliation(s)
- Marine Breitwieser
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Mélanie Bruneau
- Mer, Molécules, Santé (MMS, EA2160), Université Catholique de l'Ouest (UCO), 3 place André Leroy, 49000, Angers, France
| | - Marine Barbarin
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Catherine Mouneyrac
- Mer, Molécules, Santé (MMS, EA2160), Université Catholique de l'Ouest (UCO), 3 place André Leroy, 49000, Angers, France
| | - Hélène Thomas
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
9
|
Wang C, Zeng YT, Chen XY, Wu QY, Yang LQ, Xu L, Zhang Y, Qazi IH, Zhou GB, Zeng CJ, Zuo ZZ, Song TZ, Zhu Q, Zhang M. Improvac induces immunocastration by affecting testosterone levels and disrupting spermatogenesis in male broiler chickens. Poult Sci 2020; 98:6034-6045. [PMID: 31041439 DOI: 10.3382/ps/pez228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/26/2019] [Indexed: 02/03/2023] Open
Abstract
Immunocastration (vaccination against Gonadotropin-releasing hormone (GnRH)) has been regarded as a friendly substitution to physical castration in animals. To date, a few studies have reported the use of Improvac for immunocastration in boar and one study in broiler chickens; however, there is an apparent dearth of scientific evidence regarding the application of Improvac for immunocastration in birds. In the present study, we evaluated the effects of Improvac-based immunocastration on testosterone levels and spermatogenesis in broiler chickens and the effects of Improvac on the expression of genes related to testosterone biosynthesis and metabolism as well as spermatogenesis. The birds were randomly divided into 4 groups (n = 30 each): Control group (non-immunized), Early group (immunized with Improvac at week 3), Late group (immunized with Improvac at week 6), and Early + Late group (immunized with Improvac at weeks 3 and 6). Immunization with Improvac significantly improved the average daily gain compared to the Control group. Of note, following Improvac vaccination, the reproductive efficiency was significantly decreased in male broiler chickens. Furthermore, parameters such as the serum testosterone concentration, spermatogenesis, and the expression levels of genes related to testosterone metabolism (Cyp17A1, Cyp19, HSD3B1, and HSD17B3) and spermatogenesis (Cyclin A1 and Cyclin A2) were significantly reduced in the immunized groups compared to the Control group. Taken together, these findings reveal that immunization against GnRH can be achieved, at least partially, in male broiler chickens. The results of our study also support the hypothesis of using Improvac as an alternative solution to caponization, with considerably improved animal welfare.
Collapse
Affiliation(s)
- C Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - Y T Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - X Y Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - Q Y Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - L Q Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - L Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - Y Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - Izhar Hyder Qazi
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu-611130, P.R. China.,Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand-67210, Sindh, Pakistan
| | - G B Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu-611130, P.R. China
| | - C J Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu-611130, P.R. China
| | - Z Z Zuo
- College of Animal Veterinary Medicine, Sichuan Agricultural University, Chengdu-611130, P.R. China
| | - T Z Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet 850009, China
| | - Q Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - M Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| |
Collapse
|
10
|
Chen M, Talarovicova A, Zheng Y, Storey KB, Elphick MR. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: a genomic, transcriptomic and proteomic analysis. Sci Rep 2019; 9:8829. [PMID: 31222106 PMCID: PMC6586643 DOI: 10.1038/s41598-019-45271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments. Therefore, we need to learn more about the biology of A. japonicus, including processes such as aestivation, evisceration, regeneration and albinism. One of the major classes of molecules that regulate physiology and behaviour in animals are neuropeptides, and a few bioactive peptides have already been identified in A. japonicus. To facilitate more comprehensive investigations of neuropeptide function in A. japonicus, here we have analysed genomic and transcriptomic sequence data and proteomic data to identify neuropeptide precursors and neuropeptides in this species. We identified 44 transcripts encoding neuropeptide precursors or putative neuropeptide precursors, and in some instances neuropeptides derived from these precursors were confirmed by mass spectrometry. Furthermore, analysis of genomic sequence data enabled identification of the location of neuropeptide precursor genes on genomic scaffolds and linkage groups (chromosomes) and determination of gene structure. Many of the precursors identified contain homologs of neuropeptides that have been identified in other bilaterian animals. Precursors of neuropeptides that have thus far only been identified in echinoderms were identified, including L- and F-type SALMFamides, AN peptides and others. Precursors of several peptides that act as modulators of neuromuscular activity in A. japonicus were also identified. The discovery of a large repertoire of neuropeptide precursors and neuropeptides provides a basis for experimental studies that investigate the physiological roles of neuropeptide signaling systems in A. japonicus. Looking ahead, some of these neuropeptides may have effects that could be harnessed to enable improvements in the aquaculture of this economically important species.
Collapse
Affiliation(s)
- Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China.
| | - Alzbeta Talarovicova
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
11
|
Narita Y, Tsutiya A, Nakano Y, Ashitomi M, Sato K, Hosono K, Kaneko T, Chen RD, Lee JR, Tseng YC, Hwang PP, Ohtani-Kaneko R. Androgen induced cellular proliferation, neurogenesis, and generation of GnRH3 neurons in the brain of mature female Mozambique tilapia. Sci Rep 2018; 8:16855. [PMID: 30442908 PMCID: PMC6237963 DOI: 10.1038/s41598-018-35303-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023] Open
Abstract
The neuroplastic mechanisms in the fish brain that underlie sex reversal remain unknown. Gonadotropin-releasing hormone 3 (GnRH3) neurons control male reproductive behaviours in Mozambique tilapia and show sexual dimorphism, with males having a greater number of GnRH3 neurons. Treatment with androgens such as 11-ketotestosterone (KT), but not 17β-estradiol, increases the number of GnRH3 neurons in mature females to a level similar to that observed in mature males. Compared with oestrogen, the effect of androgen on neurogenesis remains less clear. The present study examined the effects of 11-KT, a non-aromatizable androgen, on cellular proliferation, neurogenesis, generation of GnRH3 neurons and expression of cell cycle-related genes in mature females. The number of proliferating cell nuclear antigen-positive cells was increased by 11-KT. Simultaneous injection of bromodeoxyuridine and 11-KT significantly increased the number of newly-generated (newly-proliferated) neurons, but did not affect radial glial cells, and also resulted in newly-generated GnRH3 neurons. Transcriptome analysis showed that 11-KT modulates the expression of genes related to the cell cycle process. These findings suggest that tilapia could serve as a good animal model to elucidate the effects of androgen on adult neurogenesis and the mechanisms for sex reversal in the fish brain.
Collapse
Affiliation(s)
- Yasuto Narita
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Atsuhiro Tsutiya
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Yui Nakano
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Moe Ashitomi
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kenjiro Sato
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Ruo-Dong Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Ritsuko Ohtani-Kaneko
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
| |
Collapse
|
12
|
Lovejoy DA, Michalec OM, Hogg DW, Wosnick DI. Role of elasmobranchs and holocephalans in understanding peptide evolution in the vertebrates: Lessons learned from gonadotropin releasing hormone (GnRH) and corticotropin releasing factor (CRF) phylogenies. Gen Comp Endocrinol 2018; 264:78-83. [PMID: 28935583 DOI: 10.1016/j.ygcen.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
The cartilaginous fishes (Class Chondrichthyes) comprise two morphologically distinct subclasses; Elasmobranchii and Holocephali. Evidence indicates early divergence of these subclasses, suggesting monophyly of their lineage. However, such a phylogenetic understanding is not yet developed within two highly conserved peptide lineages, GnRH and CRF. Various GnRH forms exist across the Chondrichthyes. Although 4-7 immunoreactive forms have been described in Elasmobranchii, only one has been elucidated in Holocephali. In contrast, Chondrichthyan CRF phylogeny follows a pattern more consistent with vertebrate evolution. For example, three forms are expressed within the lamprey, with similar peptides present within the genome of the Callorhinchus milii, a holocephalan. Although these findings are consistent with recent evidence regarding the phylogenetic age of Chondrichthyan lineages, CRF evolution in vertebrates remains elusive. Assuming that the Elasmobranchii and Holocephali are part of a monocladistic clade within the Chondrichthyes, we interpret the findings of GnRH and CRF to be products of their respective lineages.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David W Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David I Wosnick
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Breitwieser M, Dubillot E, Barbarin M, Churlaud C, Huet V, Muttin F, Thomas H. Assessment of the biological quality of port areas: A case study on the three harbours of La Rochelle: The marina, the fishing harbour and the seaport. PLoS One 2018; 13:e0198255. [PMID: 29940009 PMCID: PMC6016900 DOI: 10.1371/journal.pone.0198255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/16/2018] [Indexed: 01/12/2023] Open
Abstract
This work was designed to investigate biological impacts at 3 dates (day 0, day 7 and day 21) on black scallops (Mimachlamys varia) in the three ports areas of La Rochelle town in winter 2017. In order to assess the biological effects on the wild population of black scallops, bivalves were place in four different locations: in the three ports (semi-closed areas), and in a marshland uncontaminated site (closed area). Biomarkers of effects (heavy metals) and exposure (oxidative stress and immunological effects) were assessed in the digestive glands of specimens in order to compare two techniques of sampling: “pool” technique and “inter-subject” technique. Our findings reported in the both techniques show significant modulation of GST (detoxification), SOD (antioxidant response) and MDA (lipid peroxidation) in bivalves exposed to a specific contamination in each port. Laccase-type enzyme also highlighted an important aspect in terms of biomarker response of the immune function at the 7th day of exposition. Overall, our study demonstrated that the “pool” technique using the same quality indicator M. varia could be used to obtain reliable results at lower costs. In contrast, in fundamental context, the “inter-subject” technique could bring more precise results to light. However, it requires burdensome and costly handling.
Collapse
Affiliation(s)
- Marine Breitwieser
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
- * E-mail:
| | - Emmanuel Dubillot
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Marine Barbarin
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Valérie Huet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | | | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| |
Collapse
|
14
|
Takeda N, Kon Y, Quiroga Artigas G, Lapébie P, Barreau C, Koizumi O, Kishimoto T, Tachibana K, Houliston E, Deguchi R. Identification of jellyfish neuropeptides that act directly as oocyte maturation-inducing hormones. Development 2018; 145:dev.156786. [PMID: 29358214 DOI: 10.1242/dev.156786] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Oocyte meiotic maturation is crucial for sexually reproducing animals, and its core cytoplasmic regulators are highly conserved between species. By contrast, the few known maturation-inducing hormones (MIHs) that act on oocytes to initiate this process are highly variable in their molecular nature. Using the hydrozoan jellyfish species Clytia and Cladonema, which undergo oocyte maturation in response to dark-light and light-dark transitions, respectively, we deduced amidated tetrapeptide sequences from gonad transcriptome data and found that synthetic peptides could induce maturation of isolated oocytes at nanomolar concentrations. Antibody preabsorption experiments conclusively demonstrated that these W/RPRPamide-related neuropeptides account for endogenous MIH activity produced by isolated gonads. We show that the MIH peptides are synthesised by neural-type cells in the gonad, are released following dark-light/light-dark transitions, and probably act on the oocyte surface. They are produced by male as well as female jellyfish and can trigger both sperm and egg release, suggesting a role in spawning coordination. We propose an evolutionary link between hydrozoan MIHs and the neuropeptide hormones that regulate reproduction upstream of MIHs in bilaterian species.
Collapse
Affiliation(s)
- Noriyo Takeda
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Asamushi, Aomori 039-3501, Japan.,Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yota Kon
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai 980-0845, Japan
| | - Gonzalo Quiroga Artigas
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Villefranche-sur-mer, France
| | - Pascal Lapébie
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Villefranche-sur-mer, France
| | - Carine Barreau
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Villefranche-sur-mer, France
| | - Osamu Koizumi
- Department of Environmental Science, Fukuoka Women's University, Higashi-ku, Fukuoka 813-8529, Japan
| | - Takeo Kishimoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunori Tachibana
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Evelyn Houliston
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Villefranche-sur-mer, France
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
15
|
Bose U, Suwansa-Ard S, Maikaeo L, Motti CA, Hall MR, Cummins SF. Neuropeptides encoded within a neural transcriptome of the giant triton snail Charonia tritonis, a Crown-of-Thorns Starfish predator. Peptides 2017; 98:3-14. [PMID: 28082215 DOI: 10.1016/j.peptides.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 11/22/2022]
Abstract
Neuropeptides represent a diverse class of signaling molecules originating from neural tissues. These chemical modulators orchestrate complex physiological events including those associated with growth and reproduction. De novo transcriptome sequencing of a cerebral ganglion library of the endangered giant triton snail (Charonia tritonis) was undertaken in an effort to identify key neuropeptides that control or influence its physiology. The giant triton snail is considered a primary predator of the corallivore Acanthaster planci (Crown-of-Thorns Starfish) that is responsible for a significant loss in coral cover on reefs in the Indo-Pacific. The transcriptome library was assembled into contigs, and then bioinformatic analysis was used to identify a repertoire of 38 giant triton snail neuropeptide precursor genes, and various isoforms, that encode conserved molluscan neuropeptides. C. tritonis neuropeptides show overall precursor organisation consistent with those of other molluscs. These include those neuropeptides associated with mollusc reproduction such as the APGWamide, buccalin, conopressin, gonadotropin-releasing hormone (GnRH), NKY and egg-laying hormone. These data provide a foundation for further studies targeted towards the functional characterisation of neuropeptides to further understand aspects of the biology of the giant triton snail, such as elucidating its reproductive neuroendocrine pathway to allow the development of knowledge based captive breeding programs.
Collapse
Affiliation(s)
- U Bose
- School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia; Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - S Suwansa-Ard
- School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - L Maikaeo
- Department of Bioinformatics, Prince of Songkhla University, Thailand
| | - C A Motti
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - M R Hall
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - S F Cummins
- School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia.
| |
Collapse
|
16
|
Nakpheng T, Sawatdee S, Buaking K, Srichana T. Stabilization of luteinizing hormone-releasing hormone in a dry powder formulation and its bioactivity. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0502.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: Luteinizing hormone-releasing hormone (LHRH) is a naturally occurring hormone that controls sex hormones in both men and women. In general, LHRH is poorly absorbed through the gastrointestinal tract due to its large molecular size, high polarity, and loss from enzymatic degradation.
Objective: Prepare and develop LHRH in a dry power formulation with stability and biological activity.
Methods: Mannitol (M) and glycine (G) were chosen as ingredients to stabilize and protect LHRH during the freeze drying processes and during storage. The physicochemical properties of LHRH dry powders were examined by capillary electrophoresis, fluorescence spectrophotometry, scanning electron microscopy, and photon correlation spectroscopy. The release of LHRH from the dry powder was carried out in dissolution apparatus. In addition, a rat model was employed to study the bioactivity of LHRH in the dry powder form.
Results: The LHRH dry powder formulations using M and G in the ratios of 6:4 and 7:3 were more stable than other formulations. LHRH colloids containing M:G showed no aggregation after storage at 4°C for one month. The concentration of LHRH in the dry powder form was more stable than that of LHRH in solution form. All the LHRH dry powder formulations were instantly dissolved within 10 seconds in an aqueous medium. After the LHRH dry powder (13 mg) was reconstituted and administered intraperitoneally to male rats during a one-month period, the testosterone level in the plasma was significantly decreased compared with an untreated group (15.0±1.0 ng/mL, 15.0±1.0 ng/mL and 20.0±2.0 ng/mL for LHRH containing M:G; 6:4, 7:3, and 8:2, respectively, compared to the control of 35±2 ng/mL, p<0.05).
Conclusion: The LHRH dry powder formulations had good physicochemical properties and bioactivity.
Collapse
Affiliation(s)
- Titpawan Nakpheng
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Somchai Sawatdee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Khemmarat Buaking
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand Thailand
- Correspondence to: PhD, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
17
|
Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus. Sci Rep 2016; 6:38658. [PMID: 27924858 PMCID: PMC5141488 DOI: 10.1038/srep38658] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022] Open
Abstract
The Australian redclaw crayfish (Cherax quadricarinatus) has recently received attention as an emerging candidate for sustainable aquaculture production in Australia and worldwide. More importantly, C. quadricarinatus serves as a good model organism for the commercially important group of decapod crustaceans as it is distributed worldwide, easy to maintain in the laboratory and its reproductive cycle has been well documented. In order to better understand the key reproduction and development regulating mechanisms in decapod crustaceans, the molecular toolkit available for model organisms such as C. quadricarinatus must be expanded. However, there has been no study undertaken to establish the C. quadricarinatus neuropeptidome. Here we report a comprehensive study of the neuropeptide genes expressed in the eyestalk in the Australian crayfish C. quadricarinatus. We characterised 53 putative neuropeptide-encoding transcripts based on key features of neuropeptides as characterised in other species. Of those, 14 neuropeptides implicated in reproduction regulation were chosen for assessment of their tissue distribution using RT-PCR. Further insights are discussed in relation to current knowledge of neuropeptides in other species and potential follow up studies. Overall, the resulting data lays the foundation for future gene-based neuroendocrinology studies in C. quadricarinatus.
Collapse
|
18
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
19
|
In VV, Ntalamagka N, O'Connor W, Wang T, Powell D, Cummins SF, Elizur A. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata). Peptides 2016; 82:109-119. [PMID: 27328253 DOI: 10.1016/j.peptides.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation.
Collapse
Affiliation(s)
- Vu Van In
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia; Northern National Broodstock Center for Mariculture, Research Institute for Aquaculture No. 1, Catba Islands, Haiphong, Vietnam
| | - Nikoleta Ntalamagka
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Wayne O'Connor
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia; Industry and Investment NSW, Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Tianfang Wang
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Daniel Powell
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Scott F Cummins
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Abigail Elizur
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
20
|
Charif SE, Inserra PIF, Di Giorgio NP, Schmidt AR, Lux-Lantos V, Vitullo AD, Dorfman VB. Sequence analysis, tissue distribution and molecular physiology of the GnRH preprogonadotrophin in the South American plains vizcacha (Lagostomus maximus). Gen Comp Endocrinol 2016; 232:174-84. [PMID: 26704854 DOI: 10.1016/j.ygcen.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the regulator of the hypothalamic-hypophyseal-gonadal (HHG) axis. GnRH and GAP (GnRH-associated protein) are both encoded by a single preprohormone. Different variants of GnRH have been described. In most mammals, GnRH is secreted in a pulsatile manner that stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The South-American plains vizcacha, Lagostomus maximus, is a rodent with peculiar reproductive features including natural poly-ovulation up to 800 oocytes per estrous cycle, pre-ovulatory follicle formation throughout pregnancy and an ovulatory process which takes place at mid-gestation and adds a considerable number of secondary corpora lutea. Such features should occur under a special modulation of the HHG axis, guided by GnRH. The aim of this study was to sequence hypothalamic GnRH preprogonadotrophin mRNA in the vizcacha, to compare it with evolutionarily related species and to identify its expression, distribution and pulsatile pattern of secretion. The GnRH1variant was detected and showed the highest homology with that of chinchilla, its closest evolutionarily related species. Two isoforms of transcripts were identified, carrying the same coding sequence, but different 5' untranslated regions. This suggests a sensitive equilibrium between RNA stability and translational efficiency. A predominant hypothalamic localization and a pulsatile secretion pattern of one pulse of GnRH every hour were found. The lower homology found for GAP, also among evolutionarily related species, depicts a potentially different bioactivity.
Collapse
Affiliation(s)
- Santiago Elías Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
21
|
Suwansa-ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna PJ, Sretarugsa P, Cummins SF, Sobhon P. In silico Neuropeptidome of Female Macrobrachium rosenbergii Based on Transcriptome and Peptide Mining of Eyestalk, Central Nervous System and Ovary. PLoS One 2015; 10:e0123848. [PMID: 26023789 PMCID: PMC4449106 DOI: 10.1371/journal.pone.0123848] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/08/2015] [Indexed: 01/13/2023] Open
Abstract
Macrobrachium rosenbergii is the most economically important of the cultured freshwater crustacean species, yet there is currently a deficiency in genomic and transcriptomic information for research requirements. In this study, we present an in silico analysis of neuropeptide genes within the female M. rosenbergii eyestalk, central nervous system, and ovary. We could confidently predict 37 preproneuropeptide transcripts, including those that encode bursicons, crustacean cardioactive peptide, crustacean hyperglycemic hormones, eclosion hormone, pigment-dispersing hormones, diuretic hormones, neuropeptide F, neuroparsins, SIFamide, and sulfakinin. These transcripts are most prominent within the eyestalk and central nervous system. Transcript tissue distribution as determined by reverse transcription-polymerase chain reaction revealed the presence of selected neuropeptide genes of interest mainly in the nervous tissues while others were additionally present in the non-nervous tissues. Liquid chromatography-mass spectrometry analysis of eyestalk peptides confirmed the presence of the crustacean hyperglycemic hormone precursor. This data set provides a strong foundation for further studies into the functional roles of neuropeptides in M. rosenbergii, and will be especially helpful for developing methods to improve crustacean aquaculture.
Collapse
Affiliation(s)
- Saowaros Suwansa-ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianfang Wang
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Min Zhao
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Peter J. Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pro Vice-Chancellor’s Office, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Scott F. Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- * E-mail: (SFC); (P. Sobhon)
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SFC); (P. Sobhon)
| |
Collapse
|
22
|
Nuurai P, Primphon J, Seangcharoen T, Tinikul Y, Wanichanon C, Sobhon P. Immunohistochemical detection of GnRH-like peptides in the neural ganglia and testis of Haliotis asinina. Microsc Res Tech 2014; 77:110-9. [PMID: 24446352 DOI: 10.1002/jemt.22304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/13/2013] [Accepted: 10/08/2013] [Indexed: 11/11/2022]
Abstract
Gonadotropin releasing hormone (GnRH) is a peptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the distribution pattern of two isoforms of GnRH-like peptides in the neural ganglia and testis of reproductively mature male abalone, H. asinina, by immunohistochemistry and whole mount immunofluorescence. We found octopus (oct) GnRH and tunicate-I (t) GnRH-I immunoreactivities (ir) in type 1 neurosecretory cells (NS1) and they were expressed mostly within the ventral horn of the cerebral ganglion, whereas in pleuropedal ganglia they were localized primarily in the dorsal horn. Furthermore, tGnRH-I-ir were strongly detected in fibers at the caudal part of the cerebral ganglia and both ventral and dorsal horns of the pleuropedal ganglia. In the testis, only octGnRH-ir was found primarily in the granulated cell and central capillaries within the trabeculae. These results suggest that multiple GnRH-like peptides are present in the neural ganglia which could be the principal source of their production, whereas GnRH may also be synthesized locally in the testis and act as the paracrine control of testicular maturation.
Collapse
Affiliation(s)
- Parinyaporn Nuurai
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | | | | | | | | | | |
Collapse
|
23
|
Jung LH, Kavanaugh SI, Sun B, Tsai PS. Localization of a molluscan gonadotropin-releasing hormone in Aplysia californica by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 2014; 195:132-7. [PMID: 24246309 DOI: 10.1016/j.ygcen.2013.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays important roles in vertebrate reproduction. Recently, molecules structurally similar to vertebrate GnRH were discovered in mollusks, including a gastropod, Aplysia californica. As an important step toward understanding the function of A. californica GnRH (ap-GnRH), the present study examined the localization of ap-GnRH peptide and transcript in the central and peripheral tissues. Reverse transcription polymerase chain reaction (RT-PCR) revealed wide expression of ap-GnRH in all ganglia (abdominal, buccal, cerebral, and pedal ganglia) of the central nervous system (CNS) and in multiple peripheral organs. However, in situ hybridization (ISH) revealed that cells positive for ap-GnRH are detectable only in the CNS, with the pedal ganglia containing the highest number of ap-GnRH-positive neurons, followed by the cerebral and abdominal ganglia. Most neurons positive for the transcript were simultaneously positive for the peptide, although some discrepancies were observed in cerebral and abdominal ganglia. Overall, our data suggest the de novo synthesis of ap-GnRH is restricted to the CNS, with the pedal ganglia being the primary source of ap-GnRH. Our results support the notion that ap-GnRH is a bona-fide neuropeptide that may assume diverse central functions, including those unrelated to reproduction.
Collapse
Affiliation(s)
- Lisa H Jung
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States
| | - Scott I Kavanaugh
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States
| | - Biao Sun
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States.
| |
Collapse
|
24
|
Dorfman VB, Saucedo L, Di Giorgio NP, Inserra PIF, Fraunhoffer N, Leopardo NP, Halperín J, Lux-Lantos V, Vitullo AD. Variation in Progesterone Receptors and GnRH Expression in the Hypothalamus of the Pregnant South American Plains Vizcacha, Lagostomus maximus (Mammalia, Rodentia)1. Biol Reprod 2013; 89:115. [DOI: 10.1095/biolreprod.113.107995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Siangcham T, Tinikul Y, Poljaroen J, Sroyraya M, Changklungmoa N, Phoungpetchara I, Kankuan W, Sumpownon C, Wanichanon C, Hanna PJ, Sobhon P. The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 2013; 193:10-8. [PMID: 23867230 DOI: 10.1016/j.ygcen.2013.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Neurotransmitters and neurohormones are agents that control gonad maturation in decapod crustaceans. Of these, serotonin (5-HT) and dopamine (DA) are neurotransmitters with known antagonist roles in female reproduction, whilst gonadotropin-releasing hormones (GnRHs) and corazonin (Crz) are neurohormones that exercise both positive and negative controls in some invertebrates. However, the effects of these agents on the androgenic gland (AG), which controls testicular maturation and male sex development in decapods, via insulin-like androgenic gland hormone (IAG), are unknown. Therefore, we set out to assay the effects of 5-HT, DA, l-GnRH-III, oct-GnRH and Crz, on the AG of small male Macrobrachium rosenbergii (Mr), using histological studies, a BrdU proliferative cell assay, immunofluorescence of Mr-IAG, and ELISA of Mr-IAG. The results showed stimulatory effects by 5-HT and l-GnRH-III through significant increases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). In contrast, DA and Crz caused inhibitory effects on the AG through significant decreases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). Moreover, the prawns treated with Crz died before day 16 of the experimental period. We propose that 5-HT and certain GnRHs can be now used to stimulate reproduction in male M. rosenbergii, as they induce increases in AG and testicular size, IAG production, and spermatogenesis. The mechanisms by which these occur are part of our on-going research.
Collapse
Affiliation(s)
- Tanapan Siangcham
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Argiolas A, Melis MR. Neuropeptides and central control of sexual behaviour from the past to the present: a review. Prog Neurobiol 2013; 108:80-107. [PMID: 23851261 DOI: 10.1016/j.pneurobio.2013.06.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 12/23/2022]
Abstract
Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction.
Collapse
Affiliation(s)
- Antonio Argiolas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | | |
Collapse
|
27
|
De Lisa E, Carella F, De Vico G, Di Cosmo A. The gonadotropin releasing hormone (GnRH)-like molecule in prosobranch Patella caerulea: potential biomarker of endocrine-disrupting compounds in marine environments. Zoolog Sci 2013; 30:135-40. [PMID: 23387848 DOI: 10.2108/zsj.30.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported that endocrine disrupter compounds (EDCs) interfere with the endocrine system, mimicking the action of sex steroid hormones in different species of mollusks. Prosobranchs are frequently used as a reliable bioindicator to evaluate EDC exposure. In this article, we evaluate the effects of the xenoestrogen 4-n-nonylphenol (NP) in the prosobranch gastropod Patella caerulea, which exhibits protandrous hermaphroditism as its reproductive strategy. We isolated a partial sequence of a GnRH-like molecule from the gonads of Patella caerulea. The deduced amino acid sequence is highly homologous to that reported for the Lottia gigantea GnRH. Patella caerulea GnRH (pGnRH) mRNA expression is widespread in both male and female germ lines during gametogenesis. We suggest pGnRH as a novel biomarker for the early assessment of presence of EDCs and monitoring short and long-term impacts on Patella caerulea community structure.
Collapse
Affiliation(s)
- Emilia De Lisa
- Department of Structural and Functional Biology, University of Napoli "Federico II", via Cinthia, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
28
|
Saetan J, Senarai T, Tamtin M, Weerachatyanukul W, Chavadej J, Hanna PJ, Parhar I, Sobhon P, Sretarugsa P. Histological organization of the central nervous system and distribution of a gonadotropin-releasing hormone-like peptide in the blue crab, Portunus pelagicus. Cell Tissue Res 2013; 353:493-510. [PMID: 23733265 DOI: 10.1007/s00441-013-1650-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
We present a detailed histological description of the central nervous system (CNS: brain, subesophageal ganglion, thoracic ganglia, abdominal ganglia) of the blue crab, Portunus pelagicus. Because the presence of gonadotropin-releasing hormone (GnRH) in crustaceans has been disputed, we examine the presence and localization of a GnRH-like peptide in the CNS of the blue crab by using antibodies against lamprey GnRH (lGnRH)-III, octopus GnRH (octGnRH) and tunicate GnRH (tGnRH)-I. These antibodies showed no cross-reactivity with red-pigment-concentrating hormone, adipokinetic hormone, or corazonin. In the brain, strong lGnRH-III immunoreactivity (-ir) was detected in small (7-17 μm diameter) neurons of clusters 8, 9 and 10, in medium-sized (21-36 μm diameter) neurons of clusters 6, 7 and 11 and in the anterior and posterior median protocerebral neuropils, olfactory neuropil, median and lateral antenna I neuropils, tegumentary neuropil and antenna II neuropil. In the subesophageal ganglion, lGnRH-III-ir was detected in medium-sized neurons and in the subesophageal neuropil. In the thoracic and abdominal ganglia, lGnRH-III-ir was detected in medium-sized and small neurons and in the neuropils. OctGnRH-ir was observed in neurons of the same clusters with moderate staining, particularly in the deutocerebrum, whereas tGnRH-I-ir was only detected in medium-sized neurons of cluster 11 in the brain. Thus, anti-lGnRH-III shows greater immunoreactivity in the crab CNS than anti-octGnRH and anti-tGnRH-I. Moreover, our functional bioassay demonstrates that only lGnRH-III has significant stimulatory effects on ovarian growth and maturation. We therefore conclude that, although the true identity of the crab GnRH eludes us, crabs possess a putative GnRH hormone similar to lGnRH-III. The identification and characterization of this molecule is part of our ongoing research.
Collapse
Affiliation(s)
- Jirawat Saetan
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Takeda N, Nakajima Y, Koizumi O, Fujisawa T, Takahashi T, Matsumoto M, Deguchi R. Neuropeptides trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. Mol Reprod Dev 2013; 80:223-32. [PMID: 23341254 DOI: 10.1002/mrd.22154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 01/13/2013] [Indexed: 11/12/2022]
Abstract
Oocyte maturation and subsequent spawning in hydrozoan jellyfish are generally triggered by light-dark cycles. To examine if the initiation of the maturation process after light stimulus is mediated by neurotransmitters, neuropeptides isolated originally from Hydra magnipapillata were applied to sexually mature female medusae of the hydrozoan jellyfish Cytaeis uchidae. Among the Hydra neuropeptides tested, Hym-53 (NPYPGLW-NH2 ), as well as a nonphysiological peptide, CGLWamide (CGLW-NH2 ), were most effective in inducing oocyte maturation and spawning. Hym-355 (FPQSFLPRG-NH2 ) also triggered these events, but the stimulatory effect was weaker. Since Hym-53-OH (NPYPGLW) and Hym-355-OH (FPQSFLPRG) had no effect, amidation at the C-terminus may be critical for the stimulatory activities of the peptides. Exposure to Hym-53 for 2 min was sufficient to trigger of oocyte maturation, and the spawned eggs were able to be fertilized and to develop normally. Transmission electron microscopy confirmed that bundles of axon-like structures that contain dense-core synaptic vesicles and microtubules are present in the ovarian ectodermal epithelium overlying the oocytes. In addition, immunohistological analyses revealed that some of the neurons in the ectodermal epithelium are GLWamide- and PRGamide-positive. These results suggest that a neuropeptide signal transduction pathway is involved in mediating the induction of oocyte maturation and spawning in this jellyfish.
Collapse
Affiliation(s)
- Noriyo Takeda
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Gopurappilly R, Ogawa S, Parhar IS. Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction. Front Endocrinol (Lausanne) 2013; 4:24. [PMID: 23482509 PMCID: PMC3591744 DOI: 10.3389/fendo.2013.00024] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/22/2013] [Indexed: 12/18/2022] Open
Abstract
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway CampusSelangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway CampusSelangor, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway CampusSelangor, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway Campus, Petaling Jaya 46150, Selangor, Malaysia. e-mail:
| |
Collapse
|
31
|
Cho-Clark M, Larco DO, Semsarzadeh NN, Vasta F, Mani SK, Wu TJ. GnRH-(1-5) transactivates EGFR in Ishikawa human endometrial cells via an orphan G protein-coupled receptor. Mol Endocrinol 2013; 28:80-98. [PMID: 24264576 DOI: 10.1210/me.2013-1203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The decapeptide GnRH is known for its central role in the regulation of the hypothalamo-pituitary-gonadal axis. In addition, it is also known to have local effects within peripheral tissues. The zinc metalloendopeptidase, EC 3.4.24.15 (EP24.15), can cleave GnRH at the Tyr(5)-Gly(6) bond to form the pentapeptide, GnRH-(1-5). The central and peripheral effect of GnRH-(1-5) is different from its parent peptide, GnRH. In the current study, we examined the effect of GnRH-(1-5) on epidermal growth factor receptor (EGFR) phosphorylation and cellular migration. Using the Ishikawa cell line as a model of endometrial cancer, we demonstrate that GnRH-(1-5) stimulates epidermal growth factor release, increases the phosphorylation of EGFR (P < .05) at three tyrosine sites (992, 1045, 1068), and promotes cellular migration. In addition, we also demonstrate that these actions of GnRH-(1-5) are mediated by the orphan G protein-coupled receptor 101 (GPR101). Down-regulation of GPR101 expression blocked the GnRH-(1-5)-mediated release of epidermal growth factor and the subsequent phosphorylation of EGFR and cellular migration. These results suggest that GPR101 is a critical requirement for GnRH-(1-5) transactivation of EGFR in Ishikawa cells.
Collapse
Affiliation(s)
- Madelaine Cho-Clark
- Department of Obstetrics and Gynecology (T.J.W., M.C., F.V.) and the Program in Molecular and Cellular Biology (D.O.L., T.J.W.), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814; and Departments of Molecular and Cellular Biology and Neuroscience (S.K.M.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
32
|
Rowe ML, Elphick MR. The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen Comp Endocrinol 2012; 179:331-44. [PMID: 23026496 DOI: 10.1016/j.ygcen.2012.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/03/2023]
Abstract
Neuronal secretion of peptide signaling molecules (neuropeptides) is an evolutionarily ancient feature of nervous systems. Here we report the identification of 20 cDNAs encoding putative neuropeptide precursors in the sea urchin Strongylocentrotus purpuratus (Phylum Echinodermata), providing new insights on the evolution and diversity of neuropeptides. Identification of a gonadotropin-releasing hormone-like peptide precursor (SpGnRHP) is consistent with the widespread phylogenetic distribution of GnRH-type neuropeptides in the bilateria. A protein (SpTRHLP) comprising multiple copies of peptides that share structural similarity with thyrotropin-releasing hormone (TRH) is the first TRH-like precursor to be identified in an invertebrate. SpCTLP is the first calcitonin-like peptide with two N-terminally located cysteine residues to be found in a non-chordate species. Discovery of two proteins (SpPPLNP1, SpPPLNP2) comprising homologs of molluscan pedal peptides and arthropod orcokinins indicates the existence of a bilaterian family of pedal peptide/orcokinin-type neuropeptides. Other proteins identified contain peptides that do not share apparent sequence similarity with known neuropeptides. These include Spnp5, which comprises multiple copies of C-terminally amidated peptides that have an N-terminal Ala-Asn motif (AN peptides), and Spnp9, Spnp10 and Spnp12, which contain putative neuropeptides with a C-terminal Phe-amide, Ser-amide or Pro-amide, respectively. Several proteins (Spnp11, 14, 15, 16, 17, 18, 19 and 20) contain putative neuropeptides with multiple cysteine residues (2, 6 or 8), which may mediate formation of intramolecular or intermolecular disulphide bridges. Looking ahead, the identification of these neuropeptide precursors in S. purpuratus has provided a strong basis for a comprehensive analysis of neuropeptide function in this model echinoderm species.
Collapse
Affiliation(s)
- Matthew L Rowe
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
33
|
Heyland A, Plachetzki D, Donelly E, Gunaratne D, Bobkova Y, Jacobson J, Kohn AB, Moroz LL. Distinct expression patterns of glycoprotein hormone subunits in the lophotrochozoan Aplysia: implications for the evolution of neuroendocrine systems in animals. Endocrinology 2012; 153:5440-51. [PMID: 22977258 PMCID: PMC3473217 DOI: 10.1210/en.2012-1677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glycoprotein hormones (GPHs) comprise a group of signaling molecules critical for major metabolic and reproductive functions. In vertebrates they include chorionic gonadotropin, LH, FSH, and TSH. The active hormones are characterized by heterodimerization between a common α and hormone-specific β subunit, which activate leucine-rich repeat-containing G protein coupled receptors. To date, genes referred to as GPHα2 and GPHβ5 have been the only glycoprotein hormone subunits identified in invertebrates, suggesting that other GPHα and GPHβ subunits diversified during vertebrate evolution. Still the functions of GPHα2 and GPHβ5 remain largely unknown for both vertebrates and invertebrates. To further understand the evolution and putative function of these subunits, we cloned and analyzed phylogenetically two glycoprotein subunits, AcaGPHα and AcaGPHβ, from the sea hare Aplysia californica. Model based three-dimensional predictions of AcaGPHβ confirm the presence of a complete cysteine knot, two hairpin loops, and a long loop. As in the human GPHβ5 subunit the seatbelt structure is absent in AcaGPHβ. We also found that AcaGPHα and AcaGPHβ subunits are expressed in larval stages of Aplysia, and we present a detailed expression map of the subunits in the adult central nervous system using in situ hybridizations. Both subunits are expressed in subpopulations of pleural and buccal mechanosensory neurons, suggesting a neuronal modulatory function of these subunits in Aplysia. Furthermore it supports the model of a relatively diffuse neuroendocrine-like system in molluscs, where specific primary sensory neurons release peptides extrasynaptically (paracrine secretion). This is in contrast to vertebrates and insects, in which releasing and stimulating factor from centralized sensory regions of the central nervous system ultimately regulate hormone release in peripheral glands.
Collapse
Affiliation(s)
- Andreas Heyland
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Treen N, Itoh N, Miura H, Kikuchi I, Ueda T, Takahashi KG, Ubuka T, Yamamoto K, Sharp PJ, Tsutsui K, Osada M. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction. Gen Comp Endocrinol 2012; 176:167-72. [PMID: 22326349 DOI: 10.1016/j.ygcen.2012.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is central to the control of vertebrate reproductive cycles and since GnRH orthologs are also present in invertebrates, it is likely that the common ancestor of bilateral animals possessed a GnRH-like peptide. In order to understand the evolutionary and comparative biology of GnRH peptides we cloned the cDNA transcripts of prepro GnRH-like peptides from two species of bivalve molluscs, the Yesso scallop Patinopecten yessoensis and the Pacific oyster Crassostrea gigas. We compared their deduced uncleaved and mature amino acid sequences with those from other invertebrates and vertebrates, and determined their sites of expression and biological activity. The two molluscan GnRH sequences increased the number of known protostome GnRHs to six different forms, indicating the current classification of protostome GnRHs requires further revision. In both molluscs, RT-PCR analysis showed that the genes were highly expressed in nervous tissue with lower levels present in peripheral tissues including the gonads, while immunocytochemistry, using anti-octopus GnRH-like peptide, demonstrated the presence of GnRH-like peptide in neural tissue. Putative scallop GnRH-like peptide stimulated spermatogonial cell division in cultured scallop testis, but the scallop GnRH-like peptide did not stimulate LH release from cultured quail pituitary cells. This is the first report of the cloning of bivalve GnRH-like peptide genes and of molluscan GnRH-like peptides that are biologically active in molluscs, but not in a vertebrate.
Collapse
Affiliation(s)
- Nicholas Treen
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maruska KP, Fernald RD. Social Regulation of Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Physiology (Bethesda) 2011; 26:412-23. [DOI: 10.1152/physiol.00032.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Reproduction is a critically important event in every animals' life and in all vertebrates is controlled by the brain via the hypothalamic-pituitary-gonadal (HPG) axis. In many species, this axis, and hence reproductive fitness, can be profoundly influenced by the social environment. Here, we review how the reception of information in a social context causes genomic changes at each level of the HPG axis.
Collapse
Affiliation(s)
- Karen P. Maruska
- Department of Biology, Stanford University, Stanford, California
| | | |
Collapse
|
36
|
Dorfman VB, Fraunhoffer N, Inserra PIF, Loidl CF, Vitullo AD. Histological characterization of gonadotropin-releasing hormone (GnRH) in the hypothalamus of the South American plains vizcacha (Lagostomus maximus). J Mol Histol 2011; 42:311-21. [DOI: 10.1007/s10735-011-9335-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/25/2011] [Indexed: 11/30/2022]
|
37
|
Existence and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei. Cell Tissue Res 2011; 343:579-93. [PMID: 21243376 DOI: 10.1007/s00441-010-1112-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
We used antibodies against octopus gonadotropin-releasing hormone (octGnRH) and tunicate GnRH (tGnRH-I) in order to investigate the existence and distribution of GnRH-like peptides in the central nervous system (CNS) and in the ovary during various stages of the ovarian cycle of the white shrimp, Litopenaeus vannamei. OctGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in several regions of the supraesophageal ganglion (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. In the brain, both octGnRH immunoreactivity (ir) and tGnRH-I-ir were detected in neurons of clusters 6, 11, 17, and associated fibers, and the anterior medial protocerebral, posterior medial protocerebral, olfactory, and tegumentary neuropils. In the SEG and thoracic ganglia, octGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in dorsolateral and ventromedial cell clusters and in surrounding fibers. Only immunoreactive fibers were detected in the abdominal ganglia. In the ovary, both octGnRH and tGnRH-I were detected at medium intensity in the cytoplasm of early step oocytes (Oc2) and, at high intensity, in Oc3. Furthermore, octGnRH-ir and tGnRH-I-ir were intense in follicular cells surrounding Oc2 and Oc3. The presence of GnRH-ir in the CNS and ovary indicates that GnRH-like peptides occur in the white shrimp, and that GnRHs are involved in the reproductive process, especially ovarian maturation and the differentiation of oocytes, as reported in other species.
Collapse
|
38
|
The existence of gonadotropin-releasing hormone-like peptides in the neural ganglia and ovary of the abalone, Haliotis asinina L. Acta Histochem 2010; 112:557-66. [PMID: 19604545 DOI: 10.1016/j.acthis.2009.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuropeptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the presence and distribution of two isoforms of GnRH-like peptides in neural ganglia and ovary of reproductively mature female abalone, Haliotis asinina, using immunohistochemistry. We found significant immunoreactivities (ir) of anti-lamprey(l) GnRH-III and anti-tunicate(t) GnRH, but with variation of labeling intensity by each anti-GnRH type. lGnRH-III-ir was detected in numerous type 1 neurosecretory cells (NS1) throughout the cerebral and pleuropedal ganglia, whereas tGnRH-I-ir was detected in only a few NS1 cells in the dorsal region of cerebral and pleuropedal ganglia. In addition, a small number of type 2 neurosecretory cells (NS2) in cerebral ganglion showed lGnRH-III-ir. Long nerve fibers in the neuropil of ventral regions of the cerebral and pluropedal ganglia showed strong tGnRH-I-ir. In the ovary, lGnRH-III-ir was found primarily in oogonia and stage I oocytes, whereas tGnRH-ir was observed in stage I oocytes and some stage II oocytes. These results indicate that GnRH produced in neural ganglia may act in neural signaling. Alternatively, GnRH may also be synthesized locally in the ovary where it could induce oocyte development.
Collapse
|
39
|
Minakata H. Oxytocin/vasopressin and gonadotropin-releasing hormone from cephalopods to vertebrates. Ann N Y Acad Sci 2010; 1200:33-42. [PMID: 20633131 DOI: 10.1111/j.1749-6632.2010.05569.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent advances in peptide search methods have revealed two peptide systems that have been conserved through metazoan evolution. Members of the oxytocin/vasopressin-superfamily have been identified from protostomian and deuterostomian animals, indicating that the oxytocin/vasopressin hormonal system represents one of the most ancient systems. In most protostomian animals, a single member of the superfamily shares oxytocin-like and vasopressin-like actions. Co-occurrence of two members has been discovered in modern cephalopods, octopus, and cuttlefish. We propose that cephalopods have developed two peptides in the molluscan evolutionary lineage like vertebrates have established two lineages in the oxytocin/vasopressin superfamily. The existence of gonadotropin-releasing hormone (GnRH) in protostomian animals was initially suggested by immunohistochemical analysis using chordate GnRH antibodies. A peptide with structural features similar to those of chordate GnRHs was originally isolated from octopus, and an identical peptide has been characterized from squid and cuttlefish. Novel forms of GnRH-like molecules from other molluscs, an annelid, arthropods, and nematodes demonstrate somewhat conserved structures at the N-terminal regions; but structures of the C-terminal regions critical to gonadotropin-releasing activity are diverse. These findings may be important for the study of the molecular evolution of GnRH in protostomian animals.
Collapse
|
40
|
Tsai PS, Sun B, Rochester JR, Wayne NL. Gonadotropin-releasing hormone-like molecule is not an acute reproductive activator in the gastropod, Aplysia californica. Gen Comp Endocrinol 2010; 166:280-8. [PMID: 19800884 DOI: 10.1016/j.ygcen.2009.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/15/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is indispensable for reproductive activation in all vertebrates. Although several GnRH-like molecules have been isolated from non-chordates, the function of GnRH in these taxa remains unclear. We previously isolated the full-length cDNA sequence of a prohormone containing a GnRH-like molecule, termed ap-GnRH, from the gastropod mollusk, Aplysia californica. In this study, we characterized the distribution and quantity of ap-GnRH peptide in several central and peripheral tissues of A. californica. Further, we performed in vivo and in vitro studies to explore the function of ap-GnRH in these animals. Immunohistochemistry and radioimmunoassay using specific antisera against ap-GnRH showed that pedal ganglia contained the highest level of ap-GnRH peptide, followed by cerebral ganglia, abdominal ganglia, and then buccal ganglia. Ovotestis did not contain detectable levels of ap-GnRH peptide. Injection of sexually mature and immature animals with synthetic ap-GnRH over a course of 10-14 days had no effects on ovotestis mass, reproductive tract mass, egg-laying, and penile eversion. ap-GnRH also failed to alter oocyte growth and egg-laying hormone accumulation and secretion. Interestingly, ap-GnRH injection triggered acute behavioral responses including the stimulation of parapodial opening, inhibition of feeding, and promotion of substrate attachment. Our results showed that in A. californica, ap-GnRH could modulate a wide range of behavioral attributes. Most strikingly, ap-GnRH is not involved in the acute activation of reproduction in a fashion similar to vertebrate GnRH.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
41
|
Amano M, Okumura T, Okubo K, Amiya N, Takahashi A, Oka Y. Biochemical analysis and immunohistochemical examination of a GnRH-like immunoreactive peptide in the central nervous system of a decapod crustacean, the kuruma prawn (Marsupenaeus japonicus). Zoolog Sci 2010; 26:840-5. [PMID: 19968471 DOI: 10.2108/zsj.26.840] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined whether a gonadotropin-releasing hormone (GnRH)-like peptide exists in the central nervous system (CNS) of the kuruma prawn, Marsupenaeus japonicus, by reverse-phase high performance liquid chromatography (rpHPLC) combined with time-resolved fluoroimmunoassay (TR-FIA) analysis and by immunohistochemistry. The displacement curve obtained for serially diluted extracts of the kuruma prawn brain paralleled the chicken GnRH-II (cGnRH-II) standard curve obtained by cGnRH-II TR-FIA using the anti-cGnRH-II antibody, which cross-reacts not only with cGnRH-II but also with lamprey GnRH-II (lGnRH-II) and octopus GnRH (octGnRH). Extracts of kuruma prawn brains and eyestalks showed a similar retention time to synthetic lGnRH-II and octGnRH in rpHPLC combined with TR-FIA analysis. Using this antibody, we detected GnRH-like-immunoreactive (ir) cell bodies in the anterior-most part of the supraesophageal ganglion (brain), the protocerebrum. Furthermore, GnRH-like-ir fibers were observed in the protocerebrum and deutocerebrum. In the eyestalk, GnRH-like-ir cell bodies were detected in the medulla interna, and GnRH-like-ir fibers were distributed in the medulla interna, medulla externa, and lamina ganglionalis. In the thoracic ganglion, GnRH-like-ir fibers, but not GnRH-like-ir cell bodies, were detected. No GnRH-like-ir cell bodies or fibers were detected in the abdominal ganglion or ovary. Thus, we have shown the existence and distribution of a GnRH-like peptide in the CNS of the kuruma prawn.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Bioscíences, Kitasato University, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Cleverly K, Wu TJ. Is the metalloendopeptidase EC 3.4.24.15 (EP24.15), the enzyme that cleaves luteinizing hormone-releasing hormone (LHRH), an activating enzyme? Reproduction 2010; 139:319-30. [DOI: 10.1530/rep-09-0117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LHRH (GNRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive neuroendocrine axis comprising of the hypothalamus, pituitary and gonads. LHRH acts centrally through its initiation of pituitary gonadotrophin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of over 20 structural variants with a variety of roles in both the brain and peripheral tissues. LHRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15) that cleaves the hormone at the fifth and sixth bond of the decapeptide (Tyr5-Gly6) to form LHRH-(1–5). We have previously reported that the auto-regulation of LHRH-I (GNRH1) gene expression and secretion can also be mediated by itself and its processed peptide, LHRH-(1–5), centrally and in peripheral tissues. In this review, we present the evidence that EP24.15 is the main enzyme of LHRH metabolism. Following this, we look at the metabolism of other neuropeptides where an active peptide fragments is formed during degradation and use this as a platform to postulate that EP24.15 may also produce an active peptide fragment in the process of breaking down LHRH. We close this review by the role EP24.15 may have in regulation of the complex LHRH system.
Collapse
|
43
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
44
|
Tello JA, Sherwood NM. Amphioxus: beginning of vertebrate and end of invertebrate type GnRH receptor lineage. Endocrinology 2009; 150:2847-56. [PMID: 19264870 DOI: 10.1210/en.2009-0028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, activation of the GnRH receptor is necessary to initiate the reproductive cascade. However, little is known about the characteristics of GnRH receptors before the vertebrates evolved. Recently genome sequencing was completed for amphioxus, Branchiostoma floridae. To understand the GnRH receptors (GnRHR) from this most basal chordate, which is also classified as an invertebrate, we cloned and characterized four GnRHR cDNAs encoded in the amphioxus genome. We found that incubation of GnRH1 (mammalian GnRH) and GnRH2 (chicken GnRH II) with COS7 cells heterologously expressing the amphioxus GnRHRs caused potent intracellular inositol phosphate turnover in two of the receptors. One of the two receptors displayed a clear preference for GnRH1 over GnRH2, a characteristic not previously seen outside the type I mammalian GnRHRs. Phylogenetic analysis grouped the four receptors into two paralogous pairs, with one pair grouping basally with the vertebrate GnRH receptors and the other grouping with the octopus GnRHR-like sequence and the related receptor for insect adipokinetic hormone. Pharmacological studies showed that octopus GnRH-like peptide and adipokinetic hormone induced potent inositol phosphate turnover in one of these other two amphioxus receptors. These data demonstrate the functional conservation of two distinct types of GnRH receptors at the base of chordates. We propose that one receptor type led to vertebrate GnRHRs, whereas the other type, related to the mollusk GnRHR-like receptor, was lost in the vertebrate lineage. This is the first report to suggest that distinct invertebrate and vertebrate GnRHRs are present simultaneously in a basal chordate, amphioxus.
Collapse
Affiliation(s)
- Javier A Tello
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | |
Collapse
|
45
|
Di Cristo C, De Lisa E, Di Cosmo A. Control of GnRH expression in the olfactory lobe of Octopus vulgaris. Peptides 2009; 30:538-44. [PMID: 18703100 DOI: 10.1016/j.peptides.2008.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 06/29/2008] [Accepted: 07/10/2008] [Indexed: 11/30/2022]
Abstract
In the cephalopod mollusk Octopus vulgaris, the gonadotropic hormone released by the optic gland controls sexual maturity. Several lobes of the central nervous system control the activity of this gland. In one of these lobes, the olfactory lobe, a gonadotropin releasing hormone (GnRH) neuronal system has been described. We assume that several inputs converge on the olfactory lobes in order to activate GnRH neurons and that a glutamatergic system mediates the integration of stimuli on these neuropeptidergic neurons. The presence of N-methyl-d-aspartate (NMDA) receptor immunoreactivity in the neuropil of olfactory lobes and in the fibers of the optic gland nerve, along with the GnRH nerve endings strongly supports this hypothesis. A distinctive role in the control of GnRH secretion has also been attributed, in vertebrates, to nitric oxide (NO). The lobes and nerves involved in the nervous control of reproduction in Octopus contain nitric oxide synthase (NOS). Using a set of experiments aimed at manipulate a putative l-glutamate/NMDA/NO signal transduction pathway, we have demonstrated, by quantitative real-time PCR, that NMDA enhances the expression of GnRH mRNA in a dose-response manner. The reverting effect of a selective antagonist of NMDA receptors (NMDARs), 2-amino-5-phosphopentanoic acid (D-APV), confirms that such an enhancing action is a NMDA receptor-mediated response. Nitric oxide and calcium also play a positive role on GnRH mRNA expression. The results suggest that in Octopusl-glutamate could be a key molecule in the nervous control of sexual maturation.
Collapse
Affiliation(s)
- Carlo Di Cristo
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | | | | |
Collapse
|
46
|
Abstract
Gonadotrophin-releasing hormone (GnRH) was first isolated in the mammal and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotrophin release. Subsequent to its discovery, this form of GnRH has been shown to be one of many structural variants found in the brain and peripheral tissues. Accordingly, the original form first discovered and cloned in the mammal is commonly referred to as GnRH-I. In addition to the complex regulation of GnRH-I synthesis, release and function, further evidence suggests that the processing of GnRH-I produces yet another layer of complexity in its activity. GnRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15), which cleaves the hormone at the covalent bond between the fifth and sixth residue of the decapeptide (Tyr(5)-Gly(6)) to form GnRH-(1-5). It was previously thought that the cleavage of GnRH-I by EP24.15 represents the initiation of its degradation. Here, we review the evidence for the involvement of GnRH-(1-5), the metabolite of GnRH-I, in the regulation of GnRH-I synthesis, secretion and facilitation of reproductive behaviour.
Collapse
Affiliation(s)
- T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
47
|
Onitsuka C, Yamaguchi A, Kanamaru H, Oikawa S, Takeda T, Matsuyama M. Molecular Cloning and Expression Analysis of a GnRH-Like Dodecapeptide in the Swordtip Squid,Loligo edulis. Zoolog Sci 2009; 26:203-8. [DOI: 10.2108/zsj.26.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Di Cristo C, De Lisa E, Di Cosmo A. GnRH in the brain and ovary of Sepia officinalis. Peptides 2009; 30:531-7. [PMID: 18692104 DOI: 10.1016/j.peptides.2008.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 06/29/2008] [Accepted: 07/10/2008] [Indexed: 11/20/2022]
Abstract
We have cloned from brain, ovary and eggs of the cephalopod Sepia officinalis a 269-bp PCR product, which shares 100% sequence identity with the open reading frame of GnRH isoform isolated from Octopus vulgaris. Similar to Octopus, this sequence encodes a peptide that is organized as a preprohormone from which, after enzymatic cleavage, a dodecapeptide is released. Apart from its length, this peptide shares all the common features of vertebrate GnRHs. Reverse transcriptase-polymerase chain reaction (RT-PCR) analyses followed by sequencing have confirmed that the same peptide transcript is also present in the ovary, as well as in eggs released in the mantle cavity. The use of an antibody made specifically against the oct-GnRH has revealed that the peptide is localized in the dorso-lateral basal and olfactory lobes, the two neuropeptidergic centers controlling the activity of the gonadotropic optic gland. Immunoreactive nerve endings are also present on the glandular cells of the optic glands. These results confirm the fact that, regardless of the evolutionary distances among animal phyla, GnRH is an ancient peptide present also in invertebrates, and also reinforce the notion that, despite the name "gonadotropin releasing-hormone" was attributed according to its role in vertebrates, probably this family of peptides always had a role in the broad context of animal reproduction. The divergence and spread of several different isoforms of this peptide among animals seem to be balanced, in both invertebrates and vertebrates, by the class-specificity of the GnRH isoform involved in reproductive processes.
Collapse
Affiliation(s)
- Carlo Di Cristo
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | | | | |
Collapse
|
49
|
Minakata H, Shigeno S, Kano N, Haraguchi S, Osugi T, Tsutsui K. Octopus gonadotrophin-releasing hormone: a multifunctional peptide in the endocrine and nervous systems of the cephalopod. J Neuroendocrinol 2009; 21:322-6. [PMID: 19210294 DOI: 10.1111/j.1365-2826.2009.01852.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The optic gland, which is analogous to the anterior pituitary in the context of gonadal maturation, is found on the upper posterior edge of the optic tract of the octopus Octopus vulgaris. In mature octopus, the optic glands enlarge and secrete a gonadotrophic hormone. A peptide with structural features similar to that of vertebrate gonadotrophin-releasing hormone (GnRH) was isolated from the brain of octopus and was named oct-GnRH. Oct-GnRH showed luteinising hormone-releasing activity in the anterior pituitary cells of the Japanese quail Coturnix coturnix. Oct-GnRH immunoreactive signals were observed in the glandular cells of the mature optic gland. Oct-GnRH stimulated the synthesis and release of sex steroids from the ovary and testis, and elicited contractions of the oviduct. Oct-GnRH receptor was expressed in the gonads and accessory organs, such as the oviduct and oviducal gland. These results suggest that oct-GnRH induces the gonadal maturation and oviposition by regulating sex steroidogenesis and a series of egg-laying behaviours via the oct-GnRH receptor. The distribution and expression of oct-GnRH in the central and peripheral nervous systems suggest that oct-GnRH acts as a multifunctional modulatory factor in feeding, memory processing, sensory, movement and autonomic functions.
Collapse
Affiliation(s)
- H Minakata
- Suntory Institute for Bioorganic Research, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
NGERNSOUNGNERN PIYADA, NGERNSOUNGNERN APICHART, SOBHON PRASERT, SRETARUGSA PRAPEE. Gonadotropin-releasing hormone (GnRH) and a GnRH analog induce ovarian maturation in the giant freshwater prawn,Macrobrachium rosenbergii. INVERTEBR REPROD DEV 2009. [DOI: 10.1080/07924259.2009.9652298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|