1
|
Zhang X, Chen X, Gao L, Zhang HT, Li J, Ye Y, Zhu QL, Zheng JL, Yan X. Transgenerational effects of microplastics on Nrf2 signaling, GH/IGF, and HPI axis in marine medaka Oryzias melastigma under different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167170. [PMID: 37730060 DOI: 10.1016/j.scitotenv.2023.167170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Little information is available on the toxicity of microplastics (MPs) under different salinities in aquatic organisms. Consequently, the effects of larvae exposure to 180 μg/L MPs with 5.0 μm diameter on growth, antioxidant capacity and stress response were investigated in exposed F1 larvae and unexposed F2 larvae in marine medaka Oryzias melastigma at 5 ‰ and 25 ‰ salinities. Poor growth performance of F1 and F2 larvae and F1 adult fish was merely found under high salinity, as well as changes in the growth hormone/insulin-like growth factor-I (GH/IGF). Although malondialdehyde (MDA) content and antioxidant capacity remained constant in F1 larvae under high salinity, MPs increased MDA content and reduced antioxidant capacity in F2 larvae. Contrarily, MDA and antioxidant capacity increased in F1 and F2 larvae under low salinity. The mRNA expression levels of genes in the NF-E2-related factor 2 (Nrf2) pathway were dysregulated. Cortisol levels in the whole body increased in F1 larvae and recovered to the control level under low salinity while cortisol levels declined in F1 larvae and increased in F2 larvae under high salinity, which was related to the transcriptional regulation of the hypothalamus-pituitary-interrenal (HPI) axis genes. To summary, the present study determined the toxic effects of MPs on growth, antioxidant capacity, and stress response by disturbing Nrf2, HPI, and GH/IGF signaling in exposed larvae and unexposed offspring of marine medaka in a salinity-dependent manner. For the first time, our results highlight the interference effects of salinity on MPs toxicity in fish.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Lu Gao
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hai-Ting Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qing-Ling Zhu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
2
|
Zhuo MQ, Chen X, Gao L, Zhang HT, Zhu QL, Zheng JL, Liu Y. Early life stage exposure to cadmium and zinc within hour affected GH/IGF axis, Nrf2 signaling and HPI axis in unexposed offspring of marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106628. [PMID: 37451186 DOI: 10.1016/j.aquatox.2023.106628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Information on transgenerational effects of cadmium (Cd) and zinc (Zn) within hour of exposure is scarce. To the end, larvae of marine medaka Oryzias melastigma at 0 day-post-hatching (dph) were subjected to LC50 for 96-h of Cd or Zn for 0.5 and 6 h, and then transferred into clear water for 95 days until the generation of offspring larvae at 25 dph. Growth, antioxidant capacity and stress response in offspring larvae were examined. Exposure to Zn for 0.5 h or Cd for 0.5 h and 6 h promoted growth performance and reduced total antioxidant capacity (TAC) and activities of superoxide dismutase (SOD) and catalase (CAT). Malondialdehyde (MDA) and cortisol levels declined in larvae following Zn exposure for 0.5 h, whereas Cd exposure increased MDA content and did not affect cortisol levels. These physiological changes could be partially explained by transcription of genes in the hormone/insulin-like growth factor-I (GH/IGF) axis, NF-E2-related factor 2 (Nrf2) signaling, and hypothalamus-pituitary-interrenal (HPI) axis. For example, Zn exposure for 0.5 h up-regulated genes encoding growth hormone (gh) and insulin-like growth factor binding protein (igfbp1) and down-regulated mRNA levels of nrf2, Kelch-like-ECH-associated protein 1 gene (keap1a), keap1b, sod1, mineralocorticoid receptor (mr), corticotropin-releasing hormone receptor (crhr1), corticotropin-releasing hormone binding protein (crhbp), cytochrome P450 (cyp11a1, cyp17a1) and hydroxysteroid dehydrogenase (hsd3b1). Cd exposure for 0.5 and 6 h up-regulated growth hormone release hormone (ghrh) and igfbp1, down-regulated nrf2 and keap1a, and did not affect mRNA levels of HPI axis genes. Taken together, this study demonstrated that short-term metal exposure during larvae phase had positive and negative effects on offspring even after a long recovery.
Collapse
Affiliation(s)
- Mei-Qin Zhuo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Chen
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Lu Gao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hai-Ting Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qing-Ling Zhu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Yifan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
3
|
Jenkins LE, Medeiros LR, Graham ND, Hoffman BM, Cervantes DL, Hatch DR, Nagler JJ, Pierce AL. Feeding after spawning and energy balance at spawning are associated with repeat spawning interval in steelhead trout. Gen Comp Endocrinol 2023; 332:114181. [PMID: 36455641 DOI: 10.1016/j.ygcen.2022.114181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Consecutive and skip repeat spawning (1- or ≥2-year spawning interval) life histories commonly occur in seasonally breeding iteroparous fishes. Spawning interval variation is driven by energetic status and impacts fisheries management. In salmonids, energetic status (either absolute level of energy reserves or the rate of change of energy reserves, i.e., energy balance) is thought to determine reproductive trajectory during a critical period ∼1 year prior to initial spawning. However, information on repeat spawners is lacking. To examine the timing and the aspects of energetic status that regulate repeat spawning interval, female steelhead trout (Oncorhynchus mykiss) were fasted for 10 weeks after spawning and then fed ad libitum and compared to ad libitum fed controls. Plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels were measured to assess long-term energy balance. Plasma estradiol levels showed that some fish in both groups initiated a consecutive spawning cycle. In fasted fish, GH was lower at spawning in consecutive versus skip spawners. In consecutive spawners, GH was higher at spawning in fed versus fasted fish. These results suggest that fish with a less negative energy balance at spawning initiated reproductive development in the absence of feeding, but that feeding during the post-spawning period enabled initiation of reproduction in some fish with a more negative energy balance at spawning. Thus, both energy balance at spawning and feeding after spawning regulated reproductive schedules. These results show that the critical period model of salmonid maturation applies to regulation of repeat spawning, and that the reproductive decision window extends into the first 10 weeks after spawning.
Collapse
Affiliation(s)
- Laura E Jenkins
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Lea R Medeiros
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Neil D Graham
- Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| | - Brian M Hoffman
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Diana L Cervantes
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Douglas R Hatch
- Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| | - James J Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Andrew L Pierce
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA; Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| |
Collapse
|
4
|
Zhang Y, Sun N, Zhang M, Ding Q, Wang Q, Liang Y, He H, Yang Y, Guo C. Effects of Fuyou Formula on GnRH Secretion and Related Gene Expression in Treating Precocious Puberty. Front Pharmacol 2022; 13:852550. [PMID: 35359850 PMCID: PMC8962374 DOI: 10.3389/fphar.2022.852550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The Fuyou (Fy) formula is an in-hospital preparation consisting of traditional Chinese medicine (TCM) that has been used for treating precocious puberty (PP) for more than 20 years. In this study, we aimed to clarify the effect of the Fy formula and its major components on PP. To confirm the effect of the Fy formula on the release of hypothalamic gonadotropin-releasing hormone (GnRH), GT1-7 cells were treated with estrogen to build the model group and subsequently treated with the Fy formula and its major components to explore their effects on the secretion of GnRH. The level of GnRH in GT1-7 cells was determined using enzyme-linked immunosorbent assay. The results illustrated that, compared to the model group, the Fy formula inhibited the release of GnRH. In addition, the expression levels of proteins related to GnRH secretion, including GnRH, gonadotropin-releasing hormone receptor (GnRHR), Kiss-1 metastasis-suppressor (Kiss1), G-protein coupled receptor 54 (GPR54), estrogen receptor α (ERα), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor-1 receptor (IGF-1R), were detected by real-time polymerase chain reaction (RT-qPCR). The results demonstrated that the Fy formula significantly reduced the level of GnRH secretion in the GT1-7 cell lines compared with the model group. Moreover, it significantly downregulated the expression of GnRH, GnRHR, Kiss1, GPR54, ERα, IGF-1, and IGF-1R. In summary, our results indicate that the Fy formula and its major components may inhibit the effects of estrogen, which alleviates PP through transcriptional regulation of target genes.
Collapse
Affiliation(s)
- Yi Zhang
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ning Sun
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Meng Zhang
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qian Ding
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qian Wang
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuguang Liang
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Huan He
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuxin Yang
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Chunyan Guo
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Chunyan Guo,
| |
Collapse
|
5
|
Crespo D, Skaftnesmo KO, Kjærner-Semb E, Yilmaz O, Norberg B, Olausson S, Vogelsang P, Bogerd J, Kleppe L, Edvardsen RB, Andersson E, Wargelius A, Hansen TJ, Fjelldal PG, Schulz RW. Pituitary Gonadotropin Gene Expression During Induced Onset of Postsmolt Maturation in Male Atlantic Salmon: In Vivo and Tissue Culture Studies. Front Endocrinol (Lausanne) 2022; 13:826920. [PMID: 35370944 PMCID: PMC8964956 DOI: 10.3389/fendo.2022.826920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17β-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- *Correspondence: Diego Crespo,
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Ozlem Yilmaz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Sara Olausson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Petra Vogelsang
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rolf B. Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Tom J. Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Rüdiger W. Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Hasegawa R, Miura T, Kaneko N, Kizaki R, Oishi G, Tanaka H, Sato M, Shimizu M. Production of two recombinant insulin-like growth factor binding protein-1 subtypes specific to salmonids. Gen Comp Endocrinol 2020; 299:113606. [PMID: 32890480 DOI: 10.1016/j.ygcen.2020.113606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Salmonids have four subtypes of insulin-like growth factor binding protein (IGFBP)-1, termed -1a1, -1a2, -1b1 and 1b2, owing to teleost- and a lineage-specific whole-genome duplications. We have previously produced recombinant proteins of masu salmon IGFBP-1a1 and -1b2 and conducted functional analysis. To further characterize salmonid-specific IGFBP-1s, we cloned cDNAs encoding mature proteins of IGFBP-1a2 and -1b1 from the liver of masu salmon (Oncorhynchus masou). IGFBP-1a2 and -1b1 shared a 56% amino acid sequence homology whereas their homologies with their counterparts (i.e. -1a1 and -1b2) were 77% and 82%, respectively. We next expressed recombinant masu salmon (rs) IGFBP-1a2 and -1b1 with fusion partners thioredoxin (Trx) and a His-tag using the pET-32a(+) vector system in Escherichia coli. Trx.His.rsIGFBP-1s were detected in the insoluble faction, solubilized in a buffer containing urea, and isolated by Ni-affinity chromatography. They were refolded by dialysis and cleaved from the fusion partners by enterokinase. rsIGFBP-1a2 and -1b1 were purified by reversed-phase high performance liquid chromatography. Purified rsIGFBP-1a2 and -1b1 had the ability to bind digoxigenin-labeled human IGF-I on ligand blotting. We then examined the effects of rsIGFBP-1a1, -1a2, -1b1 and -1b2 in combination with human IGF-I on growth hormone (GH) release from cultured pituitary cells of masu salmon. IGF-I alone reduced GH release while the addition of rsIGFBP-1a1, -1b1 or -1b2, but not rsIGFBP-1a2, diminished the suppressive effect of IGF-I. Addition of rsIGFBP-1s without IGF-I had no effect on GH release. These results show that rsIGFBP-1b1, along with rsIGFBP-1a1 and -1b2, inhibits IGF-I action on the pituitary in masu salmon. The lack of the effect by rsIGFBP-1a2 suggests that salmon IGFBP-1 subtypes underwent subfunction partitioning and have different degrees of IGF-inhibitory action.
Collapse
Affiliation(s)
- Ryuya Hasegawa
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Takuto Miura
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Ryousuke Kizaki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Gakuto Oishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Hanae Tanaka
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Moe Sato
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan; Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan.
| |
Collapse
|
7
|
Lodjak J, Verhulst S. Insulin-like growth factor 1 of wild vertebrates in a life-history context. Mol Cell Endocrinol 2020; 518:110978. [PMID: 32798584 DOI: 10.1016/j.mce.2020.110978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Broad variation in intra- and interspecific life-history traits is largely shaped by resource limitation and the ensuing allocation trade-offs that animals are forced to make. Insulin-like growth factor 1 (IGF-1), a growth-hormone-dependent peptide, may be a key player in the regulation of allocation processes. In laboratory animals, the effects of IGF-1 on growth- and development (positive), reproduction (positive), and longevity (negative) are well established. We here review the evidence on these effects in wild vertebrates, where animals are more likely to face resource limitation and other challenges. We point out the similarities and dissimilarities in patterns of IGF-1 functions obtained in these two different study settings and discuss the knowledge we need to develop a comprehensive picture of the role of IGF-1 in mediating life-history variation of wild vertebrates.
Collapse
Affiliation(s)
- Jaanis Lodjak
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, Tartu, 51014, Estonia; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| |
Collapse
|
8
|
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol 2020; 292:113465. [PMID: 32184073 DOI: 10.1016/j.ygcen.2020.113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are master regulators of the reproductive axis in vertebrates. During early mammalian embryogenesis, GnRH1 neurons emerge in the nasal/olfactory placode. These neurons undertake a long-distance migration, moving from the nose to the preoptic area and hypothalamus. While significant advances have been made in understanding the functional importance of the GnRH1 neurons in reproduction, where GnRH1 neurons come from and how are they specified during early development is still under debate. In addition to the GnRH1 gene, most vertebrate species including humans have one or two additional GnRH genes. Compared to the GnRH1 neurons, much less is known about the development and regulation of GnRH2 neuron and GnRH3 neurons. The objective of this article is to review what is currently known about GnRH neuron development. We will survey various cell autonomous and non-autonomous factors implicated in the regulation of GnRH neuron development. Finally, we will discuss emerging tools and new approaches to resolve open questions pertaining to GnRH neuron development.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - John Allard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
9
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
10
|
Middleton MA, Larsen DA, Dickey JT, Swanson P. Evaluation of endocrine and transcriptomic markers of male maturation in winter-run Steelhead Trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2019; 281:30-40. [PMID: 31102580 DOI: 10.1016/j.ygcen.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/23/2022]
Abstract
Steelhead Trout (Oncorhynchus mykiss) display a varied life-history, including precocious male maturation at age-1 or age-2. In wild fish, precocious male maturation represents an important component of a diverse life-history portfolio. In hatchery programs, however, it is undesirable if rearing practices increase rates of early male maturation and reduce numbers of anadromous male adults. Our study aimed to develop endocrine and molecular markers for identifying males at early stages of maturation in the spring (prior to smolt release) and evaluated the potential use of these markers for quantifying early male maturation rates at a hatchery scale. In a laboratory study, Skookumchuck winter-run Steelhead Trout were reared at a high growth rate in order to increase the occurrence of precocious male maturation. Fish were lethally sub-sampled in February, prior to the time of smolt release; in May, at the time of smolt release; and in September, when 1+ age maturing males that would spawn the following spring were clearly identifiable based solely on gonadosomatic index (GSI). In February and May samples, we measured GSI, plasma 11-ketotestosterone (11KT), mRNAs for pituitary follicle stimulating hormone (fshb) and luteinizing hormone (lhb) beta subunits, and analyzed stage of spermatogenesis by testis histology. Additionally, in May, we measured testis anti-Müllerian hormone (amh) and insulin-like growth factor 3 (igf3) mRNA. Our primary goal was to evaluate the aforementioned maturation indices for their efficacy in forecasting the proportion of fish initiating early male maturation in the spring (approximately 1 year prior to spermiation), compared to the proportion that actually matured. Combining measures of GSI, plasma 11KT, and pituitary fshb and lhb mRNA expression provided a useful, but conservative, estimate of the proportion of males initiating maturation in the spring (21%) compared to the proportion that were ultimately destined to mature (37%) the following spring. These results suggest that maturation may be less synchronous than previously appreciated and some males may have initiated maturation after our census in May.
Collapse
Affiliation(s)
- Mollie A Middleton
- School of Aquatic and Fisheries Science, University of Washington, 1122 NE Boat St, Seattle, WA 98195, USA.
| | - Donald A Larsen
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Jon T Dickey
- School of Aquatic and Fisheries Science, University of Washington, 1122 NE Boat St, Seattle, WA 98195, USA
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
11
|
Schulz RW, Taranger GL, Bogerd J, Nijenhuis W, Norberg B, Male R, Andersson E. Entry into puberty is reflected in changes in hormone production but not in testicular receptor expression in Atlantic salmon (Salmo salar). Reprod Biol Endocrinol 2019; 17:48. [PMID: 31226998 PMCID: PMC6588918 DOI: 10.1186/s12958-019-0493-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Puberty in male Atlantic salmon in aquaculture can start as early as after the first winter in seawater, stunts growth and entails welfare problems due to the maturation-associated loss of osmoregulation capacity in seawater. A better understanding of the regulation of puberty is the basis for developing improved cultivation approaches that avoid these problems. Our aim here was to identify morphological and molecular markers signaling the initiation of, and potential involvement in, testis maturation. METHODS In the first experiment, we monitored for the first time in large Atlantic salmon males several reproductive parameters during 17 months including the first reproductive cycle. Since testicular growth accelerated after the Winter solstice, we focused in the second experiment on the 5 months following the winter solstice, exposing fish from February 1 onwards to the natural photoperiod (NL) or to continuous additional light (LL). RESULTS In the first experiment, testis weight, plasma androgens and pituitary gonadotropin transcript levels increased with the appearance of type B spermatogonia in the testis, but testicular transcript levels for gonadotropin or androgen receptors did not change while being clearly detectable. In the second experiment, all males kept under NL had been recruited into puberty until June. However, recruitment into puberty was blocked in ~ 40% of the males exposed to LL. The first morphological sign of recruitment was an increased proliferation activity of single spermatogonia and Sertoli cells. Irrespective of the photoperiod, this early sign of testis maturation was accompanied by elevated pituitary gnrhr4 and fshb and testicular igf3 transcript levels as well as increased plasma androgen levels. The transition into puberty occurred again with stable testicular gonadotropin and androgen receptor transcript levels. CONCLUSIONS The sensitivity to reproductive hormones is already established before puberty starts and up-regulation of testicular hormone receptor expression is not required to facilitate entry into puberty. The increased availability of receptor ligands, on the other hand, may result from an up-regulation of pituitary Gnrh receptor expression, eventually activating testicular growth factor and sex steroid release and driving germ and Sertoli cell proliferation and differentiation.
Collapse
Affiliation(s)
- Rüdiger W Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Geir Lasse Taranger
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Wouter Nijenhuis
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway
| | - Rune Male
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
12
|
Branco GS, Melo AG, Ricci JMB, Digmayer M, de Jesus LWO, Habibi HR, Nóbrega RH. Effects of GnRH and the dual regulatory actions of GnIH in the pituitary explants and brain slices of Astyanax altiparanae males. Gen Comp Endocrinol 2019; 273:209-217. [PMID: 30098316 DOI: 10.1016/j.ygcen.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/04/2023]
Abstract
The pituitary gonadotropins, Fsh (follicle-stimulating hormone) and Lh (luteinizing hormone), regulate testicular development and functions in all vertebrates. At the pituitary, different signaling systems regulate the synthesis and secretion of the gonadotropins, such as the hypothalamic neuropeptides GnRH (gonadotropin-releasing hormone) and GnIH (gonadotropin-inhibitory hormone). While GnRH exerts stimulatory roles, the actions of GnIH remain controversial for many teleost species. Therefore, the aim of this study was to evaluate the in vitro effects of chicken GnRH2 (cGnRH2) and zebrafish GnIH-3 (zGnIH-3) on the male gonadotropin and GnRH system expression using pituitary explants and brain slices from a neotropical species with economical and ecological relevance, Astyanax altiparanae. Our results showed that in males, cGnRH2 increased fshb and lhb mRNA levels in the pituitary explants. Interestingly, zGnIH-3 has no effect on basal gonadotropin expression, however zGnIH-3 decreased the cGnRH2-induced fshb and lhb transcripts in male pituitary explants. In the male brain slices, zGnIH-3 showed stimulatory effects, increasing gnrh2 mRNA levels. Overall, our results suggested that GnIH seems to have dual regulatory actions on gonadotropin and GnRH2 expression of A. altiparanae males. This study provided basic information on endocrine regulation of A. altiparanae reproduction, and the obtained results will expand our knowledge, improving the reproductive management of this economically important freshwater species.
Collapse
Affiliation(s)
- Giovana Souza Branco
- Aquaculture Center of São Paulo State University (CAUNESP), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, Brazil; Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu Campus, Botucatu, Brazil
| | - Aline Gomes Melo
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu Campus, Botucatu, Brazil
| | - Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu Campus, Botucatu, Brazil
| | - Melanie Digmayer
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu Campus, Botucatu, Brazil
| | - Lázaro W O de Jesus
- Institute of Biological Sciences and Health, Federal University of Alagoas - A. C., Simões Campus, Maceió, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu Campus, Botucatu, Brazil.
| |
Collapse
|
13
|
Gardner LD, Peck KA, Goetz GW, Linbo TL, Cameron J, Scholz NL, Block BA, Incardona JP. Cardiac remodeling in response to embryonic crude oil exposure involves unconventional NKX family members and innate immunity genes. J Exp Biol 2019; 222:jeb.205567. [DOI: 10.1242/jeb.205567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023]
Abstract
Cardiac remodeling results from both physiological and pathological stimuli. Compared to mammals, fish hearts show a broader array of remodeling changes in response to environmental influences, providing exceptional models for dissecting the molecular and cellular bases of cardiac remodeling. We recently characterized a form of pathological remodeling in juvenile pink salmon (Oncorhynchus gorbuscha) in response to crude oil exposure during embryonic cardiogenesis. In the absence of overt pathology (cardiomyocyte death or inflammatory infiltrate), cardiac ventricles in exposed fish showed altered shape, reduced thickness of compact myocardium, and hypertrophic changes in spongy, trabeculated myocardium. Here we used RNA sequencing to characterize molecular pathways underlying these defects. In juvenile ventricular cardiomyocytes, antecedent embryonic oil exposure led to dose-dependent up-regulation of genes involved in innate immunity and two NKX homeobox transcription factors not previously associated with cardiomyocytes, nkx2.3 and nkx3.3. Absent from mammalian genomes, the latter is largely uncharacterized. In zebrafish embryos nkx3.3 demonstrated a potent effect on cardiac morphogenesis, equivalent to nkx2.5, the primary transcription factor associated with ventricular cardiomyocyte identity. The role of nkx3.3 in heart growth is potentially linked to the unique regenerative capacity of fish and amphibians. Moreover, these findings support a cardiomyocyte-intrinsic role for innate immune response genes in pathological hypertrophy. This study demonstrates how an expanding mechanistic understanding of environmental pollution impacts – i.e., the chemical perturbation of biological systems – can ultimately yield new insights into fundamental biological processes.
Collapse
Affiliation(s)
- Luke D. Gardner
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Karen A. Peck
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Giles W. Goetz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Tiffany L. Linbo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - James Cameron
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Nathaniel L. Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Barbara A. Block
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - John P. Incardona
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
14
|
Chang JP, Pemberton JG. Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary - Contributions from teleost model systems. Mol Cell Endocrinol 2018; 463:142-167. [PMID: 28587765 DOI: 10.1016/j.mce.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Tanaka H, Oishi G, Nakano Y, Mizuta H, Nagano Y, Hiramatsu N, Ando H, Shimizu M. Production of recombinant salmon insulin-like growth factor binding protein-1 subtypes. Gen Comp Endocrinol 2018; 257:184-191. [PMID: 28666856 DOI: 10.1016/j.ygcen.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor (IGF)-I is a growth promoting hormone that exerts its actions through endocrine, paracrine and autocrine modes. Local IGF-I is essential for normal growth, whereas circulating IGF-I plays a crucial role in regulating the production and secretion of growth hormone (GH) by the pituitary gland. These actions of IGF-I are modulated by six insulin-like growth factor binding proteins (IGFBPs). In teleosts, two subtypes of each IGFBP are present due to an extra round of whole-genome duplication. IGFBP-1 is generally inhibitory to IGF-I action under catabolic conditions such as fasting and stress. In salmon, IGFBP-1a and -1b are two of three major circulating IGFBPs and assumed to affect growth through modulating IGF-I action. However, exact functions of salmon IGFBP-1 subtypes on growth regulation are not known due to the lack of purified or recombinant protein. We expressed recombinant salmon (rs) IGFBP-1a and -1b with a fusion protein (thioredoxin, Trx) and a His-tag using the pET-32a(+) vector expression system in Escherichia coli. Trx.His.rsIGFBP-1s were isolated by Ni-affinity chromatography, enzymatically cleaved by enterokinase to remove the fusion partners and further purified by reversed-phase HPLC. We next examined effects of rsIGFBP-1a and -1b in combination with human IGF-I on GH release from cultured masu salmon (Oncorhynchus masou) pituitary cells. Unexpectedly, IGF-I increased GH release and an addition of rsIGFBP-1a, but not rsIGFBP-1b, restored GH levels. The results suggest that IGFBP-1a can inhibit IGF-I action on the pituitary in masu salmon. Availability of recombinant salmon IGFBP-1s should facilitate further functional analyses and assay development.
Collapse
Affiliation(s)
- Hanae Tanaka
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Gakuto Oishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yusuke Nakano
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroko Mizuta
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yuta Nagano
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Naoshi Hiramatsu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Hironori Ando
- Sado Marine Biological Station, Faculty of Science, Niigata University, 87 Tassha, Sado 952-2135, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
16
|
Chen D, Yang W, Han S, Yang H, Cen X, Liu J, Zhang L, Zhang W. A Type IIb, but Not Type IIa, GnRH Receptor Mediates GnRH-Induced Release of Growth Hormone in the Ricefield Eel. Front Endocrinol (Lausanne) 2018; 9:721. [PMID: 30555419 PMCID: PMC6283897 DOI: 10.3389/fendo.2018.00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple gonadotropin-releasing hormone receptors (GnRHRs) are present in vertebrates, but their differential physiological relevances remain to be clarified. In the present study, we identified three GnRH ligands GnRH1 (pjGnRH), GnRH2 (cGnRH-II), and GnRH3 (sGnRH) from the brain, and two GnRH receptors GnRHR1 (GnRHR IIa) and GnRHR2 (GnRHR IIb) from the pituitary of the ricefield eel Monopterus albus. GnRH1 and GnRH3 but not GnRH2 immunoreactive neurons were detected in the pre-optic area, hypothalamus, and pituitary, suggesting that GnRH1 and GnRH3 may exert hypophysiotropic roles in ricefield eels. gnrhr1 mRNA was mainly detected in the pituitary, whereas gnrhr2 mRNA broadly in tissues of both females and males. In the pituitary, GnRHR1 and GnRHR2 immunoreactive cells were differentially distributed, with GnRHR1 immunoreactive cells mainly in peripheral areas of the adenohypophysis whereas GnRHR2 immunoreactive cells in the multicellular layers of adenohypophysis adjacent to the neurohypophysis. Dual-label fluorescent immunostaining showed that GnRHR2 but not GnRHR1 was localized to somatotropes, and all somatotropes are GnRHR2-positive cells and vice versa at all stages examined. GnRH1 and GnRH3 were shown to stimulate growth hormone (Gh) release from primary culture of pituitary cells, and to decrease Gh contents in the pituitary of ricefield eels 12 h post injection. GnRH1 and GnRH3 stimulated Gh release probably via PLC/IP3/PKC and Ca2+ pathways. These results, as a whole, suggested that GnRHs may bind to GnRHR2 but not GnRHR1 to trigger Gh release in ricefield eels, and provided novel information on differential roles of multiple GnRH receptors in vertebrates.
Collapse
Affiliation(s)
- Dong Chen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiying Han
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huiyi Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Cen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Lihong Zhang
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Weimin Zhang
| |
Collapse
|
17
|
Harding LB, Schultz IR, da Silva DAM, Ylitalo GM, Ragsdale D, Harris SI, Bailey S, Pepich BV, Swanson P. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:118-31. [PMID: 27475653 DOI: 10.1016/j.aquatox.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023]
Abstract
It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish.
Collapse
Affiliation(s)
- Louisa B Harding
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Irvin R Schultz
- Pacific Northwest National Laboratory -Marine Sciences Laboratory, 1529 West Sequim Bay Road, Sequim, WA 98382, USA
| | - Denis A M da Silva
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Dave Ragsdale
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Stephanie I Harris
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Stephanie Bailey
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Barry V Pepich
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 98164, USA.
| |
Collapse
|
18
|
Gillies K, Krone SM, Nagler JJ, Schultz IR. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis. PLoS Comput Biol 2016; 12:e1004874. [PMID: 27096735 PMCID: PMC4838294 DOI: 10.1371/journal.pcbi.1004874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. Improving the ability to estimate reproductive performance in fish is important, due to the growth of the aquaculture industry and the need to maintain adequate broodstock and concerns over the effects of anthropogenic stressors on feral fish populations. We present here a quantitative, mathematical model of the female rainbow trout reproductive cycle. We show how the model is able to accurately describe experimentally measured data associated with pituitary, ovarian and liver reproductive performance. We also use the model to describe similar data sets collected in rainbow trout by other researchers. An important value of quantitative biological models is the ability to simulate various physiological conditions, real or hypothetical. We demonstrate this by predicting the effects of exposure to an endocrine disruptor on oocyte growth. The need to limit cost and animal usage will encourage future experimental studies to use in vitro methods. The model presented here can assist with the extrapolation of in vitro effects to the whole fish.
Collapse
Affiliation(s)
- Kendall Gillies
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
| | - Stephen M. Krone
- University of Idaho, Department of Mathematics, Moscow, Idaho, United States of America
| | - James J. Nagler
- University of Idaho, Department of Biological Sciences and Center for Reproductive Biology, Moscow, Idaho, United States of America
| | - Irvin R. Schultz
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
Pérez L, Ortiz-Delgado JB, Manchado M. Molecular characterization and transcriptional regulation by GH and GnRH of insulin-like growth factors I and II in white seabream (Diplodus sargus). Gene 2015; 578:251-62. [PMID: 26706220 DOI: 10.1016/j.gene.2015.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 12/14/2015] [Indexed: 01/22/2023]
Abstract
Insulin-like growth factors (IGF) I and II are key regulators of development, growth and reproduction in fish. In the present study we have cloned and characterized the cDNA and genomic sequences of IGF-I and IGF-II in the white seabream (Diplodus sargus). The igf1 and igf2 genes were encoded putatively by five and four exons, respectively. Moreover, the 5'-flanking upstream region of the igf1 gene contained highly conserved regulatory elements including HNF-1α, HNF-3β, CCAAT/enhancer binding protein (C/EBP) and the TATA box. The full-length cDNAs were 1225 and 1666 nucleotides long for igf1 and igf2, respectively. Sequence analysis identified the A-E domains as well as three spliced forms involving the E domain in exons 3-5. ORF identities were higher than 83% with respect to other fish orthologs. Expression analysis demonstrated that igf1 and its spliced forms were mostly expressed in liver, whereas the igf2 was expressed ubiquitously not detecting significant differences among the ten tissues analyzed. Hormonal treatments using the porcine GH demonstrated a sharply increase of both igf1 and igf2 mRNA levels in liver and gills at 30 min and 1h after injection. In the gonads, igf1 mRNA levels increased steadily with testis and ovary maturation. In contrast, igf2 transcript amounts were higher in immature stages (S1-S2). Hormonal treatments using GH and GnRH demonstrated that igf1 and igf2 expression were upregulated in the gonads. Overall, these data demonstrate that IGF-I and IGF-II are locally expressed in several tissues and regulated by key hormones of the somatotropic and gonadotropic axes.
Collapse
Affiliation(s)
- Laura Pérez
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Juan Bosco Ortiz-Delgado
- Institute of Marine Science of Andalusia (ICMAN). CSIC, Av Republica Saharaui, 2, 11510 Puerto Real, Cádiz, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
20
|
Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci Rep 2015; 5:13499. [PMID: 26345607 PMCID: PMC4561892 DOI: 10.1038/srep13499] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022] Open
Abstract
The 1989 Exxon Valdez disaster exposed embryos of pink salmon and Pacific herring to crude oil in shoreline spawning habitats throughout Prince William Sound, Alaska. The herring fishery collapsed four years later. The role of the spill, if any, in this decline remains one of the most controversial unanswered questions in modern natural resource injury assessment. Crude oil disrupts excitation-contraction coupling in fish heart muscle cells, and we show here that salmon and herring exposed as embryos to trace levels of crude oil grow into juveniles with abnormal hearts and reduced cardiorespiratory function, the latter a key determinant of individual survival and population recruitment. Oil exposure during cardiogenesis led to specific defects in the outflow tract and compact myocardium, and a hypertrophic response in spongy myocardium, evident in juveniles 7 to 9 months after exposure. The thresholds for developmental cardiotoxicity were remarkably low, suggesting the scale of the Exxon Valdez impact in shoreline spawning habitats was much greater than previously appreciated. Moreover, an irreversible loss of cardiac fitness and consequent increases in delayed mortality in oil-exposed cohorts may have been important contributors to the delayed decline of pink salmon and herring stocks in Prince William Sound.
Collapse
|
21
|
Pradhan A, Olsson PE. Zebrafish sexual behavior: role of sex steroid hormones and prostaglandins. Behav Brain Funct 2015; 11:23. [PMID: 26385780 PMCID: PMC4575480 DOI: 10.1186/s12993-015-0068-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/25/2015] [Indexed: 12/11/2022] Open
Abstract
Background Mating behavior differ between sexes and involves gonadal hormones and possibly sexually dimorphic gene expression in the brain. Sex steroids and prostaglandin E2 (PGE2) have been shown to regulate mammalian sexual behavior. The present study was aimed at determining whether exposure to sex steroids and prostaglandins could alter zebrafish sexual mating behavior. Methods Mating behavior and successful spawning was recorded following exposure to 17β-estradiol (E2), 11-ketotestosterone (11-KT), prostaglandin D2 (PGD2) and PGE2 via the water. qRT-PCR was used to analyze transcript levels in the forebrain, midbrain, and hindbrain of male and female zebrafish and compared to animals exposed to E2 via the water. Results Exposure of zebrafish to sex hormones resulted in alterations in behavior and spawning when male fish were exposed to E2 and female fish were exposed to 11-KT. Exposure to PGD2, and PGE2 did not alter mating behavior or spawning success. Determination of gene expression patterns of selected genes from three brain regions using qRT-PCR analysis demonstrated that the three brain regions differed in gene expression pattern and that there were differences between the sexes. In addition, E2 exposure also resulted in altered gene transcription profiles of several genes. Conclusions Exposure to sex hormones, but not prostaglandins altered mating behavior in zebrafish. The expression patterns of the studied genes indicate that there are large regional and gender-based differences in gene expression and that E2 treatment alter the gene expression pattern in all regions of the brain. Electronic supplementary material The online version of this article (doi:10.1186/s12993-015-0068-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
22
|
Melo MC, Andersson E, Fjelldal PG, Bogerd J, França LR, Taranger GL, Schulz RW. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). J Endocrinol 2014; 220:319-32. [PMID: 24363452 DOI: 10.1530/joe-13-0240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Atlantic salmon shows substantial life cycle plasticity, which also applies to the timing of puberty. While it is characterized by the activation of the brain-pituitary-gonad axis, many morphophysiological aspects of puberty and the influence of environmental conditions, such as water salinity, are not well understood in fish. Here, 12-month-old Atlantic salmon coming from an out-of-season smoltification regime in December were exposed to freshwater (FW) or seawater (SW) at 16 °C to stimulate puberty under a 24-h constant light (LL) or 12 h light:12 h darkness (LD) photoperiod. These four treatment groups (FWLL, SWLL, FWLD, and SWLD) were studied from January to March. Next to 11-ketotestosterone (11-KT) plasma levels, the expression of pituitary genes (gnrhr4, fshb, and lhb) and spermatogenesis was quantified. When spermatogonial proliferation started, fshb mRNA levels increased steeply and began to decrease when spermatogonial mitosis approached completion and most germ cells had reached meiotic or post-meiotic stages. Conversely, lhb mRNA levels increased progressively during spermatogenesis. Most males in all treatment groups matured, but exposure to SW resulted in the strongest stimulation of the onset of spermatogenesis and elevation of pituitary gnrhr4 and fshb mRNA levels. Later on, the LD photoperiod accelerated, irrespective of the salinity, the completion of spermatogenesis, associated with higher lhb mRNA and 11-KT plasma levels than in the LL groups. We find that both salinity and photoperiod modulated different aspects of spermatogenesis, and resulted in a differential activation of pituitary and testis functions; SW stimulating the onset and the shorter photoperiod the completion of spermatogenesis.
Collapse
Affiliation(s)
- Michelle C Melo
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil Reproductive Biology Group, Division Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Kruyt Building, Room W-606, Padualaan 8, NL-3584 CH Utrecht, The Netherlands Institute of Marine Research, PO Box 1870, Nordnes, 5817 Bergen, Norway Institute of Marine Research, Matre Research Station, 5984 Matredal, Norway
| | | | | | | | | | | | | |
Collapse
|
23
|
Andersson E, Schulz RW, Male R, Bogerd J, Patiña D, Benedet S, Norberg B, Taranger GL. Pituitary gonadotropin and ovarian gonadotropin receptor transcript levels: seasonal and photoperiod-induced changes in the reproductive physiology of female Atlantic salmon (Salmo salar). Gen Comp Endocrinol 2013; 191:247-58. [PMID: 23856539 DOI: 10.1016/j.ygcen.2013.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/27/2022]
Abstract
In female Atlantic salmon kept at normal light conditions, pituitary follicle-stimulating hormone beta (fshb) transcript levels were transiently elevated one year before spawning, re-increased in February, and remained high during spawning in November and in post-ovulatory fish in December. The first increase in plasma 17b-estradiol (E2), testosterone (T) and gonadosomatic index (GSI) was recorded in January; E2 rose up to one month prior to ovulation, while T and GSI kept increasing until ovulation. Pituitary luteinizing hormone beta (lhb) transcript levels peaked at the time of ovulation. Except for transient changes before and after ovulation, ovarian follicle stimulating hormone receptor (fshr) transcript amounts were relatively stable at a high level. By contrast, luteinizing hormone receptor (lhcgr) transcript levels started out low and increased in parallel to GSI and plasma E2 levels. Exposure to continuous light (LL) induced a bimodal response where maturation was accelerated or arrested. The LL-arrested females showed previtellogenic oil droplet stage follicles or primary yolk follicles only, and fshb and E2 plasma levels collapsed while fshr increased. The LL-accelerated females showed elevated lhb transcript levels and slightly elevated E2 levels during early vitellogenesis, and significantly elevated lhcgr E2 and GSI levels in late vitellogenesis. We conclude that Fsh-dependent signaling stimulates recruitment into and the sustained development through vitellogenesis. Up-regulation of lhcgr gene expression during vitellogenesis may reflect an estrogenic effect, while elevated fshr gene expression following ovulation or during LL-induced arrestment may be associated with ovarian tissue remodeling processes.
Collapse
Affiliation(s)
- Eva Andersson
- Institute of Marine Research, Research Group Reproduction and Growth in Fish, PO Box 1870 Nordnes, N-5817 Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Metzger DC, Luckenbach JA, Dickey JT, Beckman BR. Development of a multiplex gene expression assay for components of the endocrine growth axis in coho salmon. Gen Comp Endocrinol 2013; 189:134-40. [PMID: 23665103 DOI: 10.1016/j.ygcen.2013.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 02/05/2023]
Abstract
This study explores the efficacy of the Quantigene plex (QGP) technology for measuring a panel of endocrine growth-related transcripts in coho salmon, Oncorhynchus kisutch. The QGP technology permits the simultaneous quantification of multiple targeted mRNAs within a single tissue homogenate using sequence-specific probes and requires no reverse transcription (RT) or amplification as is required for RT-quantitative PCR (RT-qPCR). Using liver homogenates from coho salmon under fed and fasted conditions, we compared the detectable fold differences of steady-state mRNA levels between the QGP and probe-based RT-qPCR assays for insulin-like growth factors (igf1 and igf2), insulin-like growth factor binding proteins (igfbp1b, igfbp2a, and igfbp2b), somatolactin receptor (slr), and growth hormone receptors (ghr1 and ghr2). Significant, positive correlations for all genes between the two assays were found. In addition, the relatively low variance of results from the QGP assay suggests that this is a suitable method for a comprehensive analysis of endocrine growth-related transcripts and could potentially be used to develop assays for other gene networks in teleosts.
Collapse
Affiliation(s)
- David C Metzger
- Environmental Physiology Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | | | | | | |
Collapse
|
25
|
Kroupova H, Trubiroha A, Wuertz S, Frank SN, Sures B, Kloas W. Nutritional status and gene expression along the somatotropic axis in roach (Rutilus rutilus) infected with the tapeworm Ligula intestinalis. Gen Comp Endocrinol 2012; 177:270-7. [PMID: 22542897 DOI: 10.1016/j.ygcen.2012.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Abstract
The tapeworm Ligula intestinalis inhibits gametogenesis of its fish host, the roach (Rutilus rutilus). We investigated whether L. intestinalis infection makes significant demands on nutritional resources and consequently manipulates the endocrine somatotropic axis of roach. Two groups of naturally infected and uninfected roach were studied: a field group (natural feeding) and a laboratory group (ad libitum food supply). In females, no significant impact of parasitization on storage substrates (glycogen, lipids, and protein) was detected, whereas in males, either lipid content of the liver (field group) or lipid of the muscle and glycogen of the liver (laboratory group) were slightly decreased. Except for the females of the field group, higher mRNA expression of growth hormone (gh) in the pituitary of infected fish was observed. Furthermore, the expression of hypophyseal somatolactin α and β (slα, slβ) was up-regulated in infected females of the field and laboratory group, respectively. In liver and muscle, mRNA expression of insulin-like growth factors (igf1, igf2) and igf receptor (igfr) remained either unchanged or were up-regulated with infection. Parasitization showed inconsistent effects on gh receptor 1 (ghr1) expression in liver and muscle, whereas ghr2 mRNA was mostly not influenced by infection. In general, the expression profile of genes involved in the somatotropic axis as well as the content of storage substances in infected roach did not resemble that of food-deprived fish either under natural or ad libitum feeding. In conclusion, the present study does not indicate starvation of L. intestinalis infected roach, and it is suggested that the inhibition of reproduction attenuated the nutritional demand of parasitization.
Collapse
Affiliation(s)
- H Kroupova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-38925 Vodnany, Czech Republic.
| | | | | | | | | | | |
Collapse
|
26
|
Schulz RW, van Dijk W, Chaves-Pozo E, García-López A, de França LR, Bogerd J. Sertoli cell proliferation in the adult testis is induced by unilateral gonadectomy in African catfish. Gen Comp Endocrinol 2012; 177:160-7. [PMID: 22465554 DOI: 10.1016/j.ygcen.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 11/21/2022]
Abstract
Survival and development of male germ cells depends on their close contact with Sertoli cells. In the cystic spermatogenesis found in fish, one germ cell clone, initially a single undifferentiated spermatogonium type A, is enclosed by and accompanied through spermatogenesis by a group of Sertoli cells. Previous work showed that after forming such spermatogenic cysts, Sertoli cells proliferated mainly during the mitotic expansion of the spermatogonial clone in the cyst. Here, we used unilateral gonadectomy (ULG) as experimental model to study Sertoli cell proliferation at the start of cyst development in adult African catfish testis. Four days after surgery, we observed a particularly strong increase in the number of mitotic Sertoli cells along with a significant increase in the number of mitotic single type A spermatogonia. Proliferation of pairs of spermatogonia or of larger germ cell clones, however, did not change. At the same time, pituitary transcript levels of the three gonadotropin-subunits (cga, glycoprotein hormones, alpha polypeptide; fshb, follicle stimulating hormone, beta polypeptide; lhb, luteinizing hormone, beta polypeptide) were not different between sham-operated and ULG males. However, expression of the gonadotropin-releasing hormone receptor gene gnrhr1 was significantly reduced after ULG, and Lh plasma levels were slightly elevated. In the testis remaining after ULG, Fsh receptor (fshr) mRNA levels increased significantly but luteinizing hormone/choriogonadotropin receptor (lhcgr) mRNA levels did not change. Circulating androgen levels did not differ between groups, but testicular androgen release increased significantly 2- to 3-fold after ULG. Considering the strong steroidogenic potency of Fsh and the expression of the fshr gene by Leydig cells in catfish, we explain the absence of an effect of ULG on circulating androgen levels by an Fshr-mediated, compensatory increase in the steroid production of the remaining testis, perhaps supported in addition by the increased Lh plasma levels. Since Fsh is a major stimulator of mammalian Sertoli cell proliferation, we propose that ULG-induced activation of the Fsh signalling system also promoted Sertoli cell proliferation and - possibly as a consequence of that - proliferation of single type A spermatogonia, providing the basis for an increased spermatogenic capacity.
Collapse
Affiliation(s)
- Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Metzger DC, Luckenbach JA, Shimizu M, Beckman BR. Normalizing for biology: accounting for technical and biological variation in levels of reference gene and insulin-like growth factor 1 (igf1) transcripts in fish livers. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:7-14. [PMID: 22546511 DOI: 10.1016/j.cbpa.2012.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/08/2012] [Accepted: 04/09/2012] [Indexed: 12/14/2022]
Abstract
Feeding, fasting and re-feeding is a common experimental paradigm for studying growth endocrinology. Herein we demonstrate dynamic changes in the livers of coho salmon under these conditions and how changes in liver composition can influence quantification and interpretation of liver gene expression data. A three-week fast resulted in decreases in hepatosomatic index (liver size), liver glycogen content, and liver DNA concentration. In addition, significant differences were found in liver transcript levels from fed and fasted fish for the reference genes, arp and ef1a, when these were normalized to total RNA. We took the additional step of normalizing reference gene transcript levels to the liver homogenate RNA/DNA ratio to account for differences in RNA yield/cell and the number of cells sampled, normalizing to transcript number per cell rather than transcript number per unit RNA. After this additional step no significant differences in liver transcript levels of reference genes were found. The significance of these results was illustrated by normalizing liver transcript levels of insulin-like growth factor 1 (igf1) to ef1a transcript levels or ef1a transcript levels by RNA/DNA. The different normalization strategies resulted in differing patterns of change in igf1 transcript levels between fed and fasted fish. The novelty of this work rests in a two-step normalization process, attempting to account for both 1) technical errors in reverse transcription and qPCR reactions, and 2) biological variance in liver samples.
Collapse
Affiliation(s)
- David C Metzger
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | | | | | | |
Collapse
|
28
|
Chang JP, Habibi HR, Yu Y, Moussavi M, Grey CL, Pemberton JG. Calcium and other signalling pathways in neuroendocrine regulation of somatotroph functions. Cell Calcium 2011; 51:240-52. [PMID: 22137240 DOI: 10.1016/j.ceca.2011.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022]
Abstract
Relative to mammals, the neuroendocrine control of pituitary growth hormone (GH) secretion and synthesis in teleost fish involves numerous stimulatory and inhibitory regulators, many of which are delivered to the somatotrophs via direct innervation. Among teleosts, how multifactorial regulation of somatotroph functions are mediated at the level of post-receptor signalling is best characterized in goldfish. Supplemented with recent findings, this review focuses on the known intracellular signal transduction mechanisms mediating the ligand- and function-specific actions in multifactorial control of GH release and synthesis, as well as basal GH secretion, in goldfish somatotrophs. These include membrane voltage-sensitive ion channels, Na(+)/H(+) antiport, Ca(2+) signalling, multiple pharmacologically distinct intracellular Ca(2+) stores, cAMP/PKA, PKC, nitric oxide, cGMP, MEK/ERK and PI3K. Signalling pathways mediating the major neuroendocrine regulators of mammalian somatotrophs, as well as those in other major teleost study model systems are also briefly highlighted. Interestingly, unlike mammals, spontaneous action potential firings are not observed in goldfish somatotrophs in culture. Furthermore, three goldfish brain somatostatin forms directly affect pituitary GH secretion via ligand-specific actions on membrane ion channels and intracellular Ca(2+) levels, as well as exert isoform-specific action on basal and stimulated GH mRNA expression, suggesting the importance of somatostatins other than somatostatin-14.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Pierce AL, Breves JP, Moriyama S, Hirano T, Grau EG. Differential regulation of Igf1 and Igf2 mRNA levels in tilapia hepatocytes: effects of insulin and cortisol on GH sensitivity. J Endocrinol 2011; 211:201-10. [PMID: 21803836 DOI: 10.1530/joe-10-0456] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Igf1 and Igf2 stimulate growth and development of vertebrates. In mammals, liver-derived endocrine Igf1 mediates the growth promoting effects of GH during postnatal life, whereas Igf2 stimulates placental and fetal growth and is not regulated by GH. Insulin enhances Igf1 production by the mammalian liver directly, and by increasing hepatocyte sensitivity to GH. We examined the regulation of igf1 and igf2 mRNA levels by GH, insulin, and cortisol, and the effects of insulin and cortisol on GH sensitivity in primary cultured hepatocytes of tilapia, a cichlid teleost. GH increased mRNA levels of both igf1 and igf2 in a concentration-related and biphasic manner over the physiological range, with a greater effect on igf2 mRNA level. Insulin increased basal igf2 mRNA level, and strongly increased GH-stimulated igf2 mRNA level, but slightly reduced basal igf1 mRNA level and did not affect GH-stimulated igf1 mRNA level. Cortisol inhibited GH stimulation of igf1, but increased GH stimulation of igf2 mRNA level. The synergistic effect of insulin and GH on igf2 mRNA level was confirmed in vivo. These results indicate that insulin and cortisol differentially modulate the response of igf1 and igf2 mRNA to GH in tilapia hepatocytes, and suggest that the regulation of liver Igf2 production differs between fish and mammals. Regulation of liver Igf2 production in fish appears to be similar to regulation of liver Igf1 production in mammals.
Collapse
Affiliation(s)
- Andrew L Pierce
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, USA
| | | | | | | | | |
Collapse
|
30
|
Regulation of temporal and spatial organization of newborn GnRH neurons by IGF signaling in zebrafish. J Neurosci 2011; 31:11814-24. [PMID: 21849542 DOI: 10.1523/jneurosci.6804-10.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
When and how newborn neurons are organized to form a functional network in the developing brain remains poorly understood. An attractive model is the gonadotropin-releasing hormone (GnRH) neuron system, master regulator of the reproductive axis. Here we show that blockage of IGF signaling, a central growth-promoting signaling pathway, by the induced expression of a dominant-negative form of IGF1 receptor (IGF1R) or specific IGF1R inhibitors delayed the emergence of GnRH2 neurons in the midbrain and GnRH3 neurons in the olfactory bulb region. Blockage of IGF signaling also resulted in an abnormal appearance of GnRH3 neurons outside of the olfactory bulb region, although it did not change the locations of other olfactory neurons, GnRH2 neurons, or brain patterning. This IGF action is developmental stage-dependent because the blockade of IGF signaling in advanced embryos had no such effect. An application of phosphatidylinositol 3-kinase (PI3K) inhibitors phenocopied the IGF signaling deficient embryos, whereas the MAPK inhibitors had no effect, suggesting that this IGF action is mediated through the PI3K pathway. Real-time in vivo imaging studies revealed that the ectopic GnRH3 neurons emerged at the same time as the normal GnRH3 neurons in IGF-deficient embryos. Further experiments suggest that IGF signaling affects the spatial distribution of newborn GnRH3 neurons by influencing neural crest cell migration and/or differentiation. These results suggest that the IGF-IGF1R-PI3K pathway regulates the precise temporal and spatial organization of GnRH neurons in zebrafish and provides new insights into the regulation of GnRH neuron development.
Collapse
|
31
|
Yamamoto Y, Adam Luckenbach J, Goetz FW, Young G, Swanson P. Disruption of the salmon reproductive endocrine axis through prolonged nutritional stress: changes in circulating hormone levels and transcripts for ovarian genes involved in steroidogenesis and apoptosis. Gen Comp Endocrinol 2011; 172:331-43. [PMID: 21447335 DOI: 10.1016/j.ygcen.2011.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/03/2011] [Accepted: 03/19/2011] [Indexed: 01/12/2023]
Abstract
Mechanisms regulating the normal progression of ovarian follicular growth versus onset of atresia in fishes are poorly understood. To gain a better understanding of these processes, we exposed immature female coho salmon (Oncorhynchus kisutch) to prolonged fasting to induce follicular atresia and monitored body growth, development of the ovarian follicles, changes in reproductive hormones, and transcripts for ovarian genes. Prolonged fasting reduced body and ovary weight and increased the appearance of atretic follicles relative to normally fed controls. Endocrine analyses showed that fasting reduced plasma insulin-like growth factor 1 (IGF1), estradiol-17β (E2), and pituitary, but not plasma, levels of follicle-stimulating hormone (FSH). Transcripts for ovarian fsh receptor (fshr) and steroidogenesis-related genes, such as steroidogenic acute regulatory protein (star), 3β-hydroxysteroid dehydrogenase (hsd3b), and P450 aromatase (cyp19a1a) were significantly lower in fasted fish. Ovarian expression of apoptosis-related genes, such as Fas-associated death domain (fadd), caspase 8 (casp8), caspase 3 (casp3), and caspase 9 (casp9) were significantly elevated in fasted fish compared to fed fish, indicating that apoptosis is involved in the process of atresia in this species. Interestingly, some genes such as fadd, casp8, casp3, and hsd3b, were differentially expressed prior to increases in the number of atretic follicles and reductions in hormone levels induced by fasting, and may therefore have potential as early indicators of atresia. Together these results suggest that prolonged nutritional stress may disrupt the reproductive system and induce follicular atresia in part via reductions in ovarian IGF and FSH signaling, and downstream effects on steroidogenesis-related genes and E2 production.
Collapse
Affiliation(s)
- Yoji Yamamoto
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|