1
|
A high-throughput real-time PCR tissue-of-origin test to distinguish blood from lymphoblastoid cell line DNA for (epi)genomic studies. Sci Rep 2022; 12:4684. [PMID: 35304543 PMCID: PMC8933453 DOI: 10.1038/s41598-022-08663-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphoblastoid cell lines (LCLs) derive from blood infected in vitro by Epstein–Barr virus and were used in several genetic, transcriptomic and epigenomic studies. Although few changes were shown between LCL and blood genotypes (SNPs) validating their use in genetics, more were highlighted for other genomic features and/or in their transcriptome and epigenome. This could render them less appropriate for these studies, notably when blood DNA could still be available. Here we developed a simple, high-throughput and cost-effective real-time PCR approach allowing to distinguish blood from LCL DNA samples based on the presence of EBV relative load and rearranged T-cell receptors γ and β. Our approach was able to achieve 98.5% sensitivity and 100% specificity on DNA of known origin (458 blood and 316 LCL DNA). It was further applied to 1957 DNA samples from the CEPH Aging cohort comprising DNA of uncertain origin, identifying 784 blood and 1016 LCL DNA. A subset of these DNA was further analyzed with an epigenetic clock indicating that DNA extracted from blood should be preferred to LCL for DNA methylation-based age prediction analysis. Our approach could thereby be a powerful tool to ascertain the origin of DNA in old collections prior to (epi)genomic studies.
Collapse
|
2
|
Ishida N, Aoki Y, Katsuoka F, Nishijima I, Nobukuni T, Anzawa H, Bin L, Tsuda M, Kumada K, Kudo H, Terakawa T, Otsuki A, Kinoshita K, Yamashita R, Minegishi N, Yamamoto M. Landscape of electrophilic and inflammatory stress-mediated gene regulation in human lymphoblastoid cell lines. Free Radic Biol Med 2020; 161:71-83. [PMID: 33011271 DOI: 10.1016/j.freeradbiomed.2020.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
Human lymphoblastoid cell lines (LCLs) are valuable for the functional analyses of diseases. We have established more than 4200 LCLs as one of the resources of an integrated biobank. While oxidative and inflammatory stresses play critical roles in the onset and progression of various diseases, the responsiveness of LCLs, especially that of biobank-made LCLs, to these stresses has not been established. To address how LCLs respond to these stresses, in this study, we performed RNA sequencing of eleven human LCLs that were treated with an electrophile, diethyl maleate (DEM) and/or an inflammatory mediator, lipopolysaccharide (LPS). We found that over two thousand genes, including those regulated by a master regulator of the electrophilic/oxidative stress response, NRF2, were upregulated in LCLs treated with DEM, while approximately three hundred genes, including inflammation-related genes, were upregulated in LPS-treated LCLs. Of the LPS-induced genes, a subset of proinflammatory genes was repressed by DEM, supporting the notion that DEM suppresses the expression of proinflammatory genes through NRF2 activation. Conversely, a part of DEM-induced gene was repressed by LPS, suggesting reciprocal interference between electrophilic and inflammatory stress-mediated pathways. These data clearly demonstrate that LCLs maintain, by and large, responsive pathways against oxidative and inflammatory stresses and further endorse the usefulness of the LCL supply from the biobank.
Collapse
Affiliation(s)
- Noriko Ishida
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan; Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Ichiko Nishijima
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Takahiro Nobukuni
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Hayato Anzawa
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Li Bin
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan; Advanced Research Center for Innovations in Next Generation Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Miyuki Tsuda
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuki Kumada
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Hisaaki Kudo
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Takahiro Terakawa
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Akihito Otsuki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan; Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Riu Yamashita
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan; Division of Translational Informatics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Naoko Minegishi
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan; Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
3
|
Daca-Roszak P, Jaksik R, Paczkowska J, Witt M, Ziętkiewicz E. Discrimination between human populations using a small number of differentially methylated CpG sites: a preliminary study using lymphoblastoid cell lines and peripheral blood samples of European and Chinese origin. BMC Genomics 2020; 21:706. [PMID: 33045984 PMCID: PMC7549247 DOI: 10.1186/s12864-020-07092-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background Epigenetics is one of the factors shaping natural variability observed among human populations. A small proportion of heritable inter-population differences are observed in the context of both the genome-wide methylation level and the methylation status of individual CpG sites. It has been demonstrated that a limited number of carefully selected differentially methylated sites may allow discrimination between main human populations. However, most of the few published results have been performed exclusively on B-lymphocyte cell lines. Results The goal of our study was to identify a set of CpG sites sufficient to discriminate between populations of European and Chinese ancestry based on the difference in the DNA methylation profile not only in cell lines but also in primary cell samples. The preliminary selection of CpG sites differentially methylated in these two populations (pop-CpGs) was based on the analysis of two groups of commercially available ethnically-specific B-lymphocyte cell lines, performed using Illumina Infinium Human Methylation 450 BeadChip Array. A subset of 10 pop-CpGs characterized by the best differentiating criteria (|Mdiff| > 1, q < 0.05; lack of the confounding genomic features), and 10 additional CpGs in their immediate vicinity, were further tested using pyrosequencing technology in both B-lymphocyte cell lines and in the primary samples of the peripheral blood representing two analyzed populations. To assess the population-discriminating potential of the selected set of CpGs (further referred to as “composite pop (CEU-CHB)-CpG marker”), three classification methods were applied. The predictive ability of the composite 8-site pop (CEU-CHB)-CpG marker was assessed using 10-fold cross-validation method on two independent sets of samples. Conclusions Our results showed that less than 10 pop-CpG sites may distinguish populations of European and Chinese ancestry; importantly, this small composite pop-CpG marker performs well in both lymphoblastoid cell lines and in non-homogenous blood samples regardless of a gender.
Collapse
Affiliation(s)
- Patrycja Daca-Roszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| | - Roman Jaksik
- Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Julia Paczkowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| |
Collapse
|
4
|
Rovina D, La Vecchia M, Cortesi A, Fontana L, Pesant M, Maitz S, Tabano S, Bodega B, Miozzo M, Sirchia SM. Profound alterations of the chromatin architecture at chromosome 11p15.5 in cells from Beckwith-Wiedemann and Silver-Russell syndromes patients. Sci Rep 2020; 10:8275. [PMID: 32427849 PMCID: PMC7237657 DOI: 10.1038/s41598-020-65082-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting-related disorders associated with genetic/epigenetic alterations of the 11p15.5 region, which harbours two clusters of imprinted genes (IGs). 11p15.5 IGs are regulated by the methylation status of imprinting control regions ICR1 and ICR2. 3D chromatin structure is thought to play a pivotal role in gene expression control; however, chromatin architecture models are still poorly defined in most cases, particularly for IGs. Our study aimed at elucidating 11p15.5 3D structure, via 3C and 3D FISH analyses of cell lines derived from healthy, BWS or SRS children. We found that, in healthy cells, IGF2/H19 and CDKN1C/KCNQ1OT1 domains fold in complex chromatin conformations, that facilitate the control of IGs mediated by distant enhancers. In patient-derived cell lines, we observed a profound impairment of such a chromatin architecture. Specifically, we identified a cross-talk between IGF2/H19 and CDKN1C/KCNQ1OT1 domains, consisting in in cis, monoallelic interactions, that are present in healthy cells but lost in patient cell lines: an inter-domain association that sees ICR2 move close to IGF2 on one allele, and to H19 on the other. Moreover, an intra-domain association within the CDKN1C/KCNQ1OT1 locus seems to be crucial for maintaining the 3D organization of the region.
Collapse
Affiliation(s)
- Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Marta La Vecchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Alice Cortesi
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Laura Fontana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Matthieu Pesant
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Silvia Maitz
- Clinical Pediatric, Genetics Unit, MBBM Foundation, San Gerardo di Monza, 20900, Monza, Italy
| | - Silvia Tabano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Monica Miozzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy.
| |
Collapse
|
5
|
Doerfler W. Essential concepts are missing: Foreign DNA in food invades the organisms' cells and can lead to stochastic epigenetic alterations with a wide range of possible pathogenetic consequences. Clin Epigenetics 2020; 12:21. [PMID: 32033622 PMCID: PMC7007663 DOI: 10.1186/s13148-020-0813-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
In this article, a new concept for general pathogenesis has been proposed. Advances in molecular genetics have led to the realization that essential concepts in the framework of molecular biology are still missing. Clinical medicine is plagued by similar shortcomings: The questioning of current paradigms could open new vistas and invite challenging approaches. This article presents an unconventional idea. Foreign DNA which is regularly ingested with the essential food supply is not completely degraded. Small quantities of fragmented DNA rather persist transiently in the gastro-intestinal tract of mice and can be traced to various organ systems, except for cells in the germ line. Foreign DNA entering and persisting in mammalian cells can stochastically lead to genome-wide alterations of transcriptional and CpG DNA methylation profiles. In the course of food-ingested DNA invading somatic cells, completely new cell types can be generated which might be involved in the causation of common ailments. Projects emanating from this perception merit critical analysis and rigorous pursuit.
Collapse
Affiliation(s)
- Walter Doerfler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany. .,Institute of Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Smyth LJ, Kilner J, Maxwell AP, McKnight AJ. Comparison of methylation patterns generated from genomic and cell-line derived DNA using the Illumina Infinium MethylationEPIC BeadChip array. BMC Res Notes 2019; 12:821. [PMID: 31864401 PMCID: PMC6925854 DOI: 10.1186/s13104-019-4853-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
Objectives Genomic DNA (gDNA) is the optimal source of DNA for methylation analysis. This study compared methylation patterns in gDNA derived from blood with cell-line derived DNA (clDNA) from the same individuals. The clDNA had been generated via an Epstein-Barr virus transformation of the participant’s lymphocytes. This analysis sought to determine whether clDNA has the potential to be utilised in lieu of finite/unavailable gDNA in methylation analyses using Illumina Infinium MethylationEPIC BeadChip arrays that assess 862,927 CpG sites. Results DNA samples were divided into two groups with eight gDNA and eight matched clDNA samples compared in each group (n = 16 individuals with 32 samples in total). Methylation patterns for gDNA samples generated for both groups were compared to the clDNA equivalent samples using Partek® Genomics Suite® to assess whether the significantly different CpG sites were consistent between both groups. In total, 28,632 CpG sites with significantly different levels of methylation (p < ×10−8) were common to both groups while 828,072 CpG sites assessed by the MethylationEPIC array were not significantly different in either group. This indicates that there is potential for clDNA to be used as a replacement for finite gDNA samples when absolutely necessary in DNA methylation studies.
Collapse
Affiliation(s)
- L J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK.
| | - J Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - A P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - A J McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
7
|
Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA, Avgousti DC. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 2019; 593:3551-3570. [PMID: 31769503 DOI: 10.1002/1873-3468.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.
Collapse
Affiliation(s)
- Kelsey L Lynch
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linda R Gooding
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
8
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
9
|
Extensive epigenetic and transcriptomic variability between genetically identical human B-lymphoblastoid cells with implications in pharmacogenomics research. Sci Rep 2019; 9:4889. [PMID: 30894562 PMCID: PMC6426863 DOI: 10.1038/s41598-019-40897-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Genotyped human B-lymphoblastoid cell lines (LCLs) are widely used models in mapping quantitative trait loci for chromatin features, gene expression, and drug response. The extent of genotype-independent functional genomic variability of the LCL model, although largely overlooked, may inform association study design. In this study, we use flow cytometry, chromatin immunoprecipitation sequencing and mRNA sequencing to study surface marker patterns, quantify genome-wide chromatin changes (H3K27ac) and transcriptome variability, respectively, among five isogenic LCLs derived from the same individual. Most of the studied LCLs were non-monoclonal and had mature B cell phenotypes. Strikingly, nearly one-fourth of active gene regulatory regions showed significantly variable H3K27ac levels, especially enhancers, among which several were classified as clustered enhancers. Large, contiguous genomic regions showed signs of coordinated activity change. Regulatory differences were mirrored by mRNA expression changes, preferentially affecting hundreds of genes involved in specialized cellular processes including immune and drug response pathways. Differential expression of DPYD, an enzyme involved in 5-fluorouracil (5-FU) catabolism, was associated with variable LCL growth inhibition mediated by 5-FU. The extent of genotype-independent functional genomic variability might highlight the need to revisit study design strategies for LCLs in pharmacogenomics.
Collapse
|
10
|
Doerfler W. Epigenetic consequences of genome manipulations: caveats for human germline therapy and genetically modified organisms. Epigenomics 2019; 11:247-250. [PMID: 30753116 DOI: 10.2217/epi-2018-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Walter Doerfler
- Institute for Clinical & Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen & Institute of Genetics, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
11
|
Doerfler W, Weber S, Naumann A. Inheritable epigenetic response towards foreign DNA entry by mammalian host cells: a guardian of genomic stability. Epigenetics 2018; 13:1141-1153. [PMID: 30458693 DOI: 10.1080/15592294.2018.1549463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apart from its well-documented role in long-term promoter silencing, the genome-wide distribution patterns of ~ 28 million methylated or unmethylated CpG dinucleotides, e. g. in the human genome, is in search of genetic functions. We have set out to study changes in the cellular CpG methylation profile upon introducing foreign DNA into mammalian cells. As stress factors served the genomic integration of foreign (viral or bacterial plasmid) DNA, virus infections or the immortalization of cells with Epstein Barr Virus (EBV). In all instances investigated, alterations in cellular CpG methylation and transcription profiles were observed to different degrees. In the case of adenovirus DNA integration in adenovirus type 12 (Ad12)-transformed hamster cells, the extensive changes in cellular CpG methylation persisted even after the complete loss of all transgenomic Ad12 DNA. Hence, stress-induced alterations in CpG methylation can be inherited independent of the continued presence of the transgenome. Upon virus infections, changes in cellular CpG methylation appear early after infection. In EBV immortalized as compared to control cells, CpG hypermethylation in the far-upstream region of the human FMR1 promoter decreased four-fold. We conclude that in the wake of cellular stress due to foreign DNA entry, preexisting CpG methylation patterns were altered, possibly at specific CpG dinucleotides. Frequently, transcription patterns were also affected. As a working concept, we view CpG methylation profiles in mammalian genomes as a guarding sensor for genomic stability under epigenetic control. As a caveat towards manipulations of cells with foreign DNA, such cells can no longer be considered identical to their un-manipulated counterparts.
Collapse
Affiliation(s)
- Walter Doerfler
- a Institute for Virology , Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany.,b Institute of Genetics , Cologne University , Cologne , Germany
| | - Stefanie Weber
- a Institute for Virology , Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Anja Naumann
- a Institute for Virology , Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
12
|
Garg P, Joshi RS, Watson C, Sharp AJ. A survey of inter-individual variation in DNA methylation identifies environmentally responsive co-regulated networks of epigenetic variation in the human genome. PLoS Genet 2018; 14:e1007707. [PMID: 30273333 PMCID: PMC6181428 DOI: 10.1371/journal.pgen.1007707] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/11/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
While population studies have resulted in detailed maps of genetic variation in humans, to date there are few robust maps of epigenetic variation. We identified sites containing clusters of CpGs with high inter-individual epigenetic variation, termed Variably Methylated Regions (VMRs) in five purified cell types. We observed that VMRs occur preferentially at enhancers and 3' UTRs. While the majority of VMRs have high heritability, a subset of VMRs within the genome show highly correlated variation in trans, forming co-regulated networks that have low heritability, differ between cell types and are enriched for specific transcription factor binding sites and biological pathways of functional relevance to each tissue. For example, in T cells we defined a network of 95 co-regulated VMRs enriched for genes with roles in T-cell activation; in fibroblasts a network of 34 co-regulated VMRs comprising all four HOX gene clusters enriched for control of tissue growth; and in neurons a network of 18 VMRs enriched for roles in synaptic signaling. By culturing genetically-identical fibroblasts under varying environmental conditions, we experimentally demonstrated that some VMR networks are responsive to the environment, with methylation levels at these loci changing in a coordinated fashion in trans dependent on cellular growth. Intriguingly these environmentally-responsive VMRs showed a strong enrichment for imprinted loci (p<10-80), suggesting that these are particularly sensitive to environmental conditions. Our study provides a detailed map of common epigenetic variation in the human genome, showing that both genetic and environmental causes underlie this variation.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ricky S. Joshi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Corey Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
13
|
Tangsuwansri C, Saeliw T, Thongkorn S, Chonchaiya W, Suphapeetiporn K, Mutirangura A, Tencomnao T, Hu VW, Sarachana T. Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses. PLoS One 2018; 13:e0201071. [PMID: 30036398 PMCID: PMC6056057 DOI: 10.1371/journal.pone.0201071] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The exact cause and mechanisms underlying the pathobiology of autism spectrum disorder (ASD) remain unclear. Dysregulation of long interspersed element-1 (LINE-1) has been reported in the brains of ASD-like mutant mice and ASD brain tissues. However, the role and methylation of LINE-1 in individuals with ASD remain unclear. In this study, we aimed to investigate whether LINE-1 insertion is associated with differentially expressed genes (DEGs) and to assess LINE-1 methylation in ASD. METHODS To identify DEGs associated with LINE-1 in ASD, we reanalyzed previously published transcriptome profiles and overlapped them with the list of LINE-1-containing genes from the TranspoGene database. An Ingenuity Pathway Analysis (IPA) of DEGs associated with LINE-1 insertion was conducted. DNA methylation of LINE-1 was assessed via combined bisulfite restriction analysis (COBRA) of lymphoblastoid cell lines from ASD individuals and unaffected individuals, and the methylation levels were correlated with the expression levels of LINE-1 and two LINE-1-inserted DEGs, C1orf27 and ARMC8. RESULTS We found that LINE-1 insertion was significantly associated with DEGs in ASD. The IPA showed that LINE-1-inserted DEGs were associated with ASD-related mechanisms, including sex hormone receptor signaling and axon guidance signaling. Moreover, we observed that the LINE-1 methylation level was significantly reduced in lymphoblastoid cell lines from ASD individuals with severe language impairment and was inversely correlated with the transcript level. The methylation level of LINE-1 was also correlated with the expression of the LINE-1-inserted DEG C1orf27 but not ARMC8. CONCLUSIONS In ASD individuals with severe language impairment, LINE-1 methylation was reduced and correlated with the expression levels of LINE-1 and the LINE-1-inserted DEG C1orf27. Our findings highlight the association of LINE-1 with DEGs in ASD blood samples and warrant further investigation. The molecular mechanisms of LINE-1 and the effects of its methylation in ASD pathobiology deserve further study.
Collapse
Affiliation(s)
- Chayanin Tangsuwansri
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Surangrat Thongkorn
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Weerasak Chonchaiya
- Division of Growth and Development and Maximizing Thai Children’s Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie Wailin Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Tewarit Sarachana
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Altered gene expression in lymphoblastoid cell lines after subculture. In Vitro Cell Dev Biol Anim 2018; 54:523-527. [PMID: 29948745 DOI: 10.1007/s11626-018-0267-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023]
Abstract
Lymphoblastoid cell lines (LCLs) are nearly immortalized B lymphocytes that are used as long-lasting supply of human cells for studies on gene expression analyses. However, studies on the stability of the cellular features of LCLs are scarce. To address this issue, we measured gene expression in LCLs with different passage numbers and observed that gene expression substantially changed within 10 passages. In particular, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a well-known housekeeping gene, varied considerably during subculture; thus, the use GAPDH as an internal control may be unsuitable. In conclusion, this study highlights the need for exercising caution during determination of gene expression in LCLs.
Collapse
|
15
|
Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: Potential involvement of epigenetics. Neurosci Lett 2018; 669:24-31. [DOI: 10.1016/j.neulet.2016.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
16
|
Zhang C, Zhang R, Chen Z, Chen J, Ruan J, Lu Z, Xiong H, Yang W. Differential DNA methylation profiles of human B lymphocytes and Epstein-Barr virus-immortalized B lymphocytes. Chin J Cancer Res 2018; 30:104-111. [PMID: 29545724 DOI: 10.21147/j.issn.1000-9604.2018.01.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objective This study aimed to comprehensively assess Epstein-Barr virus (EBV)-induced methylation alterations of B cell across whole genome. Methods We compared DNA methylation patterns of primary B cells and corresponding lymphoblastoid cell lines (LCLs) from eight participants. The genome-wide DNA methylation profiles were compared at over 850,000 genome-wide methylation sites. Results DNA methylation analysis revealed 87,732 differentially methylated CpG sites, representing approximately 12.41% of all sites in LCLs compared to primary B cells. The hypermethylated and hypomethylated CpG sites were about 22.75% or 77.25%, respectively. Only 0.8% of hypomethylated sites and 4.5% of hypermethylated sites were located in CpG islands, whereas 8.0% of hypomethylated sites and 16.3% of hypermethylated sites were located in shore (N_shore and S_shore). Using principal component analysis of the DNA methylation profiles, primary B cells and LCLs could be accurately predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differently methylated genes revealed that most of the top GO biological processes were related to cell activation and immune response, and some top enrichment pathways were related with activation and malignant transformation of human B cells. Conclusions Our study demonstrated genome-wide DNA methylation variations between primary B cells and corresponding LCLs, which might yield new insight on the methylation mechanism of EBV-induced immortalization.
Collapse
Affiliation(s)
- Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Rui Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Key Laboratory of Fertility Preservation and Maintenance, the School of Basic Medicine, the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jigang Ruan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hongchao Xiong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenjun Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Key Laboratory of Fertility Preservation and Maintenance, the School of Basic Medicine, the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
17
|
Chu SK, Yang HC. Interethnic DNA methylation difference and its implications in pharmacoepigenetics. Epigenomics 2017; 9:1437-1454. [PMID: 28882057 DOI: 10.2217/epi-2017-0046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM This is the first systematic study to examine the population differentiation effect of DNA methylation on the treatment response and drug absorption, distribution, metabolism and excretion in multiple tissue types and cancer types. MATERIALS & METHODS We analyzed the whole methylome and transcriptome data of primary tumor tissues of four cancer types (breast, colon, head & neck and uterine corpus) and lymphoblastoid cell lines for African and European ancestry populations. RESULTS Ethnicity-associated CpG sites exhibited similar methylation patterns in the two studied populations, but the patterns differed between tumor tissues and lymphoblastoid cell lines. Ethnicity-associated CpG sites may have triggered gene expression, influenced drug absorption, distribution, metabolism and excretion, and showed tumor-specific patterns of methylation and gene regulation. CONCLUSION Ethnicity should be carefully accounted for in future pharmacoepigenetics research.
Collapse
Affiliation(s)
- Shih-Kai Chu
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsin-Chou Yang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.,Department of Statistics, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Statistics, National Tsing Hua University, Hsinchu 300, Taiwan.,Instutite of Public Health, National Yang-Ming University, Taipei 112, Taiwan.,School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
18
|
Guastafierro T, Bacalini MG, Marcoccia A, Gentilini D, Pisoni S, Di Blasio AM, Corsi A, Franceschi C, Raimondo D, Spanò A, Garagnani P, Bondanini F. Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clin Epigenetics 2017; 9:92. [PMID: 28861129 PMCID: PMC5577832 DOI: 10.1186/s13148-017-0389-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Werner syndrome is a progeroid disorder characterized by premature age-related phenotypes. Although it is well established that autosomal recessive mutations in the WRN gene is responsible for Werner syndrome, the molecular alterations that lead to disease phenotype remain still unidentified. Results To address whether epigenetic changes can be associated with Werner syndrome phenotype, we analysed genome-wide DNA methylation profile using the Infinium MethylationEPIC BeadChip in the whole blood from three patients affected by Werner syndrome compared with three age- and sex-matched healthy controls. Hypermethylated probes were enriched in glycosphingolipid biosynthesis, FoxO signalling and insulin signalling pathways, while hypomethylated probes were enriched in PI3K-Akt signalling and focal adhesion pathways. Twenty-two out of 47 of the differentially methylated genes belonging to the enriched pathways resulted differentially expressed in a publicly available dataset on Werner syndrome fibroblasts. Interestingly, differentially methylated regions identified CERS1 and CERS3, two members of the ceramide synthase family. Moreover, we found differentially methylated probes within ITGA9 and ADAM12 genes, whose methylation is altered in systemic sclerosis, and within the PRDM8 gene, whose methylation is affected in dyskeratosis congenita and Down syndrome. Conclusions DNA methylation changes in the peripheral blood from Werner syndrome patients provide new insight in the pathogenesis of the disease, highlighting in some cases a functional correlation of gene expression and methylation status. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0389-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Guastafierro
- UOC of Clinical Biochemistry, Sandro Pertini Hospital, Rome, Italy.,CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy
| | - M G Bacalini
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - A Marcoccia
- CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy.,UOSD Ischemic Microangiopathy and Sclerodermic Ulcers, Sandro Pertini Hospital, Rome, Italy
| | - D Gentilini
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - S Pisoni
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - A M Di Blasio
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - A Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - C Franceschi
- IRCCS Institute of Neurological Sciences, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - D Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Spanò
- UOC of Clinical Biochemistry, Sandro Pertini Hospital, Rome, Italy
| | - P Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Huddinge University Hospital, S-141 86 Stockholm, Sweden.,CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - F Bondanini
- CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy.,UOC of Clinical Pathology, Saint' Eugenio Hospital, Rome, Italy
| |
Collapse
|
19
|
Hori I, Kawamura R, Nakabayashi K, Watanabe H, Higashimoto K, Tomikawa J, Ieda D, Ohashi K, Negishi Y, Hattori A, Sugio Y, Wakui K, Hata K, Soejima H, Kurosawa K, Saitoh S. CTCFdeletion syndrome: clinical features and epigenetic delineation. J Med Genet 2017; 54:836-842. [DOI: 10.1136/jmedgenet-2017-104854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
|
20
|
Taniguchi I, Iwaya C, Ohnaka K, Shibata H, Yamamoto K. Genome-wide DNA methylation analysis reveals hypomethylation in the low-CpG promoter regions in lymphoblastoid cell lines. Hum Genomics 2017; 11:8. [PMID: 28499412 PMCID: PMC5429538 DOI: 10.1186/s40246-017-0106-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies of DNA methylation profiles may uncover the molecular mechanisms through which genetic and environmental factors contribute to the risk of multifactorial diseases. There are two types of commonly used DNA bioresources, peripheral blood cells (PBCs) and EBV-transformed lymphoblastoid cell lines (LCLs), which are available for genetic epidemiological studies. Therefore, to extend our knowledge of the difference in DNA methylation status between LCLs and PBCs is important in human population studies that use these DNA sources to elucidate the epigenetic risks for multifactorial diseases. We analyzed the methylation status of the autosomes for 192 and 92 DNA samples that were obtained from PBCs and LCLs, respectively, using a human methylation 450 K array. After excluding SNP-associated methylation sites and low-call sites, 400,240 sites were subjected to analysis using a generalized linear model with cell type, sex, and age as the independent variables. RESULTS We found that the large proportion of sites showed lower methylation levels in LCLs compared with PBCs, which is consistent with previous reports. We also found that significantly different methylation sites tend to be located on the outside of the CpG island and in a region relatively far from the transcription start site. Additionally, we observed that the methylation change of the sites in the low-CpG promoter region was remarkable. Finally, it was shown that the correlation between the chronological age and ageing-associated methylation sites in ELOVL2 and FHL2 in the LCLs was weaker than that in the PBCs. CONCLUSIONS The methylation levels of highly methylated sites of the low-CpG-density promoters in PBCs decreased in the LCLs, suggesting that the methylation sites located in low-CpG-density promoters could be sensitive to demethylation in LCLs. Despite being generated from a single cell type, LCLs may not always be a proxy for DNA from PBCs in studies of epigenome-wide analysis attempting to elucidate the role of epigenetic change in disease risks.
Collapse
Affiliation(s)
- Itsuki Taniguchi
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chihiro Iwaya
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keizo Ohnaka
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
21
|
Galanter JM, Gignoux CR, Oh SS, Torgerson D, Pino-Yanes M, Thakur N, Eng C, Hu D, Huntsman S, Farber HJ, Avila PC, Brigino-Buenaventura E, LeNoir MA, Meade K, Serebrisky D, Rodríguez-Cintrón W, Kumar R, Rodríguez-Santana JR, Seibold MA, Borrell LN, Burchard EG, Zaitlen N. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. eLife 2017; 6:e20532. [PMID: 28044981 PMCID: PMC5207770 DOI: 10.7554/elife.20532] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation.
Collapse
Affiliation(s)
- Joshua M Galanter
- Department of Medicine, University of California, San Francisco, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | | | - Sam S Oh
- Department of Medicine, University of California, San Francisco, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - Dara Torgerson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Maria Pino-Yanes
- Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Neeta Thakur
- Department of Medicine, University of California, San Francisco, United States
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, United States
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, United States
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, United States
| | - Harold J Farber
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Pedro C Avila
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | - Kelly Meade
- Department of Pediatrics, Children’s Hospital and Research Center, Oakland, United States
| | | | | | - Rajesh Kumar
- Division of Allergy and Immunology, The Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, United States
| | | | - Max A Seibold
- Center for Genes, Environment, and Health, Department of Pediatrics, National Jewish Health, Denver, United States
| | - Luisa N Borrell
- Graduate School of Public Health and Health Policy, City University of New York, New York, United States
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Noah Zaitlen
- Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
22
|
DNA methylation-based variation between human populations. Mol Genet Genomics 2016; 292:5-35. [PMID: 27815639 DOI: 10.1007/s00438-016-1264-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.
Collapse
|
23
|
Yang Z, Wong A, Kuh D, Paul DS, Rakyan VK, Leslie RD, Zheng SC, Widschwendter M, Beck S, Teschendorff AE. Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol 2016; 17:205. [PMID: 27716309 PMCID: PMC5046977 DOI: 10.1186/s13059-016-1064-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Variation in cancer risk among somatic tissues has been attributed to variations in the underlying rate of stem cell division. For a given tissue type, variable cancer risk between individuals is thought to be influenced by extrinsic factors which modulate this rate of stem cell division. To date, no molecular mitotic clock has been developed to approximate the number of stem cell divisions in a tissue of an individual and which is correlated with cancer risk. Results Here, we integrate mathematical modeling with prior biological knowledge to construct a DNA methylation-based age-correlative model which approximates a mitotic clock in both normal and cancer tissue. By focusing on promoter CpG sites that localize to Polycomb group target genes that are unmethylated in 11 different fetal tissue types, we show that increases in DNA methylation at these sites defines a tick rate which correlates with the estimated rate of stem cell division in normal tissues. Using matched DNA methylation and RNA-seq data, we further show that it correlates with an expression-based mitotic index in cancer tissue. We demonstrate that this mitotic-like clock is universally accelerated in cancer, including pre-cancerous lesions, and that it is also accelerated in normal epithelial cells exposed to a major carcinogen. Conclusions Unlike other epigenetic and mutational clocks or the telomere clock, the epigenetic clock proposed here provides a concrete example of a mitotic-like clock which is universally accelerated in cancer and precancerous lesions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1064-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Dirk S Paul
- Medical Genomics, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Vardhman K Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - R David Leslie
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China. .,Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK. .,Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
24
|
Kuroda M, Tominaga A, Nakagawa K, Nishiguchi M, Sebe M, Miyatake Y, Kitamura T, Tsutsumi R, Harada N, Nakaya Y, Sakaue H. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0160532. [PMID: 27494408 PMCID: PMC4975473 DOI: 10.1371/journal.pone.0160532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis.
Collapse
Affiliation(s)
- Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Ayako Tominaga
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Kasumi Nakagawa
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Misa Nishiguchi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Mayu Sebe
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yutaka Nakaya
- Cardiovascular Medicine, Shikoku Central Hospital of the Mutual aid Association of Public School Teachers, Shikokuchuo-city, Ehime, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
- Diabetes Therapeutics and Research Center, Tokushima University, Tokushima-city, Tokushima, Japan
- * E-mail:
| |
Collapse
|
25
|
McCarthy NS, Allan SM, Chandler D, Jablensky A, Morar B. Integrity of genome-wide genotype data from low passage lymphoblastoid cell lines. GENOMICS DATA 2016; 9:18-21. [PMID: 27330997 PMCID: PMC4909818 DOI: 10.1016/j.gdata.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023]
Abstract
We compared genotype data from the HumanExomeCore Array in peripheral blood mononuclear cells and low passage lymphoblastoid cell lines from the same 24 individuals to test for genotypic errors caused by the Epstein–Barr Virus transformation process. Genotype concordance across the 24 comparisons was 99.57% for unfiltered genotype data, and 99.63% following standard genotype quality control filters. Mendelian error rates and levels of heterozygosity were not significantly different between lymphoblastoid cell lines and their parent peripheral blood mononuclear cells. These results show that at low passage numbers, genotype discrepancies are minimal even before stringent quality control, and extend current evidence qualifying the use of low-passage lymphoblastoid cell lines as a reliable DNA source for genotype analysis.
Collapse
Affiliation(s)
- Nina S McCarthy
- Centre for the Genetic Origins of Health and Disease, The University of Western Australia, Perth, Australia; Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia
| | - Spencer M Allan
- Centre for the Genetic Origins of Health and Disease, The University of Western Australia, Perth, Australia
| | - David Chandler
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Australia
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia
| | - Bharti Morar
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia
| |
Collapse
|
26
|
Tabolacci E, Mancano G, Lanni S, Palumbo F, Goracci M, Ferrè F, Helmer-Citterich M, Neri G. Genome-wide methylation analysis demonstrates that 5-aza-2-deoxycytidine treatment does not cause random DNA demethylation in fragile X syndrome cells. Epigenetics Chromatin 2016; 9:12. [PMID: 27014370 PMCID: PMC4806452 DOI: 10.1186/s13072-016-0060-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/08/2016] [Indexed: 11/30/2022] Open
Abstract
Background Fragile X syndrome (FXS) is caused by CGG expansion over 200 repeats at the 5′ UTR of the FMR1 gene and subsequent DNA methylation of both the expanded sequence and the CpGs of the promoter region. This epigenetic change causes transcriptional silencing of the gene. We have previously demonstrated that 5-aza-2-deoxycytidine (5-azadC) treatment of FXS lymphoblastoid cell lines reactivates the FMR1 gene, concomitant with CpG sites demethylation, increased acetylation of histones H3 and H4 and methylation of lysine 4 on histone 3. Results In order to check the specificity of the 5-azadC-induced DNA demethylation, now we performed bisulphite sequencing of the entire methylation boundary upstream the FMR1 promoter region, which is preserved in control wild-type cells. We did not observe any modification of the methylation boundary after treatment. Furthermore, methylation analysis by MS-MLPA of PWS/AS and BWS/SRS loci demonstrated that 5-azadC treatment has no demethylating effect on these regions. Genome-wide methylation analysis through Infinium 450K (Illumina) showed no significant enrichment of specific GO terms in differentially methylated regions after 5-azadC treatment. We also observed that reactivation of FMR1 transcription lasts up to a month after a 7-day treatment and that maximum levels of transcription are reached at 10–15 days after last administration of 5-azadC. Conclusions Taken together, these data demonstrate that the demethylating effect of 5-azadC on genomic DNA is not random, but rather restricted to specific regions, if not exclusively to the FMR1 promoter. Moreover, we showed that 5-azadC has a long-lasting reactivating effect on the mutant FMR1 gene. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0060-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabetta Tabolacci
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Giorgia Mancano
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Stella Lanni
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Federica Palumbo
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Martina Goracci
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Fabrizio Ferrè
- Department of Biology, Centre for Molecular Bioinformatics (CBM), University of Rome Tor Vergata, Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, Centre for Molecular Bioinformatics (CBM), University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Neri
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
27
|
Roos L, van Dongen J, Bell CG, Burri A, Deloukas P, Boomsma DI, Spector TD, Bell JT. Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 2016; 8:7. [PMID: 26798410 PMCID: PMC4721070 DOI: 10.1186/s13148-016-0172-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic (MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip. Results We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium, thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10−7) in an intergenic region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695 (near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03). Conclusions We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1, COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis, highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0172-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jenny van Dongen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Christopher G Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK ; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ; Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK ; Epigenomic Medicine, Centre for Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK
| | - Andrea Burri
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
28
|
Al Tuwaijri A, Gagné-Ouellet V, Madore AM, Laprise C, Naumova AK. Local genotype influences DNA methylation at two asthma-associated regions, 5q31 and 17q21, in a founder effect population. J Med Genet 2015; 53:232-41. [PMID: 26671913 DOI: 10.1136/jmedgenet-2015-103313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Two asthma-associated regions 17q12-q21 and 5q31.1 harbour genes that show strong effect of genotype on expression levels. DNA methylation has an important role in gene regulation; therefore, we examined DNA methylation at promoters of 12 genes from 5q31 and 17q12-q21 regions. Our goal was to determine whether DNA methylation was associated with predisposition to asthma and whether such a relationship was independent from genetic association. METHODS Using sodium bisulfite sequencing and pyrosequencing methylation assays, we examined the effect of genotype on DNA methylation in peripheral blood cells from individuals from the Saguenay-Lac-Saint-Jean asthma familial collection and lymphoblastoid cell lines. RESULTS The local genotype influenced methylation levels of solute carrier family 22 (organic 3 cation/carnitine transporter) member 5 (SLC22A5), zona pellucida binding protein 2 (ZPBP2) and gasdermin A (GSDMA) promoter regions. The genotype had a dominant effect on ZPBP2 and GSDMA methylation with lower methylation levels in individuals that carry the asthma-predisposing alleles. Males also had lower methylation at the ZPBP2 promoter than females. We did not observe an effect of asthma status that would be independent of the genotype and the sex effects in the GSDMA, ZPBP2 and SLC22A5 regions; however, GSDMA and ZPBP2 data were suggestive of interaction between asthma and methylation levels in females and SLC22A5 in males. CONCLUSIONS The local genotype influences methylation levels at SLC22A5 and ZPBP2 promoters independently of the asthma status. Further studies are necessary to confirm the relationship between GSDMA-ZPBP2 and SLC22A5 methylation and asthma in females and males separately.
Collapse
Affiliation(s)
- Abeer Al Tuwaijri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Valérie Gagné-Ouellet
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Schachtschneider KM, Madsen O, Park C, Rund LA, Groenen MAM, Schook LB. Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model. BMC Genomics 2015; 16:743. [PMID: 26438392 PMCID: PMC4594891 DOI: 10.1186/s12864-015-1938-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Background Pigs (Sus scrofa) provide relevant biomedical models to dissect complex diseases due to their anatomical, genetic, and physiological similarities with humans. Aberrant DNA methylation has been linked to many of these diseases and is associated with gene expression; however, the functional similarities and differences between porcine and human DNA methylation patterns are largely unknown. Methods DNA and RNA was isolated from eight tissue samples (fat, heart, kidney, liver, lung, lymph node, muscle, and spleen) from the adult female Duroc utilized for the pig genome sequencing project. Reduced representation bisulfite sequencing (RRBS) and RNA-seq were performed on an Illumina HiSeq2000. RRBS reads were aligned using BSseeker2, and only sites with a minimum depth of 10 reads were used for methylation analysis. RNA-seq reads were aligned using Tophat, and expression analysis was performed using Cufflinks. In addition, SNP calling was performed using GATK for targeted control and whole genome sequencing reads for CpG site validation and allelic expression analysis, respectively. Results Analysis on the influence of DNA variation in methylation calling revealed a reduced effectiveness of WGS datasets in covering CpG rich regions, as well as the usefulness of a targeted control library for SNP detection. Analysis of over 500,000 CpG sites demonstrated genome wide methylation patterns similar to those observed in humans, including reduced methylation within CpG islands and at transcription start sites (TSS), X chromosome inactivation, and anticorrelation of TSS CpG methylation with gene expression. In addition, a positive correlation between TSS CpG density and expression, and a negative correlation between TSS TpG density and expression were demonstrated. Low but non-random non-CpG methylation (<1%) was also detected in all non-neuronal somatic tissues, with differences in tissue clustering observed based on CpG and non-CpG methylation patterns. Finally, allele specific expression analysis revealed enrichment of genes involved in metabolic and regulatory processes. Discussion These results provide transcriptional and DNA methylation datasets for the biomedical community that are directly relatable to current genomic resources. In addition, the correlation between TSS CpG density and expression suggests increased mutation rates at CpG sites play a significant role in adaptive evolution by reducing CpG density at TSS over time, resulting in higher methylation levels in these regions and more permanent changes to lower gene expression. This is proposed to occur predominantly through deamination of 5-methylcytosine to thymidine, resulting in the replacement of CpG with TpG sites in these regions, as indicated by the increased TSS TpG density observed in non-expressed genes, resulting in a negative correlation between expression and TSS TpG density. Conclusions This study provides baseline methylation and gene transcription profiles for a healthy adult pig, reports similar patterns to those observed in humans, and supports future porcine studies related to human disease and development. Additionally, the observed reduced CpG and increased TpG density at TSS of lowly expressed genes suggests DNA methylation plays a significant role in adaptive evolution through more permanent changes to lower gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1938-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle M Schachtschneider
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA. .,Animal Breeding and Genomics Center, Wageningen University, Wageningen, The Netherlands.
| | - Ole Madsen
- Animal Breeding and Genomics Center, Wageningen University, Wageningen, The Netherlands.
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea.
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
| | - Martien A M Groenen
- Animal Breeding and Genomics Center, Wageningen University, Wageningen, The Netherlands.
| | - Lawrence B Schook
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA. .,Institute for Genomic Biology, University of Illinois, Urbana, IL, USA. .,, 1201 W Gregory Drive #382 ERML, Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
Suderman M, Pappas JJ, Borghol N, Buxton JL, McArdle WL, Ring SM, Hertzman C, Power C, Szyf M, Pembrey M. Lymphoblastoid cell lines reveal associations of adult DNA methylation with childhood and current adversity that are distinct from whole blood associations. Int J Epidemiol 2015; 44:1331-40. [PMID: 26351305 DOI: 10.1093/ije/dyv168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Some cohort studies bank lymphoblastoid cell lines (LCLs) as a renewable source of participant DNA. However, although LCL DNA has proved valuable for genetic studies, its utility in epigenetic epidemiology research is unknown. METHODS To assess whether LCL DNA can be used for life-course environmental epigenomics, we carried out a pilot methylomic study (using the Illumina Infinium Human Methylation 450 BeadChip) of nil-passage, Epstein-Barr virus (EBV)-transformed LCLs (n = 42) and 28 matched whole-blood (WB) samples. These were from adult male participants of the British 1958 birth cohort, selected for extremes of social economic position (SEP) in childhood and adulthood, with additional information available on childhood abuse and prenatal tobacco exposure. RESULTS We identified a small number of weak associations between these exposures and methylation levels of both individual CpG sites and genomic regions in WB and LCLs. However, only one of the regional, and none of the individual CpG site associations were common to both sample types. The lack of overlap between the associations detected in LCL compared with those found in WB could either be due to the EBV-transformation process, or to the fact that, unlike WB, LCLs are essentially a single (CD19+) cell type. We provide evidence that the latter is the more potent explanation, by showing that CpG sites known to be differentially methylated between different types of blood cell have significantly lower correlations (R = 0.11) than average (R = 0.2) between WB and LCLs in our datasets, whereas sites known to be affected by EBV-transformation have significantly higher correlations (R = 0.3). CONCLUSIONS This small pilot study suggests that the DNA methylation profile of LCLs is more closely related to that of B cells than WB and, additionally, that LCLs may nevertheless be useful for life-course environmental epigenomics.
Collapse
Affiliation(s)
- Matthew Suderman
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK,
| | - Jane J Pappas
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nada Borghol
- Department of Biochemistry, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Jessica L Buxton
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Clyde Hertzman
- Human Early Learning Partnership, University of British Columbia, British Columbia, Canada
| | - Chris Power
- Population, Policy and Practice, UCL Institute of Child Health, London, UK
| | - Moshe Szyf
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, Sackler Program for Epigenetics & Developmental Psychobiology, McGill University, Montreal, Quebec, Canada and
| | - Marcus Pembrey
- Genetics and Epigenetics in Health and Disease Section, UCL Institute of Child Health, UK
| |
Collapse
|
31
|
Navari M, Etebari M, De Falco G, Ambrosio MR, Gibellini D, Leoncini L, Piccaluga PP. The presence of Epstein-Barr virus significantly impacts the transcriptional profile in immunodeficiency-associated Burkitt lymphoma. Front Microbiol 2015; 6:556. [PMID: 26113842 PMCID: PMC4462103 DOI: 10.3389/fmicb.2015.00556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Burkitt lymphoma (BL) is an aggressive neoplasm derived from mature, antigen-experienced B-lymphocytes. Three clinical/epidemiological variants have been recognized, named sporadic, endemic and immunodeficiency-associated BL (ID-BL). Although they are listed within a unique entity in the current WHO Classification, recent evidence indicated genetic and transcriptional differences among the three sub-groups. Further, the presence of latently persisting Epstein-Barr virus (EBV) has been associated with specific features in endemic and sporadic cases. In this study, we explored for the first time whether EBV infection could be related with a specific molecular profile in immunodeficiency-associated cases. We studied 30 BL cases, including nine occurring in HIV-positive patients (5 EBV-positive and 4 EBV-negative) by gene and microRNA (miRNA) expression profiling. We found that ID-BL presented with different profiles based on EBV presence. Specifically, 252 genes were differentially expressed, some of them being involved in intracellular signaling and apoptosis regulation. Furthermore, 28 miRNAs including both EBV-encoded (N = 18) and cellular (N = 10) ones were differentially regulated. Of note, genes previously demonstrated to be targeted by such miRNA were consistently found among differentially expressed genes, indicating the relevant contribution of miRNA to the molecular profile of the examined cases. Grippingly, 17 out of the 252 differentially expressed genes turned out to be potentially targeted by both cellular and EBV-encoded miRNA, suggesting a complex interaction and not excluding a potential synergism. In conclusion, we documented transcriptional differences based on the presence of EBV in ID-BL, and suggested a complex interaction between cellular and viral molecules in the determination of the global molecular profile of the tumor.
Collapse
Affiliation(s)
- Mohsen Navari
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine Bologna, Italy ; Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh, Iran
| | - Maryam Etebari
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine Bologna, Italy
| | - Giulia De Falco
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Maria R Ambrosio
- Department of Medical Biotechnology, University of Siena Siena, Italy
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, University of Verona Verona, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena Siena, Italy
| | - Pier Paolo Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine Bologna, Italy
| |
Collapse
|
32
|
Weber S, Hofmann A, Herms S, Hoffmann P, Doerfler W. Destabilization of the human epigenome: consequences of foreign DNA insertions. Epigenomics 2015; 7:745-55. [PMID: 26088384 DOI: 10.2217/epi.15.40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM We previously reported changes of DNA methylation and transcription patterns in mammalian cells that carry integrated foreign DNA. Experiments were now designed to assess the epigenetic consequences of inserting a 5.6 kbp plasmid into the human genome. METHODS Differential transcription and CpG methylation patterns were compared between transgenomic and nontransgenomic cell clones by using gene chip microarray systems. RESULTS In 4.7% of the 28.869 gene segments analyzed, transcriptional activities were up- or downregulated in the transgenomic cell clones. Genome-wide profiling revealed differential methylation in 3791 of > 480,000 CpG's examined in transgenomic versus nontransgenomic clones. CONCLUSION The data document genome-wide effects of foreign DNA insertions on the epigenetic stability of human cells. Many fields in experimental biology and medicine employ transgenomic or otherwise genome-manipulated cells or organisms without considering the epigenetic consequences for the recipient genomes.
Collapse
Affiliation(s)
- Stefanie Weber
- Institute of Clinical & Molecular Virology, University of Erlangen-Nürnberg Medical School, D-91054 Erlangen, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, Life & Brain Center, Bonn University, D-53127 Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, Life & Brain Center, Bonn University, D-53127 Bonn, Germany.,Division of Medical Genetics, University Hospital Basel, CH-4055 Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, Life & Brain Center, Bonn University, D-53127 Bonn, Germany.,Division of Medical Genetics, University Hospital Basel, CH-4055 Basel, Switzerland
| | - Walter Doerfler
- Institute of Clinical & Molecular Virology, University of Erlangen-Nürnberg Medical School, D-91054 Erlangen, Germany.,Institute of Genetics, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
33
|
Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol 2015; 25:682-702. [PMID: 24857313 DOI: 10.1016/j.euroneuro.2014.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Aberrant changes in gene function are believed to be involved in a wide spectrum of human disease including behavioral, cognitive and neurodegenerative pathologies. Most of the attention in last few decades have focused on changes in gene sequence as a cause of gene dysfunction leading to disease and mental health disorders. Germ line mutations or other alterations in the sequence of DNA that associate with different behavioral and neurological pathologies have been identified. However, sequence alterations explain only a small fraction of the cases. In addition there is evidence for "gene-environment" interactions in the brain suggesting mechanisms that alter gene function and the phenotype through environmental exposure. Genes are programmed by "epigenetic" mechanisms such as chromatin structure, chromatin modification and DNA methylation. These mechanisms confer on similar sequences different identities during cellular differentiation. Epigenetic differences are proposed to be involved in differentiating gene function in response to different environmental contexts and could result in alterations in functional gene networks that lead to brain disease. Epigenetic markers could serve important biomarkers in brain and behavioral diseases. Moreover, epigenetic processes are potentially reversible pointing to epigenetic therapeutics in psychotherapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G1Y5.
| |
Collapse
|
34
|
Ulahannan N, Greally JM. Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics Chromatin 2015; 8:5. [PMID: 25788985 PMCID: PMC4363328 DOI: 10.1186/1756-8935-8-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
The number of different assays that has been published to study DNA methylation is extensive, complemented by recently described assays that test modifications of cytosine other than the most abundant 5-methylcytosine (5mC) variant. In this review, we describe the considerations involved in choosing how to study 5mC throughout the genome, with an emphasis on the common application of testing for epigenetic dysregulation in human disease. While microarray studies of 5mC continue to be commonly used, these lack the additional qualitative information from sequencing-based approaches that is increasingly recognized to be valuable. When we test the representation of functional elements in the human genome by several current assay types, we find that no survey approach interrogates anything more than a small minority of the nonpromoter cis-regulatory sites where DNA methylation variability is now appreciated to influence gene expression and to be associated with human disease. However, whole-genome bisulphite sequencing (WGBS) adds a substantial representation of loci at which DNA methylation changes are unlikely to be occurring with transcriptional consequences. Our assessment is that the most effective approach to DNA methylation studies in human diseases is to use targeted bisulphite sequencing of the cis-regulatory loci in a cell type of interest, using a capture-based or comparable system, and that no single design of a survey approach will be suitable for all cell types.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| |
Collapse
|
35
|
O'Sullivan M, Rutland P, Lucas D, Ashton E, Hendricks S, Rahman S, Bitner-Glindzicz M. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum Mol Genet 2014; 24:1036-44. [PMID: 25305075 PMCID: PMC4986548 DOI: 10.1093/hmg/ddu518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitochondrial DNA mutation m.1555A>G predisposes to hearing loss following aminoglycoside antibiotic exposure in an idiosyncratic dose-independent manner. However, it may also cause maternally inherited hearing loss in the absence of aminoglycoside exposure or any other clinical features (non-syndromic hearing loss). Although m.1555A>G was identified as a cause of deafness more than twenty years ago, the pathogenic mechanism of this mutation of ribosomal RNA remains controversial. Different mechanistic concepts have been proposed. Most recently, evidence from cell lines and animal models suggested that patients with m.1555A>G may have more 12S rRNA N6, N6-dimethyladenosine (m(6) 2A) methylation than controls, so-called 'hypermethylation'. This has been implicated as a pathogenic mechanism of mitochondrial dysfunction but has yet to be validated in patients. 12S m(6) 2A rRNA methylation, by the mitochondrial transcription factor 1 (TFB1M) enzyme, occurs at two successive nucleotides (m.1584A and m.1583A) in close proximity to m.1555A>G. We examined m(6) 2A methylation in 14 patients with m.1555A>G, and controls, and found all detectable 12S rRNA transcripts to be methylated in both groups. Moreover, different RNA samples derived from the same patient (lymphocyte, fibroblast and lymphoblast) revealed that only transformed cells contained some unmethylated 12S rRNA transcripts, with all detectable 12S rRNA transcripts derived from primary samples m(6) 2A-methylated. Our data indicate that TFB1M 12S m(6) 2A rRNA hypermethylation is unlikely to be a pathogenic mechanism and may be an artefact of previous experimental models studied. We propose that RNA methylation studies in experimental models should be validated in primary clinical samples to ensure that they are applicable to the human situation.
Collapse
Affiliation(s)
- Mary O'Sullivan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Paul Rutland
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Deirdre Lucas
- Nuffield Hearing and Speech Centre, Royal National Throat Nose and Ear Hospital, London WC1X 8DA, UK
| | | | - Sebastian Hendricks
- Barnet and Chase Farm Hospitals NHS Trust, Enfield, Middlesex EN2 8JL, UK and
| | - Shamima Rahman
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK, Metabolic Department, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Maria Bitner-Glindzicz
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK, Centre for Auditory Research, UCL Ear Institute, London WC1X 8EE, UK
| |
Collapse
|
36
|
Nickkholgh B, Mizrak SC, van Daalen SKM, Korver CM, Sadri-Ardekani H, Repping S, van Pelt AMM. Genetic and epigenetic stability of human spermatogonial stem cells during long-term culture. Fertil Steril 2014; 102:1700-7.e1. [PMID: 25256932 DOI: 10.1016/j.fertnstert.2014.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the genetic and epigenetic stability of human spermatogonial stem cells (SSCs) during long-term culture. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Cryopreserved human testicular tissue from two prostate cancer patients with normal spermatogenesis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Testicular cells before and 50 days after culturing were subjected to ITGA6 magnetic-activated cell sorting to enrich for SSCs. Individual spermatogonia were analyzed for aneuploidies with the use of single-cell 24-chromosome screening. Furthermore, the DNA methylation statuses of the paternally imprinted genes H19, H19-DMR (differentially methylated region), and MEG3 and the maternally imprinted genes KCNQ1OT1 and PEG3 were identified by means of bisulfite sequencing. RESULTS(S) Aneuploidy screening showed euploidy with no chromosomal abnormalities in all cultured and most noncultured spermatogonia from both patients. The methylation assays demonstrated demethylation of the paternally imprinted genes H19, H19-DMR, and MEG3 of 11%-28%, 43%-68%, and 18%-26%, respectively, and increased methylation of the maternally imprinted genes PEG 3 and KCNQ1OT of 13%-50% and 30%-38%, respectively, during culture. CONCLUSION(S) In the current culture system for human SSCs propagation, genomic stability is preserved, which is important for future clinical use. Whether the observed changes in methylation status have consequences on functionality of SSCs or health of offspring derived from transplanted SSCs requires further investigation.
Collapse
Affiliation(s)
- Bita Nickkholgh
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - S Canan Mizrak
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cindy M Korver
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hooman Sadri-Ardekani
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, Roux J, Pritchard JK, Gilad Y. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet 2014; 10:e1004663. [PMID: 25233095 PMCID: PMC4169251 DOI: 10.1371/journal.pgen.1004663] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/12/2014] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is an important epigenetic regulator of gene expression. Recent studies have revealed widespread associations between genetic variation and methylation levels. However, the mechanistic links between genetic variation and methylation remain unclear. To begin addressing this gap, we collected methylation data at ∼300,000 loci in lymphoblastoid cell lines (LCLs) from 64 HapMap Yoruba individuals, and genome-wide bisulfite sequence data in ten of these individuals. We identified (at an FDR of 10%) 13,915 cis methylation QTLs (meQTLs)—i.e., CpG sites in which changes in DNA methylation are associated with genetic variation at proximal loci. We found that meQTLs are frequently associated with changes in methylation at multiple CpGs across regions of up to 3 kb. Interestingly, meQTLs are also frequently associated with variation in other properties of gene regulation, including histone modifications, DNase I accessibility, chromatin accessibility, and expression levels of nearby genes. These observations suggest that genetic variants may lead to coordinated molecular changes in all of these regulatory phenotypes. One plausible driver of coordinated changes in different regulatory mechanisms is variation in transcription factor (TF) binding. Indeed, we found that SNPs that change predicted TF binding affinities are significantly enriched for associations with DNA methylation at nearby CpGs. DNA methylation is an important epigenetic mark that contributes to many biological processes including the regulation of gene expression. Genetic variation has been associated with quantitative changes in DNA methylation (meQTLs). We identified thousands of meQTLs using an assay that allowed us to measure methylation levels at around 300 thousand cytosines. We found that meQTLs are enriched with loci that is also associated with quantitative changes in gene expression, DNase I hypersensitivity, PolII occupancy, and a number of histone marks. This suggests that many molecular events are likely regulated in concert. Finally, we found that changes in transcription factor binding as well as transcription factor abundance are associated with changes in DNA methylation near transcription factor binding sites. This work contributes to our understanding of the regulation of DNA methylation in the larger context of gene regulatory landscape.
Collapse
Affiliation(s)
- Nicholas E. Banovich
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Xun Lan
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Graham McVicker
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Bryce van de Geijn
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jacob F. Degner
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - John D. Blischak
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Julien Roux
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan K. Pritchard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (JKP); (YG)
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (JKP); (YG)
| |
Collapse
|
38
|
Philibert RA, Penaluna B, White T, Shires S, Gunter T, Liesveld J, Erwin C, Hollenbeck N, Osborn T. A pilot examination of the genome-wide DNA methylation signatures of subjects entering and exiting short-term alcohol dependence treatment programs. Epigenetics 2014; 9:1212-9. [PMID: 25147915 PMCID: PMC4169013 DOI: 10.4161/epi.32252] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alcoholism has a profound impact on millions of people throughout the world. However, the ability to determine if a patient needs treatment is hindered by reliance on self-reporting and the clinician's capability to monitor the patient's response to treatment is challenged by the lack of reliable biomarkers. Using a genome-wide approach, we have previously shown that chronic alcohol use is associated with methylation changes in DNA from human cell lines. In this pilot study, we now examine DNA methylation in peripheral mononuclear cell DNA gathered from subjects as they enter and leave short-term alcohol treatment. When compared with abstinent controls, subjects with heavy alcohol use show widespread changes in DNA methylation that have a tendency to reverse with abstinence. Pathway analysis demonstrates that these changes map to gene networks involved in apoptosis. There is no significant overlap of the alcohol signature with the methylation signature previously derived for smoking. We conclude that DNA methylation may have future clinical utility in assessing acute alcohol use status and monitoring treatment response.
Collapse
Affiliation(s)
- Robert A Philibert
- Behavioral Diagnostics; Iowa City, IA USA; Department of Psychiatry; University of Iowa; Iowa City, IA USA
| | | | - Teresa White
- Department of Psychiatry; University of Iowa; Iowa City, IA USA
| | - Sarah Shires
- Department of Psychiatry; University of Iowa; Iowa City, IA USA
| | - Tracy Gunter
- Department of Psychiatry; Indiana University School of Medicine; Indianapolis, IN USA
| | - Jill Liesveld
- Department of Psychiatry; University of Iowa; Iowa City, IA USA
| | - Cheryl Erwin
- Departments of Medical Education and Psychiatry; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | | | | |
Collapse
|
39
|
Immortalization of T-cells is accompanied by gradual changes in CpG methylation resulting in a profile resembling a subset of T-cell leukemias. Neoplasia 2014; 16:606-15. [PMID: 25065939 PMCID: PMC4198827 DOI: 10.1016/j.neo.2014.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023] Open
Abstract
We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis.
Collapse
|
40
|
Naumann A, Kraus C, Hoogeveen A, Ramirez CM, Doerfler W. Stable DNA methylation boundaries and expanded trinucleotide repeats: role of DNA insertions. J Mol Biol 2014; 426:2554-66. [PMID: 24816393 DOI: 10.1016/j.jmb.2014.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/15/2022]
Abstract
The human genome segment upstream of the FMR1 (fragile X mental retardation 1) gene (Xq27.3) contains several genetic signals, among them is a DNA methylation boundary that is located 65-70 CpGs upstream of the CGG repeat. In fragile X syndrome (FXS), the boundary is lost, and the promoter is inactivated by methylation spreading. Here we document boundary stability in spite of critical expansions of the CGG trinucleotide repeat in male or female premutation carriers and in high functioning males (HFMs). HFMs carry a full CGG repeat expansion but exhibit an unmethylated promoter and lack the FXS phenotype. The boundary is also stable in Turner (45, X) females. A CTCF-binding site is located slightly upstream of the methylation boundary and carries a unique G-to-A polymorphism (single nucleotide polymorphism), which occurs 3.6 times more frequently in genomes with CGG expansions. The increased frequency of this single nucleotide polymorphism might have functional significance. In CGG expansions, the CTCF region does not harbor additional mutations. In FXS individuals and often in cells transgenomic for EBV (Epstein Barr Virus) DNA or for the telomerase gene, the large number of normally methylated CpGs in the far-upstream region of the boundary is decreased about 4-fold. A methylation boundary is also present in the human genome segment upstream of the HTT (huntingtin) promoter (4p16.3) and is stable both in normal and Huntington disease chromosomes. Hence, the vicinity of an expanded repeat does not per se compromise methylation boundaries. Methylation boundaries exert an important function as promoter safeguards.
Collapse
Affiliation(s)
- Anja Naumann
- Institute for Clinical and Molecular Virology, Erlangen University Medical School, D-91054 Erlangen, Germany
| | - Cornelia Kraus
- Institute for Human Genetics, Erlangen University Medical School, D-91054 Erlangen, Germany
| | - André Hoogeveen
- Department of Clinical Genetics, Erasmus University Medical School, 3000 DR Rotterdam, The Netherlands
| | - Christina M Ramirez
- Department of Biostatistics and Statistics, University of California, Los Angeles, CA 90095, USA
| | - Walter Doerfler
- Institute for Clinical and Molecular Virology, Erlangen University Medical School, D-91054 Erlangen, Germany; Institute of Genetics, University of Cologne, D-50674 Cologne, Germany.
| |
Collapse
|
41
|
Bakulski KM, Fallin MD. Epigenetic epidemiology: promises for public health research. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:171-83. [PMID: 24449392 PMCID: PMC4011487 DOI: 10.1002/em.21850] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/19/2013] [Indexed: 05/17/2023]
Abstract
Epigenetic changes underlie developmental and age related biology. Promising epidemiologic research implicates epigenetics in disease risk and progression, and suggests epigenetic status depends on environmental risks as well as genetic predisposition. Epigenetics may represent a mechanistic link between environmental exposures, or genetics, and many common diseases, or may simply provide a quantitative biomarker for exposure or disease for areas of epidemiology currently lacking such measures. This great promise is balanced by issues related to study design, measurement tools, statistical methods, and biological interpretation that must be given careful consideration in an epidemiologic setting. This article describes the promises and challenges for epigenetic epidemiology, and suggests directions to advance this emerging area of molecular epidemiology.
Collapse
Affiliation(s)
- Kelly M Bakulski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Center for Excellence in Genomic Science, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
42
|
A translational neuroscience framework for the development of socioemotional functioning in health and psychopathology. Dev Psychopathol 2013; 25:1293-309. [DOI: 10.1017/s095457941300062x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe development of socioemotional functioning is a complex process that occurs over a protracted time period and requires coordinating affective, cognitive, and social faculties. At many points in development, the trajectory of socioemotional development can be deleteriously altered due to a combination of environmental insults and individual vulnerabilities. The result can be psychopathology. However, researchers are just beginning to understand the neural and genetic mechanisms involved in the development of healthy and disordered socioemotional functioning. We propose a translational developmental neuroscience framework to understand the transactional process that results in socioemotional functioning in both healthy and disordered populations. We then apply this framework to healthy socioemotional development, pediatric anxiety, pediatric depression, and autism spectrum disorder, selectively reviewing current literature in light of the framework. Finally, we examine ways that the framework can help to frame future directions of research on socioemotional development and translational implications for intervention.
Collapse
|
43
|
Shim SM, Jung SY, Nam HY, Kim HR, Lee MH, Kim JW, Han BG, Jeon JP. Network signatures of cellular immortalization in human lymphoblastoid cell lines. Biochem Biophys Res Commun 2013; 441:438-46. [PMID: 24369900 DOI: 10.1016/j.bbrc.2013.10.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG-DEmiR pairs were found to be positively (n=591 pairs) or negatively (n=507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK-STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR-mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.
Collapse
Affiliation(s)
- Sung-Mi Shim
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - So-Young Jung
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - Hye-Young Nam
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - Hye-Ryun Kim
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - Mee-Hee Lee
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - Jun-Woo Kim
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - Bok-Ghee Han
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - Jae-Pil Jeon
- Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951, Republic of Korea.
| |
Collapse
|
44
|
Bala Tannan N, Brahmachary M, Garg P, Borel C, Alnefaie R, Watson CT, Thomas NS, Sharp AJ. DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation. Hum Mol Genet 2013; 23:1224-36. [PMID: 24186870 DOI: 10.1093/hmg/ddt553] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
X chromosome inactivation (XCI) is an epigenetic mechanism that silences the majority of genes on one X chromosome in females. Previous studies have suggested that the spread of XCI might be facilitated in part by common repeats such as long interspersed nuclear elements (LINEs). However, owing to the unusual sequence content of the X and the nonrandom distribution of genes that escape XCI, it has been unclear whether the correlation between repeat elements and XCI is a functional one. To test the hypothesis that the spread of XCI shows sequence specificity, we have analyzed the pattern of XCI in autosomal chromatin by performing DNA methylation profiling in six unbalanced X;autosome translocations. Using promoter hypermethylation as an epigenetic signature of XCI, we have determined the inactivation status of 1050 autosomal genes after translocation onto an inactive derivative X. By performing a comparative sequence analysis of autosomal genes that are either subject to or escape the X inactivation signal, we identified a number of common repetitive elements, including L1 and L2 LINEs, and DNA motifs that are significantly enriched around inactive autosomal genes. We show that these same motifs predominantly map to L1P repeat elements, are significantly enriched on the X chromosome versus the autosomes and also occur at higher densities around X-linked genes that are subject to X inactivation compared with those that escape X inactivation. These results are consistent with a potential causal relationship between DNA sequence features such as L1s and the spread of XCI, lending strong support to Mary Lyon's 'repeat hypothesis'.
Collapse
Affiliation(s)
- Neeta Bala Tannan
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hansen KD, Sabunciyan S, Langmead B, Nagy N, Curley R, Klein G, Klein E, Salamon D, Feinberg AP. Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization. Genome Res 2013; 24:177-84. [PMID: 24068705 PMCID: PMC3912409 DOI: 10.1101/gr.157743.113] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Altered DNA methylation occurs ubiquitously in human cancer from the earliest measurable stages. A cogent approach to understanding the mechanism and timing of altered DNA methylation is to analyze it in the context of carcinogenesis by a defined agent. Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with lymphoma and nasopharyngeal carcinoma, but also used commonly in the laboratory to immortalize human B-cells in culture. Here we have performed whole-genome bisulfite sequencing of normal B-cells, activated B-cells, and EBV-immortalized B-cells from the same three individuals, in order to identify the impact of transformation on the methylome. Surprisingly, large-scale hypomethylated blocks comprising two-thirds of the genome were induced by EBV immortalization but not by B-cell activation per se. These regions largely corresponded to hypomethylated blocks that we have observed in human cancer, and they were associated with gene-expression hypervariability, similar to human cancer, and consistent with a model of epigenomic change promoting tumor cell heterogeneity. We also describe small-scale changes in DNA methylation near CpG islands. These results suggest that methylation disruption is an early and critical step in malignant transformation.
Collapse
|
46
|
Aldinger KA, Plummer JT, Levitt P. Comparative DNA methylation among females with neurodevelopmental disorders and seizures identifies TAC1 as a MeCP2 target gene. J Neurodev Disord 2013; 5:15. [PMID: 23759142 PMCID: PMC3700820 DOI: 10.1186/1866-1955-5-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/22/2013] [Indexed: 12/26/2022] Open
Abstract
Background Several proteins involved in epigenetic regulation cause syndromic neurodevelopmental disorders when human genes are mutated. More general involvement of epigenetic mechanisms in neurodevelopmental phenotypes is unclear. Methods In an attempt to determine whether DNA methylation differentiates clinical subgroups, profiling was performed on bisulfite converted DNA from lymphoblastoid cell lines (LCLs) in discovery (n = 20) and replication (n = 40) cohorts of females with Rett syndrome (RTT; n = 18), autism (AUT; n = 17), seizure disorder (SEZ; n = 6), and controls (CTL; n = 19) using Illumina HumanMethylation27 arrays. TAC1 CpGs were validated using a Sequenom EpiTYPER assay and expression was measured in LCLs and postmortem brain. Chromatin immunoprecipitation was performed in HEK cells. Cells were treated with valproic acid and MeCP2 binding was assessed. Results Two female-only cohorts were analyzed. DNA methylation profiling in a discovery cohort identified 40 CpGs that exhibited statistically significant differential methylation (≥15%) between clinical groups (P <0.01). Hierarchical clustering and principal components analysis suggested neurodevelopmental groups were distinct from CTL, but not from each other. In a larger and more heterogeneous replication cohort, these 40 CpG sites suggested no clear difference between clinical groups. Pooled analysis of DNA methylation across all 60 samples suggested only four differentially methylated CpG sites (P <0.0005), including TAC1. TAC1 promoter CpG hypermethylation was validated in AUT and SEZ (P <0.005). Analyzed for the first time in postmortem brain, TAC1 expression was reduced in cingulate cortex in RTT and AUT+SEZ (P = 0.003). However, no significant difference in TAC1 promoter CpG methylation was detected in RTT and AUT+SEZ brains. Additional molecular analyses revealed that MeCP2 binds directly to the TAC1 promoter and is sensitive to antiepileptic drug treatment. Conclusion These data suggest that DNA methylation is not widely altered in RTT, consistent with subtle changes in gene expression previously observed. However, TAC1 may be an important target for further functional analyses in RTT. Studies of larger sample cohorts using primary cells that also consider shared clinical features and drug treatments may be required to address apparent subtle disruptions of DNA methylation in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kimberly A Aldinger
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, 1501 San Pablo Street, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
47
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Eadon MT, Wheeler HE, Stark AL, Zhang X, Moen EL, Delaney SM, Im HK, Cunningham PN, Zhang W, Dolan ME. Genetic and epigenetic variants contributing to clofarabine cytotoxicity. Hum Mol Genet 2013; 22:4007-20. [PMID: 23720496 DOI: 10.1093/hmg/ddt240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
2-chloro-2-fluoro-deoxy-9-D-arabinofuranosyladenine (Clofarabine), a purine nucleoside analog, is used in the treatment of hematologic malignancies and as induction therapy for stem cell transplantation. The discovery of pharmacogenomic markers associated with chemotherapeutic efficacy and toxicity would greatly benefit the utility of this drug. Our objective was to identify genetic and epigenetic variants associated with clofarabine toxicity using an unbiased, whole genome approach. To this end, we employed International HapMap lymphoblastoid cell lines (190 LCLs) of European (CEU) or African (YRI) ancestry with known genetic information to evaluate cellular sensitivity to clofarabine. We measured modified cytosine levels to ascertain the contribution of genetic and epigenetic factors influencing clofarabine-mediated cytotoxicity. Association studies revealed 182 single nucleotide polymorphisms (SNPs) and 143 modified cytosines associated with cytotoxicity in both populations at the threshold P ≤ 0.0001. Correlation between cytotoxicity and baseline gene expression revealed 234 genes at P ≤ 3.98 × 10(-6). Six genes were implicated as: (i) their expression was directly correlated to cytotoxicity, (ii) they had a targeting SNP associated with cytotoxicity, and (iii) they had local modified cytosines associated with gene expression and cytotoxicity. We identified a set of three SNPs and three CpG sites targeting these six genes explaining 43.1% of the observed variation in phenotype. siRNA knockdown of the top three genes (SETBP1, BAG3, KLHL6) in LCLs revealed altered susceptibility to clofarabine, confirming relevance. As clofarabine's toxicity profile includes acute kidney injury, we examined the effect of siRNA knockdown in HEK293 cells. siSETBP1 led to a significant change in HEK293 cell susceptibility to clofarabine.
Collapse
|
49
|
Tian F, Zhan F, VanderKraats ND, Hiken JF, Edwards JR, Zhang H, Zhao K, Song J. DNMT gene expression and methylome in Marek's disease resistant and susceptible chickens prior to and following infection by MDV. Epigenetics 2013; 8:431-44. [PMID: 23538681 DOI: 10.4161/epi.24361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Marek's disease (MD) is characterized as a T cell lymphoma induced by a cell-associated α-herpesvirus, Marek's disease virus type 1 (MDV1). As with many viral infectious diseases, DNA methylation variations were observed in the progression of MD; these variations are thought to play an important role in host-virus interactions. We observed that DNA methyltransferase 3a (DNMT3a) and 3b (DNMT3b) were differentially expressed in chicken MD-resistant line 6 3 and MD-susceptible line 7 2 at 21 d after MDV infection. To better understand the role of methylation variation induced by MDV infection in both chicken lines, we mapped the genome-wide DNA methylation profiles in each line using Methyl-MAPS (methylation mapping analysis by paired-end sequencing). Collectively, the data sets collected in this study provide a more comprehensive picture of the chicken methylome. Overall, methylation levels were reduced in chickens from the resistant line 6 3 after MDV infection. We identified 11,512 infection-induced differential methylation regions (iDMRs). The number of iDMRs was larger in line 7 2 than in line 6 3, and most of iDMRs found in line 6 3 were overlapped with the iDMRs found in line 7 2. We further showed that in vitro methylation levels were associated with MDV replication, and found that MDV propagation in the infected cells was restricted by pharmacological inhibition of DNA methylation. Our results suggest that DNA methylation in the host may be associated with disease resistance or susceptibility. The methylation variations induced by viral infection may consequentially change the host transcriptome and result in diverse disease outcomes.
Collapse
Affiliation(s)
- Fei Tian
- Department of Animal & Avian Sciences; University of Maryland; College Park, MD USA
| | - Fei Zhan
- Department of Animal & Avian Sciences; University of Maryland; College Park, MD USA
| | - Nathan D VanderKraats
- Center for Pharmacogenomics; Department of Medicine; Washington University School of Medicine; St. Louis, MO USA
| | - Jeffrey F Hiken
- Center for Pharmacogenomics; Department of Medicine; Washington University School of Medicine; St. Louis, MO USA
| | - John R Edwards
- Center for Pharmacogenomics; Department of Medicine; Washington University School of Medicine; St. Louis, MO USA
| | - Huanmin Zhang
- USDA; ARS, Avian Disease and Oncology Laboratory; East Lansing, MI USA; Department of Animal Science; Michigan State University; East Lansing, MI USA
| | - Keji Zhao
- Laboratory of Molecular Immunology; National Heart, Lung and Blood Institute; National Institutes of Health; Bethesda, MD USA
| | - Jiuzhou Song
- Department of Animal & Avian Sciences; University of Maryland; College Park, MD USA
| |
Collapse
|
50
|
Thompson TM, Sharfi D, Lee M, Yrigollen CM, Naumova OY, Grigorenko EL. Comparison of whole-genome DNA methylation patterns in whole blood, saliva, and lymphoblastoid cell lines. Behav Genet 2012; 43:168-76. [PMID: 23269419 DOI: 10.1007/s10519-012-9579-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms, including DNA methylation, that underlie neuropsychiatric conditions have become a promising area of research. Most commonly used DNA sources in such studies are peripheral (whole) blood (WB), saliva (SL), and lymphoblastoid cell lines (LCLs); thus, the question of the consistency of DNA methylation patterns in those cells is of particular interest. To investigate this question we performed comparative analyses of methylation patterns in WB, SL, and LCLs derived from the same individuals, using Illumina HumanMethylation27 BeadChip arrays. Our results showed that DNA methylation patterns in SL are relatively consistent with those in WB, whereas the patterns in LCLs are similarly distinct from both WB and SL. The results indicated that due to multiple random and directed changes in DNA methylation throughout cell culturing, LCLs are not a reliable source of DNA for epigenetic studies and should be used with caution when investigating epigenetic mechanisms underlying biological processes.
Collapse
|