1
|
Melo AI, Zempoalteca R, Ramirez-Funez G, Anaya-Hernández A, Porras MG, Aguirre-Benítez EL, González Del Pliego M, Armando PT, Jiménez-Estrada I. Role of tactile stimulation during the preweaning period on the development of the peripheral sensory sural (SU) nerve in adult artificially reared female rat. Dev Psychobiol 2024; 66:e22486. [PMID: 38739111 DOI: 10.1002/dev.22486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 05/14/2024]
Abstract
Maternal deprivation, as a result of the artificial rearing (AR) paradigm, disturbs electrophysiological and histological characteristics of the peripheral sensory sural (SU) nerve of infant and adult male rats. Such changes are prevented by providing tactile or social stimulation during isolation. AR also affects the female rat's brain and behavior; however, it is unknown whether this early adverse experience also alters their SU nerve development or if tactile stimulation might prevent these possible developmental effects. To assess these possibilities, the electrophysiological and histological characteristics of the SU nerve from adult diestrus AR female rats that: (i) received no tactile stimulation (AR group), (ii) received tactile stimulation in the anogenital and body area (AR-Tactile group), or (iii) were mother reared (MR group) were determined. We found that the amplitude, but not the area, of the evoked compound action potential response in SU nerves of AR rats was lower than those of SU nerves of MR female rats. Tactile stimulation prevented these effects. Additionally, we found a reduction in the outer diameter and myelin thickness of axons, as well as a large proportion of axons with low myelin thickness in nerves of AR rats compared to the nerves of the MR and AR-Tactile groups of rats; however, tactile stimulation only partially prevented these effects. Our data indicate that maternal deprivation disturbs the development of sensory SU nerves in female rats, whereas tactile stimulation partially prevents the changes generated by AR. Considering that our previous studies have shown more severe effects of AR on male SU nerve development, we suggest that sex-associated factors may be involved in these processes.
Collapse
Affiliation(s)
- Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
| | - Rene Zempoalteca
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Gabriela Ramirez-Funez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Mercedes G Porras
- Departamento de Fisiología, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | | | | | - Pérez-Torres Armando
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | | |
Collapse
|
2
|
Zanfino G, Puzzo C, de Laurenzi V, Adriani W. Characterization of Behavioral Phenotypes in Heterozygous DAT Rat Based on Pedigree. Biomedicines 2023; 11:2565. [PMID: 37761006 PMCID: PMC10526166 DOI: 10.3390/biomedicines11092565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Dopamine is an essential neurotransmitter whose key roles include movement control, pleasure and reward, attentional and cognitive skills, and regulation of the sleep/wake cycle. Reuptake is carried out by the dopamine transporter (DAT; DAT1 SLC6A3 gene). In order to study the effects of hyper-dopaminergia syndrome, the gene was silenced in rats. DAT-KO rats show stereotypical behavior, hyperactivity, a deficit in working memory, and an altered circadian cycle. In addition to KO rats, heterozygous (DAT-HET) rats show relative hypofunction of DAT; exact phenotypic effects are still unknown and may depend on whether the sire or the dam was KO. Our goal was to elucidate the potential importance of the parental origin of the healthy or silenced allele and its impact across generations, along with the potential variations in maternal care. We thus generated specular lines to study the effects of (grand) parental roles in inheriting the wild or mutated allele. MAT-HETs are the progeny of a KO sire and a WT dam; by breeding MAT-HET males and KO females, we obtained subjects with a DAT -/- epigenotype, named QULL, to reflect additional epigenetic DAT modulation when embryos develop within a hyper-dopaminergic KO uterus. We aimed to verify if any behavioral anomaly was introduced by a QULL (instead of KO) rat acting as a direct father or indirect maternal grandfather (or both). We thus followed epigenotypes obtained after three generations and observed actual effects on impaired maternal care of the offspring (based on pedigree). In particular, offspring of MAT-HET-dam × QULL-sire breeding showed a compulsive and obsessive phenotype. Although the experimental groups were all heterozygous, the impact of having a sire of epigenotype QULL (who developed in the uterus of a KO grand-dam) has emerged clearly. Along the generations, the effects of the DAT epigenotype on the obsessive/compulsive phenotype do vary as a function of the uterine impact on either allele in one's genealogical line.
Collapse
Affiliation(s)
- Gioia Zanfino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.Z.); (C.P.)
| | - Concetto Puzzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.Z.); (C.P.)
- Faculty of Psychology, International Telematic University Uninettuno, 00186 Rome, Italy
| | - Vincenzo de Laurenzi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.Z.); (C.P.)
- Faculty of Psychology, International Telematic University Uninettuno, 00186 Rome, Italy
| |
Collapse
|
3
|
Duque-Quintero M, Hooijmans CR, Hurowitz A, Ahmed A, Barris B, Homberg JR, Hen R, Harris AZ, Balsam P, Atsak P. Enduring effects of early-life adversity on reward processes: A systematic review and meta-analysis of animal studies. Neurosci Biobehav Rev 2022; 142:104849. [PMID: 36116576 PMCID: PMC10729999 DOI: 10.1016/j.neubiorev.2022.104849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/06/2023]
Abstract
Two-thirds of individuals experience adversity during childhood such as neglect, abuse or highly-stressful events. Early-life adversity (ELA) increases the life-long risk of developing mood and substance use disorders. Reward-related deficits has emerged as a key endophenotype of such psychiatric disorders. Animal models are invaluable for studying how ELA leads to reward deficits. However, the existing literature is heterogenous with difficult to reconcile findings. To create an overview, we conducted a systematic review containing multiple meta-analyses regarding the effects of ELA on reward processes overall and on specific aspects of reward processing in animal models. A comprehensive search identified 120 studies. Most studies omitted key details resulting in unclear risk of bias. Overall meta-analysis showed that ELA significantly reduced reward behaviors (SMD: -0.42 [-0.60; -0.24]). The magnitude of ELA effects significantly increased with longer exposure. When reward domains were analyzed separately, ELA only significantly dampened reward responsiveness (SMD: -0.525[-0.786; -0.264]) and social reward processing (SMD: -0.374 [-0.663; -0.084]), suggesting that ELA might lead to deficits in specific reward domains.
Collapse
Affiliation(s)
- Mariana Duque-Quintero
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hurowitz
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Afsana Ahmed
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Ben Barris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Rene Hen
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Alexander Z Harris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Peter Balsam
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands; Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Zeevi L, Irani M, Catana C, Feldman Barrett L, Atzil S. Maternal dopamine encodes affective signals of human infants. Soc Cogn Affect Neurosci 2022; 17:503-509. [PMID: 34750627 PMCID: PMC9071406 DOI: 10.1093/scan/nsab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Mothers are highly responsive to their offspring. In non-human mammals, mothers secrete dopamine in the nucleus accumbens (NAcc) in response to their pups. Yet, it is still unknown which aspect of the offspring behavior elicits dopaminergic responses in mothers. Here, we tested whether infants' affective signals elicit dopaminergic responses in the NAcc of human mothers. First, we conducted a behavioral analysis on videos of infants' free play and quantified the affective signals infants spontaneously communicated. Then, we presented the same videos to mothers during a magnetic resonance-positron emission tomography scan. We traced the binding of [11C]raclopride to free D2/3-type receptors to assess maternal dopaminergic responses during the infant videos. When mothers observed videos with many infant signals during the scan, they had less [11C]raclopride binding in the right NAcc. Less [11C]raclopride binding indicates that less D2/3 receptors were free, possibly due to increased endogenous dopamine responses to infants' affective signals. We conclude that NAcc D2/3 receptors are involved in maternal responsiveness to affective signals of human infants. D2/3 receptors have been associated with maternal responsiveness in nonhuman animals. This evidence supports a similar mechanism in humans and specifies infant-behaviors that activate the maternal dopaminergic system, with implications for social neuroscience, development and psychopathology.
Collapse
Affiliation(s)
- Lior Zeevi
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Merav Irani
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Lisa Feldman Barrett
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Shir Atzil
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
5
|
Behavioral Phenotype in Heterozygous DAT Rats: Transgenerational Transmission of Maternal Impact and the Role of Genetic Asset. Brain Sci 2022; 12:brainsci12040469. [PMID: 35448000 PMCID: PMC9032929 DOI: 10.3390/brainsci12040469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Dopamine transporter (DAT) is involved in dopamine (DA) reuptake in presynaptic terminals. Deletion of DAT results in a hyperdopaminergic KO-rat phenotype. To conduct our studies in heterozygous DAT rats, several pedigree lines were created, with known derivation of the allele (i.e., maternal or paternal). Our purpose was to elucidate the role of parental origin rather than maternal care, assessing if maternal maltreatments generated sequelae in female offspring. In the first experiment, female rats and their pups were observed during postnatal lactation. Control dams were WT and heterozygous ones were MAT (but K-MAT, with previous experience of early maltreatment by their KO adoptive dams). WT dams were highly attracted to their offspring (predictably, they spent a lot of time licking their pups); in contrast, K-MAT dams showed strangely comparable levels of caring for their pups and exploring the environment. Subsequently, peculiar features of the circadian cycle were found in adolescent rats with different epigenotypes (WT, MUX = offspring of MAT father, MIK = offspring of K-MAT dam). The MIK epigenotype produced locomotor hyperactivity also during resting hours, well above typical values. The MUX epigenotype, on the other hand, was less active and presented a depression-like profile. This study is unique: maltreatment was generated in a spontaneous way from a DAT-KO mother to offspring. We highlight how future studies will address separate contributions by genotype and upbringing. In conclusion, paternal-allele asset generates sequelae diametrically opposed to the inheritance of early maternal trauma.
Collapse
|
6
|
Seraphin SB, Sanchez MM, Whitten PL, Winslow JT. The behavioral neuroendocrinology of dopamine systems in differently reared juvenile male rhesus monkeys (Macaca mulatta). Horm Behav 2022; 137:105078. [PMID: 34823146 PMCID: PMC11302405 DOI: 10.1016/j.yhbeh.2021.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
Dopamine (DA) is a critical neuromodulator of behavior. With propensities for addiction, hyper-activity, cognitive impairment, aggression, and social subordinance, monkeys enduring early maternal deprivation evoke human disorders involving dopaminergic dysfunction. To examine whether DA system alterations shape the behavioral correlates of adverse rearing, male monkeys (Macaca mulatta) were either mother-reared (MR: N = 6), or separated from their mothers at birth and nursery-reared (NR: N = 6). Behavior was assessed during 20-minute observations of subjects interacting with same- or differently-reared peers. Cerebrospinal fluid (CSF) biogenic amines, and serum testosterone (T), cortisol (CORT), and prolactin (PRL) were collected before and after pharmacologic challenge with saline or the DA receptor-2 (DRD2) antagonist Raclopride (RAC). Neuropeptide correlations observed in MR were non-existent in NR monkeys. Compared to MR, NR showed reduced DA tone; higher basal serum T; and lower CSF serotonin (5-HT). RAC increased PRL, T and CORT, but the magnitude of responses varied as a function of rearing. Levels of PRL significantly increased following RAC in MR, but not NR. Elevations in T following RAC were only significant among MR. Contrastingly, the net change (RAC CORT - saline CORT) in CORT was greater in NR than MR. Finally, observations conducted during the juvenile phase in a novel play-arena revealed more aggressive, self-injurious, and repetitive behaviors, which negatively correlated with indexes of dopaminergic tone in NR monkeys. In conclusion, early maternal deprivation alters brain DA systems, and thus may be associated with characteristic cognitive, social, and addiction outcomes.
Collapse
Affiliation(s)
- Sally B Seraphin
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States.
| | - Mar M Sanchez
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322-1003, United States
| | - Patricia L Whitten
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States
| | - James T Winslow
- NIMH IRP Neurobiology Primate Core, NIHAC Bldg. 110, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892-0001, United States
| |
Collapse
|
7
|
Hanson JL, Williams AV, Bangasser DA, Peña CJ. Impact of Early Life Stress on Reward Circuit Function and Regulation. Front Psychiatry 2021; 12:744690. [PMID: 34744836 PMCID: PMC8563782 DOI: 10.3389/fpsyt.2021.744690] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Early life stress - including experience of child maltreatment, neglect, separation from or loss of a parent, and other forms of adversity - increases lifetime risk of mood, anxiety, and substance use disorders. A major component of this risk may be early life stress-induced alterations in motivation and reward processing, mediated by changes in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Here, we review evidence of the impact of early life stress on reward circuit structure and function from human and animal models, with a focus on the NAc. We then connect these results to emerging theoretical models about the indirect and direct impacts of early life stress on reward circuit development. Through this review and synthesis, we aim to highlight open research questions and suggest avenues of future study in service of basic science, as well as applied insights. Understanding how early life stress alters reward circuit development, function, and motivated behaviors is a critical first step toward developing the ability to predict, prevent, and treat stress-related psychopathology spanning mood, anxiety, and substance use disorders.
Collapse
Affiliation(s)
- Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia V. Williams
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A. Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
8
|
Lauby SC, Fleming AS, McGowan PO. Beyond maternal care: The effects of extra-maternal influences within the maternal environment on offspring neurodevelopment and later-life behavior. Neurosci Biobehav Rev 2021; 127:492-501. [PMID: 33905789 DOI: 10.1016/j.neubiorev.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 01/26/2023]
Abstract
The early-life maternal environment has a profound and persistent effect on offspring neuroendocrine function, neurotransmitter systems, and behavior. Studies using rodent models suggest that early-life maternal care can influence the 'developmental programming' of offspring in part through altered epigenetic regulation of specific genes. The exploration of epigenetic regulation of these genes as a biological mechanism has been important to our understanding of how animals adapt to their environments and how these developmental trajectories may be altered. However, other non-maternal factors have been shown to act directly, or to interact with maternal care, to influence later-life phenotype. Based on accumulating evidence, including our research, we discuss other important influences on the developmental programming of offspring. We highlight early-life variations in temperature exposure and offspring genotype x environment interactions as prominent examples. We conclude with recommendations for future investigations on how early-life maternal care and extra-maternal influences lead to persistent changes in the brain and behavior of the offspring throughout development.
Collapse
Affiliation(s)
- Samantha C Lauby
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Patrick O McGowan
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Lauby SC, Ashbrook DG, Malik HR, Chatterjee D, Pan P, Fleming AS, McGowan PO. The role of interindividual licking received and dopamine genotype on later-life licking provisioning in female rat offspring. Brain Behav 2021; 11:e02069. [PMID: 33560574 PMCID: PMC8035462 DOI: 10.1002/brb3.2069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Rat mothers exhibit natural variations in care that propagate between generations of female offspring. However, there is limited information on genetic variation that could influence this propagation. METHODS We assessed early-life maternal care received by individual female rat offspring, later-life maternal care provisioning, and dopaminergic activity in the maternal brain in relation to naturally occurring genetic polymorphisms linked to the dopaminergic system. We also conducted a systematic analysis of other genetic variants potentially related to maternal behavior in our Long-Evans rat population. RESULTS While we did not find a direct relationship between early-life licking received and later-life licking provisioning, this relationship was indirectly affected by dopamine levels in the nucleus accumbens and dependent on variation in the dopamine receptor 2 gene (rs107017253). More specifically, female rat offspring with the A/G genotype showed a positive relationship between average licking received and dopamine levels in the nucleus accumbens of the maternal brain; there was no relationship with female rat offspring with the A/A genotype. The higher dopamine levels in the nucleus accumbens corresponded with higher maternal licking provisioning from postnatal days 2-9. We also discovered and validated several new variants that were predicted by our systematic analysis. CONCLUSION Our findings suggest that genetic variation influences the relationship between early-life maternal care received and the dopaminergic system of the maternal brain, which can indirectly influence later-life maternal care provisioning.
Collapse
Affiliation(s)
- Samantha C. Lauby
- Department of Biological SciencesUniversity of Toronto Scarborough CampusScarboroughONCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoONCanada
| | - David G. Ashbrook
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Hannan R. Malik
- Department of Biological SciencesUniversity of Toronto Scarborough CampusScarboroughONCanada
| | - Diptendu Chatterjee
- The Peter Gilgan Centre for Research and LearningSickkids HospitalTorontoONCanada
| | - Pauline Pan
- Department of Biological SciencesUniversity of Toronto Scarborough CampusScarboroughONCanada
| | - Alison S. Fleming
- Department of PsychologyUniversity of TorontoTorontoONCanada
- Department of PsychologyUniversity of Toronto MississaugaMississaugaONCanada
| | - Patrick O. McGowan
- Department of Biological SciencesUniversity of Toronto Scarborough CampusScarboroughONCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoONCanada
- Department of PsychologyUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
10
|
Kim P. How stress can influence brain adaptations to motherhood. Front Neuroendocrinol 2021; 60:100875. [PMID: 33038383 PMCID: PMC7539902 DOI: 10.1016/j.yfrne.2020.100875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Research shows that a woman's brain and body undergo drastic changes to support her transition to parenthood during the perinatal period. The presence of this plasticity suggests that mothers' brains may be changed by their experiences. Exposure to severe stress may disrupt adaptive changes in the maternal brain and further impact the neural circuits of stress regulation and maternal motivation. Emerging literature of human mothers provides evidence that stressful experience, whether from the past or present environment, is associated with altered responses to infant cues in brain circuits that support maternal motivation, emotion regulation, and empathy. Interventions that reduce stress levels in mothers may reverse the negative impact of stress exposure on the maternal brain. Finally, outstanding questions regarding the timing, chronicity, types, and severity of stress exposure, as well as study design to identify the causal impact of stress, and the role of race/ethnicity are discussed.
Collapse
Affiliation(s)
- Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, United States.
| |
Collapse
|
11
|
Lee SM, Jeon S, Jeong HJ, Kim BN, Kim Y. Dibutyl phthalate exposure during gestation and lactation in C57BL/6 mice: Maternal behavior and neurodevelopment in pups. ENVIRONMENTAL RESEARCH 2020; 182:109025. [PMID: 31841868 DOI: 10.1016/j.envres.2019.109025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Neurotoxic effects of phthalate during pregnancy on immature brain of the offspring or mature brains of the mothers remain unclear. We examined the effect of dibutyl phthalate (DBP) exposure during gestation and lactation on the maternal behavior of mother mice and neurodevelopment in pups. METHODS Pregnant mice were treated orally with DBP (0, 50 and 100 mg/kg/day, N = 20 per group) from gestational day 13 to postnatal day (PND) 15. Maternal behavior was measured using pup retrieval and nest shape test at postpartum day 4. For the pups, the neurodevelopment was measured using negative geotaxis, cliff avoidance at PND 7, swimming test and olfactory orientation at PND 14. RNA and protein expressions in the brain cortex of 50 mg/kg/day and control group (0 mg/kg/day) were analyzed using microarray and Western blot analysis. Nissl-stained sections at the coronal level of interaural 2.56 mm, bregma -1,23 mm, were used for counting of dark cortical neurons in mother and pup mice. RESULTS DBP treated mother mice (50 and 100 mg/kg/day) showed poor maternal behavior, poor nesting and retrieval behavior compared to the control group (0 mg/kg/day). In brain cortex, DBP-treated mothers showed decrease in protein expression of Nr4a3, Egr1, Arc, BDNF and phosphorylation of AKT and CREB, were also decreased in cortex of DBP-treated mothers. Pups exposed to DBP showed significantly decreased scores in negative geotaxis at PND 7 and swimming scores and olfactory orientation tests at PND 14. The cortex of the DBP exposed pups showed increase in expression of dopamine receptor D2 gene. Nissl staining showed that the dark neurons were increased in cortex of DBP treated mothers and DBP exposed pups. Suggesting that phthalate may delay pup development indirectly through inadequate mothering as well as direct phthalate exposure on the brain. CONCLUSION DBP exposure during gestation and lactation cause impairment in maternal behaviors and downregulation of neuronal plasticity and survival signals. Pups of mothers with exposed to DBP, showed delayed neurodevelopment and dark neurons increase in brain cortex, suggesting that phthalate may delay pup development indirectly through inadequate mothering as well as direct phthalate exposure on the brain.
Collapse
Affiliation(s)
- Seong Mi Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Ha Jin Jeong
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeni Kim
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea; Department of Psychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang, Republic of Korea.
| |
Collapse
|
12
|
Gao J, Nie L, Li Y, Li M. Serotonin 5-HT2A and 5-HT2C receptors regulate rat maternal behavior through distinct behavioral and neural mechanisms. Neuropharmacology 2020; 162:107848. [DOI: 10.1016/j.neuropharm.2019.107848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023]
|
13
|
Lauby SC, Chatterjee D, Pan P, McGowan PO, Fleming AS. Inter-individual maternal care received and genotype interactions affect dopaminergic phenotypes in female rat offspring. J Neuroendocrinol 2019; 31:e12706. [PMID: 30860615 DOI: 10.1111/jne.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022]
Abstract
Rat mothers exhibit natural variations in care and can shape offspring adult behaviour and their maternal care by affecting the dopaminergic system. We explored whether genotype and gene × environment interactions are involved in these processes in nulliparous female offspring. We assessed maternal licking/grooming toward individual female pups during the first week postpartum and dopamine-related behaviour of the offspring in adulthood. Behaviours explored included strategy shifting, impulsive action and sucrose preference. Single nucleotide polymorphisms in the dopamine receptor 2, dopamine transporter and catechol-O-methyltransferase genes were examined in relation to offspring behaviour and baseline dopamine turnover in select brain regions. Dopamine receptor 2 (RS107017253) variation moderated, or interacted with, the relationship between early-life licking received and behaviour. Specifically, offspring with the A/A genotype showed a significant correlation between early-life licking received and behaviour. Offspring with the A/G and G/G genotypes did not show this relationship. Dopamine transporter gene variation affected offspring behaviour regardless of early-life licking received. Our findings suggest that genotype can directly affect dopamine-related behaviours and alter the sensitivity of offspring to the maternal environment. This could be informative on how maternal care is transmitted between generations of female offspring.
Collapse
Affiliation(s)
- Samantha C Lauby
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Diptendu Chatterjee
- The Peter Gilgan Centre for Research and Learning, Sickkids Hospital, Toronto, Ontario, Canada
| | - Pauline Pan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Patrick O McGowan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
14
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
15
|
McCormick EM, McElwain NL, Telzer EH. Alterations in adolescent dopaminergic systems as a function of early mother-toddler attachment: A prospective longitudinal examination. Int J Dev Neurosci 2019; 78:122-129. [PMID: 31254598 DOI: 10.1016/j.ijdevneu.2019.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
Early experiences have the potential for outsized influence on neural development across a wide number of domains. In humans, many of the most important such experiences take place in the context of the mother-child attachment relationship. Work from animal models has highlighted neural changes in dopaminergic systems as a function of early care experiences, but translational research in humans has been limited. Our goal was to fill this gap by examining the longitudinal associations between early attachment experiences (assessed at 2.5 years) and neural responses to risk and rewards during adolescence (assessed at 13 years). Adolescence is a developmental period where sensitivity to rewards has important implications for behavior and long-term outcomes, providing an important window to study potential influences of early attachment experiences on reward processing. In order to address this question, 50 adolescents completed a risk and reward task during an fMRI scan, allowing us to assess differences in neural sensitivity to changes in risk level and reward amount as a function of early attachment experiences. Adolescents with insecure attachment histories showed blunted sensitivity to increasing risk levels in regions of the dorsal striatum, while also showing heightened sensitivity to increasing reward levels in the same region. These results highlight the importance of early attachment experiences for long-term neural development. Specifically, early exposure to more maladaptive relationships with caregivers may confer dual risks prospectively for adolescents, sensitizing them to rewarding outcomes while de-sensitizing them to potential risks associated with those behaviors, perhaps due to stress-related dopaminergic changes early in development.
Collapse
Affiliation(s)
- Ethan M McCormick
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Nancy L McElwain
- Department of Human Development and Family Studies, University of Illinois, Urbana-Champaign, IL, 61801, United States.,The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, 61801, United States
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, United States
| |
Collapse
|
16
|
Fleming AS, Kraemer GW. Molecular and Genetic Bases of Mammalian Maternal Behavior. GENDER AND THE GENOME 2019. [DOI: 10.1177/2470289719827306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Alison S. Fleming
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| | - Gary W. Kraemer
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
17
|
Strathearn L, Mertens CE, Mayes L, Rutherford H, Rajhans P, Xu G, Potenza MN, Kim S. Pathways Relating the Neurobiology of Attachment to Drug Addiction. Front Psychiatry 2019; 10:737. [PMID: 31780957 PMCID: PMC6857543 DOI: 10.3389/fpsyt.2019.00737] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022] Open
Abstract
Substance use disorders constitute a significant public health problem in North America and worldwide. Specifically, substance addictions in women during pregnancy or in the postpartum period have adverse effects not only on the mother, but also on mother-infant attachment and the child's subsequent development. Additionally, there is growing evidence suggesting that parental addiction may be transmitted intergenerationally, where the child of parents with addiction problems is more likely to experience addiction as an adult. The current review takes a developmental perspective and draws from animal and human studies to examine how compromised early experience, including insecure attachment, early abuse/neglect, and unresolved trauma, may influence the development of neurobiological pathways associated with addictions, ultimately increasing one's susceptibility to addictions later in life. We approach this from three different levels: molecular, neuroendocrine and behavioral; and examine the oxytocin affiliation system, dopamine reward system, and glucocorticoid stress response system in this regard. Increased understanding of these underlying mechanisms may help identify key targets for early prevention efforts and inform needed intervention strategies related to both insecure attachment and addiction.
Collapse
Affiliation(s)
- Lane Strathearn
- Attachment and Neurodevelopment Laboratory, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA, United States
| | - Carol E Mertens
- Attachment and Neurodevelopment Laboratory, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA, United States
| | - Linda Mayes
- Yale Child Study Center, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Helena Rutherford
- Yale Child Study Center, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Purva Rajhans
- Attachment and Neurodevelopment Laboratory, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Guifeng Xu
- Attachment and Neurodevelopment Laboratory, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA, United States.,Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Marc N Potenza
- Yale Child Study Center, Yale University School of Medicine, Yale University, New Haven, CT, United States.,Departments of Psychiatry and Neuroscience and the National Connecticut Mental Health Center, Yale University, New Haven, CT, United States
| | - Sohye Kim
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Attachment style: The neurobiological substrate, interaction with genetics and role in neurodevelopmental disorders risk pathways. Neurosci Biobehav Rev 2018; 95:515-527. [DOI: 10.1016/j.neubiorev.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
|
19
|
Nie L, Di T, Li Y, Cheng P, Li M, Gao J. Blockade of serotonin 5-HT 2A receptors potentiates dopamine D 2 activation-induced disruption of pup retrieval on an elevated plus maze, but has no effect on D 2 blockade-induced one. Pharmacol Biochem Behav 2018; 171:74-84. [PMID: 29944910 DOI: 10.1016/j.pbb.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/27/2022]
Abstract
Appetitive aspect of rat maternal behavior, such as pup retrieval, is motivationally driven and sensitive to dopamine disturbances. Activation or blockade of dopamine D2 receptors causes a similar disruption of pup retrieval, which may also reflect an increase in maternal anxiety and/or a disruption of executive function. Recent work indicates that serotonin 5-HT2A receptors also play an important role in rat maternal behavior. Given the well-known modulation of 5-HT2A on the mesolimbic and mesocortical dopamine functions, the present study examined the extent to which blockade of 5-HT2A receptors on dopamine D2-mediated maternal effects using a pup retrieval on the elevated plus maze (EPM) test. Sprague-Dawley postpartum female rats were acutely injected with quinpirole (a D2 agonist, 0.10 and 0.25 mg/kg, sc), or haloperidol (a D2 antagonist, 0.1 or 0.2 mg/kg, sc), in combination of MDL100907 (a 5-HT2A receptor antagonist, 1.0 mg/kg, sc, 30 min before quinpirole or haloperidol injection) or saline and tested at 30, 90 and 240 min after quinpirole or haloperidol injection on postpartum days 3 and 7. Quinpirole and haloperidol decreased the number of pup retrieved (an index of maternal motivation) and sequential retrieval score (an index of executive function), prolonged the pup retrieval latencies, reduced the percentage of time spent on the open arms (an index of maternal anxiety), and decreased the distance travelled on the maze in a dose-dependent and time-dependent fashion. MDL100907 treatment by itself had no effect on pup retrieval, but it exacerbated the quinpirole-induced disruption of pup retrieval, but had no effect on the haloperidol-induced one. These findings suggest a complex interactive effect between 5-HT2A and D2 receptors on one or several maternal processes (maternal motivation, anxiety and executive function), and support the idea that one molecular mechanism by which 5-HT2A receptors mediate maternal behavior is through its modulation of D2 receptors.
Collapse
Affiliation(s)
- Lina Nie
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Tianqi Di
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Yu Li
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Peng Cheng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Ming Li
- Faculty of Psychology, Southwest University, Chongqing, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | - Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.
| |
Collapse
|
20
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
21
|
Ferreño M, Uriarte N, Zuluaga MJ, Ferreira A, Agrati D. Dopaminergic activity mediates pups' over male preference of postpartum estrous rats. Physiol Behav 2018; 188:134-139. [PMID: 29408305 DOI: 10.1016/j.physbeh.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/30/2022]
Abstract
Pups have greater incentive value than males for rats during the postpartum estrus (PPE); a period when females are both maternally and sexually motivated. Mesolimbic dopaminergic system has been proposed as a general motivational circuit; however in the literature it has been more related to the control of the motivational aspects of maternal than sexual motivation of females. Therefore, we aimed to assess the effect of antagonizing dopaminergic neurotransmission of PPE females on their preference for pups over a male. To achieve this objective we tested PPE rats in a Y-maze with three-choice chambers (one containing eight pups, the other a male and the last one no stimulus) after the systemic administration of the dopaminergic antagonist haloperidol (0.0; 0.025 or 0.05 mg/kg). Furthermore, to determine if this dopaminergic antagonist differentially affects maternal and sexual motivations when pups and male are not competing, we evaluated the effect of haloperidol in the preference of females for pups vs. a non-receptive female and for a male vs. a non-receptive female. In the preference test for pups vs. male, both doses of haloperidol decreased the time that females spent in pups' chamber while increased the time that they spent in male's chamber, resulting in a lack of preference between both incentives. Besides, haloperidol reduced the effort -attempts to get access to the stimuli- made by the females to obtain the pups. Conversely, 0.05 mg/kg of haloperidol did not affect the preference for both incentives when they were confronted to a non-receptive female. Together, these results indicate that the dopaminergic activity mediates pups' preference over male during the PPE and point toward a more relevant role of this system in females' behavioral output when incentives are competing.
Collapse
Affiliation(s)
- Marcela Ferreño
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María José Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniella Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
22
|
Zempoalteca R, Porras MG, Moreno-Pérez S, Ramirez-Funez G, Aguirre-Benítez EL, González Del Pliego M, Mariscal-Tovar S, Mendoza-Garrido ME, Hoffman KL, Jiménez-Estrada I, Melo AI. Early postnatal development of electrophysiological and histological properties of sensory sural nerves in male rats that were maternally deprived and artificially reared: Role of tactile stimulation. Dev Neurobiol 2017; 78:351-362. [PMID: 29197166 DOI: 10.1002/dneu.22561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/14/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
Early adverse experiences disrupt brain development and behavior, but little is known about how such experiences impact on the development of the peripheral nervous system. Recently, we found alterations in the electrophysiological and histological characteristics of the sensory sural (SU) nerve in maternally deprived, artificially reared (AR) adult male rats, as compared with maternally reared (MR) control rats. In the present study, our aim was to characterize the ontogeny of these alterations. Thus, male pups of four postnatal days (PND) were (1) AR group, (2) AR and received daily tactile stimulation to the body and anogenital region (AR-Tactile group); or (3) reared by their mother (MR group). At PND 7, 14, or 21, electrophysiological properties and histological characteristics of the SU nerves were assessed. At PND 7, the electrophysiological properties and most histological parameters of the SU nerve did not differ among MR, AR, and AR-Tactile groups. By contrast, at PND 14 and/or 21, the SU nerve of AR rats showed a lower CAP amplitude and area, and a significant reduction in myelin area and myelin thickness, which were accompanied by a reduction in axon area (day 21 only) compared to the nerves of MR rats. Tactile stimulation (AR-Tactile group) partially prevented most of these alterations. These results suggest that sensory cues from the mother and/or littermates during the first 7-14 PND are relevant for the proper development and function of the adult SU nerve. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 351-362, 2018.
Collapse
Affiliation(s)
- Rene Zempoalteca
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, México
| | | | - Suelem Moreno-Pérez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, México.,Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, México
| | - Gabriela Ramirez-Funez
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, México.,Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, México
| | | | | | | | | | - Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, México
| | | | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, México
| |
Collapse
|
23
|
Champagne FA, Curley JP. Plasticity of the Maternal Brain Across the Lifespan. New Dir Child Adolesc Dev 2017; 2016:9-21. [PMID: 27589495 DOI: 10.1002/cad.20164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Maternal behavior is dynamic and highly sensitive to experiential and contextual factors. In this review, this plasticity will be explored, with a focus on how experiences of females occurring from the time of fetal development through to adulthood impact maternal behavior and the maternal brain. Variation in postpartum maternal behavior is dependent on estrogen sensitivity within the medial preoptic area of the hypothalamus and activation within mesolimbic dopamine neurons. This review will discuss how experiences across the lifespan alter the function of these systems and the multigenerational consequences of these neuroendocrine and behavioral changes. These studies, based primarily on the examination of maternal behavior in laboratory rodents and nonhuman primates, provide mechanistic insights relevant to our understanding of human maternal behavior and to the mechanisms of lifelong plasticity.
Collapse
|
24
|
Kim S, Kwok S, Mayes LC, Potenza MN, Rutherford HJV, Strathearn L. Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Ann N Y Acad Sci 2016; 1394:74-91. [PMID: 27508337 DOI: 10.1111/nyas.13140] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
Substance addiction may follow a chronic, relapsing course and critically undermine the physical and psychological well-being of the affected individual and the social units of which the individual is a member. Despite the public health burden associated with substance addiction, treatment options remain suboptimal, with relapses often seen. The present review synthesizes growing insights from animal and human research to shed light upon developmental and neurobiological pathways that may increase susceptibility to addiction. We examine the dopamine system, the oxytocin system, and the glucocorticoid system, as they are particularly relevant to substance addiction. Our aim is to delineate how early adverse experience may induce long-lasting alterations in each of these systems at molecular, neuroendocrine, and behavioral levels and ultimately lead to heightened vulnerability to substance addiction. We further discuss how substance addiction in adulthood may increase the risk of suboptimal caregiving for the next generation, perpetuating the intergenerational cycle of early adverse experiences and addiction.
Collapse
Affiliation(s)
- Sohye Kim
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Attachment and Neurodevelopment Laboratory, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kwok
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Linda C Mayes
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Marc N Potenza
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut.,Departments of Psychiatry and Neuroscience and the National Center on Addiction and Substance Abuse (CASAColumbia), Yale University School of Medicine, New Haven, Connecticut.,Connecticut Mental Health Center, New Haven, Connecticut
| | | | - Lane Strathearn
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Attachment and Neurodevelopment Laboratory, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas.,Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
25
|
The influence of motherhood on neural systems for reward processing in low income, minority, young women. Psychoneuroendocrinology 2016; 66:130-7. [PMID: 26803528 PMCID: PMC4788565 DOI: 10.1016/j.psyneuen.2016.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Given the association between maternal caregiving behavior and heightened neural reward activity in experimental animal studies, the present study examined whether motherhood in humans positively modulates reward-processing neural circuits, even among mothers exposed to various life stressors and depression. METHODS Subjects were 77 first-time mothers and 126 nulliparous young women from the Pittsburgh Girls Study, a longitudinal study beginning in childhood. Subjects underwent a monetary reward task during functional magnetic resonance imaging in addition to assessment of current depressive symptoms. Life stress was measured by averaging data collected between ages 8-15 years. Using a region-of-interest approach, we conducted hierarchical regression to examine the relationship of psychosocial factors (life stress and current depression) and motherhood with extracted ventral striatal (VST) response to reward anticipation. Whole-brain regression analyses were performed post-hoc to explore non-striatal regions associated with reward anticipation in mothers vs nulliparous women. RESULTS Anticipation of monetary reward was associated with increased neural activity in expected regions including caudate, orbitofrontal, occipital, superior and middle frontal cortices. There was no main effect of motherhood nor motherhood-by-psychosocial factor interaction effect on VST response during reward anticipation. Depressive symptoms were associated with increased VST activity across the entire sample. In exploratory whole brain analysis, motherhood was associated with increased somatosensory cortex activity to reward (FWE cluster forming threshold p<0.001). CONCLUSIONS These findings indicate that motherhood is not associated with reward anticipation-related VST activity nor does motherhood modulate the impact of depression or life stress on VST activity. Future studies are needed to evaluate whether earlier postpartum assessment of reward function, inclusion of mothers with more severe depressive symptoms, and use of reward tasks specific for social reward might reveal an impact of motherhood on reward system activity.
Collapse
|
26
|
Lomanowska AM, Melo AI. Deconstructing the function of maternal stimulation in offspring development: Insights from the artificial rearing model in rats. Horm Behav 2016; 77:224-36. [PMID: 26112882 DOI: 10.1016/j.yhbeh.2015.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
This article is part of a Special Issue on "Parental Care". Maternal behavior has an important function in stimulating adequate growth and development of the young. Several approaches have been used in primates and rodents to deconstruct and examine the influence of specific components of maternal stimulation on offspring development. These approaches include observational studies of typical mother-infant interactions and studies of the effects of intermittent or complete deprivation of maternal contact. In this review, we focus on one unique approach using rats that enables the complete control of maternal variables by means of rearing rat pups artificially without contact with the mother or litter, while maintaining stable nutrition, temperature and exposure to stressful stimuli. This artificial rearing model permits the removal and controlled replacement of relevant maternal and litter stimuli and has contributed valuable insights regarding the influence of these stimuli on various developmental outcomes. It also enables the analysis of factors implicated in social isolation itself and their long-term influence. We provide an overview of the effects of artificial rearing on behavior, physiology, and neurobiology, including the influence of replacing maternal tactile stimulation and littermate contact on these outcomes. We then discuss the relevance of these effects in terms of the maternal role in regulating different aspects of offspring development and implications for human research. We emphasize that artificial rearing of rats does not lead to a global insult of nervous system development, making this paradigm useful in investigating specific developmental effects associated with maternal stimulation.
Collapse
Affiliation(s)
- Anna M Lomanowska
- School of Psychology, Laval University, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Apdo Postal 62. C.P. Tlaxcala, Tlax. C.P. 90000, México.
| |
Collapse
|
27
|
Stolzenberg DS, Champagne FA. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Horm Behav 2016; 77:204-10. [PMID: 26172856 DOI: 10.1016/j.yhbeh.2015.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
This article is part of a Special Issue "Parental Care". Though hormonal changes occurring throughout pregnancy and at the time of parturition have been demonstrated to prime the maternal brain and trigger the onset of mother-infant interactions, extended experience with neonates can induce similar behavioral interactions. Sensitization, a phenomenon in which rodents engage in parental responses to young following constant cohabitation with donor pups, was elegantly demonstrated by Rosenblatt (1967) to occur in females and males, independent of hormonal status. Study of the non-hormonal basis of maternal behavior has contributed significantly to our understanding of hormonal influences on the maternal brain and the cellular and molecular mechanisms that mediate maternal behavior. Here, we highlight our current understanding regarding both hormone-induced and experience-induced maternal responsivity and the mechanisms that may serve as a common pathway through which increases in maternal behavior are achieved. In particular, we describe the epigenetic changes that contribute to chromatin remodeling and how these molecular mechanisms may influence the neural substrates of the maternal brain. We also consider how individual differences in these systems emerge during development in response to maternal care. This research has broad implications for our understanding of the parental brain and the role of experience in the induction of neurobiological and behavior changes.
Collapse
|
28
|
Lomanowska AM, Boivin M, Hertzman C, Fleming AS. Parenting begets parenting: A neurobiological perspective on early adversity and the transmission of parenting styles across generations. Neuroscience 2015; 342:120-139. [PMID: 26386294 DOI: 10.1016/j.neuroscience.2015.09.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
Abstract
The developing brains of young children are highly sensitive to input from their social environment. Nurturing social experience during this time promotes the acquisition of social and cognitive skills and emotional competencies. However, many young children are confronted with obstacles to healthy development, including poverty, inappropriate care, and violence, and their enhanced sensitivity to the social environment means that they are highly susceptible to these adverse childhood experiences. One source of social adversity in early life can stem from parenting that is harsh, inconsistent, non-sensitive or hostile. Parenting is considered to be the cornerstone of early socio-emotional development and an adverse parenting style is associated with adjustment problems and a higher risk of developing mood and behavioral disorders. Importantly, there is a growing literature showing that an important predictor of parenting behavior is how parents, especially mothers, were parented themselves. In this review, we examine how adversity in early-life affects mothering behavior in later-life and how these effects may be perpetuated inter-generationally. Relying on studies in humans and animal models, we consider evidence for the intergenerational transmission of mothering styles. We then describe the psychological underpinnings of mothering, including responsiveness to young, executive function and affect, as well as the physiological mediators of mothering behavior, including hormones, brain regions and neurotransmitters, and we consider how development in these relevant domains may be affected by adversity experienced in early life. Finally, we explore how genes and early experience interact to predict mothering behavior, including the involvement of epigenetic mechanisms. Understanding how adverse parenting begets adverse parenting in the next generation is critical for designing interventions aimed at preventing this intergenerational cycle of early adversity.
Collapse
Affiliation(s)
- A M Lomanowska
- School of Psychology, Laval University, Quebec City, QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - M Boivin
- School of Psychology, Laval University, Quebec City, QC G1V 0A6, Canada; Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
| | - C Hertzman
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z9, Canada
| | - A S Fleming
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Fraser Mustard Institute for Human Development, University of Toronto, Toronto, ON M5S 1V6, Canada.
| |
Collapse
|
29
|
Lonstein JS, Lévy F, Fleming AS. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Horm Behav 2015; 73:156-85. [PMID: 26122301 PMCID: PMC4546863 DOI: 10.1016/j.yhbeh.2015.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Frédéric Lévy
- Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours IFCE, Nouzilly 37380, France.
| | - Alison S Fleming
- Fraser Mustard Institute for Human Development, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
30
|
Brett ZH, Humphreys KL, Fleming AS, Kraemer GW, Drury SS. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development. Dev Psychopathol 2015; 27:347-67. [PMID: 25997759 PMCID: PMC5299387 DOI: 10.1017/s0954579415000036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.
Collapse
|
31
|
Lovic V, Fleming AS. Propagation of maternal behavior across generations is associated with changes in non-maternal cognitive and behavioral processes. Behav Processes 2015; 117:42-7. [PMID: 25724292 DOI: 10.1016/j.beproc.2015.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 01/26/2023]
Abstract
Over a number of years we have studied the phenomenology of maternal behavior from endocrine, neural, experiential, and ontogenetic perspectives. Here, we focus on the effects of early life experiences with and without the mother on subsequent maternal and non-maternal behaviors of the offspring. We have used an artificial rearing procedure, which entails removing rat pups from their mother and raising them in isolation, while controlling and manipulating several aspects of their upbringing. As adults, mother-reared (MR) and artificially-reared (AR) rats are assessed on their own maternal behavior, as well several other behaviors. While both AR and MR rats nurse and successfully wean their young, the AR rats spend less time licking, grooming, and crouching over their young. Hence, being raised in social isolation does not seem to affect primary maternal motivational dynamics. Instead, isolation rearing produces alterations in the ongoing execution of the behavior and its effective organization. Here, we present evidence that changes in maternal behavior, as a result of social isolation from mother and siblings, are due to changes in top-down (e.g., sustained attention, flexibility) and bottom-up process (e.g., increased stimulus-driven behavior). These changes are likely due to alterations in brain dopamine systems, which are sensitive to early life manipulations and are modulators of bottom-up and top-down processes. Finally, we draw parallels between the rat and human maternal behavior. This article is part of a Special Issue entitled: In Honor of Jerry Hogan.
Collapse
Affiliation(s)
- Vedran Lovic
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, USA.
| | - Alison S Fleming
- Department of Psychology, University of Toronto Mississauga, Canada
| |
Collapse
|
32
|
Segura B, Melo AI, Fleming AS, Mendoza-Garrido ME, González del Pliego M, Aguirre-Benitez EL, Hernández-Falcón J, Jiménez-Estrada I. Early social isolation provokes electrophysiological and structural changes in cutaneous sensory nerves of adult male rats. Dev Neurobiol 2014; 74:1184-93. [DOI: 10.1002/dneu.22197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Bertha Segura
- Department of Biology, FES Iztacala; UNAM. Av. de los Barrios 1 Col. Los Reyes Iztacala; Tlanepantla de Baz Estado de México CP 54090 México
| | - Angel I. Melo
- Centro de Investigación en Reproducción Animal; CINVESTAV Laboratorio Tlaxcala. Universidad Autónoma de Tlaxcala; A.P. 62. C.P. 90000 Tlaxcala México
| | - Alison S. Fleming
- Department of Psychology; University of Toronto at Mississauga; Mississauga, Ontario 5L 1C6 Canada
| | - Maria Eugenia Mendoza-Garrido
- Department of Physiology, Biophysics and Neurosciences; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero; C.P. 07360 México D.F México
| | | | | | - Jesús Hernández-Falcón
- Laboratorio de Redes Neuronales, Departamento de Fisiología; Facultad de Medicina, UNAM; Mexico
| | - Ismael Jiménez-Estrada
- Department of Physiology, Biophysics and Neurosciences; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero; C.P. 07360 México D.F México
| |
Collapse
|
33
|
Peña CJ, Neugut YD, Calarco CA, Champagne FA. Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur J Neurosci 2014; 39:946-956. [DOI: 10.1111/ejn.12479] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/12/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Catherine Jensen Peña
- Department of Neuroscience and Friedman Brain Institute; Mount Sinai School of Medicine; New York NY USA
| | - Yael D. Neugut
- Department of Psychology; Columbia University; 406 Schermerhorn Hall, 1190 Amsterdam Avenue New York NY 10027 USA
| | | | - Frances A. Champagne
- Department of Psychology; Columbia University; 406 Schermerhorn Hall, 1190 Amsterdam Avenue New York NY 10027 USA
| |
Collapse
|
34
|
Jensen Peña C, Champagne FA. Implications of temporal variation in maternal care for the prediction of neurobiological and behavioral outcomes in offspring. Behav Neurosci 2013; 127:33-46. [PMID: 23398440 DOI: 10.1037/a0031219] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to a high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Among juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD, and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects.
Collapse
|
35
|
Olazábal DE, Pereira M, Agrati D, Ferreira A, Fleming AS, González-Mariscal G, Lévy F, Lucion AB, Morrell JI, Numan M, Uriarte N. New theoretical and experimental approaches on maternal motivation in mammals. Neurosci Biobehav Rev 2013; 37:1860-74. [PMID: 23608127 DOI: 10.1016/j.neubiorev.2013.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 01/23/2023]
Abstract
Maternal behavior is expressed in different modalities, physiological conditions, and contexts. It is the result of a highly motivated brain, that allows the female to flexibily adapt her caring activities to different situations and social demands. To understand how mothers coordinate maternal and other motivated behaviors we discuss the limitations of current theoretical approaches to study maternal motivation (e.g. distinction between appetitive and consummatory behaviors), and propose a different approach (i.e. motorically active vs. passive motivations) and a distinction between maternal motivated state and maternal motivated behaviors. We review the evidence supporting dopamine mediation of maternal motivation and describe how different phases of the dopaminergic response - basal, tonic, and phasic release in the nucleus accumbens - relate to increased salience, invigorating behavior, and behavioral switching. The existing and new experimental paradigms to investigate maternal motivation, and its coexpression and coordination with other social or non-social motivations are also analyzed. An example of how specificity of motivational systems (e.g. maternal and sexual behavior at postpartum estrus) could be processed at the neural level is also provided. This revision offers new theoretical and experimental approaches to address the fundamental question of how mothers flexibly adapt and coordinate the different components of maternal behavior with other motivated behaviors, also critical for the survival of the species.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, CP 11800, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Afonso VM, Shams WM, Jin D, Fleming AS. Distal pup cues evoke dopamine responses in hormonally primed rats in the absence of pup experience or ongoing maternal behavior. J Neurosci 2013; 33:2305-12. [PMID: 23392661 PMCID: PMC6619153 DOI: 10.1523/jneurosci.2081-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/20/2012] [Accepted: 10/31/2012] [Indexed: 11/21/2022] Open
Abstract
During the early postpartum period or following estrogen/progesterone administration, pups elicit maternal behavior accompanied by a robust dopamine (DA) response in the nucleus accumbens (NAC) of female rats (Afonso et al., 2009). To determine whether DA responds to ostensibly "salient" stimuli in the absence of consummatory behaviors, we examined NAC shell DA responses during restricted (stimuli placed in a perforated box), and unrestricted access to pup and food stimuli. Microdialysis samples were collected from female rats that were either cycling and postpartum (Experiment 1), or after ovariectomy and treated with empty and hormone-filled capsules (Experiment 2). Relative to nonprimed controls, hormonally primed females had suppressed basal DA concentrations and facilitated pup-evoked DA responses, regardless of stimulus access condition. In contrast, food-evoked DA responses were unchanged by hormonal priming and were greater when females consumed food compared with distal (restricted) exposure to food. During pup and food restriction conditions, the lack of any "appetitive" behavioral differences, even in pup experienced postpartum females, was surprising. In Experiment 3, we confirmed that postpartum dams allocated time equivalently to restricted pup and food stimuli, even after pup deprivation. This was in sharp contrast to the effects of deprivation during the unrestricted access phase. Together, our data demonstrated that, in hormonally primed females, distal pup cues could evoke DA responses without prior stimulus experience, ongoing maternal (behavioral) responses, or clear evidence of robust pup saliency. The results suggest that NAC DA response reflects a state of responsiveness related to basal DA suppression in the hormonally primed female rat.
Collapse
Affiliation(s)
- Veronica M. Afonso
- Department of Psychology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | - Waqqas M. Shams
- Department of Psychology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | - Daniel Jin
- Department of Psychology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | - Alison S. Fleming
- Department of Psychology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
37
|
Lovic V, Belay H, Walker CD, Burton CL, Meaney MJ, Sokolowski M, Fleming AS. Early postnatal experience and DRD2 genotype affect dopamine receptor expression in the rat ventral striatum. Behav Brain Res 2012; 237:278-82. [PMID: 23036844 DOI: 10.1016/j.bbr.2012.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/06/2012] [Accepted: 09/25/2012] [Indexed: 01/11/2023]
Abstract
Dopamine systems can be altered by experiences such as early life adversity. The intensity of these effects seems to vary as a function of interactions between genetic and environmental influences. In a series of experiments we have investigated the effects of genetic variants and early life adversity on several biobehavioral outcomes. Here we investigated the presence of single nucleotide polymorphisms (SNPs) in the gene coding for dopamine D2 receptors (DRD2) and the interaction between these variants with early life adversity on the expression of D2 receptors in the striatum. Time-mated pregnant female rats underwent restraint stress (gestational days 10-21) or were left undisturbed. Following parturition rat pups were maternally reared (MR) or artificially reared (AR). Subsequent to adult behavioral testing, rats were genotyped and their brains were processed (autoradiography) for D2 receptor expression. We found three variants in the DRD2 gene and these variants interacted with early adversity to affect D2 receptor expression in the nucleus accumbens. Specifically, artificially reared rats with AG DRD2 variant showed significantly higher D2 expression compared to mother reared rats with the AG DRD2 variant as well as the artificially reared rats with a GG DRD2 variant. These findings show that adult D2 expression is significantly influenced by the interaction of DRD2 SNPs and early developmental factors. These finding may explain why there are significant individual differences in the impact of early life adversity on dopamine-dependent processes and disorder vulnerabilities.
Collapse
Affiliation(s)
- Vedran Lovic
- Department of Psychology, University of Toronto Mississauga, Canada.
| | | | | | | | | | | | | |
Collapse
|