1
|
Elwakkad A, Gamal El Din AA, Saleh HA, Ibrahim NE, Hebishy MA, Mourad HH, El-Kassaby MI, Abou-Seif HS, Elqattan GM. Gold nanoparticles combined baker's yeast as a successful approach for breast cancer treatment. J Genet Eng Biotechnol 2023; 21:27. [PMID: 36877301 PMCID: PMC9989084 DOI: 10.1186/s43141-023-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae (S. cerevisiae) has been demonstrated in vitro to sensitize several breast cancer cell lines and to be a safe, non-toxic drug with anti-skin cancer action in mice. Furthermore, plasmonic photothermal treatment using gold nanorods has been authorized as a novel method for in vitro and in vivo cancer therapy. RESULTS When compared to tumor-free rats, the treatment with S. cerevisiae conjugated to gold nanospheres (GNSs) lowered Bcl-2 levels while increasing FasL, Bax, cytochrome c, and caspases 8, 9, and 3 levels. Histopathological results showed changes reflecting the ability of nanogold conjugated heat-killed yeast to induce apoptosis is greater than heat-killed yeast alone as the nanogold conjugated with heat-killed yeast showed no tumor, no hyperplasia, no granulation tissue formation, no ulceration, and no suppuration. Nanogold conjugated with heat-killed yeast-treated breast cancer group displayed normal levels of ALT and AST, indicating relatively healthy hepatic cells. CONCLUSION Our results proved that nanogold conjugated heat-killed yeast can initiate apoptosis and can be used as a safe non-invasive method for breast cancer treatment more effectively than the yeast alone. This, in turn, gives us new insight and a future hope for the first time that breast cancer can be treated by non-invasive, simple, safe, and naturally originated method and achieves a hopeful treatment and a novel method for in vivo cancer therapy.
Collapse
Affiliation(s)
- Amany Elwakkad
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Amina A Gamal El Din
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Hisham A Saleh
- Electron Microscope and Thin Films Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Noha E Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Mohamed A Hebishy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Hagar H Mourad
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Mahitab I El-Kassaby
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Howida Sayed Abou-Seif
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt
| | - Ghada M Elqattan
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St. (El-Tahrir St. Former), Giza, 12622, Dokki, Egypt.
| |
Collapse
|
2
|
Sialic acids on B cells are crucial for their survival and provide protection against apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2201129119. [PMID: 35696562 PMCID: PMC9231502 DOI: 10.1073/pnas.2201129119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sialic acids (Sias) on the B cell membrane are involved in cell migration, in the control of the complement system and, as sialic acid-binding immunoglobulin-like lectin (Siglec) ligands, in the regulation of cellular signaling. We studied the role of sialoglycans on B cells in a mouse model with B cell-specific deletion of cytidine monophosphate sialic acid synthase (CMAS), the enzyme essential for the synthesis of sialoglycans. Surprisingly, these mice showed a severe B cell deficiency in secondary lymphoid organs. Additional depletion of the complement factor C3 rescued the phenotype only marginally, demonstrating a complement-independent mechanism. The B cell survival receptor BAFF receptor was not up-regulated, and levels of activated caspase 3 and processed caspase 8 were high in B cells of Cmas-deficient mice, indicating ongoing apoptosis. Overexpressed Bcl-2 could not rescue this phenotype, pointing to extrinsic apoptosis. These results show that sialoglycans on the B cell surface are crucial for B cell survival by counteracting several death-inducing pathways.
Collapse
|
3
|
Lasiosiphon glaucus a potent ethnobotanical medicinal plant against breast cancer targeting multiple pathways: an invitro study. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-021-00624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Youyou Z, Yalei Y, Jie Z, Chuhuai G, Liang L, Liang R. Molecular biomarkers of cantharidin‐induced cardiotoxicity in Sprague‐Dawley rats: Troponin T, vascular endothelial growth factor and hypoxia inducible factor‐1α. J Appl Toxicol 2020; 40:1153-1161. [DOI: 10.1002/jat.3974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Zhang Youyou
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yu Yalei
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Zhang Jie
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Guan Chuhuai
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Liu Liang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ren Liang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
5
|
Liu Y, Ren L, Liu W, Xiao Z. MiR-21 regulates the apoptosis of keloid fibroblasts by caspase-8 and the mitochondria-mediated apoptotic signaling pathway via targeting FasL. Biochem Cell Biol 2018. [PMID: 29527928 DOI: 10.1139/bcb-2017-0306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MicroRNA-21 (miR-21) has been found to be upregulated in keloid tissue and to affect the proliferation and apoptosis of keloid fibroblasts; however, the possible mechanisms remain unclear. In this study, we aimed to evaluate the role of miR-21 in FasL-induced caspase-8 activation and the mitochondria-mediated apoptotic signaling pathway in keloid fibroblasts. Our study found that the protein level of FasL was decreased by miR-21 over-expression, while being enhanced by miR-21 inhibition in keloid fibroblasts. Subsequently, the mitochondria-mediated apoptosis of keloid fibroblasts was restrained by miR-21 over-expression, as evidenced by enhanced mitochondrial membrane potential and decreased production of mitochondrial ROS. Moreover, over-expression of miR-21 inhibited the activation of the caspase-8 and the mitochondria-mediated apoptotic signaling pathway. As expected, inhibition of miR-21 had the opposite effects. Finally, silencing of FasL suppressed miR-21 inhibition-induced apoptosis by inactivation of caspase-8 and the mitochondria-mediated apoptotic signaling pathway, which was comparable to Z-IETD-FMK, a caspase-8 inhibitor. Taken together, these results suggest that miR-21 regulates the apoptosis of keloid fibroblasts via targeting FasL, and caspase-8 and the mitochondria-mediated apoptotic signaling pathway is involved in this process. Our findings provide evidence that miR-21 may be considered to be a therapeutic target for keloids.
Collapse
Affiliation(s)
- Ying Liu
- a Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Lihong Ren
- b Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Wenjing Liu
- b Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhibo Xiao
- b Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
6
|
Chang W, Wu QQ, Xiao Y, Jiang XH, Yuan Y, Zeng XF, Tang QZ. Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway. J Pharmacol Sci 2017; 135:156-163. [PMID: 29276114 DOI: 10.1016/j.jphs.2017.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 11/12/2017] [Indexed: 01/18/2023] Open
Abstract
Since inhibiting cardiac remodeling is a critical treatment goal after myocardial infarction (MI), many drugs have been evaluated for this purpose. Acacetin is a flavonoid compound that has been shown to have anti-cancer, anti-mutagenic, anti-inflammatory and anti-peroxidative effects. In this study, we investigated whether acacetin is able to exert a protective effect against MI. One week after anterior wall standard MI surgeries or sham surgeries were performed in mice, acacetin was administered via gavage for two weeks. The results of echocardiographic and hemodynamic evaluation revealed that cardiac dysfunction significantly improved after acacetin treatment. H&E staining indicated that the ratio of the infarct size and the cardiomyocyte cross-sectional area was decreased by acacetin. Masson's staining detected that the fibrotic area ratio was evidently lower in the acacetin-treated MI group. TUNEL assays showed that acacetin ameliorated cardiomyocyte apoptosis after MI. RT-qPCR analysis showed that levels of hypertrophic and fibrotic markers were significantly decreased after acacetin treatment. Western blot analysis of various signaling pathway proteins showed that acacetin targets the MAPK and PI3K/Akt signaling pathways. Collectively, acacetin improves mouse left ventricular function and attenuates cardiac remodeling by inhibiting of the MAPK and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei Chang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China; Wuhan No.1 Hospital, Wuhan, 430060, PR China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Yang Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Xiao-Han Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Xiao-Feng Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
7
|
Krishnan P, Rajan M, Kumari S, Sakinah S, Priya SP, Amira F, Danjuma L, Pooi Ling M, Fakurazi S, Arulselvan P, Higuchi A, Arumugam R, Alarfaj AA, Munusamy MA, Hamat RA, Benelli G, Murugan K, Kumar SS. Efficiency of newly formulated camptothecin with β-cyclodextrin-EDTA-Fe 3O 4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug. Sci Rep 2017; 7:10962. [PMID: 28887536 PMCID: PMC5591276 DOI: 10.1038/s41598-017-09140-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/24/2017] [Indexed: 11/25/2022] Open
Abstract
Camptothecin (CPT) is an anti-cancer drug that effectively treats various cancers, including colon cancer. However, poor solubility and other drawbacks have restricted its chemotherapeutic potential. To overcome these restrictions, CPT was encapsulated in CEF (cyclodextrin-EDTA-FE3O4), a composite nanoparticle of magnetic iron oxide (Fe3O4), and β-cyclodextrin was cross-linked with ethylenediaminetetraacetic acid (EDTA). This formulation improved CPT’s solubility and bioavailability for cancer cells. The use of magnetically responsive anti-cancer formulation is highly advantageous in cancer chemotherapy. The chemical characterisation of CPT-CEF was studied here. The ability of this nano-compound to induce apoptosis in HT29 colon cancer cells and A549 lung cancer cells was evaluated. The dose-dependent cytotoxicity of CPT-CEF was shown using MTT. Propidium iodide and Annexin V staining, mitochondrial membrane depolarisation (JC-1 dye), and caspase-3 activity were assayed to detect apoptosis in CPT-CEF-treated cancer cells. Cell cycle analysis also showed G1 phase arrest, which indicated possible synergistic effects of the nano-carrier. These study results show that CPT-CEF causes a dose-dependent cell viability reduction in HT29 and A549 cells and induces apoptosis in colon cancer cells via caspase-3 activation. These data strongly suggest that CPT could be used as a major nanocarrier for CPT to effectively treat colon cancer.
Collapse
Affiliation(s)
- Poorani Krishnan
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| | - Sharmilah Kumari
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - S Sakinah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Sivan Padma Priya
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Fatin Amira
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Lawal Danjuma
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Mok Pooi Ling
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia.,Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu, 637408, India
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001, Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.,Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramitha Arumugam
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.,The BioRobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia. .,Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Khalilzadeh B, Shadjou N, Charoudeh HN, Rashidi MR. Recent advances in electrochemical and electrochemiluminescence based determination of the activity of caspase-3. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2466-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Xue L, Borné Y, Mattisson IY, Wigren M, Melander O, Ohro-Melander M, Bengtsson E, Fredrikson GN, Nilsson J, Engström G. FADD, Caspase-3, and Caspase-8 and Incidence of Coronary Events. Arterioscler Thromb Vasc Biol 2017; 37:983-989. [DOI: 10.1161/atvbaha.117.308995] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/06/2017] [Indexed: 11/16/2022]
Abstract
Objective—
To investigate the relationship between 3 markers of apoptosis, that is, FADD (Fas-associated death domain–containing protein), caspase-3, and caspase-8, and incidence of coronary events (CEs) in a population-based cohort study.
Approach and Results—
In vitro experiments were performed to assess the response of the apoptotic biomarkers after Fas stimulation of peripheral blood mononuclear cells. The experiments showed significantly increased releases of FADD, caspase-3, and caspase-8 after Fas stimulation. The relationship between FADD, caspase-3, and caspase-8, respectively, and incidence of CEs was studied in 4284 subjects from the population-based Malmö Diet and Cancer Study. Cox’ proportional hazards regression was used to examine the association between the apoptotic biomarkers and incidence of CE over a mean follow-up of 19 years. A total of 381 individuals had CE during the follow-up. High FADD at baseline was significantly associated with incident CE. In the highest compared with the lowest quartile of FADD, the risk factor adjusted hazards ratio for CE was 1.82 (95% confidence interval, 1.35–2.46;
P
for trend <0.001). A significant association was also found between caspase-8 and CE; the hazards ratio (Q4 versus Q1) was 1.90 (95% confidence interval, 1.39–2.60;
P
for trend <0.001) after adjustment for risk factors. No association was found between caspase-3 and CEs.
Conclusions—
High levels of FADD and caspase-8, but not caspase-3, were associated with increased incidence of CE in subjects from the general population. The in vitro experiments support the view that these biomarkers could reflect activation of the extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Ling Xue
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Yan Borné
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Ingrid Yao Mattisson
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Maria Wigren
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Olle Melander
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Marju Ohro-Melander
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Eva Bengtsson
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Gunilla Nordin Fredrikson
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Jan Nilsson
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| | - Gunnar Engström
- From the Department of Cardiovascular Diseases, the Second Hospital of Hebei Medical University, ShiJiaZhuang, China (L.X.); and Department of Clinical Sciences, Malmö, Lund University, Sweden (Y.B., I.Y.M., M.W., O.M., M.O.-M., E.B., G.N.F., J.N., G.E.)
| |
Collapse
|
10
|
Shakeri R, Kheirollahi A, Davoodi J. Apaf-1: Regulation and function in cell death. Biochimie 2017; 135:111-125. [PMID: 28192157 DOI: 10.1016/j.biochi.2017.02.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
Apoptosis, a form of programmed cell death, is responsible for eliminating damaged or unnecessary cells in multicellular organisms. Various types of intracellular stress trigger apoptosis by induction of cytochrome c release from mitochondria into the cytosol. Apoptotic protease activating factor-1 (Apaf-1) is a key molecule in the intrinsic or mitochondrial pathway of apoptosis, which oligomerizes in response to cytochrome c release and forms a large complex known as apoptosome. Procaspase-9, an initiator caspase in the mitochondrial pathway, is recruited and activated by the apoptosome leading to downstream caspase-3 processing. Various cellular proteins and small molecules can modulate apoptosome formation and function directly or indirectly. Despite recent progress in understanding the mitochondrial pathway of apoptosis, numerous questions such as the molecular mechanism of Apaf-1 oligomerization and caspase-9 activation remain poorly understood. In addition, reports have emerged showing non-apoptotic functions for Apaf-1. The current review summarizes the latest findings regarding structure-function relationship of Apaf-1 as well as its modifiers.
Collapse
Affiliation(s)
- Raheleh Shakeri
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Asma Kheirollahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Chen RT, Jiao P, Liu Z, Lu Y, Xin HH, Zhang DP, Miao YG. Role of BmDredd during Apoptosis of Silk Gland in Silkworm, Bombyx mori. PLoS One 2017; 12:e0169404. [PMID: 28068357 PMCID: PMC5222620 DOI: 10.1371/journal.pone.0169404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
Silk glands (SGs) undergo massive apoptosis driven degeneration during the larval-pupal transformation. To better understand this event on molecular level, we investigated the expression of apoptosis-related genes across the developmental transition period that spans day 4 in the fifth instar Bombyx mori larvae to day 2 pupae. Increases in the expression of BmDredd (an initiator caspase homolog) closely followed the highest BmEcR expression and resembled the expression trend of BmIcE. Simultaneously, we found that BmDredd expression was significantly higher in SG compared to other tissues at 18 h post-spinning, but reduced following injection of the apoptosis inhibitor (Z-DEVD-fmk). Furthermore, BmDredd expression correlated with changes of caspase3-like activities in SG and RNAi-mediated knockdown of BmDredd delayed SG apoptosis. Moreover, caspase3-like activity was increased in SG by overexpression of BmDredd. Taken together, the results suggest that BmDredd plays a critical role in SG apoptosis.
Collapse
Affiliation(s)
- Rui-ting Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Peng Jiao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhen Liu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Hu-hu Xin
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Deng-pan Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun-gen Miao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
12
|
Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2106342. [PMID: 28058255 PMCID: PMC5183754 DOI: 10.1155/2016/2106342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n = 20) and control (normal saline, n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group (p < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5). More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.
Collapse
|
13
|
Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Zain RB. Cell cycle arrest and mechanism of apoptosis induction in H400 oral cancer cells in response to Damnacanthal and Nordamnacanthal isolated from Morinda citrifolia. Cytotechnology 2016; 68:1999-2013. [PMID: 27488882 PMCID: PMC5023568 DOI: 10.1007/s10616-016-0014-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/25/2016] [Indexed: 01/24/2023] Open
Abstract
Oral cancer is the eleventh most prevalent cancer worldwide. The most prevalent oral cancer is oral squamous cell carcinoma (OSCC). Damnacanthal (DAM) and nordamnacanthal (NDAM), the anthraquinone compounds, are isolated from the root of Morinda citrifolia L. (Noni), which has been used for the treatment of several chronic diseases including cancer. The objectives of this study were to evaluate the cytotoxicity, cell death mode, cell cycle, and the molecular mechanism of apoptosis induced by DAM and NDAM on OSCC. The cytotoxic effects of these compounds against OSCC cell lines were determined by MTT assay. The cell death mode was analysed by DNA laddering and FITC-annexin V/PI flow cytometric assays. In addition, the mechanism of apoptosis induced by DAM and NDAM was detected using mitochondrial membrane potential, Cytochrome c, and caspases assays. Finally, the effect of DAM and NDAM on cell cycle phase distribution of OSCC cells was detected by flow cytometry. In the present study, DAM and NDAM showed cytotoxicity towards OSCC cell lines and the maximum growth inhibition for both compounds was observed in H400 cells with IC50 value of 1.9 and 6.8 μg/ml, respectively, after 72 h treatment. The results also demonstrated the inhibition of H400 OSCC cells proliferation, internucleosomal cleavage of DNA, activation of intrinsic apoptosis pathway, and cell cycle arrest caused by DAM and NDAM. Therefore, these findings suggest that DAM and NDAM can be potentially used as antitumor agents for oral cancer therapy.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aied M Alabsi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Rola Ali-Saeed
- School of Biotechnology, Faculty of Bioresource and Food Industry, University Sultan Zainal Abidin, 22200, Kuala Terengganu, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Bioresource and Food Industry, University Sultan Zainal Abidin, 22200, Kuala Terengganu, Terengganu, Malaysia
| | - Vui King Vincent-Chong
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Sesamol induces mitochondrial apoptosis pathway in HCT116 human colon cancer cells via pro-oxidant effect. Life Sci 2016; 158:46-56. [DOI: 10.1016/j.lfs.2016.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/06/2016] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
|
15
|
Pretreatment with low-dose gadolinium chloride attenuates myocardial ischemia/reperfusion injury in rats. Acta Pharmacol Sin 2016; 37:453-62. [PMID: 26948086 DOI: 10.1038/aps.2015.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/25/2015] [Indexed: 12/14/2022]
Abstract
AIM We have shown that low-dose gadolinium chloride (GdCl3) abolishes arachidonic acid (AA)-induced increase of cytoplasmic Ca(2+), which is known to play a crucial role in myocardial ischemia/reperfusion (I/R) injury. The present study sought to determine whether low-dose GdCl3 pretreatment protected rat myocardium against I/R injury in vitro and in vivo. METHODS Cultured neonatal rat ventricular myocytes (NRVMs) were treated with GdCl3 or nifedipine, followed by exposure to anoxia/reoxygenation (A/R). Cell apoptosis was detected; the levels of related signaling molecules were assessed. SD rats were intravenously injected with GdCl3 or nifedipine. Thirty min after the administration the rats were subjected to LAD coronary artery ligation followed by reperfusion. Infarction size, the release of serum myocardial injury markers and AA were measured; cell apoptosis and related molecules were assessed. RESULTS In A/R-treated NRVMs, pretreatment with GdCl3 (2.5, 5, 10 μmol/L) dose-dependently inhibited caspase-3 activation, death receptor-related molecules DR5/Fas/FADD/caspase-8 expression, cytochrome c release, AA release and sustained cytoplasmic Ca(2+) increases induced by exogenous AA. In I/R-treated rats, pre-administration of GdCl3 (10 mg/kg) significantly reduced the infarct size, and the serum levels of CK-MB, cardiac troponin-I, LDH and AA. Pre-administration of GdCl3 also significantly decreased the number of apoptotic cells, caspase-3 activity, death receptor-related molecules (DR5/Fas/FADD) expression and cytochrome c release in heart tissues. The positive control drug nifedipine produced comparable cardioprotective effects in vitro and in vivo. CONCLUSION Pretreatment with low-dose GdCl3 significantly attenuates I/R-induced myocardial apoptosis in rats by suppressing activation of both death receptor and mitochondria-mediated pathways.
Collapse
|
16
|
Sun Z, Schriewer J, Tang M, Marlin J, Taylor F, Shohet RV, Konorev EA. The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. J Mol Cell Cardiol 2015; 90:129-38. [PMID: 26686989 DOI: 10.1016/j.yjmcc.2015.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
Elevated ALK4/5 ligands including TGF-β and activins have been linked to cardiovascular remodeling and heart failure. Doxorubicin (Dox) is commonly used as a model of cardiomyopathy, a condition that often precedes cardiovascular remodeling and heart failure. In 7-8-week-old C57Bl/6 male mice treated with Dox we found decreased capillary density, increased levels of ALK4/5 ligand and Smad2/3 transcripts, and increased expression of Smad2/3 transcriptional targets. Human cardiac microvascular endothelial cells (HCMVEC) treated with Dox also showed increased levels of ALK4/5 ligands, Smad2/3 transcriptional targets, a decrease in proliferation and suppression of vascular network formation in a HCMVEC and human cardiac fibroblasts co-culture assay. Our hypothesis is that the deleterious effects of Dox on endothelial cells are mediated in part by the activation of the TGF-β pathway. We used the inhibitor of ALK4/5 kinases SB431542 (SB) in concert with Dox to ascertain the role of TGF-β pathway activation in doxorubicin induced endothelial cell defects. SB prevented the suppression of HCMVEC proliferation in the presence of TGF-β2 and activin A, and alleviated the inhibition of HCMVEC proliferation by Dox. SB also prevented the suppression of vascular network formation in co-cultures of HCMVEC and human cardiac fibroblasts treated with Dox. Our results show that the inhibition of the TGF-β pathway alleviates the detrimental effects of Dox on endothelial cells in vitro.
Collapse
Affiliation(s)
- Zuyue Sun
- College of Pharmacy, University of Hawaii-Hilo, USA
| | | | - Mingxin Tang
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii-Manoa, USA
| | - Jerry Marlin
- Division of Basic Sciences, Kansas City University, USA
| | | | - Ralph V Shohet
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii-Manoa, USA
| | | |
Collapse
|
17
|
Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4941623. [PMID: 26682007 PMCID: PMC4670685 DOI: 10.1155/2016/4941623] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/10/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023]
Abstract
Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.
Collapse
|
18
|
Hassan F, Hameed AA, Alshanon A, Abdullah BM, Huri HZ, Hairunisa N, Yousif E. Antitumor Activity for Gold (III) Complex by High Content Screening Technique (HCS) and Cell Viability Assay. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajb.2015.252.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
MicroRNA-17-mediated down-regulation of apoptotic protease activating factor 1 attenuates apoptosome formation and subsequent apoptosis of cardiomyocytes. Biochem Biophys Res Commun 2015; 465:299-304. [PMID: 26265044 DOI: 10.1016/j.bbrc.2015.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022]
Abstract
Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent.
Collapse
|
20
|
Intasai N, Pata S, Tragoolpua K, Tayapiwatana C. Recombinant Multivalent EMMPRIN Extracellular Domain Induces U937 Human Leukemia Cell Apoptosis by Downregulation of Monocarboxylate Transporter 1 and Activation of Procaspase-9. Appl Biochem Biotechnol 2015; 176:1781-90. [PMID: 26024713 DOI: 10.1007/s12010-015-1677-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
This study was carried out to understand the effect of the recombinant multivalent extracellular matrix metalloproteinase inducer (EMMPRIN) extracellular domain, designated as rmEMMPRINex, on the apoptotic cell death of human leukemia U937 cells. Expression of monocarboxylate transporter 1 (MCT1) and caspase-9 in U937 treated with rmEMMPRINex was investigated in this study. Levels of membrane MCT1 and intracellular procaspase-9 were decreased in rmEMMPRINex-treated cells in comparison to controls. However, the expression of activated caspase-9 was undetectable. rmEMMPRINex also induced DNA fragmentation and apoptosis in U937 cells. Taken together, we concluded that interaction of rmEMMPRINex with U937 cells leads to inhibition of MCT1 membrane expression, intracellular activation of procaspase-9, followed by DNA fragmentation and apoptosis. This may contribute to the conceptual development of novel cancer drugs in the future.
Collapse
Affiliation(s)
- Nutjeera Intasai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intawaroros Road, Sripoom, Muang, Chiang Mai, 50200, Thailand,
| | | | | | | |
Collapse
|
21
|
Strophalloside induces apoptosis of SGC-7901 cells through the mitochondrion-dependent caspase-3 pathway. Molecules 2015; 20:5714-28. [PMID: 25838173 PMCID: PMC6272525 DOI: 10.3390/molecules20045714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 11/30/2022] Open
Abstract
Cardenolides with special chemical structures have been considered as effective anti-cancer drugs in clinic trials. Strophalloside is a cardenolide we recently isolated from Antiaris toxicaria obtained from Hainan, China. The aim of this study was to investigate the possible anticancer effects induced by strophalloside and the underlying molecular mechanism. Gastric carcinoma SGC-7901 cells were treated with strophalloside at various concentrations for different times, and resulting cell viability was determined by the MTT assay, and the motility and invasion of tumor cells were assessed by the Transwell chamber assay. Apoptosis were measured by Annexin V-FITC/PI and Hoechst staining. The changes of mitochondrial transmembrane potential were examined by a JC-1 kit. The expressions of pro-apoptotic protein cytochrome c, caspase-3 and caspase-9 were detected by western blotting analysis. The results showed that strophalloside was capable of reducing cell viability, inhibiting cell growth, and suppressing cell migration and invasion in a time- and dose-dependent manner. Mitochondrial membrane potential declined and the concentration of cytochrome c increased in cytoplasm and caspase-3 and caspase-9 were cleaved into activated states, suggesting that cytochrome c was released from the mitochondrion to cytoplasm and finally activated the caspase-dependent apoptosis pathway. Our results indicate that strophalloside is a potential anticancer drug.
Collapse
|
22
|
Kim HS, Lee JH, Park HS, Lee GS, Kim HW, Ha KT, Kim BJ. Schizandra chinensis extracts induce apoptosis in human gastric cancer cells via JNK/p38 MAPK activation and the ROS-mediated/mitochondria-dependent pathway. PHARMACEUTICAL BIOLOGY 2015; 53:212-219. [PMID: 25243868 DOI: 10.3109/13880209.2014.913297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Schizandra chinensis Baill (Magnoliaceae) fruit extract (SCE) is considered a traditional herbal medicine for the treatment and alleviation of various diseases. Gastric cancer is the second most common cause of cancer-related death worldwide, and the first most common in Korea. OBJECTIVES This study investigates the mechanism of SCE-induced apoptosis in AGS human gastric cancer cells. MATERIALS AND METHODS SCE concentrations from 100 to 400 µg/ml were used. Cell viabilities were determined using MTT assay. Members of the Bcl-2 family and Bax were detected by Western blotting. RT-PCR was performed to measure the expression level of the Fas/FasL pro-apoptotic genes. RESULTS SCE inhibited the proliferation AGS cells for 24 or 72 h (inhibition by 3.1% ± 5.2% at 100 µg/ml and 87.3% ± 7.6% at 400 µg/ml at 24 h and by 40.2% ± 5.3% 100 µg/ml and 95.3% ± 1.3% 400 µg/ml at 72 h) and increased the sub-G1 phase (25.3% ± 5.2% at 100 µg/ml and 370.2% ± 7.2% at 400 µg/ml) and the mitochondrial membrane depolarization (11.2% ± 2.1% at 100 µg/ml and 311.5% ± 6.1% at 400 µg/ml). The SCE-induced apoptotic cell death showed the down-regulation of Bcl-2, but up-regulation of Bax. Subsequently, SCE increased the expression level of Fas/FasL, activated caspase-9 and -3, and increased reactive oxygen species generation. Also, JNK II inhibitor or a p38 MAPK inhibitor inhibited SCE-induced cell death. DISCUSSION AND CONCLUSION These results indicate that SCE might be an effective chemotherapeutic for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Hyun Sul Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine , Yangsan , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Yan CM, Chai EQ, Cai HY, Miao GY, Ma W. Oleuropein induces apoptosis via activation of caspases and suppression of phosphatidylinositol 3-kinase/protein kinase B pathway in HepG2 human hepatoma cell line. Mol Med Rep 2015; 11:4617-24. [PMID: 25634350 DOI: 10.3892/mmr.2015.3266] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022] Open
Abstract
Oleuropein is a polyphenol, that is found in extra‑virgin olive oil. Previous studies have shown that oleuropein inhibits cell proliferation and induces apoptosis in breast cancer, colorectal cancer and thyroid cancer. The aim of the present study was to investigate the effects of oleuropein in hepatocellular carcinoma (HCC) cells. The results of Cell Counting Kit 8 and flow cytometric analysis indicated that oleuropein effectively inhibited cell viability and induced apoptosis in HepG2 human hepatoma cells in a dose‑dependent manner, through activation of the caspase pathway. Proapoptotic Bcl‑2 family members, BAX and Bcl‑2, were involved in oleuropein‑induced apoptosis. The phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) signaling pathway was also shown to be involved in this process. Oleuropein was demonstrated to suppress the expression of activated AKT. In addition, AKT overexpression promoted cell survival following treatment with oleuropein, while inhibition of AKT promoted cell death. Furthermore, the data demonstrated that oleuropein induces the production of reactive oxygen species (ROS) and that the function of oleuropein is, at least partially, ROS‑dependent. These results suggest that oleuropein may be a promising novel chemotherapeutic agent in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chun-Mei Yan
- Department of Radiotherapy Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Er-Qing Chai
- Cerebrovascular Diseases Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hong-Yi Cai
- Department of Radiotherapy Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guo-Ying Miao
- Department of Radiotherapy Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wen Ma
- Department of Radiotherapy Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
24
|
Abstract
Supplemental digital content is available in the text. Background Rejection is the major obstacle to survival after cardiac transplantation. We investigated whether overexpression of heat shock protein (Hsp)-27 in mouse hearts protects against acute rejection and the mechanisms of such protection. Methods Hearts from B10.A mice overexpressing human Hsp-27 (Hsp-27tg), or Hsp-27–negative hearts from littermate controls (LCs) were transplanted into allogeneic C57BL/6 mice. The immune response to B10.A hearts was investigated using quantitative polymerase chain reaction for CD3+, CD4+, CD8+ T cells, and CD14+ monocytes and cytokines (interferon-γ, interleukin [IL]-2, tumor necrosis factor-α, IL-1β, IL-4, IL-5, IL-10, transforming growth factor-β) in allografts at days 2, 5, and 12 after transplantation. The effect of Hsp-27 on ischemia-induced caspase activation and immune activation was investigated. Results Survival of Hsp-27tg hearts (35±10.37 days, n=10) was significantly prolonged compared with LCs (13.6±3.06 days, n=10, P=0.0004). Hsp-27tg hearts expressed significantly more messenger RNA (mRNA) markers of CD14+ monocytes at day 2 and less mRNA markers of CD3+ and CD8+T cells at day 5 compared with LCs. There was more IL-4 mRNA in Hsp-27tg hearts at day 2 and less interferon-γ mRNA at day 5 compared with LCs. Heat shock protein-27tg hearts subjected to ischemia or to 24 hr ischemia-reperfusion injury demonstrated significantly less apoptosis and activation of caspases 3, 9, and 1 than LCs. T cells removed from C57BL/6 recipients of Hsp-27tg hearts produced a vigorous memory response to B10.A antigens, suggesting immune activation was not inhibited by Hsp-27. Conclusion Heat shock protein-27 delays allograft rejection, by inhibiting tissue damage, through probably an antiapoptotic pathway. It may also promote an anti-inflammatory subset of monocytes.
Collapse
|
25
|
The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type II epithelial cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 761:35-43. [DOI: 10.1016/j.mrgentox.2014.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
|
26
|
Lai CH, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, Liao PH, Lin FH, Wu ET, Huang CY. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9706. [PMID: 25148910 PMCID: PMC4453937 DOI: 10.1007/s11357-014-9706-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/11/2014] [Indexed: 05/18/2023]
Abstract
Cardiovascular disease is the second leading cause of death (9.1 %) in Taiwan. Heart function deteriorates with age at a rate of 1 % per year. As society ages, we must study the serious problem of cardiovascular disease. SIRT1 regulates important cellular processes, including anti-apoptosis, neuronal protection, cellular senescence, aging, and longevity. In our previous studies, rats with obesity, high blood pressure, and diabetes exhibiting slowed myocardial performance and induced cell apoptosis were reversed via sports training through IGF1 survival signaling compensation. This study designed a set of experiments with rats, in aging and exercise groups, to identify changes in myocardial cell signaling transduction pathways. Three groups of three different aged rats, 3, 12, and 18 months old, were randomly divided into aging groups (C3, A12, and A18) and exercise groups (E3, AE12, and AE18). The exercise training consisted of swimming five times a week with gradual increases from the first week from 20 to 60 min for 12 weeks. After the sports training process was completed, tissue sections were taken to observe cell organization (hematoxylin and eosin (H&E) stain) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays) and to observe any changes in the myocardial tissues and proteins (Western blotting). The experimental results show that cardiomyocyte apoptotic pathway protein expression increased with age in the aging groups (C3, A12, and A18), with improvement in the exercise group (E3, AE12, and AE18). However, the expression of the pro-survival p-Akt protein decreased significantly with age and reduced performance. The IGF1R/PI3K/Akt survival pathway in the heart of young rats can indeed be increased through exercise training. As rats age, this pathway loses its original function, even with increasing upstream IGF1. However, levels of SIRT1 and its downstream target PGC-1α were found to increase with age and compensatory performance. Moreover, exercise training enhanced the SIRT longevity pathway compensation instead of IGF1 survival signaling to improve cardiomyocyte survival.
Collapse
Affiliation(s)
- Chao-Hung Lai
- />Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- />Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- />School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- />Chinese Medicine Department, China Medical University Beijing Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- />Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | - Pei-ying Pai
- />Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- />Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Po-Hsiang Liao
- />Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Feng-Huei Lin
- />Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - En-Ting Wu
- />Graduate Institute of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Yang Huang
- />Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- />Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- />Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- />Graduate Institute of Basic Medical Science, Graduate Institute of Chinese Medical Science, China Medical University and Hospital, No. 91, Hsueh-Shih Road, Taichung, 404 Taiwan
| |
Collapse
|
27
|
Pro-apoptotic effect of rice bran inositol hexaphosphate (IP6) on HT-29 colorectal cancer cells. Int J Mol Sci 2013; 14:23545-58. [PMID: 24317430 PMCID: PMC3876062 DOI: 10.3390/ijms141223545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
Inositol hexaphosphate (IP6), or phytic acid is a natural dietary ingredient and has been described as a “natural cancer fighter”, being an essential component of nutritional diets. The marked anti-cancer effect of IP6 has resulted in our quest for an understanding of its mechanism of action. In particular, our data provided strong evidence for the induction of apoptotic cell death, which may be attributable to the up-regulation of Bax and down-regulation of Bcl-xl in favor of apoptosis. In addition, the up-regulation of caspase-3 and -8 expression and activation of both caspases may also contribute to the apoptotic cell death of human colorectal adenocarcinoma HT-29 cells when exposed to IP6. Collectively, this present study has shown that rice bran IP6 induces apoptosis, by regulating the pro- and anti-apoptotic markers; Bax and Bcl-xl and via the activation of caspase molecules (caspase-3 and -8).
Collapse
|
28
|
Anasamy T, Abdul AB, Sukari MA, Abdelwahab SI, Mohan S, Kamalidehghan B, Azid MZ, Muhammad Nadzri N, Andas ARJ, Kuan Beng N, Hadi AHA, Sulaiman Rahman H. A Phenylbutenoid Dimer, cis-3-(3',4'-Dimethoxyphenyl)-4-[(E)-3''',4'''-Dimethoxystyryl] Cyclohex-1-ene, Exhibits Apoptogenic Properties in T-Acute Lymphoblastic Leukemia Cells via Induction of p53-Independent Mitochondrial Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:939810. [PMID: 23710242 PMCID: PMC3603377 DOI: 10.1155/2013/939810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/23/2013] [Indexed: 12/03/2022]
Abstract
The current study was designed to evaluate the in vitro cytotoxicity effect of a phenylbutenoid dimer, cis-3-(3',4'-dimethoxyphenyl)-4-[(E)-3 (‴) ,4 (‴) -dimethoxystyryl]cyclohex-1-ene (ZC-B11) isolated from the rhizome of Zingiber cassumunar on various cancer cell line, and normal human blood mononuclear cells, and to further investigate the involvement of apoptosis-related proteins that leads, to the probable pathway in which apoptosis is triggered. Cytotoxicity test using MTT assay showed selective inhibition of ZC-B11 towards T-acute lymphoblastic leukemia cells, CEMss, with an IC50 value of 7.11 ± 0.240 μ g/mL, which did not reveal cytotoxic effects towards normal human blood mononuclear cells (IC50 > 50 μ g/mL). Morphology assessments demonstrated distinctive morphological changes corresponding to a typical apoptosis. ZC-B11 also arrested cell cycle progression at S phase and causes DNA fragmentation in CEMss cells. Decline of mitochondrial membrane potential was also determined qualitatively. In the apoptosis-related protein determination, ZC-B11 was found to significantly upregulate Bax, caspase 3/7, caspase 9, cytochrome c, and SMAC and downregulate Bcl-2, HSP70, and XIAP, but did not affect caspase 8, p53, and BID. These results demonstrated for the first time the apoptogenic property of ZC-B11 on CEMss cell line, leading to the programmed cell death via intrinsic mitochondrial pathway of apoptosis induction.
Collapse
Affiliation(s)
- Theebaa Anasamy
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Bustamam Abdul
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Aspollah Sukari
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siddig Ibrahim Abdelwahab
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Medical Research Center, Faculty of Medicine, Jazan University, Jazan, P.O. Box 114, Saudi Arabia
| | - Syam Mohan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Zulkhairi Azid
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nabilah Muhammad Nadzri
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A. Reenaa Joys Andas
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ng Kuan Beng
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A. Hamid A. Hadi
- Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Heshu Sulaiman Rahman
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Microbiology and Pathology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Liu X, Li Y, Yang Q, Chen Y, Weng X, Wang Y, Li N, Zhu X. In vitro inhibitory and pro-apoptotic effect of Stellera chamaejasme L extract on human lung cancer cell line NCI-H157. J TRADIT CHIN MED 2013; 32:404-10. [PMID: 23297564 DOI: 10.1016/s0254-6272(13)60046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the inhibitory and pro-apoptotic effect of Stellera Chamaejasme L extract (ESC) in vitro. METHODS ESC was first extracted with ethanol, and then washed using a polyamide column with 60% ethanol. ESC was then decompressively recycled and vacuum dried at room temperature to obtain active fractions. Subsequently, the cytotoxic and apoptotic effects of ESC on NCI-H157 human lung cancer cells were determined. RESULTS The results showed that ESC was rich in isomers of Chamaejasminor, neochamaejasmine and Sikokianin. ESC had significant cytotoxicity against NCI-H157 cells, with an IC50 of approximately 18.50 microg x mL(-). ESC caused significant increase in total apoptotic rate, the activity of caspase 3 and 8, CONCLUSION The inhibitory effect of ESC on NCI-H157 tumor cells might partly be attributed to its apoptotic induction through activation of the Fas death receptor pathway.
Collapse
Affiliation(s)
- Xiaoni Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dentatin Induces Apoptosis in Prostate Cancer Cells via Bcl-2, Bcl-xL, Survivin Downregulation, Caspase-9, -3/7 Activation, and NF-κB Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:856029. [PMID: 23091559 PMCID: PMC3471446 DOI: 10.1155/2012/856029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 01/01/2023]
Abstract
This study was set to investigate antiproliferative potential of dentatin (a natural coumarin isolated from Clausena excavata Burm. F) against prostate cancer and to delineate the underlying mechanism of action. Treatment with dentatin dose-dependently inhibited cell growth of PC-3 and LNCaP prostate cancer cell lines, whereas it showed less cytotoxic effects on normal prostate epithelial cell line (RWPE-1). The inhibitory effect of dentatin on prostate cancer cell growth was due to induction of apoptosis as evidenced by Annexin V staining and cell shrinkage. We found that dentatin-mediated accumulation of reactive oxygen species (ROS) and downregulated expression levels of antiapoptotic molecules (Bcl-2, Bcl-xL, and Survivin), leading to disruption of mitochondrial membrane potential (MMP), cell membrane permeability, and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-9, -3/7 activities, and subsequent DNA fragmentation. In addition, we found that dentatin inhibited TNF-α-induced nuclear translocation of p65, suggesting dentatin as a potential NF-κB inhibitor. Thus, we suggest that dentatin may have therapeutic value in prostate cancer treatment worthy of further development.
Collapse
|
31
|
Joseph TL, Lane DP, Verma CS. Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations. PLoS One 2012; 7:e43985. [PMID: 22952838 PMCID: PMC3432064 DOI: 10.1371/journal.pone.0043985] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022] Open
Abstract
Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595–601) complexed to a fragment (residues 172–320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560–4568; Baek et al. (2012) J Am Chem Soc 134: 103–106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.
Collapse
Affiliation(s)
- Thomas L. Joseph
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, Singapore
| | - David P. Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
32
|
Piacentino III V, Milano CA, Bolanos M, Schroder J, Messina E, Cockrell AS, Jones E, Krol A, Bursac N, Mao L, Devi GR, Samulski RJ, Bowles DE. X-linked inhibitor of apoptosis protein-mediated attenuation of apoptosis, using a novel cardiac-enhanced adeno-associated viral vector. Hum Gene Ther 2012; 23:635-46. [PMID: 22339372 PMCID: PMC3392616 DOI: 10.1089/hum.2011.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 02/09/2012] [Indexed: 12/31/2022] Open
Abstract
Successful amelioration of cardiac dysfunction and heart failure through gene therapy approaches will require a transgene effective at attenuating myocardial injury, and subsequent remodeling, using an efficient and safe delivery vehicle. Our laboratory has established a well-curated, high-quality repository of human myocardial tissues that we use as a discovery engine to identify putative therapeutic transgene targets, as well as to better understand the molecular basis of human heart failure. By using this rare resource we were able to examine age- and sex-matched left ventricular samples from (1) end-stage failing human hearts and (2) nonfailing human hearts and were able to identify the X-linked inhibitor of apoptosis protein (XIAP) as a novel target for treating cardiac dysfunction. We demonstrate that XIAP is diminished in failing human hearts, indicating that this potent inhibitor of apoptosis may be central in protecting the human heart from cellular injury culminating in heart failure. Efforts to ameliorate heart failure through delivery of XIAP compelled the design of a novel adeno-associated viral (AAV) vector, termed SASTG, that achieves highly efficient transduction in mouse heart and in cultured neonatal rat cardiomyocytes. Increased XIAP expression achieved with the SASTG vector inhibits caspase-3/7 activity in neonatal cardiomyocytes after induction of apoptosis through three common cardiac stresses: protein kinase C-γ inhibition, hypoxia, or β-adrenergic receptor agonist. These studies demonstrate the potential benefit of XIAP to correct heart failure after highly efficient delivery to the heart with the rationally designed SASTG AAV vector.
Collapse
Affiliation(s)
- Valentino Piacentino III
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Carmelo A. Milano
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Michael Bolanos
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Jacob Schroder
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Emily Messina
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Adam S. Cockrell
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Edward Jones
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Ava Krol
- Department of Biomedical Engineering, Duke University, Durham, NC 27710
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27710
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Gayathri R. Devi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dawn E. Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
33
|
Udayanga KGS, Yamamoto K, Miyata H, Yokoo Y, Mantani Y, Takahara EI, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Alteration in the apoptosis process of rat esophageal epithelium with hyperproliferation of indigenous bacteria under a physiological condition. J Vet Med Sci 2011; 74:597-605. [PMID: 22188996 DOI: 10.1292/jvms.11-0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The apoptosis process in rat esophageal epithelium was investigated using enzyme-immunohistochemistry and transmission electron microscopy. As a result, Fas and Fas-L were expressed in the epithelial cell membrane and cytoplasm from the stratum spinosum (SS) to the stratum granulosum (SG). No TNF-R1 show immunopositivity in the cell membranes. TNF-α and caspase-8 were not observed in any layer. Caspase-10, cleaved caspase-3, XIAP and DNase-1 were found in the epithelial cytoplasm from the SS to the SG, whereas Bid, Apaf-1 and cleaved caspase-9 were detected only in the SG. Cytochrome c was observed as cytoplasmic granular positivity from the stratum basale (SB) and altered into homogeneous immunopositivity in the SG. Bcl-2 and Bcl-X immunopositivity was detected in cytoplasm from the SB to the SG. Immunoreactions of Bak in the cytoplasm and Bax beneath the cell membrane were observed from the upper portion of the SS with increasing intensity toward the SG. In the sites with the hyperproliferation of indigenous bacteria, TNF-R1, TNF-α and caspase-8 were detected in the SG and the immunopositive intensities of Bid, Apaf-1 and cleaved caspase-9 were altered to be strong. Prominently swollen cells and decreased mitochondria were ultrastructurally confirmed in the uppermost layers of stratum corneum. These findings suggest that the Fas-Fas-L-interaction initially induces apoptosis through a mitochondria-independent pathway and secondarily through a mitochondria-dependent pathway, leading to eventual epithelial cell death in the rat esophageal epithelium. The bacterial stimuli probably enhance the mitochondria-dependent pathway through the TNF-R1-TNF-α interaction.
Collapse
Affiliation(s)
- Kankanam Gamage Sanath Udayanga
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cetrullo S, Tantini B, Facchini A, Pignatti C, Stefanelli C, Caldarera CM, Flamigni F. A pro-survival effect of polyamine depletion on norepinephrine-mediated apoptosis in cardiac cells: role of signaling enzymes. Amino Acids 2010; 40:1127-37. [DOI: 10.1007/s00726-010-0736-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/26/2010] [Indexed: 12/30/2022]
|
35
|
Kalvakolanu DV, Nallar SC, Kalakonda S. Cytokine-induced tumor suppressors: a GRIM story. Cytokine 2010; 52:128-42. [PMID: 20382543 DOI: 10.1016/j.cyto.2010.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 12/18/2022]
Abstract
Cytokines belonging to the IFN family are potent growth suppressors. In a number of clinical and preclinical studies, vitamin A and its derivatives like retinoic acid (RA) have been shown to exert synergistic growth-suppressive effects on several tumor cells. We have employed a genome-wide expression-knockout approach to identify the genes critical for IFN/RA-induced growth suppression. A number of novel genes associated with Retinoid-Interferon-induced Mortality (GRIM) were isolated. In this review, we will describe the molecular mechanisms of actions of one, GRIM-19, which participates in multiple pathways for exerting growth control and/or cell death. This protein is emerging as a new tumor suppressor. In addition, GRIM-19 appears to participate in innate immune responses as its activity is modulated by several viruses and bacteria. Thus, GRIMs seem to couple with multiple biological responses by acting at critical nodes.
Collapse
Affiliation(s)
- Dhan V Kalvakolanu
- Department of Microbiology & Immunology, Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
36
|
Papp LV, Lu J, Bolderson E, Boucher D, Singh R, Holmgren A, Khanna KK. SECIS-binding protein 2 promotes cell survival by protecting against oxidative stress. Antioxid Redox Signal 2010; 12:797-808. [PMID: 19803747 PMCID: PMC11823725 DOI: 10.1089/ars.2009.2913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/03/2009] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are a primary cause of cellular damage that leads to cell death. In cells, protection from ROS-induced damage and maintenance of the redox balance is mediated to a large extent by selenoproteins, a distinct family of proteins that contain selenium in form of selenocysteine (Sec) within their active site. Incorporation of Sec requires the Sec-insertion sequence element (SECIS) in the 3'-untranslated region of selenoproteins mRNAs and the SECIS-binding protein 2 (SBP2). Previous studies have shown that SBP2 is required for the Sec-incorporation mechanism; however, additional roles of SBP2 in the cell have remained undefined. We herein show that depletion of SBP2 by using antisense oligonucleotides (ASOs) causes oxidative stress and induction of caspase- and cytochrome c-dependent apoptosis. Cells depleted of SBP2 have increased levels of ROS, which lead to cellular stress manifested as 8-oxo-7,8-dihydroguanine (8-oxo-dG) DNA lesions, stress granules, and lipid peroxidation. Small-molecule antioxidants N-acetylcysteine, glutathione, and alpha-tocopherol only marginally reduced ROS and were unable to rescue cells fully from apoptosis, indicating that apoptosis might be directly mediated by selenoproteins. Our results demonstrate that SBP2 is required for protection against ROS-induced cellular damage and cell survival.
Collapse
Affiliation(s)
- Laura V. Papp
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Emma Bolderson
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Didier Boucher
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Ravindra Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kum Kum Khanna
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| |
Collapse
|
37
|
Sauter D, Himmelsbach K, Kriegs M, Carvajal Yepes M, Hildt E. Localization determines function: N-terminally truncated NS5A fragments accumulate in the nucleus and impair HCV replication. J Hepatol 2009; 50:861-71. [PMID: 19307038 DOI: 10.1016/j.jhep.2008.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/22/2008] [Accepted: 11/08/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS The Hepatitis C Virus (HCV) nonstructural protein 5A (NS5A) is an essential part of the ER-localized HCV-replicon complex. Although NS5A harbours a conserved NLS in its C-terminal domain, NS5A is associated with the cytoplasmic face of the ER by an amphipathic helix close to its N-terminus. METHODS Intracellular distribution of NS5A in HCV replicating cells was analyzed by confocal microscopy and subcellular fractionation. The effect on HCV replication was analyzed using the JFH-1-based infection/replication system. RESULTS During viral life cycle N-terminally truncated NS5A fragments are caspase-dependent formed that lack the ER-attachment signal and are localized within the nucleus. These N-terminally truncated fragments inhibit HCV replication. If their formation is blocked by inhibition of caspases HCV replication is increased. The C-terminal domain of NS5A binds to c-Raf and thereby localizes it to the replicon complex. This interaction is essential for HCV replication. The N-terminally truncated NS5A fragments are still able to bind c-Raf. However, due to their nuclear localization they withdraw c-Raf from the replicon complex into the nucleus resulting in an impaired HCV replication. CONCLUSIONS Formation of N-terminally truncated NS5A fragments could represent a mechanism to regulate HCV replication by withdrawal of essential factors from the replicon complex.
Collapse
Affiliation(s)
- Daniel Sauter
- Department of Internal Medicine II, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Abstract
The question of how Bax is activated during apoptosis to perform its role in permeabilization of mitochondrial membranes is intriguing for investigators in the wide field of cell death research. In their paper published in the Biochemical Journal in 2006, Capano and Crompton presented their discovery that simulated ischaemia causes rapid activation of AMPK (AMP-activated protein kinase) which phosphorylates and activates p38 MAPK (mitogen-activated protein kinase) leading to Bax activation and translocation to mitochondria in isolated cardiac myocytes. This was the first report on the molecular mechanism of Bax activation and migration during ischaemia-induced apoptosis in cardiomyocytes.
Collapse
|
39
|
Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008; 88:581-609. [PMID: 18391174 PMCID: PMC3199571 DOI: 10.1152/physrev.00024.2007] [Citation(s) in RCA: 1106] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play an important role in cell death and cardioprotection. During ischemia, when ATP is progressively depleted, ion pumps cannot function resulting in a rise in calcium (Ca(2+)), which further accelerates ATP depletion. The rise in Ca(2+) during ischemia and reperfusion leads to mitochondrial Ca(2+) accumulation, particularly during reperfusion when oxygen is reintroduced. Reintroduction of oxygen allows generation of ATP; however, damage to the electron transport chain results in increased mitochondrial generation of reactive oxygen species (ROS). Mitochondrial Ca(2+) overload and increased ROS can result in opening of the mitochondrial permeability transition pore, which further compromises cellular energetics. The resultant low ATP and altered ion homeostasis result in rupture of the plasma membrane and cell death. Mitochondria have long been proposed as central players in cell death, since the mitochondria are central to synthesis of both ATP and ROS and since mitochondrial and cytosolic Ca(2+) overload are key components of cell death. Many cardioprotective mechanisms converge on the mitochondria to reduce cell death. Reducing Ca(2+) overload and reducing ROS have both been reported to reduce ischemic injury. Preconditioning activates a number of signaling pathways that reduce Ca(2+) overload and reduce activation of the mitochondrial permeability transition pore. The mitochondrial targets of cardioprotective signals are discussed in detail.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | | |
Collapse
|
40
|
Roubille F, Combes S, Leal-Sanchez J, Barrère C, Cransac F, Sportouch-Dukhan C, Gahide G, Serre I, Kupfer E, Richard S, Hueber AO, Nargeot J, Piot C, Barrère-Lemaire S. Myocardial expression of a dominant-negative form of Daxx decreases infarct size and attenuates apoptosis in an in vivo mouse model of ischemia/reperfusion injury. Circulation 2007; 116:2709-17. [PMID: 18025529 DOI: 10.1161/circulationaha.107.694844] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Apoptosis has been described extensively in acute myocardial infarction and chronic heart failure. Because Daxx (death-associated protein) appears to be essential for stress-induced cell death and acts as an antisurvival molecule, we tested the hypothesis that Daxx is involved in myocardial ischemia/reperfusion-induced cell death in vivo. METHODS AND RESULTS Transgenic mice overexpressing a dominant-negative form of Daxx (Daxx-DN) under the control of the beta-actin promoter and control wild-type mice underwent an ischemia/reperfusion protocol: 40 minutes of left coronary artery occlusion and 60 minutes of reperfusion. Area at risk and infarct size were measured after dual staining by triphenyltetrazolium chloride and phthalocyanine blue dye. Apoptosis was measured in the ischemic versus the nonischemic part of the left ventricle by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling staining, enzyme-linked immunosorbent assay, and Western blotting of caspase-3, caspase-8, and poly(ADP-ribose) polymerase. The mitogen-activated protein kinase status was investigated by Western blot analysis. Comparison between groups was assessed by ANOVA or Student t test (statistical significance: P<0.05). Left ventricle tissues from transgenic mice expressed Daxx-DN at the protein level. Area at risk/left ventricle values were comparable among groups. Infarct size/area at risk was 45% reduced in Daxx-DN versus wild-type mice (P<0.001). This cardioprotection was maintained for a 4-hour reperfusion. Ischemia/reperfusion-induced apoptosis was significantly decreased and ERK1/2 prosurvival pathway was activated in ischemic Daxx-DN hearts. CONCLUSIONS Our study clearly indicates that Daxx participates in myocardial ischemia/reperfusion proapoptotic signaling in vivo.
Collapse
Affiliation(s)
- François Roubille
- Department of Physiology CNRS UMR5203, INSERM U661, University of Montpellier I and II, 141 rue de la Cardonille, 34094 Montpellier, Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sipkens JA, Krijnen PAJ, Meischl C, Cillessen SAGM, Smulders YM, Smith DEC, Giroth CPE, Spreeuwenberg MD, Musters RJP, Muller A, Jakobs C, Roos D, Stehouwer CDA, Rauwerda JA, van Hinsbergh VWM, Niessen HWM. Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis. Apoptosis 2007; 12:1407-18. [PMID: 17440815 PMCID: PMC1914234 DOI: 10.1007/s10495-007-0077-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. METHODS H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (DeltaPsi (m)) and ATP concentrations. RESULTS We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 microM L-Hcy) resulted in an increase of DeltaPsi (m) as well as ATP concentrations. 1.1 mM D,L-Hcy (= 460 microM L-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM D,L-Hcy (= 1.18 mM L-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. CONCLUSION We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.
Collapse
Affiliation(s)
- Jessica A Sipkens
- Department of Pathology, VU University Medical Centre, Room 0E46, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Meischl C, Krijnen PAJ, Sipkens JA, Cillessen SAGM, Muñoz IG, Okroj M, Ramska M, Muller A, Visser CA, Musters RJP, Simonides WS, Hack CE, Roos D, Niessen HWM. Ischemia induces nuclear NOX2 expression in cardiomyocytes and subsequently activates apoptosis. Apoptosis 2007; 11:913-21. [PMID: 16544099 DOI: 10.1007/s10495-006-6304-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In previous work we have demonstrated increased expression of NOX2 in cardiomyocytes of infarcted human hearts. In the present manuscript we investigated the functional role of NOX2 in ischemically challenged H9c2 cells, a rat cardiomyoblast cell line, and adult rat cardiomyocytes. Expression of NOX2 in H9c2 cells was confirmed by RT-PCR. In Western-blot experiments, increased NOX2 expression was detected during ischemia, which was inhibited by transcription and translation inhibitors. Surprisingly, under ischemia, in addition to an increased cytosolic expression, NOX2 was localized mainly in the nucleus of apoptotic cardiomyocytes, where it colocalized with nitrotyrosine residues and activated caspase 3. Inhibition of reactive-oxygen-species generation with the flavoenzyme inhibitor diphenylene iodonium (DPI) and the NADPH-oxidase inhibitor apocynin led to a significantly decreased induction of apoptosis as assessed by quantification of caspase-3 activity and by TUNEL analysis. These results demonstrate that NOX2 is expressed in the nucleus of cardiomyocytes during apoptosis and that it likely participates in proapoptotic signaling. To the best of our knowledge, this is the first demonstration of nuclear NOX2 expression and its involvement in cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- C Meischl
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The discovery of apoptosis sheds a new light on the role of cell death in myocardial infarction and other cardiovascular diseases. There is mounting evidence that apoptosis plays an important role at multiple points in the evolution of myocardial infarction, and comprises not only cardiomyocytes but also inflammatory cells, as well as cells of granulation tissue and fibrous tissue. It appears that apoptosis contributes to cardiomyocyte loss in the border zone and in remote myocardium in the early phase, as well as months after myocardial infarction, thus playing a role in remodeling and development of heart failure after myocardial infarction. Apoptosis, being a highly regulated process, is a potential target for therapeutic intervention. Caspases are the key effector molecules in apoptosis, and are therefore a particularly attractive target for pharmacological modulation of apoptosis. Although several potential therapeutic agents have been tested in animal models of ischemia/reperfusion heart injury with some success, nearly none of the specific antiapoptotic agents have reached the stage of clinical research.
Collapse
Affiliation(s)
- Nina Zidar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
44
|
Tran TH, Andreka P, Rodrigues CO, Webster KA, Bishopric NH. Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem 2007; 282:20340-50. [PMID: 17483091 DOI: 10.1074/jbc.m702210200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of c-Jun N-terminal kinase 1/2 (JNK) can delay oxidant-induced cell death, but the mechanism is unknown. We found that oxidant stress of cardiac myocytes activated both JNK and mitochondria-dependent apoptosis and that expression of JNK inhibitory mutants accelerated multiple steps in this pathway, including the cleavage and activation of caspases-3 and -9 and DNA internucleosomal cleavage, without affecting the rate of cytochrome c release; JNK inhibition also increased caspase-3 and -9 cleavage in a cell-free system. On activation by GSNO or H(2)O(2), JNK formed a stable association with oligomeric Apaf-1 in a approximately 1.4-2.0 mDa pre-apoptosome complex. Formation of this complex could be triggered by addition of cytochrome c and ATP to the cell-free cytosol. JNK inhibition abrogated JNK-Apaf-1 association and accelerated the association of procaspase-9 and Apaf-1 in both intact cells and cell-free extracts. We conclude that oxidant-activated JNK associates with Apaf-1 and cytochrome c in a catalytically inactive complex. We propose that this interaction delays formation of the active apoptosome, promoting cell survival during short bursts of oxidative stress.
Collapse
Affiliation(s)
- Thanh H Tran
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
45
|
Arakawa M, Yasutake M, Miyamoto M, Takano T, Asoh S, Ohta S. Transduction of anti-cell death protein FNK protects isolated rat hearts from myocardial infarction induced by ischemia/reperfusion. Life Sci 2007; 80:2076-84. [PMID: 17467744 DOI: 10.1016/j.lfs.2007.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 03/13/2007] [Accepted: 03/18/2007] [Indexed: 12/29/2022]
Abstract
Artificial anti-cell death protein FNK, a Bcl-x(L) derivative with three amino acid-substitutions (Y22F, Q26N, and R165K) has enhanced anti-apoptotic and anti-necrotic activity and facilitates cell survival in many species and cell types. The objectives of this study were (i) to investigate whether the protein conjugated with a protein transduction domain (PTD-FNK) reduces myocardial infarct size and improves post-ischemic cardiac function in ischemic/reperfused rat hearts, and (ii) to understand the mechanism(s) by which PTD-FNK exerts a protective effect. Isolated rat hearts were subjected to 35-min global ischemia, followed by 120-min reperfusion using the Langendorff methods. PTD-FNK (a total of 30 microl) was injected intramuscularly into the anterior wall of the left ventricle either at 1 min after induction of global ischemia (group A) or at 30 min after induction of global ischemia (at 5 min before reperfusion) (group B). In group A, infarct size was significantly reduced from 47.8+/-6.8% in the control to 30.4+/-5.2, 28.7+/-3.8, and 30.4+/-6.8% with PTD-FNK at 5, 50, and 500 nmol/l, respectively (p<0.05). Temporal recovery of left ventricular developed pressure at 60 min and 120 min after reperfusion was significantly better in PTD-FNK (50 and 500 nmol/l)-treated groups than in the control (p<0.05). In contrast, PTD-FNK treatment had no effect on group B. Western blot analysis showed that PTD-FNK markedly inhibited procaspase-3 cleavage (activation of caspase-3) and reduced the number of nuclei stained by a terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphoshate nick-end labeling (TUNEL) assay. These findings suggest that PTD-FNK reduces the volume of myocardial infarction with corresponding functional recovery, at least in part, through the suppression of myocardial apoptosis following ischemia/reperfusion.
Collapse
Affiliation(s)
- Masayuki Arakawa
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8533, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Purdom-Dickinson SE, Lin Y, Dedek M, Morrissy S, Johnson J, Chen QM. Induction of antioxidant and detoxification response by oxidants in cardiomyocytes: evidence from gene expression profiling and activation of Nrf2 transcription factor. J Mol Cell Cardiol 2006; 42:159-76. [PMID: 17081560 PMCID: PMC1855200 DOI: 10.1016/j.yjmcc.2006.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 09/04/2006] [Accepted: 09/21/2006] [Indexed: 12/17/2022]
Abstract
Mild or low doses of oxidants are known to prime cells towards resistance against further damage. In cardiomyocytes, we found that pretreatment with 100 microM H(2)O(2) prevents the cells from apoptosis induced by doxorubicin (Dox). Affymetrix microarray analyses of 28,000 genes reveal that H(2)O(2) treated cells reduced expression of genes encoding cytochrome c, mitochondrial complex I, III, IV and V and several contractile proteins. Elevated expression of antioxidant and detoxification genes appears as a dominant feature of the gene expression profile of H(2)O(2) treated cells. Most of the genes in this category contain an Antioxidant Response Element (ARE) in their promoters. Measurements of ARE promoter-reporter gene activity indicate a dose- and time-dependent activation of the ARE by H(2)O(2). Since the Nrf2 transcription factor regulates ARE-mediated gene expression, we overexpressed Nrf2 to test whether activation of Nrf2 is sufficient to induce cytoprotection. High levels of Nrf2 expression were achieved via adenovirus mediated gene delivery. Transduced Nrf2 was present in the nuclei and caused an increase in the expression of NAD(P)H:quinone oxidoreductase 1 (NQO1), a representative downstream target of Nrf2. Unlike H(2)O(2) pretreated cells, the cells expressing high levels of Nrf2 were not resistant to Dox-induced apoptosis. Therefore, the cytoprotective effect of H(2)O(2) pretreatment is not reliant upon Nrf2 activation alone as measured by resistance against Dox-induced apoptosis.
Collapse
Affiliation(s)
- Sally E Purdom-Dickinson
- Interdisciplinary Graduate Program in Genetics and Genomics, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
47
|
Reeve JLV, Duffy AM, O'Brien T, Samali A. Don't lose heart--therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med 2005; 9:609-22. [PMID: 16202209 PMCID: PMC6741425 DOI: 10.1111/j.1582-4934.2005.tb00492.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Loss of function or death of cardiomyocytes is a major contributing factor to these diseases. Cell death in conditions such as heart failure and myocardial infarction is associated with apoptosis. Apoptotic pathways have been well studied in non-myocytes and it is thought that similar pathways exist in cardiomyocytes. These pathways include death initiated by ligation of membrane-bound death receptors, release of pro-apoptotic factors from mitochondria or stress at the endoplasmic reticulum. The key regulators of apoptosis include inhibitors of caspases (IAPs), the Bcl-2 family of proteins, growth factors, stress proteins, calcium and oxidants. The highly organized and predictive nature of apoptotic signaling means it is amenable to manipulation. A thorough understanding of the apoptotic process would facilitate intervention at the most suitable points, alleviating myocardium decline and dysfunction. This review summarizes the mechanisms underlying apoptosis and the mediators/regulators involved in these signaling pathways. We also discuss how the potential therapeutic value of these molecules could be harnessed.
Collapse
Affiliation(s)
- Janice L V Reeve
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|