1
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Bryl R, Nawrocki MJ, Jopek K, Kaczmarek M, Bukowska D, Antosik P, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Transcriptomic Characterization of Genes Regulating the Stemness in Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes (Basel) 2023; 14:1223. [PMID: 37372403 PMCID: PMC10297922 DOI: 10.3390/genes14061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Heart failure remains a major cause of death worldwide. There is a need to establish new management options as current treatment is frequently suboptimal. Clinical approaches based on autologous stem cell transplant is potentially a good alternative. The heart was long considered an organ unable to regenerate and renew. However, several reports imply that it may possess modest intrinsic regenerative potential. To allow for detailed characterization of cell cultures, whole transcriptome profiling was performed after 0, 7, 15, and 30 days of in vitro cell cultures (IVC) from the right atrial appendage and right atrial wall utilizing microarray technology. In total, 4239 differentially expressed genes (DEGs) with ratio > abs |2| and adjusted p-value ≤ 0.05 for the right atrial wall and 4662 DEGs for the right atrial appendage were identified. It was shown that a subset of DEGs, which have demonstrated some regulation of expression levels with the duration of the cell culture, were enriched in the following GO BP (Gene Ontology Biological Process) terms: "stem cell population maintenance" and "stem cell proliferation". The results were validated by RT-qPCR. The establishment and detailed characterization of in vitro culture of myocardial cells may be important for future applications of these cells in heart regeneration processes.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, 61-614 Poznan, Poland;
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
5
|
Dewing JM, Saunders V, O’Kelly I, Wilson DI. Defining cardiac cell populations and relative cellular composition of the early fetal human heart. PLoS One 2022; 17:e0259477. [PMID: 36449524 PMCID: PMC9710754 DOI: 10.1371/journal.pone.0259477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
While the adult human heart is primarily composed of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells, the cellular composition during early development remains largely unknown. Reliable identification of fetal cardiac cell types using protein markers is critical to understand cardiac development and delineate the cellular composition of the developing human heart. This is the first study to use immunohistochemistry (IHC), flow cytometry and RT-PCR analyses to investigate the expression and specificity of commonly used cardiac cell markers in the early human fetal heart (8-12 post-conception weeks). The expression of previously reported protein markers for the detection of cardiomyocytes (Myosin Heavy Chain (MHC) and cardiac troponin I (cTnI), fibroblasts (DDR2, THY1, Vimentin), endothelial cells (CD31) and smooth muscle cells (α-SMA) were assessed. Two distinct populations of cTnI positive cells were identified through flow cytometry, with MHC positive cardiomyocytes showing high cTnI expression (cTnIHigh) while MHC negative non-myocytes showed lower cTnI expression (cTnILow). cTnI expression in non-myocytes was further confirmed by IHC and RT-PCR analyses, suggesting troponins are not cardiomyocyte-specific and may play distinct roles in non-muscle cells during early development. Vimentin (VIM) was expressed in cultured ventricular fibroblast populations and flow cytometry revealed VIMHigh and VIMLow cell populations in the fetal heart. MHC positive cardiomyocytes were VIMLow whilst CD31 positive endothelial cells were VIMHigh. Using markers investigated within this study, we characterised fetal human cardiac populations and estimate that 75-80% of fetal cardiac cells are cardiomyocytes and are MHC+/cTnIHigh/VIMLow, whilst non-myocytes comprise 20-25% of total cells and are MHC-/cTnILow/VIMHigh, with CD31+ endothelial cells comprising ~9% of this population. These findings show distinct differences from those reported for adult heart.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Vinay Saunders
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ita O’Kelly
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Immunocore Ltd, Abingdon, Oxford, United Kingdom
| | - David I. Wilson
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling. Int J Mol Sci 2022; 23:ijms23084302. [PMID: 35457114 PMCID: PMC9027193 DOI: 10.3390/ijms23084302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The accumulation of fibrosis in cardiac tissues is one of the leading causes of heart failure. The principal cellular effectors in cardiac fibrosis are activated fibroblasts and myofibroblasts, which serve as the primary source of matrix proteins. TGF-β signaling pathways play a prominent role in cardiac fibrosis. The control of TGF-β by KLF5 in cardiac fibrosis has been demonstrated for modulating cardiovascular remodeling. Since the expression of KLF5 is reduced, the accumulation of fibrosis diminishes. Because the molecular mechanism of fibrosis is still being explored, there are currently few options for effectively reducing or reversing it. Studying metabolic alterations is considered an essential process that supports the explanation of fibrosis in a variety of organs and especially the glycolysis alteration in the heart. However, the interplay among the main factors involved in fibrosis pathogenesis, namely TGF-β, KLF5, and the metabolic process in glycolysis, is still indistinct. In this review, we explain what we know about cardiac fibroblasts and how they could help with heart repair. Moreover, we hypothesize and summarize the knowledge trend on the molecular mechanism of TGF-β, KLF5, the role of the glycolysis pathway in fibrosis, and present the future therapy of cardiac fibrosis. These studies may target therapies that could become important strategies for fibrosis reduction in the future.
Collapse
|
7
|
Umbarkar P, Ejantkar S, Tousif S, Lal H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021; 10:cells10092412. [PMID: 34572061 PMCID: PMC8471002 DOI: 10.3390/cells10092412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components. This is a physiological response to tissue injury. However, uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently, FBs were thought to play a secondary role in cardiac pathophysiology. This review article will present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse models. This study includes an update on the advancements in the generation of FB-specific mouse models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways that have been validated using FB-specific, in vivo mouse models. These pathways include the TGF-β/SMAD3, p38 MAPK, Wnt/β-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the diseased heart.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| | - Suma Ejantkar
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| |
Collapse
|
8
|
Sahadevan P, Allen BG. Isolation and culture of adult murine cardiac atrial and ventricular fibroblasts and myofibroblasts. Methods 2021; 203:187-195. [PMID: 33838270 DOI: 10.1016/j.ymeth.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiac fibroblasts play a critical role in extracellular matrix homeostasis, wound healing, and cardiac interstitial fibrosis: the latter being a pathophysiological response to a chronic increase in afterload. Using a standard protocol to isolate cardiac fibroblasts and maintain them in their quiescent phenotype in vitro will enable a better understanding of cardiac fibroblast biology and their role in the response to profibrotic stimuli. Here, we describe an enzymatic method for isolating cardiac fibroblasts. The resulting cells are maintained on either a collagen-coated hydrogel-bound polystyrene (compliant) substrate or standard polystyrene culture dishes (non-compliant) to obtain quiescent fibroblasts and activated fibroblasts (myofibroblasts), respectively. Fibroblasts maintained on a non-compliant substrate developed a myofibroblast phenotype, in which the αSMA immunoreactivity was markedly elevated and incorporated into the stress fibers. In contrast, ventricular and atrial fibroblasts retain their quiescent phenotype for up to 3 passages when maintained on a compliant substrate. Hence, the methodology described herein provides a simple and reproducible way to isolate adult murine atrial and ventricular cardiac fibroblasts from a single animal and, by selecting a substrate with the appropriate compliance, examine the mediators of fibroblast activation or inactivation.
Collapse
Affiliation(s)
- Pramod Sahadevan
- Montreal Heart Institute, 5000 Belanger St., Montréal, Québec H1T 1C8, Canada.
| | - Bruce G Allen
- Montreal Heart Institute, 5000 Belanger St., Montréal, Québec H1T 1C8, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
9
|
Parreau S, Vedrenne N, Regent A, Richard L, Sindou P, Mouthon L, Fauchais AL, Jauberteau MO, Ly KH. An immunohistochemical analysis of fibroblasts in giant cell arteritis. Ann Diagn Pathol 2021; 52:151728. [PMID: 33798926 DOI: 10.1016/j.anndiagpath.2021.151728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Giant cell arteritis (GCA) is a systemic vasculitis of large and medium vessels characterized by an inflammatory arterial infiltrate. GCA begins in the adventitia and leads to vascular remodeling by promoting proliferation of myofibroblasts in the intima. The morphology of the fibroblasts in the adventitia in GCA is unclear. Access to temporal artery biopsies allows morphological studies and evaluation of the microenvironment of the arterial wall. We evaluated the distribution of vascular fibroblasts and of markers of their activation in GCA. METHODS Formalin-fixed paraffin-embedded tissue sections from 29 patients with GCA and 36 controls were examined. Immunohistochemistry was performed for CD90, vimentin, desmin, alpha-smooth muscle actin (ASMA), prolyl-4-hydroxylase (P4H), and myosin to evaluate the distribution of fibroblasts within the intima, media, and adventitia. RESULTS Temporal arteries from patients with GCA showed increased levels of CD90, vimentin, and ASMA in the adventitia and intima compared to the controls. Desmin was expressed only in the media in both groups. P4H was expressed similarly in the adventitia and intima in the two groups. Adventitial and intimal CD90+ cells co-expressed P4H, ASMA, and myosin at a high level in GCA. CONCLUSION The results suggest a role for adventitial fibroblasts in GCA. Inhibiting the differentiation of adventitial fibroblasts to myofibroblasts has therapeutic potential for GCA.
Collapse
Affiliation(s)
- Simon Parreau
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France.
| | - Nicolas Vedrenne
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Alexis Regent
- Department of Internal Medicine, Cochin Hospital, Paris, France
| | | | - Philippe Sindou
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Luc Mouthon
- Department of Internal Medicine, Cochin Hospital, Paris, France
| | - Anne-Laure Fauchais
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Marie-Odile Jauberteau
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Kim-Heang Ly
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| |
Collapse
|
10
|
Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020; 12:e10865. [PMID: 32955172 PMCID: PMC7539225 DOI: 10.15252/emmm.201910865] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is central to the pathology of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). Irrespective of the underlying profibrotic condition (e.g. ageing, diabetes, hypertension), maladaptive cardiac fibrosis is defined by the transformation of resident fibroblasts to matrix-secreting myofibroblasts. Numerous profibrotic factors have been identified at the molecular level (e.g. TGFβ, IL11, AngII), which activate gene expression programs for myofibroblast activation. A number of existing HF therapies indirectly target fibrotic pathways; however, despite multiple clinical trials in HFpEF, a specific clinically effective antifibrotic therapy remains elusive. Therapeutic inhibition of TGFβ, the master-regulator of fibrosis, has unfortunately proven toxic and ineffective in clinical trials to date, and new approaches are needed. In this review, we discuss the pathophysiology and clinical implications of interstitial fibrosis in HFpEF. We provide an overview of trials targeting fibrosis in HFpEF to date and discuss the promise of potential new therapeutic approaches and targets in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- Wellcome Trust 4i/NIHR Clinical Research FellowImperial CollegeLondonUK
| | - Ben Corden
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Stuart A Cook
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
11
|
Cai W, Tan J, Yan J, Zhang L, Cai X, Wang H, Liu F, Ye M, Cai CL. Limited Regeneration Potential with Minimal Epicardial Progenitor Conversions in the Neonatal Mouse Heart after Injury. Cell Rep 2020; 28:190-201.e3. [PMID: 31269439 PMCID: PMC6837841 DOI: 10.1016/j.celrep.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
The regeneration capacity of neonatal mouse heart is controversial. In addition, whether epicardial cells provide a progenitor pool for de novo heart regeneration is incompletely defined. Following apical resection of the neonatal mouse heart, we observed limited regeneration potential. Fate-mapping of Tbx18MerCreMer mice revealed that newly formed coronary vessels and a limited number of cardiomyocytes were derived from the T-box transcription factor 18 (Tbx18) lineage. However, further lineage tracing with SM-MHCCreERT2 and Nfactc1Cre mice revealed that the new smooth muscle and endothelial cells are in fact derivatives of pre-existing coronary vessels. Our data show that neonatal mouse heart can regenerate but that its potential is limited. Moreover, although epicardial cells are multipotent during embryogenesis, their contribution to heart repair through “stem” or “progenitor” cell conversion is minimal after birth. These observations suggest that early embryonic heart development and postnatal heart regeneration are distinct biological processes. Multipotency of epicardial cells is significantly decreased after birth. The regeneration potential of the newborn mouse heart is controversial, and whether epicardial cells provide progenitors for coronary vascular regeneration is unclear. Cai et al. demonstrate a limited regeneration capacity of the neonatal heart upon injury. Epicardial cells do not convert into functional cardiac cells, including coronary vessels, during repair.
Collapse
Affiliation(s)
- Weibin Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| | - Jing Tan
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA
| | - Xiaoqiang Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Haiping Wang
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fang Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
12
|
MacLean J, Pasumarthi KBS. Characterization of primary adult mouse cardiac fibroblast cultures. Can J Physiol Pharmacol 2020; 98:861-869. [PMID: 32721222 DOI: 10.1139/cjpp-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of cardiac fibroblasts (CFs) in disease states has been a focus of cardiovascular research over the past decade. Here, we briefly describe methods for isolation and characterization of CFs from adult mouse ventricles. Primary cultures were stained using antibodies for several marker proteins such as α-smooth muscle actin (αSMA), vimentin, and discoidin domain receptor 2 (DDR2) to confirm the identity of CFs or cardiac myofibroblasts (CMFs). Most cells in primary cultures consisted of CFs, with very low frequencies of endothelial cells, cardiomyocytes, and smooth muscle cells. We compared marker expression between cultures that were not passaged (P0) or passaged for few times (P1-3). When compared with P1-3 cultures, P0 cultures consistently displayed a lower percentage of cells positive for αSMA and DDR2, whereas vimentin expression was significantly higher in P0 cultures compared with P1-3 cultures. P0 cells were also smaller in area than P1-3 cells. Further, P1-3 mouse CFs were found to express both β1 and β2 adrenergic receptors (ARs) and β1ARs were more readily detected on the cell surface compared with β2ARs. In summary, mouse CF cultures underwent phenotype conversion into CMFs after passaging, consistent with what is seen with CF cultures from other species.
Collapse
Affiliation(s)
- Jessica MacLean
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kishore B S Pasumarthi
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Stadiotti I, Piacentini L, Vavassori C, Chiesa M, Scopece A, Guarino A, Micheli B, Polvani G, Colombo GI, Pompilio G, Sommariva E. Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Front Physiol 2020; 11:604. [PMID: 32670081 PMCID: PMC7327120 DOI: 10.3389/fphys.2020.00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Left ventricle (LV) and right ventricle (RV) are characterized by well-known physiological differences, mainly related to their different embryological origin, hemodynamic environment, function, structure, and cellular composition. Nevertheless, scarce information is available about cellular peculiarities between left and right ventricular chambers in physiological and pathological contexts. Cardiac mesenchymal stromal cells (C-MSC) are key cells affecting many functions of the heart. Differential features that distinguish LV from RV C-MSC are still underappreciated. AIM To analyze the physiological differential amount, function, and transcriptome of human C-MSC in LV versus (vs.) RV. METHODS Human cardiac specimens of LV and RV from healthy donors were used for tissue analysis of C-MSC number, and for C-MSC isolation. Paired LV and RV C-MSC were compared as for surface marker expression, cell proliferation/death ratio, migration, differentiation capabilities, and transcriptome profile. RESULTS Histological analysis showed a greater percentage of C-MSC in RV vs. LV tissue. Moreover, a higher C-MSC amount was obtained from RV than from LV after isolation procedures. LV and RV C-MSC are characterized by a similar proportion of surface markers. Functional studies revealed comparable cell growth curves in cells from both ventricles. Conversely, LV C-MSC displayed a higher apoptosis rate and RV C-MSC were characterized by a higher migration speed and collagen deposition. Consistently, transcriptome analysis showed that genes related to apoptosis regulation or extracellular matrix organization and integrins were over-expressed in LV and RV, respectively. Besides, we revealed additional pathways specifically associated with LV or RV C-MSC, including energy metabolism, inflammatory response, cardiac conduction, and pluripotency. CONCLUSION Taken together, these results contribute to the functional characterization of RV and LV C-MSC in physiological conditions. This information suggests a possible differential role of the stromal compartment in chamber-specific pathologic scenarios.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Piacentini
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Vavassori
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mattia Chiesa
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Barbara Micheli
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Polvani
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
14
|
Soliman H, Rossi FMV. Cardiac fibroblast diversity in health and disease. Matrix Biol 2020; 91-92:75-91. [PMID: 32446910 DOI: 10.1016/j.matbio.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The cardiac stroma plays essential roles in health and following cardiac damage. The major player of the stroma with respect to extracellular matrix deposition, maintenance and remodeling is the poorly defined fibroblast. It has long been recognized that there is considerable variability to the fibroblast phenotype. With the advent of new, high throughput analytical methods our understanding and appreciation of this heterogeneity has grown dramatically. This review aims to explore the diversity of cardiac fibroblasts and highlights new insights into the diverse nature of these cells and their progenitors as revealed by single cell sequencing and fate mapping studies. We propose that at least in part the observed heterogeneity is related to the existence of a differentiation cascade within stromal cells. Beyond in-organ heterogeneity, we also discuss how the stromal response to damage differs between non-regenerating organs such as the heart and regenerating organs such as skeletal muscle. In exploring possible causes for these differences, we outline that although fibrogenic cells from different organs overlap in many properties, they still possess organ-specific transcriptional signatures and differentiation biases that make them functionally distinct.
Collapse
Affiliation(s)
- Hesham Soliman
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada; Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
15
|
Bâră RI, Voinea LM, Vrapciu AD, Rusu MC. Adding myofibroblasts to the lacrimal pump. Acta Histochem 2020; 122:151536. [PMID: 32156483 DOI: 10.1016/j.acthis.2020.151536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
The lacrimal sac (LS) empties in the nasolacrimal duct to drain the tears in the inferior nasal meatus. Different studies indicated the role of the lacrimal pump in the lacrimal drainage. Although controversial, the lacrimal pump mechanism is an extrinsic one, either active, or passive. An intrinsic contractile potential of the LS was not documented previously. We thus aimed a retrospective immunohistochemical study to test the alpha-smooth muscle actin (α-SMA) and h-caldesmon expression in the LS wall. We used archived paraffin-embedded samples of LS from ten adult patients. The α-SMA + phenotype was detected in basal epithelial cells, in subepithelial ribbons of stromal cells, in vascular smooth muscle cells, as well as in pericytes. H-caldesmon was exclusively expressed in pericytes, vascular smooth muscle cells and myoepithelial cells of the subepithelial glands. The most striking feature we found in all samples was a consistent stromal network of α-SMA+/h-caldesmon- myofibroblasts. This finding supports an intrinsic scaffold useful for the lacrimal pump.
Collapse
Affiliation(s)
- Raluca Iustina Bâră
- Department of Ophtalmology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Department of Ophtalmology, Bucharest University Emergency Hospital, Bucharest, Romania.
| | - Liliana Mary Voinea
- Department of Ophtalmology, Bucharest University Emergency Hospital, Bucharest, Romania; Department of Ophthalmology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Alexandra Diana Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Mugurel Constantin Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd., RO-050474, Bucharest, Romania.
| |
Collapse
|
16
|
Poulsen PC, Schrölkamp M, Bagwan N, Leurs U, Humphries ESA, Bomholzt SH, Nielsen MS, Bentzen BH, Olsen JV, Lundby A. Quantitative proteomics characterization of acutely isolated primary adult rat cardiomyocytes and fibroblasts. J Mol Cell Cardiol 2020; 143:63-70. [PMID: 32325152 DOI: 10.1016/j.yjmcc.2020.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Our heart is comprised of many different cell types that all contribute to cardiac function. An important step in deciphering the molecular complexity of our heart is to decipher the molecular composition of the various cardiac cell types. Here we set out to delineate a comprehensive protein expression profile of the two most prevalent cell types in the heart: cardiomyocytes and cardiac fibroblasts. To this end, we isolated cardiomyocytes and fibroblasts from rat hearts and combined state-of-the-art flow cytometry with high-resolution mass spectrometry to investigate their proteome profiles right after isolation. We measured and quantified 5240 proteins in cardiomyocytes and 6328 proteins in cardiac fibroblasts. In addition to providing a global protein profile for these cardiac cell types, we also present specific findings, such as unique expression of ion channels and transcription factors for each cell type. For instance, we show that the sodium channel Scn7a and the cation channel Trpm7 are expressed in fibroblasts but not in cardiomyocytes, which underscores the importance of investigating the endogenous cell host prior to functional studies. Our dataset represents a valuable resource on protein expression profiles in these two primary cardiac cells types.
Collapse
Affiliation(s)
- Pi Camilla Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Maren Schrölkamp
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Navratan Bagwan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Ulrike Leurs
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Edward S A Humphries
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Sofia Hammami Bomholzt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jesper Velgaard Olsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
17
|
Melzer M, Beier D, Young PP, Saraswati S. Isolation and Characterization of Adult Cardiac Fibroblasts and Myofibroblasts. J Vis Exp 2020:10.3791/60909. [PMID: 32225150 PMCID: PMC7325628 DOI: 10.3791/60909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cardiac fibrosis in response to injury is a physiological response to wound healing. Efforts have been made to study and target fibroblast subtypes that mitigate fibrosis. However, fibroblast research has been hindered due to the lack of universally acceptable fibroblast markers to identify quiescent as well as activated fibroblasts. Fibroblasts are a heterogenous cell population, making them difficult to isolate and characterize. The presented protocol describes three different methods to enrich fibroblasts and myofibroblasts from uninjured and injured mouse hearts. Using a standard and reliable protocol to isolate fibroblasts will enable the study of their roles in homeostasis as well as fibrosis modulation.
Collapse
Affiliation(s)
- Meiling Melzer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - David Beier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; American Red Cross, National Headquarters;
| | - Sarika Saraswati
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center;
| |
Collapse
|
18
|
Bao Q, Zhang B, Suo Y, Liu C, Yang Q, Zhang K, Yuan M, Yuan M, Zhang Y, Li G. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis. eLife 2020; 9:e49923. [PMID: 31934850 PMCID: PMC6992386 DOI: 10.7554/elife.49923] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), known to be independently associated with cardiovascular diseases. However, the effect of IH on cardiac fibrosis and molecular events involved in this process are unclear. Here, we tested IH in angiotensin II (Ang II)-induced cardiac fibrosis and signaling linked to fibroblast activation. IH triggered cardiac fibrosis and aggravated Ang II-induced cardiac dysfunction in mice. Plasma thrombospondin-1 (TSP1) content was upregulated in both IH-exposed mice and OSA patients. Moreover, both in vivo and in vitro results showed IH-induced cardiac fibroblast activation and increased TSP1 expression in cardiac fibroblasts. Mechanistically, phosphorylation of STAT3 at Tyr705 mediated the IH-induced TSP1 expression and fibroblast activation. Finally, STAT3 inhibitor S3I-201 or AAV9 carrying a periostin promoter driving the expression of shRNA targeting Stat3 significantly attenuated the synergistic effects of IH and Ang II on cardiac fibrosis in mice. This work suggests a potential therapeutic strategy for OSA-related fibrotic heart disease.
Collapse
Affiliation(s)
- Qiankun Bao
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Bangying Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Ya Suo
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Chen Liu
- Department of Clinical LaboratoryPeking University People's HospitalBeijingChina
| | - Qian Yang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Kai Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Ming Yuan
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Meng Yuan
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yue Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Guangping Li
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
19
|
Hookway TA, Matthys OB, Mendoza-Camacho FN, Rains S, Sepulveda JE, Joy DA, McDevitt TC. Phenotypic Variation Between Stromal Cells Differentially Impacts Engineered Cardiac Tissue Function. Tissue Eng Part A 2019; 25:773-785. [PMID: 30968748 DOI: 10.1089/ten.tea.2018.0362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT Understanding the relationship between parenchymal and supporting cell populations is paramount to recapitulate the multicellular complexity of native tissues. Incorporation of stromal cells is widely recognized to be necessary for the stable formation of stem cell-derived cardiac tissues; yet, the types of stromal cells used have varied widely. This study systematically characterized several stromal populations and found that stromal phenotype and morphology was highly variable depending on cell source and exerted differential impacts on cardiac tissue function and induced pluripotent stem cell-cardiomyocyte phenotype. Therefore, the choice of supporting stromal population can differentially impact the phenotypic or functional performance of engineered cardiac tissues.
Collapse
Affiliation(s)
- Tracy A Hookway
- 1 Gladstone Institute of Cardiovascular Disease, San Francisco, California
| | - Oriane B Matthys
- 1 Gladstone Institute of Cardiovascular Disease, San Francisco, California.,2 UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California
| | | | - Sarah Rains
- 1 Gladstone Institute of Cardiovascular Disease, San Francisco, California.,3 Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Jessica E Sepulveda
- 1 Gladstone Institute of Cardiovascular Disease, San Francisco, California.,4 Biological Sciences Department, Humboldt State University, Arcata, California
| | - David A Joy
- 1 Gladstone Institute of Cardiovascular Disease, San Francisco, California.,2 UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California
| | - Todd C McDevitt
- 1 Gladstone Institute of Cardiovascular Disease, San Francisco, California.,5 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| |
Collapse
|
20
|
An Improved Method of Maintaining Primary Murine Cardiac Fibroblasts in Two-Dimensional Cell Culture. Sci Rep 2019; 9:12889. [PMID: 31501457 PMCID: PMC6733858 DOI: 10.1038/s41598-019-49285-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
Primary cardiac fibroblasts are notoriously difficult to maintain for extended periods of time in cell culture, due to the plasticity of their phenotype and sensitivity to mechanical input. In order to study cardiac fibroblast activation in vitro, we have developed cell culture conditions which promote the quiescent fibroblast phenotype in primary cells. Using elastic silicone substrata, both rat and mouse primary cardiac fibroblasts could be maintained in a quiescent state for more than 3 days after isolation and these cells showed low expression of myofibroblast markers, including fibronectin extracellular domain A, non-muscle myosin IIB, platelet-derived growth factor receptor-alpha and alpha-smooth muscle actin. Gene expression was also more fibroblast-like vs. that of myofibroblasts, as Tcf21 was significantly upregulated, while Fn1-EDA, Col1A1 and Col1A2 were markedly downregulated. Cell culture conditions (eg. serum, nutrient concentration) are critical for the control of temporal fibroblast proliferation. We propose that eliminating mechanical stimulus and limiting the nutrient content of cell culture media can extend the quiescent nature of primary cardiac fibroblasts for physiological analyses in vitro.
Collapse
|
21
|
Baranyi U, Winter B, Gugerell A, Hegedus B, Brostjan C, Laufer G, Messner B. Primary Human Fibroblasts in Culture Switch to a Myofibroblast-Like Phenotype Independently of TGF Beta. Cells 2019; 8:cells8070721. [PMID: 31337073 PMCID: PMC6678602 DOI: 10.3390/cells8070721] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Fibroblasts are the prevalent cell type and main source for extracellular matrix (ECM) in connective tissue. Depending on their origin, fibroblasts play a central role in non-pathological tissue remodeling and disease like fibrosis. This study examined the effect of established culture conditions of primary human fibroblasts, from different origins on the myofibroblast-like phenotype formation. We isolated primary human fibroblasts from aortic adventitia, lung, juvenile- and adult skin and investigated the expression levels of CD90, alpha smooth muscle actin (αSMA) and procollagen I under different concentrations of fetal calf serum (FCS) and ascorbic acid (AA) in culture media by immunoblot and immunofluorescence assays. Furthermore, we determined the viability using XTT and migration/wound healing in scratch assays. Collagen 1 secretion was quantified by specific ELISA. Primary human fibroblasts show in part a myofibroblast-like phenotype even without addition of FCS. Supplemented AA reduces migration of cultured fibroblasts with no or low concentrations of FCS. Furthermore, AA and higher concentrations of FCS in culture media lead to higher levels of collagen 1 secretion instead of procollagen I accumulation. This study provides evidence for a partial switch of primary human fibroblasts of different origin to a myofibroblast-like phenotype under common culture conditions.
Collapse
Affiliation(s)
- Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgitta Winter
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Department of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Balazs Hegedus
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Mouse HSA+ immature cardiomyocytes persist in the adult heart and expand after ischemic injury. PLoS Biol 2019; 17:e3000335. [PMID: 31246945 PMCID: PMC6619826 DOI: 10.1371/journal.pbio.3000335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
The assessment of the regenerative capacity of the heart has been compromised by the lack of surface signatures to characterize cardiomyocytes (CMs). Here, combined multiparametric surface marker analysis with single-cell transcriptional profiling and in vivo transplantation identify the main mouse fetal cardiac populations and their progenitors (PRGs). We found that CMs at different stages of differentiation coexist during development. We identified a population of immature heat stable antigen (HSA)/ cluster of differentiation 24 (CD24)+ CMs that persists throughout life and that, unlike other CM subsets, actively proliferates up to 1 week of age and engrafts cardiac tissue upon transplantation. In the adult heart, a discrete population of HSA/CD24+ CMs appears as mononucleated cells that increase in frequency after infarction. Our work identified cell surface signatures that allow the prospective isolation of CMs at all developmental stages and the detection of a subset of immature CMs throughout life that, although at reduced frequencies, are poised for activation in response to ischemic stimuli. This work opens new perspectives in the understanding and treatment of heart pathologies.
Collapse
|
23
|
Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci 2019; 4:449-467. [PMID: 31312768 PMCID: PMC6610002 DOI: 10.1016/j.jacbts.2019.02.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Expansion and activation of fibroblasts following cardiac injury is important for repair but may also contribute to fibrosis, remodeling, and dysfunction. The authors discuss the dynamic alterations of fibroblasts in failing and remodeling myocardium. Emerging concepts suggest that fibroblasts are not unidimensional cells that act exclusively by secreting extracellular matrix proteins, thus promoting fibrosis and diastolic dysfunction. In addition to their involvement in extracellular matrix expansion, activated fibroblasts may also exert protective actions, preserving the cardiac extracellular matrix, transducing survival signals to cardiomyocytes, and regulating inflammation and angiogenesis. The functional diversity of cardiac fibroblasts may reflect their phenotypic heterogeneity.
Collapse
Key Words
- AT1, angiotensin type 1
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- MRTF, myocardin-related transcription factor
- PDGF, platelet-derived growth factor
- RNA, ribonucleic acid
- ROCK, Rho-associated coiled-coil containing kinase
- ROS, reactive oxygen species
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRP, transient receptor potential
- cytokines
- extracellular matrix
- fibroblast
- infarction
- lncRNA, long noncoding ribonucleic acid
- miRNA, micro–ribonucleic acid
- remodeling
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
24
|
Yousefi M, Mamipour M, Sokullu SE, Ghaderi S, Amini H, Rahbarghazi R. Toll-like receptors in the functional orientation of cardiac progenitor cells. J Cell Physiol 2019; 234:19451-19463. [PMID: 31025370 DOI: 10.1002/jcp.28738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.
Collapse
Affiliation(s)
- Mohammadreza Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Sadiye E Sokullu
- Engineering Sciences, Bioengineering Department, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Shahrooz Ghaderi
- Department of System Physiology, Ruhr University, Bochum, Germany
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Extensive CD34-to-CD90 Fibroblast Transition Defines Regions of Cutaneous Reparative, Hypertrophic, and Keloidal Scarring. Am J Dermatopathol 2019; 41:16-28. [PMID: 30320623 DOI: 10.1097/dad.0000000000001254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND CD90 fibroblasts have been described arising from and replacing the homeostatic CD34 network in scleroderma, but have not been specifically examined in other forms of cutaneous fibrosis. OBJECTIVES To address expression, timelines, and spatial relationships of CD90, CD34, and smooth muscle actin (SMA) expressing fibroblasts in scars and to examine for the presence of a CD34-to-CD90 transition. METHODS One hundred and seventeen scars (reparative/hypertrophic/keloidal) were evaluated for CD90, CD34, and SMA expression. Double-staining immunohistochemistry for CD90/CD34 was performed to identify CD90/CD34 transitioning cells, confirmed by double-color immunofluorescence. In addition, some scars were double-stained with CD90/SMA, CD90/procollagen-1, or SMA/procollagen-1 to evaluate spatial relationships and active collagen synthesis. Expression was graded as diffuse, minority, and negative. RESULTS Most scars demonstrate a CD90/CD34 pattern, and dual CD90/CD34 fibroblasts were observed in 91% of scars. In reparative scars, CD90 expression reverses to a CD34/CD90 state with maturation. Pathologic scars exhibit prolonged CD90 expression. Both CD90 and SMA fibroblasts collagenize scars, although CD90 fibroblasts are more prevalent. CONCLUSIONS CD90 fibroblasts likely arise from the resting CD34 fibroblastic network. Actively collagenizing scar fibroblasts exhibit a CD90/CD34 phenotype, which is prolonged in pathologic scars. CD90 fibroblasts are likely important players in cutaneous scarring.
Collapse
|
26
|
Sandstedt J, Sandstedt M, Lundqvist A, Jansson M, Sopasakis VR, Jeppsson A, Hultén LM. Human cardiac fibroblasts isolated from patients with severe heart failure are immune-competent cells mediating an inflammatory response. Cytokine 2018; 113:319-325. [PMID: 30360948 DOI: 10.1016/j.cyto.2018.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/24/2018] [Accepted: 09/29/2018] [Indexed: 01/26/2023]
Abstract
This study was aimed to elucidate the immunoregulatory properties of human cardiac fibroblasts cultured under pro-inflammatory and hypoxic conditions. Human heart tissue for isolating cardiac cells is generally hard to obtain, particularly from all four chambers of the same heart. Since different parts of the heart have different functions and therefore may have different immunoregulatory properties, ability to analyse cells from all chambers allows for a unique and comprehensive investigation. Cells were isolated from all four chambers of the heart from patients undergoing cardiac transplantation surgery due to severe chronic heart failure (CHF) (n = 6). Cells isolated from one donor heart, were used for comparison with the experimental group. Primary cultured human cardiac fibroblasts were treated with Lipopolysaccharide (LPS) to induce an inflammatory response. Cells were also subjected to hypoxia. To determine immunoregulatory properties of the cells, cytokine and chemokine profiles were determined using multiplex ELISA. RESULTS: On average, the fibroblasts population constituted approximately 90% of the expanded non-myocytes. Levels of cytokines and chemokines were markedly increased in human cardiac fibroblasts cultured under inflammatory conditions, with a similar response in fibroblasts from all compartments of the heart. Unexpectedly, hypoxia did not further augment cytokine and chemokine secretion. In conclusion, human cardiac fibroblasts are a robust source of pro-inflammatory mediators in the failing heart, independent of hypoxia, and might play a critical role in inflammation associated with the pathogenesis of CHF.
Collapse
Affiliation(s)
- Joakim Sandstedt
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mikael Sandstedt
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annika Lundqvist
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Märta Jansson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Victoria Rotter Sopasakis
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
27
|
Chang Y, Li C, Jia Y, Chen P, Guo Y, Li A, Guo Z. CD90 + cardiac fibroblasts reduce fibrosis of acute myocardial injury in rats. Int J Biochem Cell Biol 2018; 96:20-28. [DOI: 10.1016/j.biocel.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/14/2023]
|
28
|
Sampaio-Pinto V, Rodrigues SC, Laundos TL, Silva ED, Vasques-Nóvoa F, Silva AC, Cerqueira RJ, Resende TP, Pianca N, Leite-Moreira A, D'Uva G, Thorsteinsdóttir S, Pinto-do-Ó P, Nascimento DS. Neonatal Apex Resection Triggers Cardiomyocyte Proliferation, Neovascularization and Functional Recovery Despite Local Fibrosis. Stem Cell Reports 2018; 10:860-874. [PMID: 29503089 PMCID: PMC5918841 DOI: 10.1016/j.stemcr.2018.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
So far, opposing outcomes have been reported following neonatal apex resection in mice, questioning the validity of this injury model to investigate regenerative mechanisms. We performed a systematic evaluation, up to 180 days after surgery, of the pathophysiological events activated upon apex resection. In response to cardiac injury, we observed increased cardiomyocyte proliferation in remote and apex regions, neovascularization, and local fibrosis. In adulthood, resected hearts remain consistently shorter and display permanent fibrotic tissue deposition in the center of the resection plane, indicating limited apex regrowth. However, thickening of the left ventricle wall, explained by an upsurge in cardiomyocyte proliferation during the initial response to injury, compensated cardiomyocyte loss and supported normal systolic function. Thus, apex resection triggers both regenerative and reparative mechanisms, endorsing this injury model for studies aimed at promoting cardiomyocyte proliferation and/or downplaying fibrosis. Apex resection triggers fibrosis, neovascularization, and cardiomyocyte proliferation Permanent fibrotic deposition is confined to the apex Injured hearts display morphometric alterations but regain functional competence Cardiomyocyte proliferation is sufficient to compensate tissue loss by resection
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sílvia C Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tiago L Laundos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Elsa D Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Ana C Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Gladstone Institutes, University of California San Francisco, San Francisco 94158, USA
| | - Rui J Cerqueira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Tatiana P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nicola Pianca
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adelino Leite-Moreira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Gabriele D'Uva
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Sólveig Thorsteinsdóttir
- Departamento de Biologia Animal, cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
29
|
Guo Y, Gupte M, Umbarkar P, Singh AP, Sui JY, Force T, Lal H. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol 2017; 110:109-120. [PMID: 28756206 DOI: 10.1016/j.yjmcc.2017.07.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
Nearly every form of the heart disease is associated with myocardial fibrosis, which is characterized by the accumulation of activated cardiac fibroblasts (CFs) and excess deposition of extracellular matrix (ECM). Although, CFs are the primary mediators of myocardial fibrosis in a diseased heart, in the traditional view, activated CFs (myofibroblasts) and resulting fibrosis were simply considered the secondary consequence of the disease, not the cause. Recent studies from our lab and others have challenged this concept by demonstrating that fibroblast activation and fibrosis are not simply the secondary consequence of a diseased heart, but are crucial for mediating various myocardial disease processes. In regards to the mechanism, the vast majority of literature is focused on the direct role of canonical SMAD-2/3-mediated TGF-β signaling to govern the fibrogenic process. Herein, we will discuss the emerging role of the GSK-3β, β-catenin and TGF-β1-SMAD-3 signaling network as a critical regulator of myocardial fibrosis in the diseased heart. The underlying molecular interactions and cross-talk among signaling pathways will be discussed. We will primarily focus on recent in vivo reports demonstrating that CF-specific genetic manipulation can lead to aberrant myocardial fibrosis and sturdy cardiac phenotype. This will allow for a better understanding of the driving role of CFs in the myocardial disease process. We will also review the specificity and limitations of the currently available genetic tools used to study myocardial fibrosis and its associated mechanisms. A better understanding of the GSK-3β, β-catenin and SMAD-3 signaling network may provide a novel therapeutic target for the management of myocardial fibrosis in the diseased heart.
Collapse
Affiliation(s)
- Yuanjun Guo
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Anand Prakash Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Jennifer Y Sui
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States.
| |
Collapse
|
30
|
Parga JA, García-Garrote M, Martínez S, Raya Á, Labandeira-García JL, Rodríguez-Pallares J. Prostaglandin EP2 Receptors Mediate Mesenchymal Stromal Cell-Neuroprotective Effects on Dopaminergic Neurons. Mol Neurobiol 2017; 55:4763-4776. [DOI: 10.1007/s12035-017-0681-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022]
|
31
|
Kuwabara JT, Tallquist MD. Tracking Adventitial Fibroblast Contribution to Disease: A Review of Current Methods to Identify Resident Fibroblasts. Arterioscler Thromb Vasc Biol 2017; 37:1598-1607. [PMID: 28705796 DOI: 10.1161/atvbaha.117.308199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/23/2017] [Indexed: 01/18/2023]
Abstract
Cells present in the adventitia, or outermost layer of the blood vessel, contribute to the progression of vascular diseases, such as atherosclerosis, hypertension, and aortic dissection. The adventitial fibroblast of the aorta is the prototypic perivascular fibroblast, but the adventitia is composed of multiple distinct cell populations. Therefore, methods for uniquely identifying the fibroblast are critical for a better understanding of how these cells contribute to disease processes. A popular method for distinguishing adventitial cell types relies on the use of genetic tools in the mouse to trace and manipulate these cells. Because lineage tracing relying on Cre-recombinase expressing mice is used more frequently in studies of vascular disease, it is important to outline the advantages and limitations of these genetic tools. The purpose of this article is to provide an overview of the various genetic tools available in the mouse for the study of resident adventitial fibroblasts.
Collapse
Affiliation(s)
- Jill T Kuwabara
- From the Center for Cardiovascular Research, University of Hawaii, Honolulu
| | | |
Collapse
|
32
|
Abstract
Cardiac fibroblasts deposit and maintain extracellular matrix during organogenesis and under physiological conditions. In the adult heart, activated cardiac fibroblasts also participate in the healing response after acute myocardial infarction and during chronic disease states characterized by augmented interstitial fibrosis and ventricular remodelling. However, delineation of the characteristics, plasticity, and origins of cardiac fibroblasts is an area of ongoing investigation and controversy. A set of genetic mouse models has been developed that specifically addresses the nature of these cells, in terms of both their origins and their response during cardiac disease and ventricular remodelling. As our understanding of cardiac fibroblasts becomes more defined and refined, so does the potential to develop new therapeutic strategies to control fibrosis and adverse ventricular remodelling.
Collapse
Affiliation(s)
- Michelle D Tallquist
- Department of Medicine, Center for Cardiovascular Research, University of Hawaii, Honolulu, Hawaii 96813, USA
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026, USA.,The Howard Hughes Medical Institute, 240 Albert Sabin Way, Cincinnati, Ohio 45229-3039, USA
| |
Collapse
|
33
|
Liau B, Jackman CP, Li Y, Bursac N. Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues. Sci Rep 2017; 7:42290. [PMID: 28181589 PMCID: PMC5299411 DOI: 10.1038/srep42290] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
We investigated whether the developmental stage of mouse cardiac fibroblasts (CFs) influences the formation and function of engineered cardiac tissues made of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Engineered cardiac tissue patches were fabricated by encapsulating pure mESC-CMs, mESC-CMs + adult CFs, or mESC-CMs + fetal CFs in fibrin-based hydrogel. Tissue patches containing fetal CFs exhibited higher velocity of action potential propagation and contractile force amplitude compared to patches containing adult CFs, while pure mESC-CM patches did not form functional syncytium. The functional improvements in mESC-CM + fetal CF patches were associated with differences in structural remodeling and increased expression of proteins involved in cardiac function. To determine role of paracrine signaling, we cultured pure mESC-CMs within miniature tissue "micro-patches" supplemented with media conditioned by adult or fetal CFs. Fetal CF-conditioned media distinctly enhanced CM spreading and contractile activity, which was shown by pathway inhibitor experiments and Western blot analysis to be mediated via MEK-ERK signaling. In mESC-CM monolayers, CF-conditioned media did not alter CM spreading or MEK-ERK activation. Collectively, our studies show that 3D co-culture of mESC-CMs with embryonic CFs is superior to co-culture with adult CFs for in vitro generation of functional myocardium. Ensuring consistent developmental stages of cardiomyocytes and supporting non-myocytes may be a critical factor for promoting functional maturation of engineered cardiac tissues.
Collapse
Affiliation(s)
- Brian Liau
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Yanzhen Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Abstract
Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury, multiple cell types have been implicated as the source for extracellular matrix-producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. (Circ J 2016; 80: 2269-2276).
Collapse
Affiliation(s)
- Malina J Ivey
- Department of Cell and Molecular Biology, Center for Cardiovascular Research, University of Hawaii
| | | |
Collapse
|
35
|
Kurose H, Mangmool S. Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch Pharm Res 2016; 39:1100-13. [PMID: 27515051 DOI: 10.1007/s12272-016-0809-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/01/2016] [Indexed: 01/18/2023]
Abstract
On myocardial infarction, many cells are injured or died owing to arterial occlusion. Intracellular molecules released from injured or dead cells initiate inflammatory responses that play important roles in cardiac remodeling including fibrosis. Fibrosis is an excess accumulation of extracellular collagen. Currently, drugs used to treat cardiac fibrosis are not commercially available. Myofibroblasts are responsible for the production and secretion of collagen. Infiltrating inflammatory cells interact with fibroblasts or other cells and promote myofibroblast formation. Inflammatory cells also modulate the activities of myofibroblasts. Regulation of collagen production is critical for modulating the progression of fibrosis. Hence, the manipulation of activities of inflammatory cells and myofibroblasts will provide promising therapeutic targets for treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
36
|
Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 2016; 7:12260. [PMID: 27447449 PMCID: PMC5512625 DOI: 10.1038/ncomms12260] [Citation(s) in RCA: 635] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/15/2016] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibroblasts convert to myofibroblasts with injury to mediate healing after acute myocardial infarction (MI) and to mediate long-standing fibrosis with chronic disease. Myofibroblasts remain a poorly defined cell type in terms of their origins and functional effects in vivo. Here we generate Postn (periostin) gene-targeted mice containing a tamoxifen-inducible Cre for cellular lineage-tracing analysis. This Postn allele identifies essentially all myofibroblasts within the heart and multiple other tissues. Lineage tracing with four additional Cre-expressing mouse lines shows that periostin-expressing myofibroblasts in the heart derive from tissue-resident fibroblasts of the Tcf21 lineage, but not endothelial, immune/myeloid or smooth muscle cells. Deletion of periostin+ myofibroblasts reduces collagen production and scar formation after MI. Periostin-traced myofibroblasts also revert back to a less-activated state upon injury resolution. Our results define the myofibroblast as a periostin-expressing cell type necessary for adaptive healing and fibrosis in the heart, which arises from Tcf21+ tissue-resident fibroblasts. The origin and fate of myofibroblasts, the cells responsible for cardiac remodelling and fibrosis, is controversial. Here the authors show that cardiac myofibroblasts express periostin, derive exclusively from tissue-resident fibroblasts, are necessary for scar formation after injury, and can revert back to a less-activated state upon injury resolution.
Collapse
|
37
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
38
|
Cashman TJ, Josowitz R, Gelb BD, Li RA, Dubois NC, Costa KD. Construction of Defined Human Engineered Cardiac Tissues to Study Mechanisms of Cardiac Cell Therapy. J Vis Exp 2016:e53447. [PMID: 26967678 DOI: 10.3791/53447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cardiac tissue engineering can fundamentally impact therapeutic discovery through the development of new species-specific screening systems that replicate the biofidelity of three-dimensional native human myocardium, while also enabling a controlled level of biological complexity, and allowing non-destructive longitudinal monitoring of tissue contractile function. Initially, human engineered cardiac tissues (hECT) were created using the entire cell population obtained from directed differentiation of human pluripotent stem cells, which typically yielded less than 50% cardiomyocytes. However, to create reliable predictive models of human myocardium, and to elucidate mechanisms of heterocellular interaction, it is essential to accurately control the biological composition in engineered tissues. To address this limitation, we utilize live cell sorting for the cardiac surface marker SIRPα and the fibroblast marker CD90 to create tissues containing a 3:1 ratio of these cell types, respectively, that are then mixed together and added to a collagen-based matrix solution. Resulting hECTs are, thus, completely defined in both their cellular and extracellular matrix composition. Here we describe the construction of defined hECTs as a model system to understand mechanisms of cell-cell interactions in cell therapies, using an example of human bone marrow-derived mesenchymal stem cells (hMSC) that are currently being used in human clinical trials. The defined tissue composition is imperative to understand how the hMSCs may be interacting with the endogenous cardiac cell types to enhance tissue function. A bioreactor system is also described that simultaneously cultures six hECTs in parallel, permitting more efficient use of the cells after sorting.
Collapse
Affiliation(s)
- Timothy J Cashman
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Rebecca Josowitz
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai
| | - Ronald A Li
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai; Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong
| | - Nicole C Dubois
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
39
|
Has the search for a marker of activated fibroblasts finally come to an end? J Mol Cell Cardiol 2015; 88:120-3. [DOI: 10.1016/j.yjmcc.2015.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
|
40
|
Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol 2015; 87:194-203. [DOI: 10.1016/j.yjmcc.2015.08.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
|
41
|
A simplified protocol for the isolation and culture of cardiomyocytes and progenitor cells from neonatal mouse ventricles. Eur J Cell Biol 2015; 94:444-52. [PMID: 26153430 DOI: 10.1016/j.ejcb.2015.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 01/04/2023] Open
Abstract
The neonatal heart is a very useful tool for the study of biochemical pathways and properties of cardiomyocytes and as it has the potential to regenerate for a brief period of time from birth; it is also useful to study cardiac regeneration. However, as the heart matures, this proficiency for regeneration is reduced. This regenerative potential may be influenced by the microenvironment of the heart in the early stages of postnatal development and therefore, cell cultures derived at this stage may contain functional cardiomyocytes and progenitor cells. The aim of this study was to identify key steps in the isolation and culture of such early stage-neonatal mouse hearts to allow maximum migration of cardiomyocytes from the explant and their maintenance as functional, long term cultures. Explant cultures of mouse ventricles preserved 3-dimensional structure and generated migrating layers of cardiomyocytes that expressed alpha sarcomeric actin which could be further sub-cultured by enzymatic dissociation. Western blotting demonstrated expression of c-KIT, GATA4, alpha sarcomeric actin and connexin43 proteins after 20 days of explant culture. ACTA1, GATA4, and CX43 continued to express in five weeks old explant cultures while the c-KIT protein was expressed up to two passages during sub-culture. Real time PCR and SQRT PCR also demonstrated gene expression of cardiomyocyte markers in long term cultures. Migrating cells from the explants assembled into contracting spheroids after subculture and expressed the c-KIT protein. Progenitor markers CD44, CD90, and extracellular proteins, periostin and vimentin demonstrated the preservation of cellular heterogeneity in such cultures. Supplementation with Hydrocortisone maintained a cardioprotective environment and reduced the non-myocyte population. This is an optimized and efficient method for the generation of neonatal heart cultures that is not labor intensive and does not require supplementation with cytokines.
Collapse
|
42
|
Mathias D, Mitchel REJ, Barclay M, Wyatt H, Bugden M, Priest ND, Whitman SC, Scholz M, Hildebrandt G, Kamprad M, Glasow A. Low-dose irradiation affects expression of inflammatory markers in the heart of ApoE -/- mice. PLoS One 2015; 10:e0119661. [PMID: 25799423 PMCID: PMC4370602 DOI: 10.1371/journal.pone.0119661] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies indicate long-term risks of ionizing radiation on the heart, even at moderate doses. In this study, we investigated the inflammatory, thrombotic and fibrotic late responses of the heart after low-dose irradiation (IR) with specific emphasize on the dose rate. Hypercholesterolemic ApoE-deficient mice were sacrificed 3 and 6 months after total body irradiation (TBI) with 0.025, 0.05, 0.1, 0.5 or 2 Gy at low (1 mGy/min) or high dose rate (150 mGy/min). The expression of inflammatory and thrombotic markers was quantified in frozen heart sections (CD31, E-selectin, thrombomodulin, ICAM-1, VCAM-1, collagen IV, Thy-1, and CD45) and in plasma samples (IL6, KC, MCP-1, TNFα, INFγ, IL-1β, TGFβ, INFγ, IL-10, sICAM-1, sE-selectin, sVCAM-1 and fibrinogen) by fluorescence analysis and ELISA. We found that even very low irradiation doses induced adaptive late responses, such as increases of capillary density and changes in collagen IV and Thy-1 levels indicating compensatory regulation. Slight decreases of ICAM-1 levels and reduction of Thy 1 expression at 0.025–0.5 Gy indicate anti-inflammatory effects, whereas at the highest dose (2 Gy) increased VCAM-1 levels on the endocardium may represent a switch to a pro-inflammatory response. Plasma samples partially confirmed this pattern, showing a decrease of proinflammatory markers (sVCAM, sICAM) at 0.025–2.0 Gy. In contrast, an enhancement of MCP-1, TNFα and fibrinogen at 0.05–2.0 Gy indicated a proinflammatory and prothrombotic systemic response. Multivariate analysis also revealed significant age-dependent increases (KC, MCP-1, fibrinogen) and decreases (sICAM, sVCAM, sE-selectin) of plasma markers. This paper represents local and systemic effects of low-dose irradiation, including also age- and dose rate-dependent responses in the ApoE-/- mouse model. These insights in the multiple inflammatory/thrombotic effects caused by low-dose irradiation might facilitate an individual evaluation and intervention of radiation related, long-term side effects but also give important implications for low dose anti-inflammatory radiotherapy.
Collapse
Affiliation(s)
- Daniel Mathias
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
| | - Ronald E. J. Mitchel
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Mirela Barclay
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Heather Wyatt
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Michelle Bugden
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Nicholas D. Priest
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Stewart C. Whitman
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Manja Kamprad
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
43
|
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ J 2015; 79:245-54. [PMID: 25744738 DOI: 10.1253/circj.cj-14-1372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac fibroblasts play critical roles in maintaining normal cardiac function and in cardiac remodeling during pathological conditions such as myocardial infarction (MI). Adult cardiomyocytes (CMs) have little to no regenerative capacity; damaged CMs in the heart after MI are replaced by cardiac fibroblasts that become activated and transform into myofibroblasts, which preserves the structural integrity. Unfortunately, this process typically causes fibrosis and reduces cardiac function. Directly reprogramming adult cardiac fibroblasts into induced CM-like cells (iCMs) holds great promise for restoring heart function. Direct cardiac reprogramming also provides a new research model to investigate which transcription factors and microRNAs control the molecular network that guides cardiac cell fate. We review the approaches and characterization of in vitro and in vivo reprogrammed iCMs from different laboratories, and outline the future directions needed to translate this new approach into a practical therapy for damaged hearts.
Collapse
Affiliation(s)
- Ji-Dong Fu
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, USA; Gladstone Institute of Cardiovascular Disease, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- Thomas Moore-Morris
- From the INSERM UMRS_910, Aix-Marseille Université, Marseille, France (T.M.-M.); Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (M.D.T.); Skaggs School of Pharmacy (S.M.E.), Department of Medicine (S.M.E.), and Department of Pharmacology (S.M.E.), UCSD, La Jolla
| | - Michelle D Tallquist
- From the INSERM UMRS_910, Aix-Marseille Université, Marseille, France (T.M.-M.); Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (M.D.T.); Skaggs School of Pharmacy (S.M.E.), Department of Medicine (S.M.E.), and Department of Pharmacology (S.M.E.), UCSD, La Jolla
| | - Sylvia M Evans
- From the INSERM UMRS_910, Aix-Marseille Université, Marseille, France (T.M.-M.); Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (M.D.T.); Skaggs School of Pharmacy (S.M.E.), Department of Medicine (S.M.E.), and Department of Pharmacology (S.M.E.), UCSD, La Jolla.
| |
Collapse
|
45
|
Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, Kamran P, Müller AMS, Volz KS, Tang Z, Red-Horse K, Ardehali R. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res 2014; 115:625-35. [PMID: 25037571 DOI: 10.1161/circresaha.115.303794] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Fibrosis is mediated partly by extracellular matrix-depositing fibroblasts in the heart. Although these mesenchymal cells are reported to have multiple embryonic origins, the functional consequence of this heterogeneity is unknown. OBJECTIVE We sought to validate a panel of surface markers to prospectively identify cardiac fibroblasts. We elucidated the developmental origins of cardiac fibroblasts and characterized their corresponding phenotypes. We also determined proliferation rates of each developmental subset of fibroblasts after pressure overload injury. METHODS AND RESULTS We showed that Thy1(+)CD45(-)CD31(-)CD11b(-)Ter119(-) cells constitute the majority of cardiac fibroblasts. We characterized these cells using flow cytometry, epifluorescence and confocal microscopy, and transcriptional profiling (using reverse transcription polymerase chain reaction and RNA-seq). We used lineage tracing, transplantation studies, and parabiosis to show that most adult cardiac fibroblasts derive from the epicardium, a minority arises from endothelial cells, and a small fraction from Pax3-expressing cells. We did not detect generation of cardiac fibroblasts by bone marrow or circulating cells. Interestingly, proliferation rates of fibroblast subsets on injury were identical, and the relative abundance of each lineage remained the same after injury. The anatomic distribution of fibroblast lineages also remained unchanged after pressure overload. Furthermore, RNA-seq analysis demonstrated that Tie2-derived and Tbx18-derived fibroblasts within each operation group exhibit similar gene expression profiles. CONCLUSIONS The cellular expansion of cardiac fibroblasts after transaortic constriction surgery was not restricted to any single developmental subset. The parallel proliferation and activation of a heterogeneous population of fibroblasts on pressure overload could suggest that common signaling mechanisms stimulate their pathological response.
Collapse
Affiliation(s)
- Shah R Ali
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Sara Ranjbarvaziri
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Mahmood Talkhabi
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Peng Zhao
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Ali Subat
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Armin Hojjat
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Paniz Kamran
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Antonia M S Müller
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Katharina S Volz
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Zhaoyi Tang
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Kristy Red-Horse
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA
| | - Reza Ardehali
- From the Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.R.A.); Department of Internal Medicine, Division of Cardiology, and Broad Stem Cell Research Center, University of California Los Angeles School of Medicine (S.R., M.T., P.Z., A.S., A.H., P.K., Z.T., R.A.); and Division of Blood and Marrow Transplantation, Department of Medicine (A.M. S.M.) and Department of Biology (K.S.V., K.R.-H.), Stanford University, CA.
| |
Collapse
|
46
|
Cowling RT, Yeo SJ, Kim IJ, Park JI, Gu Y, Dalton ND, Peterson KL, Greenberg BH. Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol 2014; 307:H773-81. [PMID: 24993042 DOI: 10.1152/ajpheart.00142.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Discoidin domain receptor 2 (DDR2) is a fibrillar collagen receptor that is expressed in mesenchymal cells throughout the body. In the heart, DDR2 is selectively expressed on cardiac fibroblasts. We generated a germline DDR2 knockout mouse and used this mouse to examine the role of DDR2 deletion on heart structure and function. Echocardiographic measurements from null mice were consistent with those from a smaller heart, with reduced left ventricular chamber dimensions and little change in wall thickness. Fractional shortening appeared normal. Left ventricular pressure measurements revealed mild inotropic and lusitropic abnormalities that were accentuated by dobutamine infusion. Both body and heart weights from 10-wk-old male mice were ~20% smaller in null mice. The reduced heart size was not simply due to reduced body weight, since cardiomyocyte lengths were atypically shorter in null mice. Although normalized cardiac collagen mass (assayed by hydroxyproline content) was not different in null mice, the collagen area fraction was statistically higher, suggesting a reduced collagen density from altered collagen deposition and cross-linking. Cultured cardiac fibroblasts from null mice deposited collagen at a slower rate than wild-type littermates, possibly due to the expression of lower prolyl 4-hydroxylase α-isoform 1 enzyme levels. We conclude that genetic deletion of the DDR2 collagen receptor alters cardiac fibroblast function. The resulting perturbations in collagen deposition can influence the structure and function of mature cardiomyocytes.
Collapse
Affiliation(s)
- Randy T Cowling
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Seon Ju Yeo
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| | - In Jai Kim
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Joong Il Park
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Yusu Gu
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Nancy D Dalton
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Kirk L Peterson
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Barry H Greenberg
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
47
|
Nural-Guvener HF, Zakharova L, Nimlos J, Popovic S, Mastroeni D, Gaballa MA. HDAC class I inhibitor, Mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. FIBROGENESIS & TISSUE REPAIR 2014; 7:10. [PMID: 25024745 PMCID: PMC4094898 DOI: 10.1186/1755-1536-7-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Interstitial fibrosis and fibrotic scar formation contribute to cardiac remodeling and loss of cardiac function in myocardial infarction (MI) and heart failure. Recent studies showed that histone deacetylase (HDAC) inhibitors retard fibrosis formation in acute MI settings. However, it is unknown whether HDAC inhibition can reverse cardiac fibrosis in ischemic heart failure. In addition, specific HDAC isoforms involved in cardiac fibrosis and myofibroblast activation are not well defined. Thus, the purpose of this study is to determine the effects of selective class I HDAC inhibition on cardiac fibroblasts activation and cardiac fibrosis in a congestive heart failure (CHF) model secondary to MI. METHODS MI was created by left anterior descending (LAD) coronary artery occlusion. Class I HDACs were selectively inhibited via Mocetinostat in CD90+ fibroblasts isolated from atrial and ventricular heart tissue in vitro. In vivo, Class I HDACs were inhibited in 3 weeks post MI rats by injecting Mocetinostat for the duration of 3 weeks. Cardiac function and heart tissue were analyzed at 6 weeks post MI. RESULTS In sham hearts, HDAC1 and HDAC2 displayed differential expression patterns where HDAC1 mainly expressed in cardiac fibroblast and HDAC2 in cardiomyocytes. On the other hand, we showed that HDAC1 and 2 were upregulated in CHF hearts, and were found to co-localize with CD90+ cardiac fibroblasts. In vivo treatment of CHF animals with Mocetinostat improved left ventricle end diastolic pressure and dp/dt max and decreased the total collagen amount. In vitro treatment of CD90+ cells with Mocetinostat reversed myofibroblast phenotype as indicated by a decrease in α-Smooth muscle actin (α-SMA), Collagen III, and Matrix metalloproteinase-2 (MMP2). Furthermore, Mocetinostat increased E-cadherin, induced β-catenin localization to the membrane, and reduced Akt/GSK3β signaling in atrial cardiac fibroblasts. In addition, Mocetinostat treatment of atrial CD90+ cells upregulated cleaved-Caspase3 and activated the p53/p21 axis. CONCLUSIONS Taken together, our results demonstrate upregulation of HDAC1 and 2 in CHF. In addition, HDAC inhibition reverses interstitial fibrosis in CHF. Possible anti-fibrotic actions of HDAC inhibition include reversal of myofibroblast activation and induction of cell cycle arrest/apoptosis.
Collapse
Affiliation(s)
- Hikmet F Nural-Guvener
- Cardiovascular Research Laboratory, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Luidmila Zakharova
- Cardiovascular Research Laboratory, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - James Nimlos
- Cardiovascular Research Laboratory, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Snjezana Popovic
- Cardiovascular Research Laboratory, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Diego Mastroeni
- L. J Roberts Center for Alzheimer’s Research at Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Mohamed A Gaballa
- Cardiovascular Research Laboratory, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| |
Collapse
|
48
|
Goldsmith EC, Bradshaw AD, Zile MR, Spinale FG. Myocardial fibroblast-matrix interactions and potential therapeutic targets. J Mol Cell Cardiol 2014; 70:92-9. [PMID: 24472826 PMCID: PMC4005609 DOI: 10.1016/j.yjmcc.2014.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 01/18/2023]
Abstract
The cardiac extracellular matrix (ECM) is a dynamic structure, adapting to physiological and pathological stresses placed on the myocardium. Deposition and organization of the matrix fall under the purview of cardiac fibroblasts. While often overlooked compared to myocytes, fibroblasts play a critical role in maintaining ECM homeostasis under normal conditions and in response to pathological stimuli assume an activated, myofibroblast phenotype associated with excessive collagen accumulation contributing to impaired cardiac function. Complete appreciation of fibroblast function is hampered by the lack of fibroblast-specific reagents and the heterogeneity of fibroblast precursors. This is further complicated by our ability to dissect the role of myofibroblasts versus fibroblasts in myocardial in remodeling. This review highlights critical points in the regulation of collagen deposition by fibroblasts, the current panel of molecular tools used to identify fibroblasts and the role of fibroblast-matrix interactions in fibroblast function and differentiation into the myofibroblast phenotype. The clinical potential of exploiting differences between fibroblasts and myofibroblasts and using them to target specific fibroblast populations is also discussed. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
- Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, USA.
| | - Amy D Bradshaw
- Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, SC, USA; Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Michael R Zile
- Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, SC, USA; Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Francis G Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, USA; Cardiovascular Translational Research Center, University of South Carolina School of Medicine, USA; WJB Dorn Veteran Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
49
|
Lajiness JD, Conway SJ. Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol 2013; 70:2-8. [PMID: 24231799 DOI: 10.1016/j.yjmcc.2013.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023]
Abstract
Cardiac fibroblasts are the most abundant cell in the mammalian heart. While they have been historically underappreciated in terms of their functional contributions to cardiac development and physiology, they and their activated form, myofibroblasts, are now known to play key roles in both development and disease through structural, paracrine, and electrical interactions with cardiomyocytes. The lack of specific markers for fibroblasts currently convolutes the study of this dynamic cell lineage, but advances in marker analysis and lineage mapping technologies are continuously being made. Understanding how to best utilize these tools, both individually and in combination, will help to elucidate the functional significance of fibroblast-cardiomyocyte interactions in vivo. Here we review what is currently known about the diverse roles played by cardiac fibroblasts and myofibroblasts throughout development and periods of injury with the intent of emphasizing the duality of their nature. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Simon J Conway
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Ieronimakis N, Hays AL, Janebodin K, Mahoney WM, Duffield JS, Majesky MW, Reyes M. Coronary adventitial cells are linked to perivascular cardiac fibrosis via TGFβ1 signaling in the mdx mouse model of Duchenne muscular dystrophy. J Mol Cell Cardiol 2013; 63:122-34. [PMID: 23911435 PMCID: PMC3834000 DOI: 10.1016/j.yjmcc.2013.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/20/2013] [Accepted: 07/23/2013] [Indexed: 01/12/2023]
Abstract
In Duchenne muscular dystrophy (DMD), progressive accumulation of cardiac fibrosis promotes heart failure. While the cellular origins of fibrosis in DMD hearts remain enigmatic, fibrotic tissue conspicuously forms near the coronary adventitia. Therefore, we sought to characterize the role of coronary adventitial cells in the formation of perivascular fibrosis. Utilizing the mdx model of DMD, we have identified a population of Sca1+, PDGFRα+, CD31-, and CD45- coronary adventitial cells responsible for perivascular fibrosis. Histopathology of dystrophic hearts revealed that Sca1+ cells extend from the adventitia and occupy regions of perivascular fibrosis. The number of Sca1+ adventitial cells increased two-fold in fibrotic mdx hearts vs. age matched wild-type hearts. Moreover, relative to Sca1-, PDGFRα+, CD31-, and CD45- cells and endothelial cells, Sca1+ adventitial cells FACS-sorted from mdx hearts expressed the highest level of Collagen1α1 and 3α1, Connective tissue growth factor, and Tgfβr1 transcripts. Surprisingly, mdx endothelial cells expressed the greatest level of the Tgfβ1 ligand. Utilizing Collagen1α1-GFP reporter mice, we confirmed that the majority of Sca1+ adventitial cells expressed type I collagen, an abundant component of cardiac fibrosis, in both wt (71%±4.1) and mdx (77%±3.5) hearts. In contrast, GFP+ interstitial fibroblasts were PDGFRα+ but negative for Sca1. Treatment of cultured Collagen1α1-GFP+ adventitial cells with TGFβ1 resulted in increased collagen synthesis, whereas pharmacological inhibition of TGFβR1 signaling reduced the fibrotic response. Therefore, perivascular cardiac fibrosis by coronary adventitial cells may be mediated by TGFβ1 signaling. Our results implicate coronary endothelial cells in mediating cardiac fibrosis via transmural TGFβ signaling, and suggest that the coronary adventitia is a promising target for developing novel anti-fibrotic therapies.
Collapse
|