1
|
Sharma G, Chaurasia SS, Carlson MA, Mishra PK. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Am J Physiol Heart Circ Physiol 2024; 327:H1327-H1342. [PMID: 39453429 PMCID: PMC11684949 DOI: 10.1152/ajpheart.00539.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department Ophthalmology & Visual Sciences, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
2
|
Achter JS, Vega ET, Sorrentino A, Kahnert K, Galsgaard KD, Hernandez-Varas P, Wierer M, Holst JJ, Wojtaszewski JFP, Mills RW, Kjøbsted R, Lundby A. In-depth phosphoproteomic profiling of the insulin signaling response in heart tissue and cardiomyocytes unveils canonical and specialized regulation. Cardiovasc Diabetol 2024; 23:258. [PMID: 39026321 PMCID: PMC11264841 DOI: 10.1186/s12933-024-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.
Collapse
Affiliation(s)
- Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Hernandez-Varas
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Frank Pind Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert William Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Torshin IY, Gromova OA, Tikhonova OV, Chuchalin AG. [Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning]. TERAPEVT ARKH 2023; 95:1133-1140. [PMID: 38785053 DOI: 10.26442/00403660.2023.12.202494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Human placenta hydrolysates (HPH), the study of which was initiated by the scientific school of Vladimir P. Filatov, are currently being investigated using modern proteomic technologies. HPH is a promising tool for maintaining the function of mitochondria and regenerating tissues and organs with a high content of mitochondria (liver, heart muscle, skeletal muscles, etc.). The molecular mechanisms of action of HPH are practically not studied. AIM Identification of mitochondrial support mitochondrial function-supporting peptides in HPH (Laennec, produced by Japan Bioproducts). MATERIALS AND METHODS Data on the chemical structure of the peptides were collected through a mass spectrometric experiment. Then, to establish the amino acid sequences of the peptides, de novo peptide sequencing algorithms based on the mathematical theory of topological and metric analysis of chemographs were applied. Bioinformatic analysis of the peptide composition of HPH was carried out using the integral protein annotation method. RESULTS The biological functions of 41 peptides in the composition of HPH have been identified and described. Among the target proteins, the activity of which is regulated by the identified peptides and significantly affects the function of mitochondria, are caspases (CASP1, CASP3, CASP4) and other proteins regulating apoptosis (BCL2, CANPL1, PPARA), MAP kinases (MAPK1, MAPK3, MAPK4, MAPK8, MAPK9 , MAPK10, MAPK14), AKT1/GSK3B/MTOR cascade kinases, and a number of other target proteins (ADGRG6 receptor, inhibitor of NF-êB kinase IKKE, pyruvate dehydrogenase 2/3/4, SIRT1 sirtuin deacetylase, ULK1 kinase). CONCLUSION HPH peptides have been identified that promote inhibition of mitochondrial pore formation, apoptosis, and excessive mitochondrial autophagy under conditions of oxidative/toxic stress, chronic inflammation, and/or hyperinsulinemia.
Collapse
Affiliation(s)
| | | | - O V Tikhonova
- Orekhovich Research Institute of Biomedical Chemistry
| | - A G Chuchalin
- Pirogov Russian National Research Medical University
| |
Collapse
|
4
|
Na D, Lim DH, Hong JS, Lee HM, Cho D, Yu MS, Shaker B, Ren J, Lee B, Song JG, Oh Y, Lee K, Oh KS, Lee MY, Choi MS, Choi HS, Kim YH, Bui JM, Lee K, Kim HW, Lee YS, Gsponer J. A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration. Mol Syst Biol 2023; 19:e11801. [PMID: 37984409 DOI: 10.15252/msb.202311801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3β), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.
Collapse
Affiliation(s)
- Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bomi Lee
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jae Gwang Song
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yuna Oh
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyungeun Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kwang-Seok Oh
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Mi Young Lee
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han Saem Choi
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yang-Hee Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jennifer M Bui
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Chen YH, Ta AP, Chen Y, Lee HC, Fan W, Chen PL, Jordan MC, Roos KP, MacGregor GR, Yang Q, Edwards RA, Li J, Wang PH. Dual roles of myocardial mitochondrial AKT on diabetic cardiomyopathy and whole body metabolism. Cardiovasc Diabetol 2023; 22:294. [PMID: 37891673 PMCID: PMC10612246 DOI: 10.1186/s12933-023-02020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The PI3K/AKT pathway transduces the majority of the metabolic actions of insulin. In addition to cytosolic targets, insulin-stimulated phospho-AKT also translocates to mitochondria in the myocardium. Mouse models of diabetes exhibit impaired mitochondrial AKT signaling but the implications of this on cardiac structure and function is unknown. We hypothesized that loss of mitochondrial AKT signaling is a critical step in cardiomyopathy and reduces cardiac oxidative phosphorylation. METHODS To focus our investigation on the pathophysiological consequences of this mitochondrial signaling pathway, we generated transgenic mouse models of cardiac-specific, mitochondria-targeting, dominant negative AKT1 (CAMDAKT) and constitutively active AKT1 expression (CAMCAKT). Myocardial structure and function were examined using echocardiography, histology, and biochemical assays. We further investigated the underlying effects of mitochondrial AKT1 on mitochondrial structure and function, its interaction with ATP synthase, and explored in vivo metabolism beyond the heart. RESULTS Upon induction of dominant negative mitochondrial AKT1, CAMDAKT mice developed cardiac fibrosis accompanied by left ventricular hypertrophy and dysfunction. Cardiac mitochondrial oxidative phosphorylation efficiency and ATP content were reduced, mitochondrial cristae structure was lost, and ATP synthase structure was compromised. Conversely, CAMCAKT mice were protected against development of diabetic cardiomyopathy when challenged with a high calorie diet. Activation of mitochondrial AKT1 protected cardiac function and increased fatty acid uptake in myocardium. In addition, total energy expenditure was increased in CAMCAKT mice, accompanied by reduced adiposity and reduced development of fatty liver. CONCLUSION CAMDAKT mice modeled the effects of impaired mitochondrial signaling which occurs in the diabetic myocardium. Disruption of this pathway is a key step in the development of cardiomyopathy. Activation of mitochondrial AKT1 in CAMCAKT had a protective role against diabetic cardiomyopathy as well as improved metabolism beyond the heart.
Collapse
Affiliation(s)
- Yu-Han Chen
- Department of Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Room 1011, Gonda South Rm 1011, 1500 E. Duarte Rd., Duarte, CA, 91010-3000, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Albert P Ta
- Department of Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Room 1011, Gonda South Rm 1011, 1500 E. Duarte Rd., Duarte, CA, 91010-3000, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Yumay Chen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Hsiao-Chen Lee
- Department of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Plastic Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wenjun Fan
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Qin Yang
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Junfeng Li
- Department of Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Room 1011, Gonda South Rm 1011, 1500 E. Duarte Rd., Duarte, CA, 91010-3000, USA
| | - Ping H Wang
- Department of Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Room 1011, Gonda South Rm 1011, 1500 E. Duarte Rd., Duarte, CA, 91010-3000, USA.
| |
Collapse
|
6
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
Wainstein E, Maik-Rachline G, Blenis J, Seger R. AKTs do not translocate to the nucleus upon stimulation but AKT3 can constitutively signal from the nuclear envelope. Cell Rep 2022; 41:111733. [PMID: 36476861 DOI: 10.1016/j.celrep.2022.111733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
AKT is a central signaling protein kinase that plays a role in the regulation of cellular survival metabolism and cell growth, as well as in pathologies such as diabetes and cancer. Human AKT consists of three isoforms (AKT1-3) that may fulfill different functions. Here, we report that distinct subcellular localization of the isoforms directly influences their activity and function. AKT1 is localized primarily in the cytoplasm, AKT2 in the nucleus, and AKT3 in the nucleus or nuclear envelope. None of the isoforms actively translocates into the nucleus upon stimulation. Interestingly, AKT3 at the nuclear envelope is constitutively phosphorylated, enabling a constant phosphorylation of TSC2 at this location. Knockdown of AKT3 induces moderate attenuation of cell proliferation of breast cancer cells. We suggest that in addition to the stimulation-induced activation of the lysosomal/cytoplasmic AKT1-TSC2 pathway, a subpopulation of TSC2 is constitutively inactivated by AKT3 at the nuclear envelope of transformed cells.
Collapse
Affiliation(s)
- Ehud Wainstein
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Galia Maik-Rachline
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. BIOLOGY 2022; 11:biology11060943. [PMID: 35741464 PMCID: PMC9220302 DOI: 10.3390/biology11060943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Insulin was discovered and isolated from the beta cells of pancreatic islets of dogs and is associated with the regulation of peripheral glucose homeostasis. Insulin produced in the brain is related to synaptic plasticity and memory. Defective insulin signaling plays a role in brain dysfunction, such as neurodegenerative disease. Growing evidence suggests a link between metabolic disorders, such as diabetes and obesity, and neurodegenerative diseases, especially Alzheimer's disease (AD). This association is due to a common state of insulin resistance (IR) and mitochondrial dysfunction. This review takes a journey into the past to summarize what was known about the physiological and pathological role of insulin in peripheral tissues and the brain. Then, it will land in the present to analyze the insulin role on mitochondrial health and the effects on insulin resistance and neurodegenerative diseases that are IR-dependent. Specifically, we will focus our attention on the quality control of mitochondria (MQC), such as mitochondrial dynamics, mitochondrial biogenesis, and selective autophagy (mitophagy), in healthy and altered cases. Finally, this review will be projected toward the future by examining the most promising treatments that target the mitochondria to cure neurodegenerative diseases associated with metabolic disorders.
Collapse
|
9
|
Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. Int J Mol Sci 2022; 23:ijms23105779. [PMID: 35628588 PMCID: PMC9147902 DOI: 10.3390/ijms23105779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to define the proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group, ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-based methods were used to detect the global EV proteome and phosphoproteome. Differentially expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified among all samples. Unsupervised clustering of the differentially expressed (fold change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphorylation events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B, LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically. Among characteristic changes in the PDM and T2DM EVs, “integrin switching” appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the development of diabetes. A highly enriched signature of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and T2DM and provides novel insight into the pathobiology of diabetes.
Collapse
|
10
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
11
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
12
|
Landa-Galvan HV, Rios-Castro E, Romero-Garcia T, Rueda A, Olivares-Reyes JA. Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. PLoS One 2020; 15:e0228115. [PMID: 31995605 PMCID: PMC6988918 DOI: 10.1371/journal.pone.0228115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, with insulin resistance as a critical component for its development. Insulin signaling in the heart leads to Akt (also known as PKB) activation, a serine/threonine protein kinase, which regulates cardiac glucose metabolism and growth. Cardiac metabolic inflexibility, characterized by impaired insulin-induced glucose uptake and oxidation, has been reported as an early and consistent change in the heart of different models of MetS and diabetes; however, the evaluation of Akt activation has yielded variable results. Here we report in cardiomyocytes of MetS rats, diminished insulin-induced glucose uptake and Akt activation, evaluated by its impaired mobilization towards the plasma membrane and phosphorylation, and reflected in a re-distribution of its interacting proteins, assessed by label-free mass spectrometry (data are available via ProteomeXchange with identifier PXD013260). We report 45 proteins with diminished abundance in Akt complex of MetS cardiomyocytes, mainly represented by energy metabolism-related proteins, and also, 31 Akt-interacting proteins with increased abundance, which were mainly related to contraction, endoplasmic reticulum stress, and Akt negative regulation. These results emphasize the relevance of Akt in the regulation of energy metabolism in the heart and highlight Akt-interacting proteins that could be involved in the detrimental effects of MetS in the heart.
Collapse
Affiliation(s)
| | - Emmanuel Rios-Castro
- Unidad de Genomica, Proteomica y Metabolomica (UGPM), LaNSE-Cinvestav-IPN, Mexico City, Mexico
| | | | - Angelica Rueda
- Departamento de Bioquimica, Cinvestav-IPN, Mexico City, Mexico
| | | |
Collapse
|
13
|
Human muscle pathology is associated with altered phosphoprotein profile of mitochondrial proteins in the skeletal muscle. J Proteomics 2020; 211:103556. [PMID: 31655151 DOI: 10.1016/j.jprot.2019.103556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022]
Abstract
Analysis of human muscle diseases highlights the role of mitochondrial dysfunction in the skeletal muscle. Our previous work revealed that diverse upstream events correlated with altered mitochondrial proteome in human muscle biopsies. However, several proteins showed relatively unchanged expression suggesting that post-translational modifications, mainly protein phosphorylation could influence their activity and regulate mitochondrial processes. We conducted mitochondrial phosphoprotein profiling, by proteomics approach, of healthy human skeletal muscle (n = 10) and three muscle diseases (n = 10 each): Dysferlinopathy, Polymyositis and Distal Myopathy with Rimmed Vacuoles. Healthy human muscle mitochondrial proteins displayed 253 phosphorylation sites (phosphosites), which contributed to metabolic and redox processes and mitochondrial organization etc. Electron transport chain complexes accounted for 84 phosphosites. Muscle pathologies displayed 33 hyperphosphorylated and 14 hypophorphorylated sites with only 5 common proteins, indicating varied phosphorylation profile across muscle pathologies. Molecular modelling revealed altered local structure in the phosphorylated sites of Voltage-Dependent Anion Channel 1 and complex V subunit ATP5B1. Molecular dynamics simulations in complex I subunits NDUFV1, NDUFS1 and NDUFV2 revealed that phosphorylation induced structural alterations thereby influencing electron transfer and potentially altering enzyme activity. We propose that altered phosphorylation at specific sites could regulate mitochondrial protein function in the skeletal muscle during physiological and pathological processes.
Collapse
|
14
|
Mitochondrial Akt Signaling Modulated Reprogramming of Somatic Cells. Sci Rep 2019; 9:9919. [PMID: 31289326 PMCID: PMC6616364 DOI: 10.1038/s41598-019-46359-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
The signaling mechanisms controlling somatic cell reprogramming are not fully understood. In this study, we report a novel role for mitochondrial Akt1 signaling that enhanced somatic cell reprogramming efficiency. The role of mitochondrial Akt1 in somatic cell reprogramming was investigated by transducing fibroblasts with the four reprogramming factors (Oct4, Sox2, Klf4, c-Myc) in conjunction with Mito-Akt1, Mito-dnAkt1, or control virus. Mito-Akt1 enhanced reprogramming efficiency whereas Mito-dnAkt1 inhibited reprogramming. The resulting iPSCs formed embryoid bodies in vitro and teratomas in vivo. Moreover, Oct4 and Nanog promoter methylation was reduced in the iPSCs generated in the presence of Mito-Akt1. Akt1 was activated and translocated into mitochondria after growth factor stimulation in embryonic stem cells (ESCs). To study the effect of mitochondrial Akt in ESCs, a mitochondria-targeting constitutively active Akt1 (Mito-Akt1) was expressed in ESCs. Gene expression profiling showed upregulation of genes that promote stem cell proliferation and survival and down-regulation of genes that promote differentiation. Analysis of cellular respiration indicated similar metabolic profile in the resulting iPSCs and ESCs, suggesting comparable bioenergetics. These findings showed that activation of mitochondrial Akt1 signaling was required during somatic cell reprogramming.
Collapse
|
15
|
Rojas DR, Kuner R, Agarwal N. Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy. J Mol Med (Berl) 2019; 97:845-854. [PMID: 30949723 DOI: 10.1007/s00109-019-01781-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Diabetic-induced peripheral neuropathy (DPN) is a highly complex and frequent diabetic late complication, which is manifested by prolonged hyperglycemia. However, the molecular mechanisms underlying the pathophysiology of nerve damage and sensory loss remain largely unclear. Recently, alteration in metabolic flux has gained attention as a basis for organ damage in diabetes; however, peripheral sensory neurons have not been adequately analyzed with respect to metabolic dysfunction. In the present study, we attempted to delineate the sequence of event occurring in alteration of metabolic pathways in relation to nerve damage and sensory loss. C57Bl6/j wild-type mice were analyzed longitudinally up to 22 weeks in the streptozotocin (STZ) model of type 1 diabetes. The progression of DPN was investigated by behavioral measurements of sensitivity to thermal and mechanical stimuli and quantitative morphological assessment of intraepidermal nerve fiber density. We employed a mass spectrometry-based screen to address alterations in levels of metabolites in peripheral sciatic nerve and amino acids in serum over several months post-STZ administration to elucidate metabolic dysfunction longitudinally in relation to sensory dysfunction. Although hyperglycemia and body weight changes occurred early, sensory loss and reduced intraepithelial branching of nociceptive nerves were only evident at 22 weeks post-STZ. The longitudinal metabolites screen in peripheral nerves demonstrated that compared with buffer-injected age-matched control mice, mice at 12 and 22 weeks post-STZ showed an early impairment the tricaoboxylic acid (TCA cycle), which is the main pathway of carbohydrate metabolism leading to energy generation. We found that levels of citric acid, ketoglutaric acid (2 KG), succinic acid, fumaric acid, and malic acid were observed to be significantly reduced in sciatic nerve at 22 weeks post-STZ. In addition, we also found the increase in levels of sorbitol and L-lactate in peripheral nerve from 12 weeks post-STZ injection. Amino acid screen in serum showed that the amino acids valine (Val), isoleucine (Ile), and leucine (Leu), grouped together as BCAA, increased more than twofold from 12 weeks post-STZ. Similarly, the levels of tyrosine (Tyr), asparagine (Asn), serine (Ser), histidine (His), alanine (Ala), and proline (Pro) showed progressive increase with progression of diabetes. Our results indicate that the impaired TCA cycle metabolites in peripheral nerve are the primary cause of shunting metabolic substrate to compensatory pathways, which leads to sensory nerve fiber loss in skin and contribute to onset and progression of peripheral neuropathy.
Collapse
Affiliation(s)
- Daniel Rangel Rojas
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120, Heidelberg, Germany
| | - Nitin Agarwal
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Subramani S, Banu Hedyathullah Khan H, Palanivelu S, Thiruvaiyaru Panchanadham S. Restorative Effect of Semecarpus Anacardium on Altered Energy Metabolism in Type-2 Diabetes Mellitus-Induced Cardiac Dysfunction in Rats. J Diet Suppl 2018; 17:27-40. [PMID: 30373482 DOI: 10.1080/19390211.2018.1481484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Semecarpus anacardium is an important herbal drug that has been used against various ailments. To evaluate the cardioprotective effect of the drug against altered cardiac energy metabolism in type-2 diabetes rats, type-2 diabetes was induced in rats by feeding them with a high-fat diet for 2 weeks followed by intraperitoneal injection of streptozotocin (STZ) 35 mg/kg body weight twice 24 h apart and left for 12 weeks to develop cardiovascular complication. The effects of the nut milk extract on the glucose metabolizing enzymes and mitochondrial complex enzymes were studied using biochemical assays. The drug effectively ameliorated the alteration in cardiac energy metabolism in diabetic rats. The cardioprotective effect may be mediated through the ability of the drug to enhance glucose utilization and control the oxidative stress under diabetic conditions.
Collapse
Affiliation(s)
- Suganthi Subramani
- Department of Biochemistry, Bhaktavatchalam College for Women, Chennai, India
| | | | | | | |
Collapse
|
17
|
Cseh AM, Fábián Z, Sümegi B, Scorrano L. Poly(adenosine diphosphate-ribose) polymerase as therapeutic target: lessons learned from its inhibitors. Oncotarget 2018; 8:50221-50239. [PMID: 28430591 PMCID: PMC5564845 DOI: 10.18632/oncotarget.16859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 01/27/2023] Open
Abstract
Poly(ADP-ribose) polymerases are a family of DNA-dependent nuclear enzymes catalyzing the transfer of ADP-ribose moieties from cellular nicotinamide-adenine-dinucleotide to a variety of target proteins. Although they have been considered as resident nuclear elements of the DNA repair machinery, recent works revealed a more intricate physiologic role of poly(ADP-ribose) polymerases with numerous extranuclear activities. Indeed, poly(ADP-ribose) polymerases participate in fundamental cellular processes like chromatin remodelling, transcription or regulation of the cell-cycle. These new insight into the physiologic roles of poly(ADP-ribose) polymerases widens the range of human pathologies in which pharmacologic inhibition of these enzymes might have a therapeutic potential. Here, we overview our current knowledge on extranuclear functions of poly(ADP-ribose) polymerases with a particular focus on the mitochondrial ones and discuss potential fields of future clinical applications.
Collapse
Affiliation(s)
- Anna Mária Cseh
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary.,Department of Biology, University of Padova, Padova, Italy
| | - Zsolt Fábián
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Balázs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Mathur A, Pandey VK, Kakkar P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol 2017; 233:R185-R198. [PMID: 28428363 DOI: 10.1530/joe-17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Progressive research in the past decade converges to the impact of PHLPP in regulating the cellular metabolism through PI3K/AKT inhibition. Aberrations in PKB/AKT signaling coordinates with impaired insulin secretion and insulin resistance, identified during T2D, obesity and cardiovascular disorders which brings in the relevance of PHLPPs in the metabolic paradigm. In this review, we discuss the impact of PHLPP isoforms in insulin signaling and its associated cellular events including mitochondrial dysfunction, DNA damage, autophagy and cell death. The article highlights the plausible molecular targets that share the role during insulin-resistant states, whose understanding can be extended into treatment responses to facilitate targeted drug discovery for T2D and allied metabolic syndromes.
Collapse
Affiliation(s)
- Alpana Mathur
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
| | - Vivek Kumar Pandey
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| | - Poonam Kakkar
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| |
Collapse
|
19
|
Diabetes-induced abnormalities of mitochondrial function in rat brain cortex: the effect of n-3 fatty acid diet. Mol Cell Biochem 2017; 435:109-131. [DOI: 10.1007/s11010-017-3061-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
|
20
|
Lapel M, Weston P, Strassheim D, Karoor V, Burns N, Lyubchenko T, Paucek P, Stenmark KR, Gerasimovskaya EV. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am J Physiol Cell Physiol 2016; 312:C56-C70. [PMID: 27856430 PMCID: PMC5283894 DOI: 10.1152/ajpcell.00250.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production). Stimulation of glycolysis was accompanied by increased levels of phospho-phosphofructokinase B3, hexokinase (HK), and GLUT-1, but not lactate dehydrogenase. Moreover, extracellular ATP and MeSADP, and to a lesser extent adenosine, increased basal and maximal oxygen consumption rates in VVEC. These effects were potentiated when the cells were cultured in 20 mM galactose and 5 mM glucose compared with 25 mM glucose. Treatment with P2R agonists decreased phosphorylation of pyruvate dehydrogenase (PDH)-E1α and increased succinate dehydrogenase (SDH), cytochrome oxidase IV, and β-subunit of F1F0 ATP synthase expression. In addition, P2R stimulation transiently elevated mitochondrial Ca2+ concentration, implying involvement of mitochondria in VVEC angiogenic activation. We also demonstrated a critical role of phosphatidylinositol 3-kinase and Akt pathways in lactate production, PDH-E1α phosphorylation, and the expression of HK, SDH, and GLUT-1 in ATP-stimulated VVEC. Together, our findings suggest that purinergic and metabolic regulation of VVEC energy pathways is essential for VV angiogenesis and may contribute to pathologic vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Martin Lapel
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Philip Weston
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Derek Strassheim
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Vijaya Karoor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Nana Burns
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Taras Lyubchenko
- Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Petr Paucek
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | |
Collapse
|
21
|
High-molecular-weight cocoa procyanidins possess enhanced insulin-enhancing and insulin mimetic activities in human primary skeletal muscle cells compared to smaller procyanidins. J Nutr Biochem 2016; 39:48-58. [PMID: 27816760 DOI: 10.1016/j.jnutbio.2016.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 11/23/2022]
Abstract
Dysregulation of glucose metabolism is a primary hallmark of metabolic disease (i.e., diabetes, obesity, etc.). Complementary nonpharmaceutical strategies are needed to prevent and/or ameliorate dysregulation of glucose metabolism and prevent progression from normoglycemia to prediabetes and type 2 diabetes across the lifespan. Cocoa compounds, particularly the procyanidins, have shown promise for improving insulin sensitivity and blood glucose homeostasis. However, the molecular mechanisms by which cocoa procyanidins exert these functions remain poorly understood. Furthermore, cocoa procyanidins exhibit size diversity, and evidence suggests that procyanidin bioactivity and size may be related. Here, we show that a procyanidin-rich cocoa extract elicits an antidiabetic effect by stimulating glycogen synthesis and glucose uptake, independent of insulin. Cocoa procyanidins did not appear to act via stimulation of AMPK or CaMKII activities. Additionally, in the presence of insulin, glycogen synthesis and AKT phosphorylation were affected. These mechanisms of action are most pronounced in response to oligomeric and polymeric procyanidins. These results demonstrate (1) specific mechanisms by which cocoa procyanidins improve glucose utilization in skeletal muscle and (2) that larger procyanidins appear to possess enhanced activities. These mechanistic insights suggest specific strategies and biological contexts that may be exploited to maximize the antidiabetic benefits of cocoa procyanidins.
Collapse
|
22
|
Kruse R, Højlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion 2016; 33:45-57. [PMID: 27521611 DOI: 10.1016/j.mito.2016.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential for several biological processes including energy metabolism and cell survival. Accordingly, impaired mitochondrial function is involved in a wide range of human pathologies including diabetes, cancer, cardiovascular, and neurodegenerative diseases. Within the past decade a growing body of evidence indicates that reversible phosphorylation plays an important role in the regulation of a variety of mitochondrial processes as well as tissue-specific mitochondrial functions in mammals. The rapidly increasing number of mitochondrial phosphorylation sites and phosphoproteins identified is largely ascribed to recent advances in phosphoproteomic technologies such as fractionation, phosphopeptide enrichment, and high-sensitivity mass spectrometry. However, the functional importance and the specific kinases and phosphatases involved have yet to be determined for the majority of these mitochondrial phosphorylation sites. This review summarizes the progress in establishing the mammalian mitochondrial phosphoproteome and the technical challenges encountered while characterizing it, with a particular focus on large-scale phosphoproteomic studies of mitochondria from human skeletal muscle.
Collapse
Affiliation(s)
- Rikke Kruse
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
23
|
Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci 2016; 6:25. [PMID: 27087918 PMCID: PMC4832502 DOI: 10.1186/s13578-016-0089-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 12/02/2022] Open
Abstract
The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most of the cell’s energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular functions. For many decades, mitochondria were considered autonomous organelles merely functioning to generate energy for cells to survive and proliferate, and were thought to be independent of the cellular signaling networks. Consequently, phosphorylation and dephosphorylation processes of mitochondrial kinases and phosphatases were largely neglected. However, evidence accumulated in recent years on mitochondria-localized kinases/phosphatases has changed this longstanding view. Mitochondria are increasingly recognized as a hub for cell signaling, and many kinases and phosphatases have been reported to localize in mitochondria and play important functions. However, the strength of the evidence on mitochondrial localization and the activities of the reported kinases and phosphatases vary greatly, and the detailed mechanisms on how these kinases/phosphatases translocate to mitochondria, their subsequent function, and the physiological and pathological implications of their localization are still poorly understood. Here, we provide an updated perspective on the recent advancement in this area, with an emphasis on the implications of mitochondrial kinases/phosphatases in cancer and several other diseases.
Collapse
|
24
|
Pedersen BA, Yazdi PG, Taylor JF, Khattab OS, Chen YH, Chen Y, Wang PH. Novel remodeling of the mouse heart mitochondrial proteome in response to acute insulin stimulation. Nutr Metab Cardiovasc Dis 2015; 25:1152-1158. [PMID: 26610654 PMCID: PMC4684478 DOI: 10.1016/j.numecd.2015.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIM Mitochondrial dysfunction contributes to the pathophysiology of diabetic cardiomyopathy. The aim of this study was to investigate the acute changes in the mitochondrial proteome in response to insulin stimulation. METHODS AND RESULTS Cardiac mitochondria from C57BL/6 mice after insulin stimulation were analyzed using two-dimensional fluorescence difference gel electrophoresis. MALDI-TOF MS/MS was utilized to identify differences. Two enzymes involved in metabolism and four structural proteins were identified. Succinyl-CoA ligase [ADP forming] subunit beta was identified as one of the differentially regulated proteins. Upon insulin stimulation, a relatively more acidic isoform of this protein was increased by 53% and its functional activity was decreased by ∼32%. CONCLUSIONS This proteomic remodeling in response to insulin stimulation may play an important role in the normal and diabetic heart.
Collapse
Affiliation(s)
- B A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - P G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA; Systomic Health LLC, Los Angeles, CA 90039, USA
| | - J F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - O S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Y-H Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Y Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - P H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
25
|
Jia Y, Song H, Gao G, Cai D, Yang X, Zhao R. Maternal Betaine Supplementation during Gestation Enhances Expression of mtDNA-Encoded Genes through D-Loop DNA Hypomethylation in the Skeletal Muscle of Newborn Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10152-10160. [PMID: 26527363 DOI: 10.1021/acs.jafc.5b04418] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Betaine has been widely used in animal and human nutrition to promote muscle growth and performance, yet it remains unknown whether maternal betaine supplementation during gestation affects the metabolic characteristics of neonatal skeletal muscles. In the present study, feeding sows with betaine-supplemented diets throughout gestation significantly upregulated the expression of mtDNA-encoded OXPHOS genes (p < 0.05), including COX1, COX2, and ND5, in the muscle of newborn piglets, which was associated with enhanced mitochondrial COX enzyme activity (p < 0.05). Concurrently, maternal betaine supplementation increased the plasma betaine concentration and muscle expression of methyl transfer enzymes (p < 0.05), BHMT and GNMT, in offspring piglets. Nevertheless, Dnmt3a was downregulated at the level of both mRNA and protein, which was associated with a hypomethylated mtDNA D-loop region (p < 0.05). These results suggest that maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Haogang Song
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Guichao Gao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Demin Cai
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
26
|
Abstract
Diabetic neuropathy is a dying back neurodegenerative disease of the peripheral nervous system where mitochondrial dysfunction has been implicated as an etiological factor. Diabetes (type 1 or type 2) invokes an elevation of intracellular glucose concentration simultaneously with impaired growth factor support by insulin, and this dual alteration triggers a maladaptation in metabolism of adult sensory neurons. The energy sensing pathway comprising the AMP-activated protein kinase (AMPK)/sirtuin (SIRT)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) signaling axis is the target of these damaging changes in nutrient levels, e.g., induction of nutrient stress, and loss of insulin-dependent growth factor support and instigates an aberrant metabolic phenotype characterized by a suppression of mitochondrial oxidative phosphorylation and shift to anaerobic glycolysis. There is discussion of how this loss of mitochondrial function and transition to overreliance on glycolysis contributes to the diminishment of collateral sprouting and axon regeneration in diabetic neuropathy in the context of the highly energy-consuming nerve growth cone.
Collapse
Affiliation(s)
- Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, R4046-351 Taché Ave, Winnipeg, Manitoba, R2H 2A6, Canada.
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada.
| |
Collapse
|
27
|
Pang H, Kim I, Zhao H. Random Effects Model for Multiple Pathway Analysis with Applications to Type II Diabetes Microarray Data. STATISTICS IN BIOSCIENCES 2015; 7:167-186. [PMID: 26640601 PMCID: PMC4666561 DOI: 10.1007/s12561-014-9109-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Close to three percent of the world's population suffer from diabetes. Despite the range of treatment options available for diabetes patients, not all patients benefit from them. Investigating how different pathways correlate with phenotype of interest may help unravel novel drug targets and discover a possible cure. Many pathway-based methods have been developed to incorporate biological knowledge into the study of microarray data. Most of these methods can only analyze individual pathways but cannot deal with two or more pathways in a model based framework. This represents a serious limitation because, like genes, individual pathways do not work in isolation, and joint modeling may enable researchers to uncover patterns not seen in individual pathway-based analysis. In this paper, we propose a random effects model to analyze two or more pathways. We also derive score test statistics for significance of pathway effects. We apply our method to a microarray study of Type II diabetes. Our method may eludicate how pathways crosstalk with each other and facilitate the investigation of pathway crosstalks. Further hypothesis on the biological mechanisms underlying the disease and traits of interest may be generated and tested based on this method.
Collapse
Affiliation(s)
- Herbert Pang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina 27705, U.S.A. Tel.: +919-681-5011, Fax: +919-668-5888
| | - Inyoung Kim
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A. Tel.: +540-231-5366, Fax: +540-231-3863
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A. Tel.: +203-785-6271, Fax: +203-785-6912
| |
Collapse
|
28
|
Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response. Biochem J 2015. [PMID: 26201515 DOI: 10.1042/bj20150325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin.
Collapse
|
29
|
Ren C, Zhang Y, Cui W, Lu G, Wang Y, Gao H, Huang L, Mu Z. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin. Int J Biol Macromol 2015; 72:951-9. [DOI: 10.1016/j.ijbiomac.2014.09.060] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/08/2023]
|
30
|
Betaine is a positive regulator of mitochondrial respiration. Biochem Biophys Res Commun 2015; 456:621-5. [DOI: 10.1016/j.bbrc.2014.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 11/20/2022]
|
31
|
Su CC, Chan CM, Chen HM, Wu CC, Hsiao CY, Lee PL, Lin VCH, Hung CF. Lutein inhibits the migration of retinal pigment epithelial cells via cytosolic and mitochondrial Akt pathways (lutein inhibits RPE cells migration). Int J Mol Sci 2014; 15:13755-67. [PMID: 25110866 PMCID: PMC4159823 DOI: 10.3390/ijms150813755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022] Open
Abstract
During the course of proliferative vitreoretinopathy (PVR), the retinal pigment epithelium (RPE) cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF) can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.
Collapse
Affiliation(s)
- Ching-Chieh Su
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chi-Ming Chan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Min Chen
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chia-Chun Wu
- Department of Life Sciences, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology,Taoyuan 33303, Taiwan.
| | - Pei-Lan Lee
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America,Boston, MA 02215, USA.
| | - Victor Chia-Hsiang Lin
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
32
|
Deng W, Leu HB, Chen Y, Chen YH, Epperson CM, Juang C, Wang PH. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury. Endocrinology 2014; 155:1618-28. [PMID: 24601882 PMCID: PMC3990846 DOI: 10.1210/en.2013-1817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.
Collapse
Affiliation(s)
- Wu Deng
- University of California Irvine Diabetes Center and Department of Medicine (W.D., H.-B.L., Y.C., Y.-H.C., C.M.E., C.J., P.H.W.), University of California Irvine, California 92697; Department of Medicine (H.-B.L.), Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, 11217, Taiwan; and Departments of Biological Chemistry and Physiology and Biophysics (P.H.W.), University of California Irvine, California 92697
| | | | | | | | | | | | | |
Collapse
|
33
|
Kelly CJ, Hussien K, Fokas E, Kannan P, Shipley RJ, Ashton TM, Stratford M, Pearson N, Muschel RJ. Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia. Radiother Oncol 2014; 111:72-80. [PMID: 24631147 PMCID: PMC4070024 DOI: 10.1016/j.radonc.2014.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/10/2014] [Accepted: 02/09/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibitors of the phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathway are currently in clinical trials. In addition to antiproliferative and proapoptotic effects, these agents also diminish tumor hypoxia. Since hypoxia is a major cause of resistance to radiotherapy, we sought to understand how it is regulated by PI3K/mTOR inhibition. METHODS Whole cell, mitochondrial, coupled and uncoupled oxygen consumption were measured in cancer cells after inhibition of PI3K (Class I) and mTOR by pharmacological means or by RNAi. Mitochondrial composition was assessed by immunoblotting. Hypoxia was measured in spheroids, in tumor xenografts and predicted with mathematical modeling. RESULTS Inhibition of PI3K and mTOR reduced oxygen consumption by cancer cell lines is predominantly due to reduction of mitochondrial respiration coupled to ATP production. Hypoxia in tumor spheroids was reduced, but returned after removal of the drug. Murine tumors had increased oxygenation even in the absence of average perfusion changes or tumor necrosis. CONCLUSIONS Targeting the PI3K/mTOR pathway substantially reduces mitochondrial oxygen consumption thereby reducing tumor hypoxia. These alterations in tumor hypoxia should be considered in the design of clinical trials using PI3K/mTOR inhibitors, particularly in conjunction with radiotherapy.
Collapse
Affiliation(s)
- Catherine J Kelly
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| | - Kamila Hussien
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| | - Emmanouil Fokas
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| | - Pavitra Kannan
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| | | | - Thomas M Ashton
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| | - Michael Stratford
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| | | | - Ruth J Muschel
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK.
| |
Collapse
|
34
|
Zhao X, Bak S, Pedersen AJT, Jensen ON, Højlund K. Insulin Increases Phosphorylation of Mitochondrial Proteins in Human Skeletal Muscle in Vivo. J Proteome Res 2014; 13:2359-69. [DOI: 10.1021/pr401163t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaolu Zhao
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- College
of Life Science, Wuhan University, Wuhan, P. R. China 430072
| | - Steffen Bak
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- Section of Molecular Diabetes & Metabolism, Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | | | - Ole Nørregaard Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kurt Højlund
- Section of Molecular Diabetes & Metabolism, Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Department
of Endocrinology, Odense University Hospital, DK-5000 Odense
M, Denmark
- Section
of Molecular Physiology, The August Krogh Centre, Department of Nutrition,
Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Othman EM, Hintzsche H, Stopper H. Signaling steps in the induction of genomic damage by insulin in colon and kidney cells. Free Radic Biol Med 2014; 68:247-57. [PMID: 24355212 DOI: 10.1016/j.freeradbiomed.2013.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/20/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM), a disease with almost 350 million people affected worldwide, will be the seventh leading cause of death by 2030. Diabetic patients develop various types of complications, among them an increased rate of malignancies. Studies reported the strong correlation between DM and several cancer types, of which colon and kidney cancers are the most common. Hyperinsulinemia, the high insulin blood level characteristic of early diabetes type 2, was identified as a risk factor for cancer development. In previous studies, we showed that an elevated insulin level can induce oxidative stress, resulting in DNA damage in colon cells in vitro and in kidney cells in vitro and in vivo. In the present study, we elucidate the signaling pathway of insulin-mediated genotoxicity, which is effective through oxidative stress induction in colon and kidney. The signaling mechanism is starting by phosphorylation of the insulin and insulin-like growth factor-1 receptors, followed by activation of phosphatidylinositide 3-kinase (PI3K), which in turn activates AKT. Subsequently, mitochondria and nicotinamide adenine dinucleotide phosphate oxidase (NADPH) isoforms (Nox1 and Nox4 in colon and kidney, respectively) are activated for reactive oxygen species (ROS) production, and the resulting excess ROS can attack the DNA, causing DNA oxidation. We conclude that hyperinsulinemia represents an important risk factor for cancer initiation or progression as well as a target for cancer prevention in diabetic patients.
Collapse
Affiliation(s)
- Eman Maher Othman
- Institute of Pharmacology and Toxicology, University of Wuerzburg, D-97078 Wuerzburg, Germany; Department of Analytical Chemistry, Faculty of Pharmacy, University of El-Minia, 61519 El-Minia, Egypt
| | - Henning Hintzsche
- Institute of Pharmacology and Toxicology, University of Wuerzburg, D-97078 Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, D-97078 Wuerzburg, Germany.
| |
Collapse
|
36
|
Latha R, Shanthi P, Sachdanandam P. Kalpaamruthaa Ameliorates Mitochondrial and Metabolic Alterations in Diabetes Mellitus Induced Cardiovascular Damage. J Diet Suppl 2014; 11:305-19. [DOI: 10.3109/19390211.2014.887599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Yang JY, Deng W, Chen Y, Fan W, Baldwin KM, Jope RS, Wallace DC, Wang PH. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium. J Mol Cell Cardiol 2013; 59:167-75. [PMID: 23500391 PMCID: PMC3872535 DOI: 10.1016/j.yjmcc.2013.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 02/04/2023]
Abstract
Insulin can translocate Akt to mitochondria in cardiac muscle. The goals of this study were to define sub-mitochondrial localization of the translocated Akt, to dissect the effects of insulin on Akt isoform translocation, and to determine the direct effect of mitochondrial Akt activation on Complex V activity in normal and diabetic myocardium. The translocated Akt sequentially localized to the mitochondrial intermembrane space, inner membrane, and matrix. To confirm Akt translocation, in vitro import assay showed rapid entry of Akt into mitochondria. Akt isoforms were differentially regulated by insulin stimulation, only Akt1 translocated into mitochondria. In the insulin-resistant Type 2 diabetes model, Akt1 translocation was blunted. Mitochondrial activation of Akt1 increased Complex V activity by 24% in normal myocardium in vivo and restored Complex V activity in diabetic myocardium. Basal mitochondrial Complex V activity was lower by 22% in the Akt1(-/-) myocardium. Insulin-stimulated Complex V activity was not impaired in the Akt1(-/-) myocardium, due to compensatory translocation of Akt2 to mitochondria. Akt1 is the primary isoform that relayed insulin signaling to mitochondria and modulated mitochondrial Complex V activity. Activation of mitochondrial Akt1 enhanced ATP production and increased phosphocreatine in cardiac muscle cells. Dysregulation of this signal pathway might impair mitochondrial bioenergetics in diabetic myocardium.
Collapse
Affiliation(s)
- Jia-Ying Yang
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Wu Deng
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Yumay Chen
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Weiwei Fan
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA
| | - Kenneth M. Baldwin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Richard S. Jope
- Department of Psychiatry, Miller School of Medicine University of Miami, Miami, FL 33136, USA
| | - Douglas C. Wallace
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Ping H. Wang
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
38
|
Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proc Natl Acad Sci U S A 2013; 110:E2239-48. [PMID: 23729813 DOI: 10.1073/pnas.1221206110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Obesity is an epidemic, calling for innovative and reliable pharmacological strategies. Here, we show that ShK-186, a selective and potent blocker of the voltage-gated Kv1.3 channel, counteracts the negative effects of increased caloric intake in mice fed a diet rich in fat and fructose. ShK-186 reduced weight gain, adiposity, and fatty liver; decreased blood levels of cholesterol, sugar, HbA1c, insulin, and leptin; and enhanced peripheral insulin sensitivity. These changes mimic the effects of Kv1.3 gene deletion. ShK-186 did not alter weight gain in mice on a chow diet, suggesting that the obesity-inducing diet enhances sensitivity to Kv1.3 blockade. Several mechanisms may contribute to the therapeutic benefits of ShK-186. ShK-186 therapy activated brown adipose tissue as evidenced by a doubling of glucose uptake, and increased β-oxidation of fatty acids, glycolysis, fatty acid synthesis, and uncoupling protein 1 expression. Activation of brown adipose tissue manifested as augmented oxygen consumption and energy expenditure, with no change in caloric intake, locomotor activity, or thyroid hormone levels. The obesity diet induced Kv1.3 expression in the liver, and ShK-186 caused profound alterations in energy and lipid metabolism in the liver. This action on the liver may underlie the differential effectiveness of ShK-186 in mice fed a chow vs. an obesity diet. Our results highlight the potential use of Kv1.3 blockers for the treatment of obesity and insulin resistance.
Collapse
|
39
|
Liu ZH, Yu LP, Xu T, Zhang XW, Yuan YQ, Xiao YB, Li J, Hao YC, Zhao YP, Wang XF. Abnormal lipid metabolism down-regulates adenosine triphosphate synthase β-subunit protein expression in corpus cavernosum smooth musclein vitroandin vivo. Andrologia 2013; 46:487-94. [PMID: 23635034 DOI: 10.1111/and.12105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Z-H Liu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Biosci Rep 2013; 32:465-78. [PMID: 22742515 PMCID: PMC3475448 DOI: 10.1042/bsr20120034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction has been associated with insulin resistance, obesity and diabetes. Hyperinsulinaemia and hyperlipidaemia are hallmarks of the insulin-resistant state. We sought to determine the contributions of high insulin and saturated fatty acid exposure to mitochondrial function and biogenesis in cultured myocytes. Differentiated C2C12 myotubes were left untreated or exposed to chronic high insulin or high palmitate. Mitochondrial function was determined assessing: oxygen consumption, mitochondrial membrane potential, ATP content and ROS (reactive oxygen species) production. We also determined the expression of several mitochondrial genes. Chronic insulin treatment of myotubes caused insulin resistance with reduced PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) signalling. Insulin treatment increased oxygen consumption but reduced mitochondrial membrane potential and ROS production. ATP cellular levels were maintained through an increased glycolytic rate. The expression of mitochondrial OXPHOS (oxidative phosphorylation) subunits or Mfn-2 (mitofusin 2) were not significantly altered in comparison with untreated cells, whereas expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) and UCPs (uncoupling proteins) were reduced. In contrast, saturated fatty acid exposure caused insulin resistance, reducing PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) activation while increasing activation of stress kinases JNK (c-Jun N-terminal kinase) and p38. Fatty acids reduced oxygen consumption and mitochondrial membrane potential while up-regulating the expression of mitochondrial ETC (electron chain complex) protein subunits and UCP proteins. Mfn-2 expression was not modified by palmitate. Palmitate-treated cells also showed a reduced glycolytic rate. Taken together, our findings indicate that chronic insulin and fatty acid-induced insulin resistance differentially affect mitochondrial function. In both conditions, cells were able to maintain ATP levels despite the loss of membrane potential; however, different protein expression suggests different adaptation mechanisms.
Collapse
|
41
|
Roy Chowdhury SK, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, Akude E, Morrow D, Calcutt NA, Fernyhough P. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. ACTA ACUST UNITED AC 2012; 135:1751-66. [PMID: 22561641 DOI: 10.1093/brain/aws097] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Centre, R4023-1 - 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The serine/threonine kinase Akt functions in multiple cellular processes, including cell survival and tumor development. Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation. In this study, we identified a negative regulator of Akt, MULAN, which possesses both a RING finger domain and E3 ubiquitin ligase activity. Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo. Other molecular assays demonstrated that phosphorylated Akt is a substantive target for both interaction with MULAN and ubiquitination by MULAN. The results of the functional studies suggest that the degradation of Akt by MULAN suppresses cell proliferation and viability. These data provide insight into the Akt ubiquitination signaling network.
Collapse
|
43
|
Lim EL, Hollingsworth KG, Smith FE, Thelwall PE, Taylor R. Effects of raising muscle glycogen synthesis rate on skeletal muscle ATP turnover rate in type 2 diabetes. Am J Physiol Endocrinol Metab 2011; 301:E1155-62. [PMID: 21917633 PMCID: PMC3233777 DOI: 10.1152/ajpendo.00278.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.
Collapse
Affiliation(s)
- Ee L Lim
- Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Su CC, Yang JY, Leu HB, Chen Y, Wang PH. Mitochondrial Akt-regulated mitochondrial apoptosis signaling in cardiac muscle cells. Am J Physiol Heart Circ Physiol 2011; 302:H716-23. [PMID: 22081709 DOI: 10.1152/ajpheart.00455.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported translocation and activation of Akt in cardiac mitochondria. This study was to determine whether activation of Akt in mitochondria could inhibit apoptosis of cardiac muscle cells. Insulin stimulation induced translocation of phosphorylated Akt to the mitochondria in primary cardiomyocytes. A mitochondria-targeted constitutively active Akt was overexpressed via adenoviral vector and inhibited efflux of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol and partially prevented loss of mitochondria cross-membrane electrochemical gradient. Activation of caspase 3 was suppressed in the cardiomyocytes transduced with mitochondria-targeted active Akt, whereas a mitochondria-targeted dominant negative Akt enhanced activation of caspase 3. Terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay showed that mitochondrial activation of Akt significantly reduced the number of apoptotic cells. When the endogenous Akt was abolished by LY294002, the antiapoptotic actions of mitochondrial Akt remained effective. These experiments suggested that mitochondrial Akt suppressed apoptosis signaling independent of cytosolic Akt in cardiac muscle cells.
Collapse
Affiliation(s)
- Ching-Chieh Su
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
45
|
Chen S, Liu J, Liu X, Fu Y, Zhang M, Lin Q, Zhu J, Mai L, Shan Z, Yu X, Yang M, Lin S. Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:263-270. [PMID: 21619920 DOI: 10.1016/j.jep.2011.05.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THIS STUDY The panax notoginseng saponins (PNS) have been clinically used for the treatment of cardiovascular diseases and stroke in China. Evidences demonstrated that PNS could protect cardiomyocytes from injury induced by ischemia, but the underlying molecular mechanisms of this protective effect are still unclear. This study was aimed to investigate the protective effect and potential molecular mechanisms of PNS on apoptosis in H9c2 cells in vitro and rat myocardial ischemia injury model in vivo. MATERIALS AND METHODS H9c2 cells subjected to serum, glucose and oxygen deprivation (SGOD) were used as in vitro models and SD rats subjected to left anterior descending (LAD) coronary artery ligation were used as in vivo models. The anti-apoptotic effect of PNS was evaluated by Annexin V/PI analysis or TUNEL assay. Mitochondrial membrane potential (Δψm) was detected by JC-1 analysis. The expression of Akt and phosphorylated Akt (p-Akt) were detected by western blot assay. RESULTS PNS exhibited anti-apoptotic effect both in H9c2 cells and in ischemic myocardial tissues. However, the effect was blocked in vitro by LY294002, a specific PI3K inhibitor. The anti-apoptotic effect of PNS was mediated by stabilizing Δψm in H9c2 cells. Furthermore the indices of the left ventricular ejection fractions (EF), left ventricular fractional shortening (FS), left ventricular dimensions at end diastole (LVDd) and left ventricular dimensions at end systole (LVDs) suggested that PNS improved rats cardiac function. PNS significantly increased p-Akt both in H9c2 cells and in ischemic myocardial tissues and this effect was also blocked by LY294002 in H9c2 cells. CONCLUSION Results of this study suggested that PNS could protect myocardial cells from apoptosis induced by ischemia in both the in vitro and in vivo models through activating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shaoxian Chen
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates. Clin Sci (Lond) 2011; 121:169-77. [PMID: 21388348 PMCID: PMC3174053 DOI: 10.1042/cs20100611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic-hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle. 31P saturation transfer MRS was used to quantify muscle ATP turnover rates. Glucose disposal rates were restored to near normal in diabetic subjects after acipimox (6.2 ± 0.8 compared with 4.8 ± 0.6 mg·kgffm⁻¹·min⁻¹; P<0.01; control 6.6 ± 0.5 mg·kgffm⁻¹·min⁻¹; where ffm, is fat-free mass). The increment in muscle glycogen concentration was 2-fold higher in controls compared with the diabetic group, and acipimox administration to the diabetic group did not increase this (2.0 ± 0.8 compared with 1.9 ± 1.1 mmol/l; P<0.05; control, 4.0 ± 0.8 mmol/l). ATP turnover rates did not increase during insulin stimulation in any group, but a modest decrease in the diabetes group was prevented by lowering plasma NEFAs (non-esterified fatty acids; 8.4 ± 0.7 compared with 7.1 ± 0.5 μmol·g⁻¹·min⁻¹; P<0.05; controls 8.6 ± 0.8 μmol·g⁻¹·min⁻¹). Suppression of lipolysis increases whole-body glucose uptake with no increase in the rate of glucose storage as glycogen but with increase in whole-body glucose oxidation rate. ATP turnover rate in muscle exhibits no relationship to the acute metabolic effect of insulin.
Collapse
|
47
|
Chowdhury SKR, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion 2011; 11:845-54. [PMID: 21742060 DOI: 10.1016/j.mito.2011.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 06/24/2011] [Indexed: 01/01/2023]
Abstract
Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada R2H 2A6
| | | | | |
Collapse
|
48
|
Akude E, Zherebitskaya E, Chowdhury SKR, Smith DR, Dobrowsky RT, Fernyhough P. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes 2011; 60:288-97. [PMID: 20876714 PMCID: PMC3012184 DOI: 10.2337/db10-0818] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. RESEARCH DESIGN AND METHODS Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). RESULTS Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. CONCLUSIONS Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.
Collapse
Affiliation(s)
- Eli Akude
- St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Darrell R. Smith
- St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rick T. Dobrowsky
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas
| | - Paul Fernyhough
- St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Corresponding author: Paul Fernyhough,
| |
Collapse
|
49
|
Zhao X, León IR, Bak S, Mogensen M, Wrzesinski K, Højlund K, Jensen ON. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 2011; 10:M110.000299. [PMID: 20833797 PMCID: PMC3013442 DOI: 10.1074/mcp.m110.000299] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/04/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.
Collapse
Affiliation(s)
- Xiaolu Zhao
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Ileana R. León
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Steffen Bak
- From the ‡Department of Biochemistry and Molecular Biology and
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | - Martin Mogensen
- ¶Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, DK-5230 Odense M, Denmark and
| | | | - Kurt Højlund
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | | |
Collapse
|
50
|
Lim EL, Hollingsworth KG, Thelwall PE, Taylor R. Measuring the acute effect of insulin infusion on ATP turnover rate in human skeletal muscle using phosphorus-31 magnetic resonance saturation transfer spectroscopy. NMR IN BIOMEDICINE 2010; 23:952-7. [PMID: 20623795 PMCID: PMC3120981 DOI: 10.1002/nbm.1519] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/21/2010] [Indexed: 05/22/2023]
Abstract
Mitochondrial dysfunction has been proposed to underlie the insulin resistance of type 2 diabetes. However, the relative time course of insulin action in stimulating ATP turnover rate and glucose uptake in skeletal muscle has not been examined. These two parameters were measured in young healthy subjects using the (31)P MRS saturation transfer method in conjunction with the euglycaemic hyperinsulinaemic clamp technique respectively. Glucose infusion rate rose rapidly from 0 to 2.90 ± 0.11 mg/kg(ffm)/min during the first 10 min of insulin infusion and further to 6.17 ± 0.57 mg/kg(ffm)/min between 15 and 45 min. In contrast, baseline ATP turnover rate was 9.0 ± 0.4 µmol/g/min of muscle and did not change during the first 45 min of insulin infusion. Between 50 and 80 minutes ATP turnover rate increased by 8% and remained steady to 150 minutes (9.7 ± 0.5 µmol/g/min of muscle, p = 0.03 vs baseline). The in vivo time course of insulin stimulation of skeletal muscle ATP turnover rate is not consistent with a rate limiting effect upon the initiation of insulin-stimulated glycogen synthesis.
Collapse
Affiliation(s)
- Ee Lin Lim
- Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|