1
|
Al Ali HS, Rodrigo GC, Lambert DG. Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy. PLoS One 2025; 20:e0313119. [PMID: 39820183 PMCID: PMC11737703 DOI: 10.1371/journal.pone.0313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 01/19/2025] Open
Abstract
Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved. Ventricular myocytes isolated from adult rat hearts were treated with 200nM UII for 48hours and hypertrophy was quantified from measurements of length/width (L/W) ratio. UII resulted in a change in L/W ratio from 4.53±0.10 to 3.99±0.06; (p<0.0001) after 48hours. The response is reversed by the UT-antagonist SB657510 (1μM). UT receptor activation by UII resulted in the activation of ERK1/2, p38 and CaMKII signalling pathways measured by Western blotting; these are involved in the induction of hypertrophy. JNK was not involved. Moreover, ERK1/2, P38 and CaMKII inhibitors completely blocked UII-induced hypertrophy. Sarcoplasmic reticulum (SR) Ca2+-leak was investigated in isolated myocytes. There was no significant increase in SR Ca2+-leak. Our results suggest that activation of MAPK and CaMKII signalling pathways are involved in the hypertrophic response to UII. Collectively our data suggest that increased circulating UII may contribute to the development of left ventricular hypertrophy and pharmacological inhibition of the UII/UT receptor system may prove beneficial in reducing adverse remodeling and alleviating contractile dysfunction in heart disease.
Collapse
Affiliation(s)
- Hadeel S. Al Ali
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
- Department of Physiology, Al-Zahraa College of Medicine, University of Basrah, Basrah, Iraq
| | - Glenn C. Rodrigo
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Vinogradova TM, Lakatta EG. Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons. Cells 2024; 14:3. [PMID: 39791704 PMCID: PMC11719954 DOI: 10.3390/cells14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca2+ clock", sarcoplasmic reticulum-generated local submembrane Ca2+ releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain. This is a critical issue with respect to how cardiac pacemaker cells fire spontaneous action potentials. This review aspires to explain and unite apparently contradictory results of pharmacological studies in the literature that have demonstrated a fundamental role of basal CaMKII activation for basal cardiac pacemaker function, as well as studies in mice with genetic CaMKII inhibition which have been interpreted to indicate that basal spontaneous SANC firing is independent of CaMKII activation. The assessment of supporting and opposing data regarding CaMKII effects on phosphorylation of Ca2+-cycling proteins and spontaneous firing of SANC in the basal state leads to the necessary conclusion that CaMKII activity and CaMKII-dependent phosphorylation do regulate basal cardiac pacemaker function.
Collapse
Affiliation(s)
- Tatiana M. Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA;
| | | |
Collapse
|
3
|
Kovács ZM, Horváth B, Dienes C, Óvári J, Kiss D, Hézső T, Szentandrássy N, Magyar J, Bányász T, Nánási PP. Beta-Adrenergic Activation of the Inward Rectifier K + Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes. Int J Mol Sci 2024; 25:11609. [PMID: 39519160 PMCID: PMC11546480 DOI: 10.3390/ijms252111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Several ion currents in the mammalian ventricular myocardium are substantially regulated by the sympathetic nervous system via β-adrenergic receptor activation, including the slow delayed rectifier K+ current and the L-type calcium current. This study investigated the downstream mechanisms of β-adrenergic receptor stimulation by isoproterenol (ISO) on the inward rectifier (IK1) and the rapid delayed rectifier (IKr) K+ currents using action potential voltage clamp (APVC) and conventional voltage clamp techniques in isolated canine left ventricular cardiomyocytes. IK1 and IKr were dissected by 50 µM BaCl2 and 1 µM E-4031, respectively. Acute application of 10 nM ISO significantly increased IK1 under the plateau phase of the action potential (0-+20 mV) using APVC, and similar results were obtained with conventional voltage clamp. However, β-adrenergic receptor stimulation did not affect the peak current density flowing during terminal repolarization or the overall IK1 integral. The ISO-induced enhancement of IK1 was blocked by the calcium/calmodulin kinase II (CaMKII) inhibitor KN-93 (1 µM) but not by the protein kinase A inhibitor H-89 (3 µM). Neither KN-93 nor H-89 affected the IK1 density under baseline conditions (in the absence of ISO). In contrast, parameters of the IKr current were not affected by β-adrenergic receptor stimulation with ISO. These findings suggest that sympathetic activation enhances IK1 in canine left ventricular cells through the CaMKII pathway, while IKr remains unaffected under the experimental conditions used.
Collapse
Affiliation(s)
- Zsigmond Máté Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - József Óvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Péter Pál Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Roy S, Roy S, Halder S, Jana K, Ukil A. Leishmania exploits host cAMP/EPAC/calcineurin signaling to induce an IL-33-mediated anti-inflammatory environment for the establishment of infection. J Biol Chem 2024; 300:107366. [PMID: 38750790 PMCID: PMC11208913 DOI: 10.1016/j.jbc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024] Open
Abstract
Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.
Collapse
Affiliation(s)
- Souravi Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| |
Collapse
|
5
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Lebek S, Caravia XM, Chemello F, Tan W, McAnally JR, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Elimination of CaMKIIδ Autophosphorylation by CRISPR-Cas9 Base Editing Improves Survival and Cardiac Function in Heart Failure in Mice. Circulation 2023; 148:1490-1504. [PMID: 37712250 PMCID: PMC10842988 DOI: 10.1161/circulationaha.123.065117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic β-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
- Department of Internal Medicine II, University Hospital Regensburg; Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - John R. McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
7
|
Jang IS, Nakamura M, Nonaka K, Noda M, Kotani N, Katsurabayashi S, Nagami H, Akaike N. Protein Kinase A Is Responsible for the Presynaptic Inhibition of Glycinergic and Glutamatergic Transmissions by Xenon in Rat Spinal Cord and Hippocampal CA3 Neurons. J Pharmacol Exp Ther 2023; 386:331-343. [PMID: 37391223 DOI: 10.1124/jpet.123.001599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023] Open
Abstract
The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.
Collapse
Affiliation(s)
- Il-Sung Jang
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Michiko Nakamura
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Kiku Nonaka
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Mami Noda
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Naoki Kotani
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Shutaro Katsurabayashi
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Hideaki Nagami
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Norio Akaike
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| |
Collapse
|
8
|
Gaido OER, Pavlaki N, Granger JM, Mesubi OO, Liu B, Lin BL, Long A, Walker D, Mayourian J, Schole KL, Terrillion CE, Nkashama LJ, Hulsurkar MM, Dorn LE, Ferrero KM, Huganir RL, Müller FU, Wehrens XHT, Liu JO, Luczak ED, Bezzerides VJ, Anderson ME. An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor. Sci Transl Med 2023; 15:eabq7839. [PMID: 37343080 PMCID: PMC11022683 DOI: 10.1126/scitranslmed.abq7839] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.
Collapse
Affiliation(s)
- Oscar E. Reyes Gaido
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikoleta Pavlaki
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. Granger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olurotimi O. Mesubi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian L. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan Long
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Walker
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kate L. Schole
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lubika J. Nkashama
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly M. Ferrero
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frank U. Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster 48149, Germany
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Medicine, Neuroscience, and Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth D. Luczak
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vassilios J. Bezzerides
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Biological Sciences and the Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED, Anderson ME. CaMKII as a Therapeutic Target in Cardiovascular Disease. Annu Rev Pharmacol Toxicol 2023; 63:249-272. [PMID: 35973713 PMCID: PMC11019858 DOI: 10.1146/annurev-pharmtox-051421-111814] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.
Collapse
Affiliation(s)
- Oscar E Reyes Gaido
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | - Kate L Schole
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Qinchuan Wang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Priya Umapathi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Olurotimi O Mesubi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Klitos Konstantinidis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Elizabeth D Luczak
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- Departments of Physiology and Genetic Medicine and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Lebek S, Chemello F, Caravia XM, Tan W, Li H, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science 2023; 379:179-185. [PMID: 36634166 PMCID: PMC10150399 DOI: 10.1126/science.ade1105] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CRISPR-Cas9 gene editing is emerging as a prospective therapy for genomic mutations. However, current editing approaches are directed primarily toward relatively small cohorts of patients with specific mutations. Here, we describe a cardioprotective strategy potentially applicable to a broad range of patients with heart disease. We used base editing to ablate the oxidative activation sites of CaMKIIδ, a primary driver of cardiac disease. We show in cardiomyocytes derived from human induced pluripotent stem cells that editing the CaMKIIδ gene to eliminate oxidation-sensitive methionine residues confers protection from ischemia/reperfusion (IR) injury. Moreover, CaMKIIδ editing in mice at the time of IR enables the heart to recover function from otherwise severe damage. CaMKIIδ gene editing may thus represent a permanent and advanced strategy for heart disease therapy.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xurde M Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Safaei Z, Thompson GL. Histone deacetylase 4 and 5 translocation elicited by microsecond pulsed electric field exposure is mediated by kinase activity. Front Bioeng Biotechnol 2022; 10:1047851. [PMID: 36466344 PMCID: PMC9713944 DOI: 10.3389/fbioe.2022.1047851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
Electroporation-based technologies using microsecond pulsed electric field (µsPEF) exposures are established as laboratory and clinical tools that permeabilize cell membranes. We demonstrate a µsPEF bioeffect on nucleocytoplasmic import and export of enzymes that regulate genetic expression, histone deacetylases (HDAC) -4 and -5. Their μsPEF-induced nucleocytoplasmic transport depends on presence and absence of extracellular calcium ions (Ca2+) for both MCF7 and CHO-K1 cells. Exposure to 1, 10, 30 and 50 consecutive square wave pulses at 1 Hz and of 100 µs duration with 1.45 kV/cm magnitude leads to translocation of endogenous HDAC4 and HDAC5. We posit that by eliciting a rise in intracellular Ca2+ concentration, a signaling pathway involving kinases, such as Ca2+/CaM-dependent protein kinase II (CaMKII), is activated. This cascade causes nuclear export and import of HDAC4 and HDAC5. The potential of µsPEF exposures to control nucleocytoplasmic transport unlocks future opportunities in epigenetic modification.
Collapse
Affiliation(s)
| | - Gary L. Thompson
- Department of Chemical Engineering, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
12
|
Pronot M, Poupon G, Pizzamiglio L, Prieto M, Chato-Astrain I, Lacagne I, Schorova L, Folci A, Brau F, Martin S. Bidirectional regulation of synaptic SUMOylation by Group 1 metabotropic glutamate receptors. Cell Mol Life Sci 2022; 79:378. [PMID: 35739402 PMCID: PMC9226087 DOI: 10.1007/s00018-022-04405-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
Abstract
SUMOylation is a post-translational modification essential to cell homeostasis. A tightly controlled equilibrium between SUMOylation and deSUMOylation processes is also critical to the neuronal function including neurotransmitter release and synaptic transmission and plasticity. Disruption of the SUMOylation homeostasis in neurons is associated with several neurological disorders. The balance between the SUMOylation and deSUMOylation of substrate proteins is maintained by a group of deSUMOylation enzymes called SENPs. We previously showed that the activation of type 5 metabotropic glutamate receptors (mGlu5R) first triggers a rapid increase in synaptic SUMOylation and then upon the sustained activation of these receptors, the deSUMOylase activity of SENP1 allows the increased synaptic SUMOylation to get back to basal levels. Here, we combined the use of pharmacological tools with subcellular fractionation and live-cell imaging of individual hippocampal dendritic spines to demonstrate that the synaptic accumulation of the deSUMOylation enzyme SENP1 is bidirectionally controlled by the activation of type 1 mGlu1 and mGlu5 receptors. Indeed, the pharmacological blockade of mGlu1R activation during type 1 mGluR stimulation leads to a faster and greater accumulation of SENP1 at synapses indicating that mGlu1R acts as a brake to the mGlu5R-dependent deSUMOylation process at the post-synapse. Altogether, our findings reveal that type 1 mGluRs work in opposition to dynamically tune the homeostasis of SUMOylation at the mammalian synapse.
Collapse
Affiliation(s)
- Marie Pronot
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | - Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | | | | | - Frédéric Brau
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France.
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des lucioles, 06560, Valbonne, France.
| |
Collapse
|
13
|
Zhang J, Liang R, Wang K, Zhang W, Zhang M, Jin L, Xie P, Zheng W, Shang H, Hu Q, Li J, Chen G, Wu F, Lan F, Wang L, Wang SQ, Li Y, Zhang Y, Liu J, Lv F, Hu X, Xiao RP, Lei X, Zhang Y. Novel CaMKII-δ Inhibitor Hesperadin Exerts Dual Functions to Ameliorate Cardiac Ischemia/Reperfusion Injury and Inhibit Tumor Growth. Circulation 2022; 145:1154-1168. [PMID: 35317609 DOI: 10.1161/circulationaha.121.055920] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.
Collapse
Affiliation(s)
- Junxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Ruqi Liang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering (R.L., X.L.), Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China (K.W.)
| | - Wenjia Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education (W. Zhang, Yan Zhang), Peking University Health Science Center, Beijing, China
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Peng Xie
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Wen Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Haibao Shang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Qingmei Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Jiayi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Fujian Wu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (F.W., F.L.)
| | - Feng Lan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (F.W., F.L.)
| | - Lipeng Wang
- College of Life Sciences (L.W., S.-Q.W.), Peking University, Beijing, China
| | - Shi-Qiang Wang
- College of Life Sciences (L.W., S.-Q.W.), Peking University, Beijing, China
| | - Yongfeng Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences (Y.L., Yong Zhang), Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, IDG/McGovern Institute for Brain Research at PKU. Beijing, China (Y.L., Yong Zhang)
| | - Yong Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education (W. Zhang, Yan Zhang), Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences (Y.L., Yong Zhang), Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, IDG/McGovern Institute for Brain Research at PKU. Beijing, China (Y.L., Yong Zhang)
| | - Jinghao Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (R.-P.X., X.L.), Peking University, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
- PKU-Nanjing Joint Institute of Translational Medicine, Nanjing, China (R.-P.X.)
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering (R.L., X.L.), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (R.-P.X., X.L.), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies (X.L.), Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| |
Collapse
|
14
|
Lyu Y, Thai PN, Ren L, Timofeyev V, Jian Z, Park S, Ginsburg KS, Overton J, Bossuyt J, Bers DM, Yamoah EN, Chen-Izu Y, Chiamvimonvat N, Zhang XD. Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. iScience 2022; 25:103624. [PMID: 35005560 PMCID: PMC8718820 DOI: 10.1016/j.isci.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and β-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.
Collapse
Affiliation(s)
- Yankun Lyu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kenneth S. Ginsburg
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - James Overton
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
15
|
CaMKII and PKA-dependent phosphorylation co-regulate nuclear localization of HDAC4 in adult cardiomyocytes. Basic Res Cardiol 2021; 116:11. [PMID: 33590335 PMCID: PMC7884572 DOI: 10.1007/s00395-021-00850-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Nuclear histone deacetylase 4 (HDAC4) represses MEF2-mediated transcription, implicated in the development of heart failure. CaMKII-dependent phosphorylation drives nucleus-to-cytoplasm HDAC4 shuttling, but protein kinase A (PKA) is also linked to HDAC4 translocation. However, the interplay of CaMKII and PKA in regulating adult cardiomyocyte HDAC4 translocation is unclear. Here we sought to determine the interplay of PKA- and CaMKII-dependent HDAC4 phosphorylation and translocation in adult mouse, rabbit and human ventricular myocytes. Confocal imaging and protein analyses revealed that inhibition of CaMKII-but not PKA, PKC or PKD-raised nucleo-to-cytoplasmic HDAC4 fluorescence ratio (FNuc/FCyto) by ~ 50%, indicating baseline CaMKII activity that limits HDAC4 nuclear localization. Further CaMKII activation (via increased extracellular [Ca2+], high pacing frequencies, angiotensin II or overexpression of CaM or CaMKIIδC) led to significant HDAC4 nuclear export. In contrast, PKA activation by isoproterenol or forskolin drove HDAC4 into the nucleus (raising FNuc/FCyto by > 60%). These PKA-mediated effects were abolished in cells pretreated with PKA inhibitors and in cells expressing mutant HDAC4 in S265/266A mutant. In physiological conditions where both kinases are active, PKA-dependent nuclear accumulation of HDAC4 was predominant in the very early response, while CaMKII-dependent HDAC4 export prevailed upon prolonged stimuli. This orchestrated co-regulation was shifted in failing cardiomyocytes, where CaMKII-dependent effects predominated over PKA-dependent response. Importantly, human cardiomyocytes showed similar CaMKII- and PKA-dependent HDAC4 shifts. Collectively, CaMKII limits nuclear localization of HDAC4, while PKA favors HDAC4 nuclear retention and S265/266 is essential for PKA-mediated regulation. These pathways thus compete in HDAC4 nuclear localization and transcriptional regulation in cardiac signaling.
Collapse
|
16
|
Electroacupuncture Attenuates CFA-Induced Inflammatory Pain by Regulating CaMKII. Neural Plast 2020; 2020:8861994. [PMID: 33488694 PMCID: PMC7790579 DOI: 10.1155/2020/8861994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase that is ubiquitously distributed in the central and peripheral nervous systems. Moreover, its phosphorylated protein (P-CaMKII) is involved in memory, mood, and pain regulation in the anterior cingulate cortex (ACC). Electroacupuncture (EA) is a traditional Chinese therapeutic technique that can effectively treat chronic inflammatory pain. However, the CaMKII-GluA1 role in EA analgesia in the ACC remains unclear. This study investigated the role of P-CaMKII and P-GluA1 in a mouse model of inflammatory pain induced by complete Freund's adjuvant (CFA). There were increased P-CaMKII and P-GluA1 levels in the ACC. We found that intracerebroventricular injection of KN93, a CaMKII inhibitor, as well as EA stimulation, attenuated complete Freund's adjuvant-induced pain behavior. Further, EA increased pCaMKII-PICK1 complex (abbreviated as C-P complex) levels. Our findings demonstrate that EA inhibits inflammatory pain by inhibiting CaMKII-GluA1 phosphorylation. P-CaMKII is involved in EA analgesia as the pCaMKII-PICK1 complex.
Collapse
|
17
|
Djalinac N, Ljubojevic-Holzer S, Matzer I, Kolesnik E, Jandl K, Lohberger B, Rainer P, Heinemann A, Sedej S, von Lewinski D, Bisping E. The role of stretch, tachycardia and sodium-calcium exchanger in induction of early cardiac remodelling. J Cell Mol Med 2020; 24:8732-8743. [PMID: 32573098 PMCID: PMC7412684 DOI: 10.1111/jcmm.15504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Stretch and tachycardia are common triggers for cardiac remodelling in various conditions, but a comparative characterization of their role in the excitation‐transcription coupling (ETC) and early regulation of gene expression and structural changes is lacking. Here, we show that stretch and tachycardia directly induced hypertrophy of neonatal rat cardiac myocytes and also of non‐myocytes. Both triggers induced similar patterns of hypertrophy but had largely distinct gene expression profiles. ACTA1 served as good hypertrophy marker upon stretch, while RCAN1 was found increased in response to tachycardia in a rate‐dependent fashion. Mechanistically, several calcium‐handling proteins, including the sodium‐calcium exchanger (NCX), contributed to ETC. Phosphorylation of the calcium/calmodulin‐dependent protein kinase II (CaMKII) was elevated and occurred downstream of NCX activation upon tachycardia, but not stretch. Microarray profiling revealed that stretch and tachycardia regulated around 33% and 20% genes in a NCX‐dependent manner, respectively. In conclusion, our data show that hypertrophy induction by stretch and tachycardia is associated with different gene expression profiles with a significant contribution of the NCX.
Collapse
Affiliation(s)
- Natasa Djalinac
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | | | - Ingrid Matzer
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Peter Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | | | - Egbert Bisping
- Department of Cardiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Nassal D, Gratz D, Hund TJ. Challenges and Opportunities for Therapeutic Targeting of Calmodulin Kinase II in Heart. Front Pharmacol 2020; 11:35. [PMID: 32116711 PMCID: PMC7012788 DOI: 10.3389/fphar.2020.00035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure remains a major health burden around the world. Despite great progress in delineation of molecular mechanisms underlying development of disease, standard therapy has not advanced at the same pace. The multifunctional signaling molecule Ca2+/calmodulin-dependent protein kinase II (CaMKII) has received considerable attention over recent years for its central role in maladaptive remodeling and arrhythmias in the setting of chronic disease. However, these basic science discoveries have yet to translate into new therapies for human patients. This review addresses both the promise and barriers to developing translational therapies that target CaMKII signaling to abrogate pathologic remodeling in the setting of chronic disease. Efforts in small molecule design are discussed, as well as alternative targeting approaches that exploit novel avenues for compound delivery and/or genetic approaches to affect cardiac CaMKII signaling. These alternative strategies provide hope for overcoming some of the challenges that have limited the development of new therapies.
Collapse
Affiliation(s)
- Drew Nassal
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Zhang J, Liu D, Zhang M, Zhang Y. Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. Br J Pharmacol 2019; 176:4319-4339. [PMID: 29774530 PMCID: PMC6887687 DOI: 10.1111/bph.14363] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Excessive death of cardiac myocytes leads to many cardiac diseases, including myocardial infarction, arrhythmia, heart failure and sudden cardiac death. For the last several decades, most work on cell death has focused on apoptosis, which is generally considered as the only form of regulated cell death, whereas necrosis has been regarded to be an unregulated process. Recent findings reveal that necrosis also occurs in a regulated manner and that it is closely related to the physiology and pathophysiology of many organs, including the heart. The recognition of necrosis as a regulated process mandates a re-examination of cell death in the heart together with the mechanisms and therapy of cardiac diseases. In this study, we summarize the regulatory mechanisms of the programmed necrosis of cardiomyocytes, that is, the intrinsic (mitochondrial) and extrinsic (death receptor) pathways. Furthermore, the role of this programmed necrosis in various heart diseases is also delineated. Finally, we describe the currently known pharmacological inhibitors of several of the key regulatory molecules of regulated cell necrosis and the opportunities for their therapeutic use in cardiac disease. We intend to systemically summarize the recent progresses in the regulation and pathological significance of programmed cardiomyocyte necrosis along with its potential therapeutic applications to cardiac diseases. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Junxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Dairu Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| |
Collapse
|
20
|
Wang F, Tarkkonen K, Nieminen‐Pihala V, Nagano K, Majidi RA, Puolakkainen T, Rummukainen P, Lehto J, Roivainen A, Zhang F, Mäkitie O, Baron R, Kiviranta R. Mesenchymal Cell-Derived Juxtacrine Wnt1 Signaling Regulates Osteoblast Activity and Osteoclast Differentiation. J Bone Miner Res 2019; 34:1129-1142. [PMID: 30690791 PMCID: PMC6850336 DOI: 10.1002/jbmr.3680] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Human genetic evidence demonstrates that WNT1 mutations cause osteogenesis imperfecta (OI) and early-onset osteoporosis, implicating WNT1 as a major regulator of bone metabolism. However, its main cellular source and mechanisms of action in bone remain elusive. We generated global and limb bud mesenchymal cell-targeted deletion of Wnt1 in mice. Heterozygous deletion of Wnt1 resulted in mild trabecular osteopenia due to decreased osteoblast function. Targeted deletion of Wnt1 in mesenchymal progenitors led to spontaneous fractures due to impaired osteoblast function and increased bone resorption, mimicking the severe OI phenotype in humans with homozygous WNT1 mutations. Importantly, we showed for the first time that Wnt1 signals strictly in a juxtacrine manner to induce osteoblast differentiation and to suppress osteoclastogenesis, in part via canonical Wnt signaling. In conclusion, mesenchymal cell-derived Wnt1, acting in short range, is an essential regulator of bone homeostasis and an intriguing target for therapeutic interventions for bone diseases. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fan Wang
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | | | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineHarvard UniversityBostonMAUSA
| | | | | | | | - Jemina Lehto
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Roivainen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Turku Center for Disease Modeling (TCDM)University of TurkuTurkuFinland
| | - Fu‐Ping Zhang
- Turku Center for Disease Modeling (TCDM)University of TurkuTurkuFinland
| | - Outi Mäkitie
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineHarvard UniversityBostonMAUSA
| | - Riku Kiviranta
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of Endocrinology, Division of MedicineUniversity of Turku and Turku University HospitalTurkuFinland
| |
Collapse
|
21
|
Hegyi B, Chen-Izu Y, Izu LT, Bányász T. Altered K + current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation. Can J Physiol Pharmacol 2019; 97:773-780. [PMID: 31091413 DOI: 10.1139/cjpp-2019-0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyperkalemia is known to develop in various conditions including vigorous physical exercise. In the heart, hyperkalemia is associated with action potential (AP) shortening that was attributed to altered gating of K+ channels. However, it remains unknown how hyperkalemia changes the profiles of each K+ current under a cardiac AP. Therefore, we recorded the major K+ currents (inward rectifier K+ current, IK1; rapid and slow delayed rectifier K+ currents, IKr and IKs, respectively) using AP-clamp in rabbit ventricular myocytes. As K+ may accumulate at rapid heart rates during sympathetic stimulation, we also examined the effect of isoproterenol on these K+ currents. We found that IK1 was significantly increased in hyperkalemia, whereas the reduction of driving force for K+ efflux dominated over the altered channel gating in case of IKr and IKs. Overall, the markedly increased IK1 in hyperkalemia overcame the relative decreases of IKr and IKs during AP, resulting in an increased net repolarizing current during AP phase 3. β-Adrenergic stimulation of IKs also provided further repolarizing power during sympathetic activation, although hyperkalemia limited IKs upregulation. These results indicate that facilitation of IK1 in hyperkalemia and β-adrenergic stimulation of IKs represent important compensatory mechanisms against AP prolongation and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Bence Hegyi
- a Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Ye Chen-Izu
- a Department of Pharmacology, University of California, Davis, CA 95616, USA.,b Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.,c Department of Internal Medicine/Cardiology, University of California, Davis, CA 95616, USA
| | - Leighton T Izu
- a Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Tamás Bányász
- a Department of Pharmacology, University of California, Davis, CA 95616, USA.,d Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Urrutia J, Aguado A, Muguruza-Montero A, Núñez E, Malo C, Casis O, Villarroel A. The Crossroad of Ion Channels and Calmodulin in Disease. Int J Mol Sci 2019; 20:ijms20020400. [PMID: 30669290 PMCID: PMC6359610 DOI: 10.3390/ijms20020400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/21/2023] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.
Collapse
Affiliation(s)
- Janire Urrutia
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Alejandra Aguado
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | | | - Eider Núñez
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Covadonga Malo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
23
|
Affiliation(s)
- Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| | - Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| |
Collapse
|
24
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
25
|
Joviano-Santos JV, Santos-Miranda A, Botelho AFM, de Jesus ICG, Andrade JN, de Oliveira Barreto T, Magalhães-Gomes MPS, Valadão PAC, Cruz JDS, Melo MM, Guatimosim S, Guatimosim C. Increased oxidative stress and CaMKII activity contribute to electro-mechanical defects in cardiomyocytes from a murine model of Huntington's disease. FEBS J 2018; 286:110-123. [PMID: 30451379 DOI: 10.1111/febs.14706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder. Although described as a brain pathology, there is evidence suggesting that defects in other systems can contribute to disease progression. In line with this, cardiovascular defects are a major cause of death in HD. To date, relatively little is known about the peripheral abnormalities associated with the disease. Here, we applied a range of assays to evaluate cardiac electro-mechanical properties in vivo, using a previously characterized mouse model of HD (BACHD), and in vitro, using cardiomyocytes isolated from the same mice. We observed conduction disturbances including QT interval prolongation in BACHD mice, indicative of cardiac dysfunction. Cardiomyocytes from these mice demonstrated cellular electro-mechanical abnormalities, including a prolonged action potential, arrhythmic contractions, and relaxation disturbances. Cellular arrhythmia was accompanied by an increase in calcium waves and increased Ca2+ /calmodulin-dependent protein kinase II activity, suggesting that disruption of calcium homeostasis plays a key part. We also described structural abnormalities in the mitochondria of BACHD-derived cardiomyocytes, indicative of oxidative stress. Consistent with this, imbalances in superoxide dismutase and glutathione peroxidase activities were detected. Our data provide an in vivo demonstration of cardiac abnormalities in HD together with new insights into the cellular mechanistic basis, providing a possible explanation for the higher cardiovascular risk in HD.
Collapse
Affiliation(s)
| | - Artur Santos-Miranda
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Flávia Machado Botelho
- Department of Veterinary Clinic and Surgery, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Neves Andrade
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane de Oliveira Barreto
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Jader Dos Santos Cruz
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marília Martins Melo
- Department of Veterinary Clinic and Surgery, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
26
|
Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. β-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII. J Mol Cell Cardiol 2018; 123:168-179. [PMID: 30240676 DOI: 10.1016/j.yjmcc.2018.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Late Na+ current (INaL) significantly contributes to shaping cardiac action potentials (APs) and increased INaL is associated with cardiac arrhythmias. β-adrenergic receptor (βAR) stimulation and its downstream signaling via protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways are known to regulate INaL. However, it remains unclear how each of these pathways regulates INaL during the AP under physiological conditions. Here we performed AP-clamp experiments in rabbit ventricular myocytes to delineate the impact of each signaling pathway on INaL at different AP phases to understand the arrhythmogenic potential. During the physiological AP (2 Hz, 37 °C) we found that INaL had a basal level current independent of PKA, but partially dependent on CaMKII. βAR activation (10 nM isoproterenol, ISO) further enhanced INaL via both PKA and CaMKII pathways. However, PKA predominantly increased INaL early during the AP plateau, whereas CaMKII mainly increased INaL later in the plateau and during rapid repolarization. We also tested the role of key signaling pathways through exchange protein activated by cAMP (Epac), nitric oxide synthase (NOS) and reactive oxygen species (ROS). Direct Epac stimulation enhanced INaL similar to the βAR-induced CaMKII effect, while NOS inhibition prevented the βAR-induced CaMKII-dependent INaL enhancement. ROS generated by NADPH oxidase 2 (NOX2) also contributed to the ISO-induced INaL activation early in the AP. Taken together, our data reveal differential modulations of INaL by PKA and CaMKII signaling pathways at different AP phases. This nuanced and comprehensive view on the changes in INaL during AP deepens our understanding of the important role of INaL in reshaping the cardiac AP and arrhythmogenic potential under elevated sympathetic stimulation, which is relevant for designing therapeutic treatment of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Internal Medicine/Cardiology, University of California, Davis, CA, USA.
| |
Collapse
|
27
|
Warren M, Sciuto KJ, Taylor TG, Garg V, Torres NS, Shibayama J, Spitzer KW, Zaitsev AV. Blockade of CaMKII depresses conduction preferentially in the right ventricular outflow tract and promotes ischemic ventricular fibrillation in the rabbit heart. Am J Physiol Heart Circ Physiol 2017; 312:H752-H767. [PMID: 28130334 DOI: 10.1152/ajpheart.00347.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 11/22/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates the principle ion channels mediating cardiac excitability and conduction, but how this regulation translates to the normal and ischemic heart remains unknown. Diverging results on CaMKII regulation of Na+ channels further prevent predicting how CaMKII activity regulates excitability and conduction in the intact heart. To address this deficiency, we tested the effects of the CaMKII blocker KN93 (1 and 2.75 μM) and its inactive analog KN92 (2.75 μM) on conduction and excitability in the left (LV) and right (RV) ventricles of rabbit hearts during normal perfusion and global ischemia. We used optical mapping to determine local conduction delays and the optical action potential (OAP) upstroke velocity (dV/dtmax). At baseline, local conduction delays were similar between RV and LV, whereas the OAP dV/dtmax was lower in RV than in LV. At 2.75 μM, KN93 heterogeneously slowed conduction and reduced dV/dtmax, with the largest effect in the RV outflow tract (RVOT). This effect was further exacerbated by ischemia, leading to recurrent conduction block in the RVOT and early ventricular fibrillation (at 6.7 ± 0.9 vs. 18.2 ± 0.8 min of ischemia in control, P < 0.0001). Neither KN92 nor 1 μM KN93 depressed OAP dV/dtmax or conduction. Rabbit cardiomyocytes isolated from RVOT exhibited a significantly lower dV/dtmax than those isolated from the LV. KN93 (2.75 μM) significantly reduced dV/dtmax in cells from both locations. This led to frequency-dependent intermittent activation failure occurring predominantly in RVOT cells. Thus CaMKII blockade exacerbates intrinsically lower excitability in the RVOT, which is proarrhythmic during ischemia.NEW & NOTEWORTHY We show that calcium/calmodulin-dependent protein kinase II (CaMKII) blockade exacerbates intrinsically lower excitability in the right ventricular outflow tract, which causes highly nonuniform chamber-specific slowing of conduction and facilitates ventricular fibrillation during ischemia. Constitutive CaMKII activity is necessary for uniform and safe ventricular conduction, and CaMKII block is potentially proarrhythmic.
Collapse
Affiliation(s)
- Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Katie J Sciuto
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Tyson G Taylor
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Vivek Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Junko Shibayama
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
28
|
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has emerged as key enzyme in many cardiac pathologies, especially heart failure (HF), myocardial infarction and cardiomyopathies, thus leading to contractile dysfunction and malignant arrhythmias. While many pathways leading to CaMKII activation have been elucidated in recent years, hardly any clinically viable compounds affecting CaMKII activity have progressed from basic in vitro science to in vivo studies. This review focuses on recent advances in anti-arrhythmic strategies involving CaMKII. Specifically, both inhibition of CaMKII itself to prevent arrhythmias, as well as anti-arrhythmic approaches affecting CaMKII activity via alterations in signaling cascades upstream and downstream of CaMKII will be discussed.
Collapse
Affiliation(s)
- Julian Mustroph
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Stefan Neef
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Lars S Maier
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany.
| |
Collapse
|
29
|
Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation? Basic Res Cardiol 2016; 111:66. [PMID: 27683175 PMCID: PMC5040741 DOI: 10.1007/s00395-016-0582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
|
30
|
Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311:C462-78. [PMID: 27306369 DOI: 10.1152/ajpcell.00341.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
Abstract
First characterized in neuronal tissues, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key signaling component in several mammalian biological systems. Its unique capacity to integrate various Ca(2+) signals into different specific outcomes is a precious asset to excitable and nonexcitable cells. Numerous studies have reported roles and mechanisms involving CaMKII in brain and heart tissues. However, corresponding functions in vascular cell types (endothelium and vascular smooth muscle cells) remained largely unexplored until recently. Investigation of the intracellular Ca(2+) dynamics, their impact on vascular cell function, the regulatory processes involved and more recently the spatially restricted oscillatory Ca(2+) signals and microdomains triggered significant interest towards proteins like CaMKII. Heteromultimerization of CaMKII isoforms (four isoforms and several splice variants) expands this kinase's peculiar capacity to decipher Ca(2+) signals and initiate specific signaling processes, and thus controlling cellular functions. The physiological functions that rely on CaMKII are unsurprisingly diverse, ranging from regulating contractile state and cellular proliferation to Ca(2+) homeostasis and cellular permeability. This review will focus on emerging evidence of CaMKII as an essential component of the vascular system, with a focus on the kinase isoform/splice variants and cellular system studied.
Collapse
Affiliation(s)
- Fanny Toussaint
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Molecular and Integrative Physiology, Université de Montréal, Montreal Quebec, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montreal Quebec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal Quebec, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and
| |
Collapse
|