1
|
Wang L, Song J, Yang Z, Zhang H, Wang Y, Liu J, Wang S, Shi J, Tong X. SERCA2 dysfunction accelerates angiotensin II-induced aortic aneurysm and atherosclerosis by induction of oxidative stress in aortic smooth muscle cells. J Mol Cell Cardiol 2025; 200:68-81. [PMID: 39884553 DOI: 10.1016/j.yjmcc.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND AIM Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation. METHODS & RESULTS In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis. In ASMCs from SERCA2 dysfunctional mice, the cell cycle was accelerated, and proliferation and migration were enhanced, which could be reversed by SERCA agonist CDN1163 or calcium chelator BAPTA-AM. In ASMCs, SERCA2 dysfunction increased reactive oxygen species (ROS) production, activating extracellular signal-regulated kinases 1 and 2 (ERK1/2) and angiotensin II/angiotensin II type 1 receptor (AT1R) pathways. Both ERK1/2 and angiotensin II/AT1R activations are implicated in SERCA2 dysfunction-induced ASMC phenotypic transformation and ROS production. The redox modulator Tempol suppressed ERK1/2 and angiotensin II/AT1R pathways, inhibiting ASMC phenotypic transformation and alleviating angiotensin II-induced aortic aneurysm and atherosclerosis. CONCLUSION SERCA2 dysfunction accelerates aortic aneurysm and atherosclerosis by inducing oxidative stress in ASMCs, with activations of ERK1/2 and angiotensin II/AT1R involved in ASMC phenotypic transformation. Inhibition of oxidative stress in ASMCs is beneficial in alleviating angiotensin II-induced aortic aneurysm and atherosclerosis caused by SERCA2 dysfunction.
Collapse
Affiliation(s)
- Langtao Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China; The Third Affiliated Hospital, Chengdu Medical College, Chengdu 610500, China
| | - Jiarou Song
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhen Yang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hailong Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yaping Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Sai Wang
- Southwest Medical University Zigong Affiliated Hospital, Zigong 643020, China.
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China.
| |
Collapse
|
2
|
Vendrov AE, Lozhkin A, Hayami T, Levin J, Silveira Fernandes Chamon J, Abdel-Latif A, Runge MS, Madamanchi NR. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging. Front Immunol 2024; 15:1410832. [PMID: 38975335 PMCID: PMC11224442 DOI: 10.3389/fimmu.2024.1410832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Aging increases the risk of atherosclerotic vascular disease and its complications. Macrophages are pivotal in the pathogenesis of vascular aging, driving inflammation and atherosclerosis progression. NOX4 (NADPH oxidase 4) expression increases with age, correlating with mitochondrial dysfunction, inflammation, and atherosclerosis. We hypothesized that the NOX4-dependent mitochondrial oxidative stress promotes aging-associated atherosclerosis progression by causing metabolic dysfunction and inflammatory phenotype switch in macrophages. Methods We studied atherosclerotic lesion morphology and macrophage phenotype in young (5-month-old) and aged (16-month-old) Nox4 -/-/Apoe -/- and Apoe -/- mice fed Western diet. Results Young Nox4-/-/Apoe-/- and Apoe-/- mice had comparable aortic and brachiocephalic artery atherosclerotic lesion cross-sectional areas. Aged mice showed significantly increased lesion area compared with young mice. Aged Nox4-/-/Apoe-/- had significantly lower lesion areas than Apoe-/- mice. Compared with Apoe-/- mice, atherosclerotic lesions in aged Nox4-/-/Apoe-/- showed reduced cellular and mitochondrial ROS and oxidative DNA damage, lower necrotic core area, higher collagen content, and decreased inflammatory cytokine expression. Immunofluorescence and flow cytometry analysis revealed that aged Apoe-/- mice had a higher percentage of classically activated pro-inflammatory macrophages (CD38+CD80+) in the lesions. Aged Nox4-/-/Apoe-/- mice had a significantly higher proportion of alternatively activated pro-resolving macrophages (EGR2+/CD163+CD206+) in the lesions, with an increased CD38+/EGR2+ cell ratio compared with Apoe-/- mice. Mitochondrial respiration assessment revealed impaired oxidative phosphorylation and increased glycolytic ATP production in macrophages from aged Apoe-/- mice. In contrast, macrophages from Nox4-/-/Apoe-/- mice were less glycolytic and more aerobic, with preserved basal and maximal respiration and mitochondrial ATP production. Macrophages from Nox4-/-/Apoe-/- mice also had lower mitochondrial ROS levels and reduced IL1β secretion; flow cytometry analysis showed fewer CD38+ cells after IFNγ+LPS treatment and more EGR2+ cells after IL4 treatment than in Apoe-/- macrophages. In aged Apoe-/- mice, inhibition of NOX4 activity using GKT137831 significantly reduced macrophage mitochondrial ROS and improved mitochondrial function, resulting in decreased CD68+CD80+ and increased CD163+CD206+ lesion macrophage proportion and attenuated atherosclerosis. Discussion Our findings suggest that increased NOX4 in aging drives macrophage mitochondrial dysfunction, glycolytic metabolic switch, and pro-inflammatory phenotype, advancing atherosclerosis. Inhibiting NOX4 or mitochondrial dysfunction could alleviate vascular inflammation and atherosclerosis, preserving plaque integrity.
Collapse
Affiliation(s)
- Aleksandr E. Vendrov
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrey Lozhkin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Takayuki Hayami
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Julia Levin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jamille Silveira Fernandes Chamon
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ahmed Abdel-Latif
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine - Cardiology, Ann Arbor VA Healthcare System, Ann Arbor, MI, United States
| | - Marschall S. Runge
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nageswara R. Madamanchi
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Jiang S, Han S, Wang DW. The involvement of soluble epoxide hydrolase in the development of cardiovascular diseases through epoxyeicosatrienoic acids. Front Pharmacol 2024; 15:1358256. [PMID: 38628644 PMCID: PMC11019020 DOI: 10.3389/fphar.2024.1358256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Arachidonic acid (AA) has three main metabolic pathways: the cycloxygenases (COXs) pathway, the lipoxygenases (LOXs) pathway, and the cytochrome P450s (CYPs) pathway. AA produces epoxyeicosatrienoic acids (EETs) through the CYPs pathway. EETs are very unstable in vivo and can be degraded in seconds to minutes. EETs have multiple degradation pathways, but are mainly degraded in the presence of soluble epoxide hydrolase (sEH). sEH is an enzyme of bifunctional nature, and current research focuses on the activity of its C-terminal epoxide hydrolase (sEH-H), which hydrolyzes the EETs to the corresponding inactive or low activity diol. Previous studies have reported that EETs have cardiovascular protective effects, and the activity of sEH-H plays a role by degrading EETs and inhibiting their protective effects. The activity of sEH-H plays a different role in different cells, such as inhibiting endothelial cell proliferation and migration, but promoting vascular smooth muscle cell proliferation and migration. Therefore, it is of interest whether the activity of sEH-H is involved in the initiation and progression of cardiovascular diseases by affecting the function of different cells through EETs.
Collapse
Affiliation(s)
- Shan Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Siyi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
4
|
Pervaiz N, Kathuria I, Aithabathula RV, Singla B. Matricellular proteins in atherosclerosis development. Matrix Biol 2023; 120:1-23. [PMID: 37086928 PMCID: PMC10225360 DOI: 10.1016/j.matbio.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
The extracellular matrix (ECM) is an intricate network composed of various multi-domain macromolecules like collagen, proteoglycans, and fibronectin, etc., that form a structurally stable composite, contributing to the mechanical properties of tissue. However, matricellular proteins are non-structural, secretory extracellular matrix proteins, which modulate various cellular functions via interacting with cell surface receptors, proteases, hormones, and cell-matrix. They play essential roles in maintaining tissue homeostasis by regulating cell differentiation, proliferation, adhesion, migration, and several signal transduction pathways. Matricellular proteins display a broad functionality regulated by their multiple structural domains and their ability to interact with different extracellular substrates and/or cell surface receptors. The expression of these proteins is low in adults, however, gets upregulated following injuries, inflammation, and during tumor growth. The marked elevation in the expression of these proteins during atherosclerosis suggests a positive association between their expression and atherosclerotic lesion formation. The role of matricellular proteins in atherosclerosis development has remained an area of research interest in the last two decades and studies revealed these proteins as important players in governing vascular function, remodeling, and plaque formation. Despite extensive research, many aspects of the matrix protein biology in atherosclerosis are still unknown and future studies are required to investigate whether targeting pathways stimulated by these proteins represent viable therapeutic approaches for patients with atherosclerotic vascular diseases. This review summarizes the characteristics of distinct matricellular proteins, discusses the available literature on the involvement of matrix proteins in the pathogenesis of atherosclerosis and suggests new avenues for future research.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA.
| |
Collapse
|
5
|
Smooth Muscle Cells from a Rat Model of Obesity and Hyperleptinemia Are Partially Resistant to Leptin-Induced Reactive Oxygen Species Generation. Antioxidants (Basel) 2023; 12:antiox12030728. [PMID: 36978976 PMCID: PMC10045401 DOI: 10.3390/antiox12030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The aim of this study was to evaluate the effect of leptin on reactive oxygen species’ (ROS) generation of smooth muscle cells (SMCs) from a rat model of obesity and hyperleptinemia. Obesity and hyperleptinemia were induced in rats by a sucrose-based diet for 24 weeks. ROS generation was detected by using dichloro-dihydrofluorescein (DCF), a fluorescent ROS probe in primary SMCs culture. An increase in plasma leptin and oxidative stress markers was observed in sucrose-fed (SF) rats. At baseline SMCs from SF rats showed a more than twofold increase in fluorescence intensity (FI) compared to that obtained in control (C) cells. When the C cells were treated with 20 ng leptin, the FI increased by about 200%, whereas the leptin-induced FI in the SF cells increased only by 60%. In addition, sucrose feeding increased the levels of p22phox and gp91phox, subunits of Nox as an O2•− source in SMCs. Treatment of cells with leptin significantly increased p22phox and gp91phox levels in C cells and did not affect SF cells. Regarding STAT3 phosphorylation and the content of PTP1B and SOCS3 as protein markers of leptin resistance, they were found to be significantly increased in SF cells. These results suggest that SF aortic SMCs are partially resistant to leptin-induced ROS generation.
Collapse
|
6
|
Yamanaka K, Nakamura K, Shibahara T, Takashima M, Takaki H, Hidaka M, Komori M, Yoshikawa Y, Wakisaka Y, Ago T, Kitazono T. Deletion of Nox4 enhances remyelination following cuprizone-induced demyelination by increasing phagocytic capacity of microglia and macrophages in mice. Glia 2023; 71:541-559. [PMID: 36321558 DOI: 10.1002/glia.24292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
NOX4 is a major reactive oxygen species-producing enzyme that modulates cell stress responses. We here examined the effect of Nox4 deletion on demyelination-remyelination, the most common pathological change in the brain. We used a model of cuprizone (CPZ)-associated demyelination-remyelination in wild-type and Nox4-deficient (Nox4-/- ) mice. While the CPZ-induced demyelination in the corpus callosum after 4 weeks of CPZ intoxication was slightly less pronounced in Nox4-/- mice than that in wild-type mice, remyelination following CPZ withdrawal was significantly enhanced in Nox4-/- mice with an increased accumulation of IBA1-positive microglia/macrophages in the demyelinating corpus callosum. Consistently, locomotor function, as assessed by the beam walking test, was significantly better during the remyelination phase in Nox4-/- mice. Nox4 deletion did not affect autonomous growth of primary-culture oligodendrocyte precursor cells. Although Nox4 expression was higher in cultured macrophages than in microglia, Nox4-/- microglia and macrophages both showed enhanced phagocytic capacity of myelin debris and produced increased amounts of trophic factors upon phagocytosis. The expression of trophic factors was higher, in parallel with the accumulation of IBA1-positive cells, in the corpus callosum in Nox4-/- mice than that in wild-type mice. Nox4 deletion suppressed phagocytosis-induced increase in mitochondrial membrane potential, enhancing phagocytic capacity of macrophages. Treatment with culture medium of Nox4-/- macrophages engulfing myelin debris, but not that of Nox4-/- astrocytes, enhanced cell growth and expression of myelin-associated proteins in cultured oligodendrocyte precursor cells. Collectively, Nox4 deletion promoted remyelination after CPZ-induced demyelination by enhancing microglia/macrophage-mediated clearance of myelin debris and the production of trophic factors leading to oligodendrogenesis.
Collapse
Affiliation(s)
- Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Komori
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Yoshikawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
8
|
Szczepaniak P, Siedlinski M, Hodorowicz-Zaniewska D, Nosalski R, Mikolajczyk TP, Dobosz AM, Dikalova A, Dikalov S, Streb J, Gara K, Basta P, Krolczyk J, Sulicka-Grodzicka J, Jozefczuk E, Dziewulska A, Saju B, Laksa I, Chen W, Dormer J, Tomaszewski M, Maffia P, Czesnikiewicz-Guzik M, Crea F, Dobrzyn A, Moslehi J, Grodzicki T, Harrison DG, Guzik TJ. Breast cancer chemotherapy induces vascular dysfunction and hypertension through NOX4 dependent mechanism. J Clin Invest 2022; 132:149117. [PMID: 35617030 PMCID: PMC9246378 DOI: 10.1172/jci149117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in breast cancer survivors. Chemotherapy contributes to this risk. We aimed to define the mechanisms of long-term vascular dysfunction caused by neoadjuvant chemotherapy (NACT) and identify novel therapeutic targets.We studied arteries from postmenopausal women who had undergone breast cancer treatment using docetaxel, doxorubicin and cyclophosphamide (NACT), and women with no history of such treatment matched for key clinical parameters. Mechanisms were explored in wild-type and Nox4-/- mice and human microvascular endothelial cells.Endothelium-dependent vasodilatation is severely impaired in patients after NACT, while endothelium-independent responses remain normal. This was mimicked by 24-hour exposure of arteries to NACT agents ex-vivo. When applied individually, only docetaxel impaired endothelial function in human vessels. Mechanistic studies showed that NACT increased inhibitory eNOS phosphorylation of threonine 495 in a ROCK-dependent manner and augmented vascular superoxide and hydrogen peroxide production and NADPH oxidase activity. Docetaxel increased expression of NADPH oxidase NOX4 in endothelial and smooth muscle cells and NOX2 in the endothelium. NOX4 increase in human arteries may be mediated epigenetically by diminished DNA methylation of the NOX4 promoter. Docetaxel induced endothelial dysfunction and hypertension in mice. These were prevented in Nox4-/- and by pharmacological inhibition of Nox4 or Rock.Commonly used chemotherapeutic agents, and in particular, docetaxel, alter vascular function by promoting inhibitory phosphorylation of eNOS and enhancing ROS production by NADPH oxidases.
Collapse
Affiliation(s)
- Piotr Szczepaniak
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz P Mikolajczyk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Joanna Streb
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Katarzyna Gara
- Department of Surgery, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Pawel Basta
- Department of Gynecology and Gynecological Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Jaroslaw Krolczyk
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ewelina Jozefczuk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Blessy Saju
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iwona Laksa
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - John Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, University of the Sacred Heart, Rome, Italy
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Javid Moslehi
- University of California San Fransisco, San Francisco, United States of America
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
10
|
Liu H, Xiang C, Wang Z, Song Y. Identification of Potential Ferroptosis-Related Biomarkers and Immune Infiltration in Human Coronary Artery Atherosclerosis. Int J Gen Med 2022; 15:2979-2990. [PMID: 35308568 PMCID: PMC8932925 DOI: 10.2147/ijgm.s346482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Ferroptosis is a specific subtype of programmed cell death, which plays an essential role in the immune-associated disease, atherosclerosis (AS). The purpose of this study was to identify potential ferroptosis-related gene biomarkers and its association with immune infiltration characteristics in atherosclerosis with bioinformatics methods. Methods Differentially expressed genes (DEGs) between AS and control groups were screened from GSE40231, analyzed for functional enrichment and then intersected with ferroptosis-related genes. Then, a random forest model was constructed based on these differentially expressed ferroptosis-related genes (DE-FRGs) and validated with dataset GSE132651. The performance of the models was evaluated with the area under receiver operating characteristic curves (AUC). Finally, we analyzed the correlation between DE-FRGs above and the characteristics of immune infiltration via CIBERSORT method. Results Six DE-FRGs (IL6, ANGPTL7, CDKN1A, AKR1C3, NOX4 and VLDLR) were detected based on dataset of GSE40231. Furthermore, a random forest model was constructed based on them with a compelling diagnostic performance of AUC = 0.8974 in the validation dataset GSE132651. In addition, the proportion of follicular helper T (Tfh) cells was significantly higher in AS group (P < 0.001). And we found significant correlation relationship between Tfh and expression level of ANGPTL7 (R = 0.35, P < 0.01), CDKN1A (R = 0.4, P < 0.0001), AKR1C3 (R = 0.64, P < 0.0001), NOX4 (R = 0.32, P < 0.01) and VLDLR (R = −0.43, P < 0.0001). Conclusion This study identified 6 DE-FRGs and validated a predicted model for the early prediction of AS, which also proved the close relationship between ferroptosis and immunity in the pathogenesis of AS.
Collapse
Affiliation(s)
- Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chunhua Xiang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yi Song
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Correspondence: Yi Song, Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Tel +86-15629054511, Email
| |
Collapse
|
11
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
12
|
Bhat OM, Yuan X, Kukreja RC, Li PL. Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene. FASEB J 2021; 35:e21732. [PMID: 34143450 DOI: 10.1096/fj.202100385r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
Acid ceramidase (murine gene code: Asah1) (50 kDa) belongs to N-terminal nucleophile hydrolase family. This enzyme is located in the lysosome, which mediates conversion of ceramide (CER) into sphingosine and free fatty acids at acidic pH. CER plays an important role in intracellular sphingolipid metabolism and its increase causes inflammation. The mammalian target of rapamycin complex 1 (mTORC1) signaling on late endosomes (LEs)/lysosomes may control cargo selection, membrane biogenesis, and exosome secretion, which may be fine controlled by lysosomal sphingolipids such as CER. This lysosomal-CER-mTOR signaling may be a crucial molecular mechanism responsible for development of arterial medial calcification (AMC). Torin-1 (5 mg/kg/day), an mTOR inhibitor, significantly decreased aortic medial calcification accompanied with decreased expression of osteogenic markers like osteopontin (OSP) and runt-related transcription factor 2 (RUNX2) and upregulation of smooth muscle 22α (SM22-α) in mice receiving high dose of Vitamin D (500 000 IU/kg/day). Asah1fl/fl /SMCre mice had markedly increased co-localization of mTORC1 with lysosome-associated membrane protein-1 (Lamp-1) (lysosome marker) and decreased co-localization of vacuolar protein sorting-associated protein 16 (VPS16) (a multivesicular bodies [MVBs] marker) with Lamp-1, suggesting mTOR activation caused reduced MVBs interaction with lysosomes. Torin-1 significantly reduced the co-localization of mTOR vs Lamp-1, increased lysosome-MVB interaction which was associated with reduced accumulation of CD63 and annexin 2 (exosome markers) in the coronary arterial wall of mice. Using coronary artery smooth muscle cells (CASMCs), Pi -stimulation significantly increased p-mTOR expression in Asah1fl/fl /SMCre CASMCs as compared to WT/WT cells associated with increased calcium deposition and mineralization. Torin-1 blocked Pi -induced calcium deposition and mineralization. siRNA mTOR and Torin-1 significantly reduce co-localization of mTORC1 with Lamp-1, increased VPS16 vs Lamp-1 co-localization in Pi -stimulated CASMCs, associated with decreased exosome release. Functionally, Torin-1 significantly reduces arterial stiffening as shown by restoration from increased pulse wave velocity and decreased elastin breaks. These results suggest that lysosomal CER-mTOR signaling may play a critical role for the control of lysosome-MVB interaction, exosome secretion and arterial stiffening during AMC.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Rakesh C Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
Yao Z, Bao B, Qian S, Li Z, Lu Q, Min S, Li M, Wang H. [Correlation of serum ADAMTS13 and TSP1 levels with myocardial injury and prognosis in patients with acute coronary syndrome]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:710-715. [PMID: 34134958 DOI: 10.12122/j.issn.1673-4254.2021.05.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate serum levels of von Willebrand factor lytic protease (ADAMTS13) and thrombospondin-1 (TSP1) in patients with different types of acute coronary syndrome (ACS) and their correlation with the patients' clinical prognosis. OBJECTIVE According to their disease history, results of angiography and clinical biochemical tests, a total of 405 patients undergoing coronary angiography, were divided into unstable angina (UAP) group (n=215), acute myocardial infarction (AMI) group (n=96), and angiographically normal group (n=94). Serum ADAMTS13 and TSP1 levels were detected in all the patients, who were followed up for 15 months to evaluate the occurrence of long-term major cardiac adverse events (MACE). OBJECTIVE Serum ADAMTS13 level was significantly lower and TSP1 level was significantly higher in AMI group and UAP group than in the normal group (P < 0.001). Serum ADAMTS13 and TSP1 levels were negative correlated in ACS patients (R=-0.577, P < 0.001). The patients experiencing MACE had significantly different serum TSP1 level from those without MACE (P < 0.05). Cox proportion regression model analysis showed that TSP1 was a risk factor affecting the occurrence of MACE in ACS patients; Kaplan-Meier survival analysis showed that the patients with high levels of TSP1 had a higher incidence of longterm MACE than those with low TSP1 levels. OBJECTIVE A lowered serum ADAMTS13 level and an elevated TSP1 level can support the diagnosis of ACS. An elevated TSP1 level may serve as an indicator for predicting the risk of MACE in patients with ACS.
Collapse
Affiliation(s)
- Z Yao
- Department of Cardiovascular Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - B Bao
- Department of Cardiovascular Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - S Qian
- Department of Cardiovascular Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Z Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Q Lu
- Department of Cardiovascular Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - S Min
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu 233000, China
| | - M Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - H Wang
- Department of Cardiovascular Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
14
|
Buchmann GK, Schürmann C, Spaeth M, Abplanalp W, Tombor L, John D, Warwick T, Rezende F, Weigert A, Shah AM, Hansmann ML, Weissmann N, Dimmeler S, Schröder K, Brandes RP. The hydrogen-peroxide producing NADPH oxidase 4 does not limit neointima development after vascular injury in mice. Redox Biol 2021; 45:102050. [PMID: 34218201 PMCID: PMC8256285 DOI: 10.1016/j.redox.2021.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The NADPH oxidase Nox4 is an important source of H2O2. Nox4-derived H2O2 limits vascular inflammation and promotes smooth muscle differentiation. On this basis, the role of Nox4 for restenosis development was determined in the mouse carotid artery injury model. Methods and results Genetic deletion of Nox4 by a tamoxifen-activated Cre-Lox-system did not impact on neointima formation in the carotid artery wire injury model. To understand this unexpected finding, time-resolved single-cell RNA-sequencing (scRNAseq) from injured carotid arteries of control mice and massive-analysis-of-cDNA-ends (MACE)-RNAseq from the neointima harvested by laser capture microdissection of control and Nox4 knockout mice was performed. This revealed that resting smooth muscle cells (SMCs) and fibroblasts exhibit high Nox4 expression, but that the proliferating de-differentiated SMCs, which give rise to the neointima, have low Nox4 expression. In line with this, the first weeks after injury, gene expression was unchanged between the carotid artery neointimas of control and Nox4 knockout mice. Conclusion Upon vascular injury, Nox4 expression is transiently lost in the cells which comprise the neointima. NADPH oxidase 4 therefore does not interfere with restenosis development after wire-induced vascular injury.
Collapse
Affiliation(s)
- Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Wesley Abplanalp
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Lukas Tombor
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - David John
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre, London, UK
| | | | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany.
| |
Collapse
|
15
|
Hu S, Luo J, Fu M, Luo L, Cai Y, Li W, Li Y, Dong R, Yang Y, Tu L, Xu X. Soluble epoxide hydrolase deletion attenuated nicotine-induced arterial stiffness via limiting the loss of SIRT1. Am J Physiol Heart Circ Physiol 2021; 321:H353-H368. [PMID: 34142887 DOI: 10.1152/ajpheart.00979.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide [NAM, sirtuin-1 (SIRT1) inhibitor] simultaneously for 4 wk. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2 knockout mice (Ephx2-/- mice) without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced matrix metalloproteinase 2 (MMP2) upregulation via SIRT1-mediated yes-associated protein (YAP) deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.NEW & NOTEWORTHY We presently show that sEH knockout repressed nicotine-induced arterial stiffness and extracellular matrix remodeling via SIRT1-induced YAP deacetylation, which highlights that sEH is a potential therapeutic target in smoking-induced arterial stiffness and vascular remodeling.
Collapse
Affiliation(s)
- Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yueting Cai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanyuan Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China.,Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Que Y, Shu X, Wang L, Wang S, Li S, Hu P, Tong X. Inactivation of SERCA2 Cys 674 accelerates aortic aneurysms by suppressing PPARγ. Br J Pharmacol 2021; 178:2305-2323. [PMID: 33591571 DOI: 10.1111/bph.15411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Inactivation of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes intracellular Ca2+ accumulation, which activates calcineurin-mediated nuclear factor of activated T-lymphocytes (NFAT)/NF-κB pathways, and results in the phenotypic modulation of smooth muscle cells (SMCs) to accelerate angiotensin II-induced aortic aneurysms. Our goal was to investigate the mechanism involved. EXPERIMENTAL APPROACH We used heterozygous SERCA2 C674S knock-in (SKI) mice, where half of C674 was substituted by serine, to mimic partial irreversible oxidation of C674. The aortas of SKI mice and their littermate wild-type mice were collected for RNA sequencing, cell culture, protein expression, luciferase activity and aortic aneurysm analysis. KEY RESULTS Inactivation of C674 inhibited the promoter activity and protein expression of PPARγ, which could be reversed by inhibitors of calcineurin or NF-κB. In SKI SMCs, inhibition of NF-κB by pyrrolidinedithiocarbamic acid (PDTC) or overexpression of PPARγ2 reversed the protein expression of SMC phenotypic modulation markers and inhibited cell proliferation, migration, and macrophage adhesion to SMCs. Pioglitazone, a PPARγ agonist, blocked the activation of NFAT/NF-κB, reversed the protein expression of SMC phenotypic modulation markers, and inhibited cell proliferation, migration, and macrophage adhesion to SMCs in SKI SMCs. Furthermore, pioglitazone also ameliorated angiotensin II-induced aortic aneurysms in SKI mice. CONCLUSIONS AND IMPLICATIONS The inactivation of SERCA2 C674 promotes the development of aortic aneurysms by disrupting the balance between PPARγ and NFAT/NF-κB. Our study highlights the importance of C674 redox status in regulating PPARγ to maintain aortic homeostasis.
Collapse
Affiliation(s)
- Yumei Que
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xi Shu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Langtao Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Sai Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 2021; 164:44-57. [PMID: 33418110 DOI: 10.1016/j.freeradbiomed.2020.12.450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Our previous findings have demonstrated the protective effect of endothelial Nox4-based NADPH oxidase on atherosclerosis. One of the possible mechanisms is the inhibition of soluble epoxide hydrolase (sEH), a proinflammatory and atherogenic factor. Our goal was to investigate whether in vivo inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) alleviates endothelial Nox4 dysfunction caused atherosclerosis and the regulatory mechanism of endothelial Nox4 on sEH. METHODS & results: We used endothelial human Nox4 dominant-negative (EDN) transgenic mice in ApoE deficient background to mimic the dysfunction of endothelial Nox4 in atherosclerosis-prone conditions. In EDN aortic endothelium, sEH and the inflammatory marker vascular cell adhesion molecule 1 (VCAM1) were upregulated. TPPU reduced atherosclerotic lesions in EDN mice. In EDN endothelial cells (ECs), the endoplasmic reticulum (ER) stress markers (BIP, IRE1α, phosphorylation of PERK, ATF6) were upregulated, and they can be suppressed by ER stress inhibitor 4-phenyl butyric acid (4-PBA). In EDN ECs, 4-PBA downregulated the expression of sEH and VCAM1, suppressed inflammation, and its application in vivo reduced atherosclerotic lesions of EDN mice. CONCLUSIONS Endothelial Nox4 dysfunction upregulated sEH to enhance inflammation, probably by its induction of ER stress. Inhibition of ER stress or sEH is beneficial to alleviate atherosclerosis caused by endothelial Nox4 dysfunction.
Collapse
Affiliation(s)
- Weimin Yu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| | - Lili Chen
- Wuhan Easy Diagnosis Biomedicine Co., Ltd, Wuhan, 430075, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
18
|
Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxid Redox Signal 2020; 33:415-434. [PMID: 32008354 DOI: 10.1089/ars.2020.8047] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress plays a critical role in the development and progression of serious micro- and macrovascular complications of diabetes. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) significantly contribute to oxidative stress-associated inflammatory pathways that lead to tissue damage of different organs, including the kidneys, retina, brain, nerves, and the cardiovascular system. Recent Advances: Preclinical studies, including genetic-modified mouse models or cell culture models, have revealed the role of specific NOX isoforms in different diabetic complications, and suggested them as a promising target for the treatment of these diseases. Critical Issues: In this review, we provide an overview of the role of ROS and oxidative stress in macrovascular complications, such as stroke, myocardial infarction, coronary artery disease, and peripheral vascular disease that are all mainly driven by atherosclerosis, as well as microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy. We summarize conducted genetic deletion studies of different Nox isoforms as well as pharmacological intervention studies using NOX inhibitors in the context of preclinical as well as clinical research on diabetic complications. Future Directions: We outline the isoforms that are most promising for future clinical trials in the context of micro- and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Florence Ho
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Yu W, Xiao L, Que Y, Li S, Chen L, Hu P, Xiong R, Seta F, Chen H, Tong X. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165912. [PMID: 32777344 DOI: 10.1016/j.bbadis.2020.165912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Angiotensin II (Ang II) is commonly used to induce aortic aneurysm and atherosclerosis in animal models. Ang II upregulates NADPH oxidase isoform Nox4 in aortic smooth muscle cells (SMCs) in mice. However, whether smooth muscle Nox4 is directly involved in Ang II-induced aortic aneurysm and atherosclerosis is unclear. METHODS & RESULTS To address this, we used smooth muscle-specific Nox4 dominant-negative (SDN) transgenic mice, in which Nox4 activity is constitutively inhibited. In non-transgenic (NTg) mice, Ang II increased the expression of proteins known to contribute to both aortic aneurysm and atherosclerosis, namely osteopontin (OPN), collagen type I&III (Col I&III), matrix metalloproteinase 2 (MMP2), and vascular cell adhesion molecule 1 (VCAM1), which were all significantly downregulated in SDN mice. The number and size of Ang II-induced aorta collateral aneurysms and atherosclerotic lesions in the renal artery and aortic root of SDN mice were significantly decreased compared to NTg mice, and directly correlated with a decrease in OPN expression. Replenishing OPN in SDN SMCs, increased the expression of Col I&III, MMP2, and VCAM1, and promoted SMC proliferation, migration, and inflammation. CONCLUSIONS Our data demonstrate that smooth muscle Nox4 directly promotes the development of Ang II-induced aortic aneurysm and atherosclerosis, at least in part, through regulating OPN expression.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Rui Xiong
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hao Chen
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
20
|
Centner AM, Bhide PG, Salazar G. Nicotine in Senescence and Atherosclerosis. Cells 2020; 9:E1035. [PMID: 32331221 PMCID: PMC7226537 DOI: 10.3390/cells9041035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cigarette smoke is a known exacerbator of age-related pathologies, such as cardiovascular disease (CVD), atherosclerosis, and cellular aging (senescence). However, the role of nicotine and its major metabolite cotinine is yet to be elucidated. Considering the growing amount of nicotine-containing aerosol use in recent years, the role of nicotine is a relevant public health concern. A number of recent studies and health education sites have focused on nicotine aerosol-induced adverse lung function, and neglected cardiovascular (CV) impairments and diseases. A critical review of the present scientific literature leads to the hypothesis that nicotine mediates the effects of cigarette smoke in the CV system by increasing MAPK signaling, inflammation, and oxidative stress through NADPH oxidase 1 (Nox1), to induce vascular smooth muscle cell (VSMC) senescence. The accumulation of senescent VSMCs in the lesion cap is detrimental as it increases the pathogenesis of atherosclerosis by promoting an unstable plaque phenotype. Therefore, nicotine, and most likely its metabolite cotinine, adversely influence atherosclerosis.
Collapse
Affiliation(s)
- Ann Marie Centner
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, FSU College of Medicine, 1115, West Call Street, Tallahassee, FL 32306, USA;
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
21
|
Bhat OM, Yuan X, Camus S, Salloum FN, Li PL. Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. Int J Mol Sci 2020; 21:E1713. [PMID: 32138242 PMCID: PMC7084670 DOI: 10.3390/ijms21051713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1-/- mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1-/- mice as compared to their wild-type littermates. Besides, Mcoln1-/- mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1-/- mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1-/- mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Sarah Camus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Fadi N. Salloum
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA;
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| |
Collapse
|
22
|
Negre-Salvayre A, Guerby P, Gayral S, Laffargue M, Salvayre R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic Biol Med 2020; 149:8-22. [PMID: 31669759 DOI: 10.1016/j.freeradbiomed.2019.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a multifactorial chronic and inflammatory disease of medium and large arteries, and the major cause of cardiovascular morbidity and mortality worldwide. The pathogenesis of atherosclerosis involves a number of risk factors and complex events including hypercholesterolemia, endothelial dysfunction, increased permeability to low density lipoproteins (LDL) and their sequestration on extracellular matrix in the intima of lesion-prone areas. These events promote LDL modifications, particularly by oxidation, which generates acute and chronic inflammatory responses implicated in atherogenesis and lesion progression. Reactive oxygen species (ROS) (which include both free radical and non-free radical oxygen intermediates), play a key-role at each step of atherogenesis, in endothelial dysfunction, LDL oxidation, and inflammatory events involved in the initiation and development of atherosclerosis lesions. Most advanced knowledge supporting the "oxidative theory of atherosclerosis" i.e. the nature and the cellular sources of ROS and antioxidant defences, as well as the mechanisms involved in the redox balance, is based on the use of genetically engineered animals, i.e. transgenic, genetically modified, or altered for systems producing or neutralizing ROS in the vessels. This review summarizes the results obtained from animals genetically manipulated for various sources of ROS or antioxidant defences in the vascular wall, and their relevance (advance or limitation), for understanding the place and role of ROS in atherosclerosis.
Collapse
Affiliation(s)
| | - Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | | |
Collapse
|
23
|
Inactivation of cysteine 674 in the SERCA2 accelerates experimental aortic aneurysm. J Mol Cell Cardiol 2020; 139:213-224. [PMID: 32035136 DOI: 10.1016/j.yjmcc.2020.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is vital to maintain intracellular calcium homeostasis. SERCA2 cysteine 674 (C674) is highly conservative and its irreversible oxidation is upregulated in human and mouse aortic aneurysms, especially in smooth muscle cells (SMCs). The contribution of SERCA2 and its redox C674 in the development of aortic aneurysm remains enigmatic. Objective: Our goal was to investigate the contribution of inactivation of C674 to the development of aortic aneurysm and the mechanisms involved. Approach and results: Using SERCA2 C674S knock-in (SKI) mouse line, in which half of C674 was substituted by serine 674 (S674) to represent partial irreversible oxidation of C674 in aortic aneurysm, we found that in aortic SMCs the replacement of C674 by S674 resulted in SMC phenotypic modulation. In SKI SMCs, the increased intracellular calcium activated calcium-dependent calcineurin, which promoted the nuclear translocation of nuclear factor of activated T-lymphocytes (NFAT) and nuclear factor kappa-B (NFκB), while inhibition of calcineurin blocked SMC phenotypic modulation. Besides, the replacement of C674 by S674 accelerated angiotensin II-induced aortic aneurysm. Conclusions: Our results indicate that the inactivation of C674 by causing the accumulation of intracellular calcium to activate calcineurin-mediated NFAT/NFκB pathways, resulted in SMC phenotypic modulation to accelerate aortic aneurysm, which highlights the importance of C674 redox state in the development of aortic aneurysms.
Collapse
|
24
|
Bhat OM, Yuan X, Cain C, Salloum FN, Li P. Medial calcification in the arterial wall of smooth muscle cell-specific Smpd1 transgenic mice: A ceramide-mediated vasculopathy. J Cell Mol Med 2020; 24:539-553. [PMID: 31743567 PMCID: PMC6933411 DOI: 10.1111/jcmm.14761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
Arterial medial calcification (AMC) is associated with crystallization of hydroxyapatite in the extracellular matrix and arterial smooth muscle cells (SMCs) leading to reduced arterial compliance. The study was performed to test whether lysosomal acid sphingomyelinase (murine gene code: Smpd1)-derived ceramide contributes to the small extracellular vesicle (sEV) secretion from SMCs and consequently leads to AMC. In Smpd1trg /SMcre mice with SMC-specific overexpression of Smpd1 gene, a high dose of Vit D (500 000 IU/kg/d) resulted in increased aortic and coronary AMC, associated with augmented expression of RUNX2 and osteopontin in the coronary and aortic media compared with their littermates (Smpd1trg /SMwt and WT/WT mice), indicating phenotypic switch. However, amitriptyline, an acid sphingomyelinase (ASM) inhibitor, reduced calcification and reversed phenotypic switch. Smpd1trg /SMcre mice showed increased CD63, AnX2 and ALP levels in the arterial wall, accompanied by reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), a parameter for lysosome-MVB interaction. All these changes related to lysosome fusion and sEV release were substantially attenuated by amitriptyline. Increased arterial stiffness and elastin disorganization were found in Smpd1trg /SMcre mice as compared to their littermates. In cultured coronary arterial SMCs (CASMCs) from Smpd1trg /SMcre mice, increased Pi concentrations led to markedly increased calcium deposition, phenotypic change and sEV secretion compared with WT CASMCs, accompanied by reduced lysosome-MVB interaction. However, amitriptyline prevented these changes in Pi -treated CASMCs. These data indicate that lysosomal ceramide plays a critical role in phenotype change and sEV release in SMCs, which may contribute to the arterial stiffness during the development of AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginia
| | - Xinxu Yuan
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginia
| | - Chad Cain
- Division of CardiologyDepartment of Internal MedicineVCU Pauley Heart CenterVirginia Commonwealth UniversityRichmondVirginia
| | - Fadi N. Salloum
- Division of CardiologyDepartment of Internal MedicineVCU Pauley Heart CenterVirginia Commonwealth UniversityRichmondVirginia
| | - Pin‐Lan Li
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginia
| |
Collapse
|
25
|
DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019; 31:687-709. [PMID: 31250671 PMCID: PMC6909742 DOI: 10.1089/ars.2018.7674] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening. Redox Biol 2019; 26:101288. [PMID: 31419754 PMCID: PMC6831838 DOI: 10.1016/j.redox.2019.101288] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is characterized by increased aortic stiffness, an early, independent predictor and cause of cardiovascular disease. Oxidative stress from excess reactive oxygen species (ROS) production increases with age. Mitochondria and NADPH oxidases (NOXs) are two major sources of ROS in cardiovascular system. We showed previously that increased mitochondrial ROS levels over a lifetime induce aortic stiffening in a mouse oxidative stress model. Also, NADPH oxidase 4 (NOX4) expression and ROS levels increase with age in aortas, aortic vascular smooth muscle cells (VSMCs) and mitochondria, and are correlated with age-associated aortic stiffness in hypercholesterolemic mice. The present study investigated whether young mice (4 months-old) with increased mitochondrial NOX4 levels recapitulate vascular aging and age-associated aortic stiffness. We generated transgenic mice with low (Nox4TG605; 2.1-fold higher) and high (Nox4TG618; 4.9-fold higher) mitochondrial NOX4 expression. Young Nox4TG618 mice showed significant increase in aortic stiffness and decrease in phenylephrine-induced aortic contraction, but not Nox4TG605 mice. Increased mitochondrial oxidative stress increased intrinsic VSMC stiffness, induced aortic extracellular matrix remodeling and fibrosis, a leftward shift in stress-strain curves, decreased volume compliance and focal adhesion turnover in Nox4TG618 mice. Nox4TG618 VSMCs phenocopied other features of vascular aging such as increased DNA damage, increased premature and replicative senescence and apoptosis, increased proinflammatory protein expression and decreased respiration. Aortic stiffening in young Nox4TG618 mice was significantly blunted with mitochondrial-targeted catalase overexpression. This demonstration of the role of mitochondrial oxidative stress in aortic stiffness will galvanize search for new mitochondrial-targeted therapeutics for treatment of age-associated vascular dysfunction. Aortic stiffness in aging is associated with increased mitochondrial NOX4 levels. Young mitochondrial Nox4 overexpressing transgenic mice phenocopy aortic stiffness. Nox4 transgenic mice show increased VSMC stiffness, aortic remodeling and fibrosis. Nox4 transgenic mouse VSMC show DNA damage, senescence, apoptosis and inflammation. High mitochondrial catalase levels blunt aortic stiffness in Nox4 transgenic mice.
Collapse
|
27
|
Gray SP, Shah AM, Smyrnias I. NADPH oxidase 4 and its role in the cardiovascular system. ACTA ACUST UNITED AC 2019; 1:H59-H66. [PMID: 32923955 PMCID: PMC7439918 DOI: 10.1530/vb-19-0014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
The heart relies on complex mechanisms that provide adequate myocardial oxygen supply in order to maintain its contractile function. At the cellular level, oxygen undergoes one electron reduction to superoxide through the action of different types of oxidases (e.g. xanthine oxidases, uncoupled nitric oxide synthases, NADPH oxidases or NOX). Locally generated oxygen-derived reactive species (ROS) are involved in various signaling pathways including cardiac adaptation to different types of physiological and pathophysiological stresses (e.g. hypoxia or overload). The specific effects of ROS and their regulation by oxidases are dependent on the amount of ROS generated and their specific subcellular localization. The NOX family of NADPH oxidases is a main source of ROS in the heart. Seven distinct Nox isoforms (NOX1–NOX5 and DUOX1 and 2) have been identified, of which NOX1, 2, 4 and 5 have been characterized in the cardiovascular system. For the purposes of this review, we will focus on the effects of NADPH oxidase 4 (NOX4) in the heart.
Collapse
Affiliation(s)
- Stephen P Gray
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| |
Collapse
|
28
|
Stevenson MD, Canugovi C, Vendrov AE, Hayami T, Bowles DE, Krause KH, Madamanchi NR, Runge MS. NADPH Oxidase 4 Regulates Inflammation in Ischemic Heart Failure: Role of Soluble Epoxide Hydrolase. Antioxid Redox Signal 2019; 31:39-58. [PMID: 30450923 PMCID: PMC6552006 DOI: 10.1089/ars.2018.7548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Oxidative stress is implicated in cardiomyocyte cell death and cardiac remodeling in the failing heart. The role of NADPH oxidase 4 (NOX4) in cardiac adaptation to pressure overload is controversial, but its function in myocardial ischemic stress has not been thoroughly elucidated. This study examined the function of NOX4 in the pathogenesis of ischemic heart failure, utilizing mouse models, cell culture, and human heart samples. Results:Nox4-/- mice showed a protective phenotype in response to permanent left anterior descending coronary artery ligation with smaller infarction area, lower cardiomyocyte cross-sectional area, higher capillary density, and less cell death versus wild-type (WT) mice. Nox4-/- mice had lower activity of soluble epoxide hydrolase (sEH), a potent regulator of inflammation. Nox4-/- mice also showed a 50% reduction in the number of infiltrating CD68+ macrophages in the peri-infarct zone versus WT mice. Adenoviral overexpression of NOX4 in cardiomyoblast cells increased sEH expression and activity and CCL4 and CCL5 levels; inhibition of sEH activity in NOX4 overexpressing cells attenuated the cytokine levels. Human hearts with ischemic cardiomyopathy showed adverse cardiac remodeling, increased NOX4 and sEH protein expression and CCL4 and CCL5 levels compared with control nonfailing hearts. Innovation and Conclusion: These data from the Nox4-/- mouse model and human heart tissues show for the first time that oxidative stress from increased NOX4 expression has a functional role in ischemic heart failure. One mechanism by which NOX4 contributes to ischemic heart failure is by increasing inflammatory cytokine production via enhanced sEH activity.
Collapse
Affiliation(s)
- Mark D Stevenson
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chandrika Canugovi
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Aleksandr E Vendrov
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Takayuki Hayami
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dawn E Bowles
- 2 Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Karl-Heinz Krause
- 3 Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nageswara R Madamanchi
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marschall S Runge
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Liu X, Qin Z, Liu C, Song M, Luo X, Zhao H, Qian D, Chen J, Huang L. Nox4 and soluble epoxide hydrolase synergistically mediate homocysteine-induced inflammation in vascular smooth muscle cells. Vascul Pharmacol 2019; 120:106544. [PMID: 30610956 DOI: 10.1016/j.vph.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Accepted: 01/01/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hyperhomocysteinemia leads to a vascular smooth muscle cell (VSMC) inflammatory response. Meanwhile, Nox4 dependent reactive oxygen species (ROS) signaling and soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids (EETs) are both involved in vascular inflammation. Herein, we hypothesized that Nox4 and soluble epoxide hydrolase cross regulated during homocysteine-induced VSMC inflammation. METHODS AND RESULTS In cultured VSMCs, the expression of the inflammatory factors VCAM1 and ICAM1 was measured by real-time PCR and Western blotting, while supernatant MCP1 was measured by ELISA. Upon VSMC stimulation with 50 μΜ homocysteine, we observed the VCAM1 and ICAM1 mRNA levels were increased by 1.15 and 1.0 folds, respectively. The MCP1 levels in the supernatant of cultured VSMCs treated with 100 μΜ increased to 1.76 folds. As expected, homocysteine induced Nox4 expression and Nox4-dependent ROS generation. The sEH expression was also upregulated in the presence of homocysteine in a dose-dependent manner. Furthermore, we knocked down Nox4 with siRNA. Knockdown of Nox4 decreased ROS generation and homocysteine-induced sEH expression. Overexpression of Nox4 with an adenovirus stimulated sEH expression. Similarly, knockdown or chemical inhibition of sEH blunted the upregulation of Nox4 by homocysteine. In vivo, in homocysteine-fed mice, concomitant upregulation of Nox4 and sEH was associated with increased VCAM1 and ICAM1 expression in the aortic wall. CONCLUSIONS The inflammatory response induced by homocysteine in VSMCs was accompanied by Nox4 and sEH upregulation. Nox4 and soluble epoxide hydrolase synergistically contribute to homocysteine-induced inflammation.
Collapse
Affiliation(s)
- Xi Liu
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zhexue Qin
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Chuan Liu
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Mingbao Song
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiaolin Luo
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Hongqing Zhao
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Dehui Qian
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jianfei Chen
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
30
|
Ogola BO, Zimmerman MA, Sure VN, Gentry KM, Duong JL, Clark GL, Miller KS, Katakam PVG, Lindsey SH. G Protein-Coupled Estrogen Receptor Protects From Angiotensin II-Induced Increases in Pulse Pressure and Oxidative Stress. Front Endocrinol (Lausanne) 2019; 10:586. [PMID: 31507536 PMCID: PMC6718465 DOI: 10.3389/fendo.2019.00586] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous work showed that the G protein-coupled estrogen receptor (GPER) is protective in the vasculature and kidneys during angiotensin (Ang) II-dependent hypertension by inhibiting oxidative stress. The goal of the current study was to assess the impact of GPER deletion on sex differences in Ang II-induced hypertension and oxidative stress. Male and female wildtype and GPER knockout mice were implanted with radiotelemetry probes for measurement of baseline blood pressure before infusion of Ang II (700 ng/kg/min) for 2 weeks. Mean arterial pressure was increased to the same extent in all groups, but female wildtype mice were protected from Ang II-induced increases in pulse pressure, aortic wall thickness, and Nox4 mRNA. In vitro studies using vascular smooth muscle cells found that pre-treatment with the GPER agonist G-1 inhibited Ang II-induced ROS and NADP/NADPH. Ang II increased while G-1 decreased Nox4 mRNA and protein. The effects of Ang II were blocked by losartan and Nox4 siRNA, while the effects of G-1 were inhibited by adenylyl cyclase inhibition and mimicked by phosphodiesterase inhibition. We conclude that during conditions of elevated Ang II, GPER via the cAMP pathway suppresses Nox4 transcription to limit ROS production and prevent arterial stiffening. Taken together with our previous work, this study provides insight into how acute estrogen signaling via GPER provides cardiovascular protection during Ang II hypertension and potentially other diseases characterized by increased oxidative stress.
Collapse
Affiliation(s)
- Benard O. Ogola
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | | | - Venkata N. Sure
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | - Kaylee M. Gentry
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | - Jennifer L. Duong
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | - Gabrielle L. Clark
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Kristin S. Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | | | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
- *Correspondence: Sarah H. Lindsey
| |
Collapse
|
31
|
Durgin BG, Straub AC. Redox control of vascular smooth muscle cell function and plasticity. J Transl Med 2018; 98:1254-1262. [PMID: 29463879 PMCID: PMC6102093 DOI: 10.1038/s41374-018-0032-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (SMC) play a major role in vascular diseases, such as atherosclerosis and hypertension. It has long been established in vitro that contractile SMC can phenotypically switch to function as proliferative and/or migratory cells in response to stimulation by oxidative stress, growth factors, and inflammatory cytokines. Reactive oxygen species (ROS) are oxidative stressors implicated in driving vascular diseases, shifting cell bioenergetics, and increasing SMC proliferation, migration, and apoptosis. In this review, we summarize our current knowledge of how disruptions to redox balance can functionally change SMC and how this may influence vascular disease pathogenesis. Specifically, we focus on our current understanding of the role of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 1, 4, and 5 in SMC function. We also review the evidence implicating mitochondrial fission in SMC phenotypic transitions and mitochondrial fusion in maintenance of SMC homeostasis. Finally, we discuss the importance of the redox regulation of the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway as a potential oxidative and therapeutic target for regulating SMC function.
Collapse
Affiliation(s)
- Brittany G Durgin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 2018; 132:1811-1836. [PMID: 30166499 DOI: 10.1042/cs20171459] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Chronic renal and vascular oxidative stress in association with an enhanced inflammatory burden are determinant processes in the development and progression of diabetic complications including cardiovascular disease (CVD), atherosclerosis and diabetic kidney disease (DKD). Persistent hyperglycaemia in diabetes mellitus increases the production of reactive oxygen species (ROS) and activates mediators of inflammation as well as suppresses antioxidant defence mechanisms ultimately contributing to oxidative stress which leads to vascular and renal injury in diabetes. Furthermore, there is increasing evidence that ROS, inflammation and fibrosis promote each other and are part of a vicious connection leading to development and progression of CVD and kidney disease in diabetes.
Collapse
|
33
|
Abstract
Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Daniel S Kikuchi
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Marina S Hernandes
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Qian Xu
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA.
| |
Collapse
|
34
|
Tong X, Hou X, Wason C, Kopel T, Cohen RA, Dember LM. Smooth Muscle Nitric Oxide Responsiveness and Clinical Maturation of Hemodialysis Arteriovenous Fistulae. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2095-2101. [PMID: 28822538 DOI: 10.1016/j.ajpath.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023]
Abstract
The arteriovenous fistula is the preferred type of hemodialysis vascular access for patients with end-stage renal disease, but a high proportion of newly created fistulas fail to mature for use. Stenosis caused by neointimal hyperplasia often is present in fistulas with maturation failure, suggesting that local mechanisms controlling vascular smooth muscle cell (SMC) migration and proliferation are important contributors to maturation failure. SMCs cultured from explants of vein tissue obtained at the time of fistula creation from 19 patients with end-stage renal disease were studied to determine whether smooth muscle responsiveness to nitric oxide is associated with fistula maturation outcomes. Nitric oxide-induced inhibition of smooth muscle cell migration, but not proliferation, was greater in cells from patients with subsequent fistula maturation success than from patients with subsequent fistula maturation failure (mean inhibition percentage, 17 versus 5.7, respectively; P = 0.035). Impaired nitric oxide responsiveness was associated with oxidation of the calcium regulatory protein, sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), and was reversed by overexpressing SERCA (1.8-fold increase in inhibition, P = 0.0128) or down-regulating Nox4-based NADPH oxidase (2.3-fold increase in inhibition; P = 0.005). Our data suggest that the nitric oxide responsiveness of SMC migration is associated with fistula maturation success and raises the possibility that therapeutic restoration of nitric oxide responsiveness through manipulation of local mediators may prevent fistula maturation failure.
Collapse
Affiliation(s)
- Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing, China; Vascular Biology Section, Boston University Medical Center, Boston, Massachusetts.
| | - Xiuyun Hou
- Vascular Biology Section, Boston University Medical Center, Boston, Massachusetts
| | - Christopher Wason
- Vascular Biology Section, Boston University Medical Center, Boston, Massachusetts
| | - Tal Kopel
- Nephrology Division, University of Montreal Hospital Centre, Hopital Saint-Luc, Montreal, Quebec, Canada
| | - Richard A Cohen
- Vascular Biology Section, Boston University Medical Center, Boston, Massachusetts
| | - Laura M Dember
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|
36
|
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:e41-e52. [DOI: 10.1161/atvbaha.117.309228] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Witold N. Nowak
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Jiacheng Deng
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Xiong Z. Ruan
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Qingbo Xu
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| |
Collapse
|
37
|
Hu P, Wu X, Khandelwal AR, Yu W, Xu Z, Chen L, Yang J, Weisbrod RM, Lee KSS, Seta F, Hammock BD, Cohen RA, Zeng C, Tong X. Endothelial Nox4-based NADPH oxidase regulates atherosclerosis via soluble epoxide hydrolase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1382-1391. [PMID: 28185955 DOI: 10.1016/j.bbadis.2017.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE Our goal was to investigate the mechanisms of endothelial Nox4 in regulating atherosclerosis. APPROACH AND RESULTS Atherosclerosis-prone conditions (disturbed blood flow, type I diabetes, and Western diet) downregulated endothelial Nox4 mRNA in arteries. To address whether the downregulated endothelial Nox4 was directly involved in the development of atherosclerosis, we generated mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), driven by the endothelial specific promoter Tie-2, on atherosclerosis-prone genetic background (ApoE deficient mice) to mimic the effect of decreased endothelial Nox4. Nox4DN significantly increased type I diabetes-induced aortic stiffness and atherosclerotic lesions. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly upregulated in Nox4DN endothelial cells (EC). Inhibition of sEH activity in Nox4DN EC suppressed inflammation and macrophage adhesion to EC. On the contrary, overexpression of endothelial wild type Nox4 suppressed sEH, ameliorated Western diet-induced atherosclerosis and decreased aortic stiffness. CONCLUSIONS Atherosclerosis-prone conditions downregulated endothelial Nox4 to accelerate the progress of atherosclerosis, at least in part, by upregulating sEH to enhance inflammation.
Collapse
Affiliation(s)
- Pingping Hu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Xiaojuan Wu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Alok R Khandelwal
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weimin Yu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert M Weisbrod
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kin Sing Stephen Lee
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
38
|
Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol 2017; 102:10-21. [PMID: 27986445 PMCID: PMC5625334 DOI: 10.1016/j.yjmcc.2016.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023]
Abstract
We recently reported that increased NADPH oxidase 4 (NOX4) expression and activity during aging results in enhanced cellular and mitochondrial oxidative stress, vascular inflammation, dysfunction, and atherosclerosis. The goal of the present study was to elucidate the molecular mechanism(s) for these effects and determine the importance of NOX4 modulation of proinflammatory gene expression in mouse vascular smooth muscle cells (VSMCs). A novel peptide-mediated siRNA transfection approach was used to inhibit Nox4 expression with minimal cellular toxicity. Using melittin-derived peptide p5RHH, we achieved significantly higher transfection efficiency (92% vs. 85% with Lipofectamine) and decreased toxicity (p<0.001 vs. Lipofectamine in MTT and p<0.0001 vs. Lipofectamine in LDH assays) in VSMCs. TGFβ1 significantly upregulates Nox4 mRNA (p<0.01) and protein (p<0.01) expression in VSMCs. p5RHH-mediated Nox4 siRNA transfection greatly attenuated TGFβ1-induced upregulation of Nox4 mRNA (p<0.01) and protein (p<0.0001) levels and decreased hydrogen peroxide production (p<0.0001). Expression of pro-inflammatory genes Ccl2, Ccl5, Il6, and Vcam1 was significantly upregulated in VSMCs in several settings cells isolated from aged vs. young wild-type mice, in atherosclerotic arteries of Apoe-/- mice, and atherosclerotic human carotid arteries and correlated with NOX4 expression. p5RHH-mediated Nox4 siRNA transfection significantly attenuated the expression of these pro-inflammatory genes in TGFβ1-treated mouse VSMCs, with the highest degree of inhibition in the expression of Il6. p5RHH peptide-mediated knockdown of TGFβ-activated kinase 1 (TAK1, also known as Map3k7), Jun, and Rela, but not Nfkb2, downregulated TGFβ1-induced Nox4 expression in VSMCs. Together, these data demonstrate that increased expression and activation of NOX4, which might result from increased TGFβ1 levels seen during aging, induces a proinflammatory phenotype in VSMCs, enhancing atherosclerosis.
Collapse
Affiliation(s)
- Andrey Lozhkin
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Aleksandr E Vendrov
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Hua Pan
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Nageswara R Madamanchi
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Marschall S Runge
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA.
| |
Collapse
|
39
|
Di Marco E, Gray S, Chew P, Kennedy K, Cooper M, Schmidt H, Jandeleit-Dahm K. Differential effects of NOX4 and NOX1 on immune cell-mediated inflammation in the aortic sinus of diabetic ApoE−/− mice. Clin Sci (Lond) 2016; 130:1363-1374. [DOI: 10.1042/cs20160249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Oxidative stress and inflammation are central mediators of atherosclerosis particularly in the context of diabetes. The potential interactions between the major producers of vascular reactive oxygen species (ROS), NADPH oxidase (NOX) enzymes and immune-inflammatory processes remain to be fully elucidated. In the present study we investigated the roles of the NADPH oxidase subunit isoforms, NOX4 and NOX1, in immune cell activation and recruitment to the aortic sinus atherosclerotic plaque in diabetic ApoE−/− mice. Plaque area analysis showed that NOX4- and NOX1-derived ROS contribute to atherosclerosis in the aortic sinus following 10 weeks of diabetes. Immunohistochemical staining of the plaques revealed that NOX4-derived ROS regulate T-cell recruitment. In addition, NOX4-deficient mice showed a reduction in activated CD4+ T-cells in the draining lymph nodes of the aortic sinus coupled with reduced pro-inflammatory gene expression in the aortic sinus. Conversely, NOX1-derived ROS appeared to play a more important role in macrophage accumulation. These findings demonstrate distinct roles for NOX4 and NOX1 in immune-inflammatory responses that drive atherosclerosis in the aortic sinus of diabetic mice.
Collapse
Affiliation(s)
- Elyse Di Marco
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| | - Stephen P. Gray
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| | - Phyllis Chew
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Kit Kennedy
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Mark E. Cooper
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Harald H.H.W. Schmidt
- Department of Pharmacology & Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health & Life Science, Maastricht University, The Netherlands
| | - Karin A.M. Jandeleit-Dahm
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
40
|
Di Marco E, Gray SP, Kennedy K, Szyndralewiez C, Lyle AN, Lassègue B, Griendling KK, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KAM. NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis. Free Radic Biol Med 2016; 97:556-567. [PMID: 27445103 PMCID: PMC5446082 DOI: 10.1016/j.freeradbiomed.2016.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/03/2016] [Accepted: 07/16/2016] [Indexed: 12/15/2022]
Abstract
Smooth muscle cell (SMC) proliferation and fibrosis contribute to the development of advanced atherosclerotic lesions. Oxidative stress caused by increased production or unphysiological location of reactive oxygen species (ROS) is a known major pathomechanism. However, in atherosclerosis, in particular under hyperglycaemic/diabetic conditions, the hydrogen peroxide-producing NADPH oxidase type 4 (NOX4) is protective. Here we aim to elucidate the mechanisms underlying this paradoxical atheroprotection of vascular smooth muscle NOX4 under conditions of normo- and hyperglycaemia both in vivo and ex vivo. Following 20-weeks of streptozotocin-induced diabetes, Apoe(-/-) mice showed a reduction in SM-alpha-actin and calponin gene expression with concomitant increases in platelet-derived growth factor (PDGF), osteopontin (OPN) and the extracellular matrix (ECM) protein fibronectin when compared to non-diabetic controls. Genetic deletion of Nox4 (Nox4(-/)(-)Apoe(-/-)) exacerbated diabetes-induced expression of PDGF, OPN, collagen I, and proliferation marker Ki67. Aortic SMCs isolated from NOX4-deficient mice exhibited a dedifferentiated phenotype including loss of contractile gene expression, increased proliferation and ECM production as well as elevated levels of NOX1-associated ROS. Mechanistic studies revealed that elevated PDGF signalling in NOX4-deficient SMCs mediated the loss of calponin and increase in fibronectin, while the upregulation of NOX1 was associated with the increased expression of OPN and markers of proliferation. These findings demonstrate that NOX4 actively regulates SMC pathophysiological responses in diabetic Apoe(-/-) mice and in primary mouse SMCs through the activities of PDGF and NOX1.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/etiology
- Atherosclerosis/pathology
- Becaplermin
- Cell Proliferation
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/pathology
- Fibrosis
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/physiology
- NADPH Oxidase 1/metabolism
- NADPH Oxidase 4/genetics
- NADPH Oxidase 4/metabolism
- Osteopontin/genetics
- Osteopontin/metabolism
- Proto-Oncogene Proteins c-sis/genetics
- Proto-Oncogene Proteins c-sis/metabolism
- Reactive Oxygen Species/metabolism
- Superoxides/metabolism
Collapse
Affiliation(s)
- Elyse Di Marco
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Stephen P Gray
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Kit Kennedy
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | | | - Alicia N Lyle
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, USA
| | - Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, USA
| | - Mark E Cooper
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology & Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health & Life Science, Maastricht University, The Netherlands
| | - Karin A M Jandeleit-Dahm
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|