1
|
Zhang H, Zhou W, Wang X, Men H, Wang J, Xu J, Zhou S, Liu Q, Cai L. Exacerbation by knocking-out metallothionein gene of obesity-induced cardiac remodeling is associated with the activation of CARD9 signaling. Int J Biol Sci 2025; 21:1032-1046. [PMID: 39897024 PMCID: PMC11781176 DOI: 10.7150/ijbs.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity increases the risk of metabolic syndrome including insulin resistance, dyslipidemia, and cardiovascular disease. We demonstrated insulin resistance, cardiac hypertrophy, and cardiac inflammation in an obese mouse model induced by a high-fat diet (HFD). Caspase recruitment domain-containing protein 9 (CARD9) and B-cell lymphoma/leukemia 10 (BCL10) were upregulated, and p38 MAPK was activated in these mice. Zinc supplementation prevented these changes with upregulation of metallothionein (MT). Deletion of MT exacerbated palmitate-triggered expression of BCL10 and p38 MAPK activation and eliminated the protective benefits of zinc in palmitate-treated cardiomyocytes. Here we further investigated the mechanisms by which endogenous MT expression affects HFD-induced cardiac remodeling and the CARD9/BCL10/p38 MAPK pathway. Male MT knockout and 129S wild-type mice were assigned to receive either a normal diet or a HFD from 8-week-age for 18 weeks. MT knockout (KO) aggravated HFD-induced obesity and systemic metabolic disorder, reflected by increased body weight, perirenal white adipose tissue, and plasma cholesterol, and cardiac hypertrophy and fibrosis. Obese MT-KO mice had abundant cardiac macrophages, upregulated cardiac proinflammatory cytokines, chemokines, adhesion molecules, CARD9, and BCL10 and activated NF-κB. MT-KO exacerbated HFD-induced trace metal dyshomeostasis and oxidative stress. MT-KO combined with HFD-induced obesity synergistically promotes cardiac remodeling, possibly via trace metal dyshomeostasis-induced oxidative stress to trigger CARD9/BCL10-mediated NF-κB activation.
Collapse
Affiliation(s)
- Haina Zhang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
- Department of Cardiology, The Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Wenqian Zhou
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Xiang Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Hongbo Men
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Jiqun Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Shanshan Zhou
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quan Liu
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
- Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
2
|
Song K, Liang D, Xiao D, Kang A, Ren Y. Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Mol Med Rep 2024; 30:199. [PMID: 39239741 PMCID: PMC11411234 DOI: 10.3892/mmr.2024.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.
Collapse
Affiliation(s)
- Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dingqi Xiao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
3
|
Qian J, Wang Q, Xu J, Liang S, Zheng Q, Guo X, Luo W, Huang W, Long X, Min J, Wang Y, Wu G, Liang G. Macrophage OTUD1-CARD9 axis drives isoproterenol-induced inflammatory heart remodelling. Clin Transl Med 2024; 14:e1790. [PMID: 39118286 PMCID: PMC11310286 DOI: 10.1002/ctm2.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chronic inflammation contributes to the progression of isoproterenol (ISO)-induced heart failure (HF). Caspase-associated recruitment domain (CARD) families are crucial proteins for initiation of inflammation in innate immunity. Nonetheless, the relevance of CARDs in ISO-driven cardiac remodelling is little explored. METHODS This study utilized Card9-/- mice and reconstituted C57BL/6 mice with either Card9-/- or Otud1-/- marrow-derived cells. Mechanistic studies were conducted in primary macrophages, cardiomyocytes, fibroblasts and HEK-293T cells. RESULTS Here, we demonstrated that CARD9 was substantially upregulated in murine hearts infused with ISO. Either whole-body CARD9 knockout or myeloid-specific CARD9 deletion inhibited ISO-driven murine cardiac inflammation, remodelling and dysfunction. CARD9 deficiency in macrophages prevented ISO-induced inflammation and alleviated remodelling changes in cardiomyocytes and fibroblasts. Mechanistically, we found that ISO enhances the activity of CARD9 by upregulating ovarian tumour deubiquitinase 1 (OTUD1) in macrophages. We further demonstrated that OTUD1 directly binds to the CARD9 and then removes the K33-linked ubiquitin from CARD9 to promote the assembly of the CARD9-BCL10-MALT1 (CBM) complex, without affecting CARD9 stability. The ISO-activated CBM complex results in NF-κB activation and macrophage-based inflammatory gene overproduction, which then enhances cardiomyocyte hypertrophy and fibroblast fibrosis, respectively. Myeloid-specific OTUD1 deletion also attenuated ISO-induced murine cardiac inflammation and remodelling. CONCLUSIONS These results suggested that the OTUD1-CARD9 axis is a new pro-inflammatory signal in ISO-challenged macrophages and targeting this axis has a protective effect against ISO-induced HF. KEY POINTS Macrophage CARD9 was elevated in heart tissues of mice under chronic ISO administration. Either whole-body CARD9 knockout or myeloid-specific CARD9 deficiency protected mice from ISO-induced inflammatory heart remodeling. ISO promoted the assembly of CBM complex and then activated NF-κB signaling in macrophages through OTUD1-mediated deubiquitinating modification. OTUD1 deletion in myeloid cells protected hearts from ISO-induced injuries in mice.
Collapse
Affiliation(s)
- Jinfu Qian
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qinyan Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Jiachen Xu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shiqi Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qingsong Zheng
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiaocheng Guo
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Wu Luo
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Weijian Huang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaohong Long
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Julian Min
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yi Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Gaojun Wu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guang Liang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
4
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
5
|
Kowluru A. Regulatory roles of CARD9-BCL10-Rac1 (CBR) signalome in islet β-cell function in health and metabolic stress: Is there room for MALT1? Biochem Pharmacol 2023; 218:115889. [PMID: 37991197 PMCID: PMC10872519 DOI: 10.1016/j.bcp.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
It is widely accepted that pancreatic islet β-cell failure and the onset of type 2 diabetes (T2DM) constitute an intricate interplay between the genetic expression of the disease and a host of intracellular events including increased metabolic (oxidative, endoplasmic reticulum) stress under the duress of glucolipotoxicity. Emerging evidence implicates unique roles for Caspase Recruitment Domain containing protein 9 (CARD9) in the onset of metabolic diseases, including obesity and insulin resistance. Mechanistically, CARD9 has been implicated in the regulation of p38MAPK and NFkB signaling pathways culminating in cellular dysfunction. Several regulatory factors, including B-cell lymphoma/leukemia 10 (BCL10) have been identified as modulators of CARD9 function in multiple cell types. Despite this evidence on regulatory roles of CARD9-BCL10 signalome in the onset of various pathological states, putative roles of this signaling module in islet β-cell dysfunction in metabolic stress remain less understood. This brief review is aimed at highlighting roles for CARD9 in islet β-cell function under acute (physiological insulin secretion) and long-term (cell dysfunction) exposure to glucose. Emerging roles of other signaling proteins, such as Rac1, BCL10 and MALT1 as contributors to CARD9 signaling in the islet β-cells are also reviewed. Potential avenues for future research toward the development of novel therapeutics for the prevention CARD9-BCL10-Rac1 (CBR) signalome-induced β-cell defects under metabolic stress are discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
7
|
Hali M, Pinto N, Gleason N, Kowluru A. Regulatory Roles of Histone Deacetylation in Metabolic Stress-Induced Expression of Caspase Recruitment Domain-Containing Protein 9 (CARD9) in Pancreatic β-Cells. Int J Mol Sci 2023; 24:15994. [PMID: 37958977 PMCID: PMC10647342 DOI: 10.3390/ijms242115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
CARD9, a scaffolding protein, has been implicated in the pathogenesis of metabolic diseases, including obesity and diabetes. We recently reported novel roles for CARD9 in islet β-cell dysregulation under duress of gluco (HG)- and glucolipotoxic (GLT) stress. CARD9 expression was also increased in β-cells following exposure to HG and GLT stress. The current study is aimed at understanding the putative roles of histone deacetylation in HG- and GLT-induced expression of CARD9. Using two structurally distinct inhibitors of histone deacetylases (HDACs), namely trichostatin (TSA) and suberoylanilide hydroxamic acid (SAHA), we provide the first evidence to suggest that the increased expression of CARD9 seen under duress of HG and GLT stress is under the regulatory control of histone deacetylation. Interestingly, the expression of protein kinase Cδ (PKCδ), a known upstream regulator of CARD9 activation, is also increased under conditions of metabolic stress. However, it is resistant to TSA and SAHA, suggesting that it is not regulated via histone deacetylation. Based on these data, we propose that targeting the appropriate HDACs, which mediate the expression (and function) of CARD9, might be the next step to further enhance our current understanding of the roles of CARD9 in islet dysfunction under metabolic stress and diabetes.
Collapse
Affiliation(s)
- Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (M.H.); (N.P.); (N.G.)
| | - Nelson Pinto
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (M.H.); (N.P.); (N.G.)
| | - Noah Gleason
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (M.H.); (N.P.); (N.G.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (M.H.); (N.P.); (N.G.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Liu Y, Shao YH, Zhang JM, Wang Y, Zhou M, Li HQ, Zhang CC, Yu PJ, Gao SJ, Wang XR, Jia LX, Piao CM, Du J, Li YL. Macrophage CARD9 mediates cardiac injury following myocardial infarction through regulation of lipocalin 2 expression. Signal Transduct Target Ther 2023; 8:394. [PMID: 37828006 PMCID: PMC10570328 DOI: 10.1038/s41392-023-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Immune cell infiltration in response to myocyte death regulates extracellular matrix remodeling and scar formation after myocardial infarction (MI). Caspase-recruitment domain family member 9 (CARD9) acts as an adapter that mediates the transduction of pro-inflammatory signaling cascades in innate immunity; however, its role in cardiac injury and repair post-MI remains unclear. We found that Card9 was one of the most upregulated Card genes in the ischemic myocardium of mice. CARD9 expression increased considerably 1 day post-MI and declined by day 7 post-MI. Moreover, CARD9 was mainly expressed in F4/80-positive macrophages. Card9 knockout (KO) led to left ventricular function improvement and infarct scar size reduction in mice 28 days post-MI. Additionally, Card9 KO suppressed cardiomyocyte apoptosis in the border region and attenuated matrix metalloproteinase (MMP) expression. RNA sequencing revealed that Card9 KO significantly suppressed lipocalin 2 (Lcn2) expression post-MI. Both LCN2 and the receptor solute carrier family 22 member 17 (SL22A17) were detected in macrophages. Subsequently, we demonstrated that Card9 overexpression increased LCN2 expression, while Card9 KO inhibited necrotic cell-induced LCN2 upregulation in macrophages, likely through NF-κB. Lcn2 KO showed beneficial effects post-MI, and recombinant LCN2 diminished the protective effects of Card9 KO in vivo. Lcn2 KO reduced MMP9 post-MI, and Lcn2 overexpression increased Mmp9 expression in macrophages. Slc22a17 knockdown in macrophages reduced MMP9 release with recombinant LCN2 treatment. In conclusion, our results demonstrate that macrophage CARD9 mediates the deterioration of cardiac function and adverse remodeling post-MI via LCN2.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yi-Hui Shao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jun-Meng Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ying Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hui-Qin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Cong-Cong Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Shi-Juan Gao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Xue-Rui Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yu-Lin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
9
|
Zhu Q, Liu X, Wu H, Yang C, Wang M, Chen F, Cui Y, Hao H, Hill MA, Liu Z. CARD9 deficiency improves the recovery of limb ischemia in mice with ambient fine particulate matter exposure. Front Cardiovasc Med 2023; 10:1125717. [PMID: 36860276 PMCID: PMC9968734 DOI: 10.3389/fcvm.2023.1125717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Exposure to fine particulate matter (PM) is a significant risk for cardiovascular diseases largely due to increased reactive oxygen species (ROS) production and inflammation. Caspase recruitment domain (CARD)9 is critically involved in innate immunity and inflammation. The present study was designed to test the hypothesis that CARD9 signaling is critically involved in PM exposure-induced oxidative stress and impaired recovery of limb ischemia. Methods and results Critical limb ischemia (CLI) was created in male wildtype C57BL/6 and age matched CARD9 deficient mice with or without PM (average diameter 2.8 μm) exposure. Mice received intranasal PM exposure for 1 month prior to creation of CLI and continued for the duration of the experiment. Blood flow and mechanical function were evaluated in vivo at baseline and days 3, 7, 14, and 21 post CLI. PM exposure significantly increased ROS production, macrophage infiltration, and CARD9 protein expression in ischemic limbs of C57BL/6 mice in association with decreased recovery of blood flow and mechanical function. CARD9 deficiency effectively prevented PM exposure-induced ROS production and macrophage infiltration and preserved the recovery of ischemic limb with increased capillary density. CARD9 deficiency also significantly attenuated PM exposure-induced increase of circulating CD11b+/F4/80+ macrophages. Conclusion The data indicate that CARD9 signaling plays an important role in PM exposure-induced ROS production and impaired limb recovery following ischemia in mice.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hao Wu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Chunlin Yang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Zhenguo Liu ✉
| |
Collapse
|
10
|
Li S, Ma J, Pang X, Liang Y, Li X, Wang M, Yuan J, Pan Y, Fu Y, Laher I. Time-dependent Effects of Moderate- and High-intensity Exercises on Myocardial Transcriptomics. Int J Sports Med 2022; 43:1214-1225. [PMID: 36063823 DOI: 10.1055/a-1885-4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heart is a highly adaptable organ that responds to changes in functional requirements due to exposure to internal and external stimuli. Physical exercise has unique stimulatory effects on the myocardium in both healthy individuals and those with health disorders, where the effects are primarily determined by the intensity and recovery time of exercise. We investigated the time-dependent effects of different exercise intensities on myocardial transcriptional expression in rats. Moderate intensity exercise induced more differentially expressed genes in the myocardium than high intensity exercise, while 16 differentially expressed genes were down-regulated by moderate intensity exercise but up-regulated by high intensity exercise at 12 h post- exercise. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that moderate intensity exercise specifically regulated gene expression related to heart adaptation, energy metabolism, and oxidative stress, while high intensity exercise specifically regulated gene expression related to immunity, inflammation, and apoptosis. Moreover, there was increased expression of Tbx5, Casq1, Igsf1, and Ddah1 at all time points after moderate intensity exercise, while there was increased expression of Card9 at all time points after high intensity exercise. Our study provides a better understanding of the intensity dependent effects of physical exercise of the molecular mechanisms of cardiac adaptation to physical exercise.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaole Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Vomhof-DeKrey EE, Singhal S, Singhal SK, Stover AD, Rajpathy O, Preszler E, Garcia L, Basson MD. RNA Sequencing of Intestinal Enterocytes Pre- and Post-Roux-en-Y Gastric Bypass Reveals Alteration in Gene Expression Related to Enterocyte Differentiation, Restitution, and Obesity with Regulation by Schlafen 12. Cells 2022; 11:3283. [PMID: 36291149 PMCID: PMC9601224 DOI: 10.3390/cells11203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The intestinal lining renews itself in a programmed fashion that can be affected by adaptation to surgical procedures such as gastric bypass. METHODS To assess adaptive mechanisms in the human intestine after Roux-en-Y gastric bypass (RYGB), we biopsied proximal jejunum at the anastomotic site during surgery to establish a baseline and endoscopically re-biopsied the same area 6-9 months after bypass for comparison. Laser microdissection was performed on pre- and post-RYGB biopsies to isolate enterocytes for RNA sequencing. RESULTS RNA sequencing suggested significant decreases in gene expression associated with G2/M DNA damage checkpoint regulation of the cell cycle pathway, and significant increases in gene expression associated with the CDP-diacylglycerol biosynthesis pathway TCA cycle II pathway, and pyrimidine ribonucleotide salvage pathway after RYGB. Since Schlafen 12 (SLFN12) is reported to influence enterocytic differentiation, we stained mucosa for SLFN12 and observed increased SLFN12 immunoreactivity. We investigated SLFN12 overexpression in HIEC-6 and FHs 74 Int intestinal epithelial cells and observed similar increased expression of the following genes that were also increased after RYGB: HES2, CARD9, SLC19A2, FBXW7, STXBP4, SPARCL1, and UTS. CONCLUSIONS Our data suggest that RYGB promotes SLFN12 protein expression, cellular mechanism and replication pathways, and genes associated with differentiation and restitution (HES2, CARD9, SLC19A2), as well as obesity-related genes (FBXW7, STXBP4, SPARCL1, UTS).
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Allie D. Stover
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Odele Rajpathy
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Elizabeth Preszler
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Luis Garcia
- Sanford Health Clinic, Sioux Falls, ND 57117, USA
| | - Marc D. Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
12
|
Getiye Y, Rice TA, Phillips BD, Carrillo DF, He G. Dysregulated lipolysis and lipophagy in lipid droplets of macrophages from high fat diet-fed obese mice. J Cell Mol Med 2022; 26:4825-4836. [PMID: 35962606 PMCID: PMC9465182 DOI: 10.1111/jcmm.17513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is associated with lipid droplet (LD) accumulation, dysregulated lipolysis and chronic inflammation. Previously, the caspase recruitment domain‐containing protein 9 (CARD9) has been identified as a potential contributor to obesity‐associated abnormalities including cardiac dysfunction. In the current study, we explored a positive feedback signalling cycle of dysregulated lipolysis, CARD9‐associated inflammation, impaired lipophagy and excessive LD accumulation in sustaining the chronic inflammation associated with obesity. C57BL/6 WT and CARD9−/− mice were fed with normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5 months. Staining of LDs from peritoneal macrophages (PMs) revealed a significant increase in the number of cells with LD and the number of LD per cell in the HFD‐fed WT but not CARD9−/− obese mice. Rather, CARD9 KO significantly increased the mean LD size. WT obese mice showed down regulation of lipolytic proteins with increased diacylglycerol (DAG) content, and CARD9 KO normalized DAG with restored lipolytic protein expression. The build‐up of DAG in the WT obese mice is further associated with activation of PKCδ, NF‐κB and p38 MAPK inflammatory signalling in a CARDD9‐dependent manner. Inhibition of adipose triglyceride lipase (ATGL) by Atglistatin (Atg) resulted in similar effects as in CARD9−/− mice. Interestingly, CARD9 KO and Atg treatment enhanced lipophagy. In conclusion, HFD feeding likely initiated a positive feedback signalling loop from dysregulated lipolysis, CARD9‐dependent inflammation, impaired lipophagy, to excessive LD accumulation and sustained inflammation. CARD9 KO and Atg treatment protected against the chronic inflammation by interrupting this feedforward cycle.
Collapse
Affiliation(s)
- Yohannes Getiye
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Tatiana Angel Rice
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Brandon D Phillips
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Daniel Fidel Carrillo
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Guanglong He
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
13
|
Zhao L, Lan Z, Peng L, Wan L, Liu D, Tan X, Tang C, Chen G, Liu H. Triptolide promotes autophagy to inhibit mesangial cell proliferation in IgA nephropathy via the CARD9/p38 MAPK pathway. Cell Prolif 2022; 55:e13278. [PMID: 35733381 PMCID: PMC9436901 DOI: 10.1111/cpr.13278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Mesangial cell proliferation is the most basic pathological feature of immunoglobulin A nephropathy (IgAN); however, the specific underlying mechanism and an appropriate therapeutic strategy are yet to be unearthed. This study aimed to investigate the therapeutic effect of triptolide (TP) on IgAN and the mechanism by which TP regulates autophagy and proliferation of mesangial cells through the CARD9/p38 MAPK pathway. Methods We established a TP‐treated IgAN mouse model and produced IgA1‐induced human mesangial cells (HMC) and divided them into control, TP, IgAN, and IgAN+TP groups. The levels of mesangial cell proliferation (PCNA, cyclin D1, cell viability, and cell cycle) and autophagy (P62, LC3 II, and autophagy flux rate) were measured, with the autophagy inhibitor 3‐Methyladenine used to explore the relationship between autophagy and proliferation. We observed CARD9 expression in renal biopsies from patients and analyzed its clinical significance. CARD9 siRNA and overexpression plasmids were constructed to investigate the changes in mesangial cell proliferation and autophagy as well as the expression of CARD9 and p‐p38 MAPK/p38 MAPK following TP treatment. Results Administering TP was safe and effectively alleviated mesangial cell proliferation in IgAN mice. Moreover, TP inhibited IgA1‐induced HMC proliferation by promoting autophagy. The high expression of CARD9 in IgAN patients was positively correlated with the severity of HMC proliferation. CARD9/p38 MAPK was involved in the regulation of HMC autophagy and proliferation, and TP promoted autophagy to inhibit HMC proliferation by downregulating the CARD9/p38 MAPK pathway in IgAN. Conclusion TP promotes autophagy to inhibit mesangial cell proliferation in IgAN via the CARD9/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zhixin Lan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Liang Peng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xia Tan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
14
|
Getiye Y, Peterson MR, Phillips BD, Carrillo D, Bisha B, He G. E-cigarette exposure with or without heating the e-liquid induces differential remodeling in the lungs and right heart of mice. J Mol Cell Cardiol 2022; 168:83-95. [PMID: 35489388 DOI: 10.1016/j.yjmcc.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 01/12/2023]
Abstract
Various cardiopulmonary pathologies associated with electronic cigarette (EC) vaping have been reported. This study investigated the differential adverse effects of heating-associated by-products versus the intact components of EC aerosol to the lungs and heart of mice. We further dissected the roles of caspase recruitment domain-containing protein 9 (CARD9)-associated innate immune response and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in EC exposure-induced cardiopulmonary injury. C57BL/6 wild type (WT), CARD9-/-, and NLRP3-/- mice were exposed to EC aerosol 3 h/day, 5 days/week for 6 month with or without heating the e-liquid with exposure to ambient air as the control. In WT mice, EC exposure with heating (EwH) significantly increased right ventricle (RV) free wall thickness at systole and diastole. However, EC exposure without heating (EwoH) caused a significant decrease in the wall thickness at systole. RV fractional shortening was also markedly reduced following EwH in WT and NLRP3-/- mice. Further, EwH activated NF-κB and p38 MAPK inflammatory signaling in the lungs, but not in the RV, in a CARD9- and NLRP3-dependent manner. Levels of circulatory inflammatory mediators were also elevated following EwH, indicating systemic inflammation. Moreover, EwoH activated TGF-β1/SMAD2/3/α-SMA fibrosis signaling in the lungs but not the RV of WT mice. In conclusion, EC aerosol exposure following EwH or EwoH induced differential cardiopulmonary remodeling and CARD9 innate immune and NLRP3 inflammasome contributed to the adverse effects.
Collapse
Affiliation(s)
- Yohannes Getiye
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Matthew R Peterson
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Brandon D Phillips
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel Carrillo
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Bledar Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Guanglong He
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
15
|
Gamage S, Hali M, Chen F, Kowluru A. CARD9 Mediates Pancreatic Islet Beta-Cell Dysfunction Under the Duress of Hyperglycemic Stress. Cell Physiol Biochem 2022; 56:120-137. [PMID: 35362297 PMCID: PMC9150799 DOI: 10.33594/000000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Published evidence implicates Caspase recruitment domain containing protein 9 (CARD9) in innate immunity. Given its recently suggested roles in obesity and insulin resistance, we investigated its regulatory role(s) in the onset of islet beta cell dysfunction under chronic hyperglycemic (metabolic stress) conditions. METHODS Islets from mouse pancreas were isolated by the collagenase digestion method. Expression of CARD9 was suppressed in INS-1 832/13 cells by siRNA transfection using the DharmaFect1 reagent. The degree of activation of Rac1 was assessed by a pull-down assay kit. Interactions between CARD9, RhoGDIβ and Rac1 under metabolic stress conditions were determined by co-immunoprecipitation assay. The degree of phosphorylation of stress kinases was assessed using antibodies directed against phosphorylated forms of the respective kinases. RESULTS CARD9 expression is significantly increased following exposure to high glucose, not to mannitol (both at 20 mM; 24 hrs.) in INS-1 832/13 cells. siRNA-mediated knockdown of CARD9 significantly attenuated high glucose-induced activation of Rac1 and phosphorylation of p38MAPK and p65 subunit of NF-κB (RelA), without significantly impacting high glucose-induced effects on JNK1/2 and ERK1/2 activities. CARD9 depletion also suppressed high glucose-induced CHOP expression (a marker for endoplasmic reticulum stress) in these cells. Co-immunoprecipitation studies revealed increased association between CARD9-RhoGDIβ and decreased association between RhoGDIβ-Rac1 in cells cultured under high glucose conditions. CONCLUSION Based on these data, we conclude that CARD9 regulates activation of Rac1-p38MAPK-NFκB signaling pathway leading to functional abnormalities in beta cells under metabolic stress conditions.
Collapse
Affiliation(s)
- Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Stony Brook Cancer Center, and Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA,
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Alrefaie Z, Awad H, Alsolami K, Hamed EA. Uncoupling proteins: are they involved in vitamin D3 protective effect against high-fat diet-induced cardiac apoptosis in rats? Arch Physiol Biochem 2022; 128:438-446. [PMID: 31794287 DOI: 10.1080/13813455.2019.1690526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to assess the impact of high-fat diet (HFD) and vitamin D3 supplementation on cardiac apoptosis, inflammation, oxidative stress, and cardiac uncoupling proteins (UCPs) 2&3 expression. Forty rats were fed either (45%) or (10%) fat diet with or without vitamin D3 (500 U/kg/day) for 6 months, then cardiac tissue expression of Bax, Bcl2, Fas, Fas-L (markers for apoptotic pathways), TNF-α, MDA7, GPX1 (inflammatory and oxidative markers) and UCP 2&3 were assessed. Results revealed the enhancement of intrinsic and extrinsic cardiomyocyte apoptosis cascades and increased inflammatory and oxidative burdens on the heart in HFD rats. Downregulation of UCP2 and upregulation of UCP3 gene expression at 6 months. After vitamin D3 supplementation with HFD, cardiac apoptotic, inflammatory and oxidative markers were mitigated and expression of UCP3 was downregulated and UCP2 was upregulated. This work highlights the novel cardioprotective effect of vitamin D3 in the experimental model of HFD feeding through the downregulation of UCP3.
Collapse
Affiliation(s)
- Zienab Alrefaie
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam Awad
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadeejah Alsolami
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enas A Hamed
- Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Liu X, Jiang B, Hao H, Liu Z. CARD9 Signaling, Inflammation, and Diseases. Front Immunol 2022; 13:880879. [PMID: 35432375 PMCID: PMC9005907 DOI: 10.3389/fimmu.2022.880879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Caspase-recruitment domain 9 (CARD9) protein is expressed in many cells especially in immune cells, and is critically involved in the function of the innate and adaptive immune systems through extensive interactions between CARD9 and other signaling molecules including NF-κB and MAPK. CARD9-mediated signaling plays a central role in regulating inflammatory responses and oxidative stress through the productions of important cytokines and chemokines. Abnormalities of CARD9 and CARD9 signaling or CARD9 mutations or polymorphism are associated with a variety of pathological conditions including infections, inflammation, and autoimmune disorders. This review focuses on the function of CARD9 and CARD9-mediated signaling pathways, as well as interactions with other important signaling molecules in different cell types and the relations to specific disease conditions including inflammatory diseases, infections, tumorigenesis, and cardiovascular pathologies.
Collapse
Affiliation(s)
- Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bimei Jiang
- Department of Pathophysiology, Central South University, Changsha, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Zhang H, Wang Y, Men H, Zhou W, Zhou S, Liu Q, Cai L. CARD9 Regulation and its Role in Cardiovascular Diseases. Int J Biol Sci 2022; 18:970-982. [PMID: 35173530 PMCID: PMC8771857 DOI: 10.7150/ijbs.65979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 01/11/2023] Open
Abstract
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor protein expressed on myeloid cells and located downstream of pattern recognition receptors (PRRs), which transduces signals involved in innate immunity. CARD9 deficiency is associated with increased susceptibility to various fungal diseases. Increasing evidence shows that CARD9 mediates the activation of p38 MAPK, NF-κB, and NLRP3 inflammasome in various CVDs and then promotes the production of proinflammatory cytokines and chemokines, which contribute to cardiac remodeling and cardiac dysfunction in certain cardiovascular diseases (CVDs). Moreover, CARD9-mediated anti-apoptosis and autophagy are implicated in the progression of CVDs. Here, we summarize the structure and function of CARD9 in innate immunity and its various roles in inflammation, apoptosis, and autophagy in the pathogenesis of CVDs. Furthermore, we discuss the potential therapies targeting CARD9 to prevent CVDs and raise some issues for further exploring the role of CARD9 in CVDs.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Yeling Wang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Hongbo Men
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Wenqian Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Shanshan Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quan Liu
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| |
Collapse
|
19
|
Kang MS, Park CY, Lee GY, Cho DH, Kim SJ, Han SN. Effects of in vitro vitamin D treatment on function of T cells and autophagy mechanisms in high-fat diet-induced obese mice. Nutr Res Pract 2021; 15:673-685. [PMID: 34858547 PMCID: PMC8601947 DOI: 10.4162/nrp.2021.15.6.673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/10/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is associated with the impaired regulation of T cells characterized by increased numbers of Th1 and Th17 cells and the dysregulation of vitamin D metabolism. Both obesity and vitamin D have been reported to affect autophagy; however, a limited number of studies have investigated the effects of vitamin D on T cell autophagy in obese mice. Therefore, we aimed to determine whether in vitro treatment with vitamin D affects the proliferation, function, and autophagy of T cells from obese and control mice. MATERIALS/METHODS Five-week-old male C57BL/6 mice were fed control or high-fat diets (10% or 45% kcal fat: CON or HFDs, respectively) for 12 weeks. Purified T cells were stimulated with anti-CD3 and anti-CD28 monoclonal antibodies and cultured with either 10 nM 1,25(OH)2D3 or 0.1% ethanol (vehicle control). The proliferative response; expression of CD25, Foxp3, RORγt, and autophagy-related proteins (LC3A/B, SQSTM1/P62, BECLIN-1, ATG12); and the production of interferon (IFN)-γ, interleukin (IL)-4, IL-17A, and IL-10 by T cells were measured. RESULTS Compared with the CON group, T cell proliferation tended to be lower, and the production of IFN-γ was higher in the HFD group. IL-17A production was reduced by 1,25(OH)2D3 treatment in both groups. The LC3 II/I ratio was higher in the HFD group than the CON group, but P62 did not differ. We observed no effect of vitamin D treatment on T cell autophagy. CONCLUSIONS Our findings suggest that diet-induced obesity may impair the function and inhibit autophagy of T cells, possibly leading to the dysregulation of T cell homeostasis, which may be behind the aggravation of inflammation commonly observed in obesity.
Collapse
Affiliation(s)
- Min Su Kang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Chan Yoon Park
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Da Hye Cho
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - So Jeong Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Tadinada SM, Weatherford ET, Collins GV, Bhardwaj G, Cochran J, Kutschke W, Zimmerman K, Bosko A, O'Neill BT, Weiss RM, Abel ED. Functional resilience of C57BL/6J mouse heart to dietary fat overload. Am J Physiol Heart Circ Physiol 2021; 321:H850-H864. [PMID: 34477461 PMCID: PMC8616610 DOI: 10.1152/ajpheart.00419.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023]
Abstract
Molecular mechanisms underlying cardiac dysfunction and subsequent heart failure in diabetic cardiomyopathy are incompletely understood. Initially we intended to test the role of G protein-coupled receptor kinase 2 (GRK2), a potential mediator of cardiac dysfunction in diabetic cardiomyopathy, but found that control animals on HFD did not develop cardiomyopathy. Cardiac function was preserved in both wild-type and GRK2 knockout animals fed high-fat diet as indicated by preserved left ventricular ejection fraction (LVEF) although heart mass was increased. The absence of cardiac dysfunction led us to rigorously evaluate the utility of diet-induced obesity to model diabetic cardiomyopathy in mice. Using pure C57BL/6J animals and various diets formulated with different sources of fat-lard (32% saturated fat, 68% unsaturated fat) or hydrogenated coconut oil (95% saturated fat), we consistently observed left ventricular hypertrophy, preserved LVEF, and preserved contractility measured by invasive hemodynamics in animals fed high-fat diet. Gene expression patterns that characterize pathological hypertrophy were not induced, but a modest induction of various collagen isoforms and matrix metalloproteinases was observed in heart with high-fat diet feeding. PPARα-target genes that enhance lipid utilization such as Pdk4, CD36, AcadL, and Cpt1b were induced, but mitochondrial energetics was not impaired. These results suggest that although long-term fat feeding in mice induces cardiac hypertrophy and increases cardiac fatty acid metabolism, it may not be sufficient to activate pathological hypertrophic mechanisms that impair cardiac function or induce cardiac fibrosis. Thus, additional factors that are currently not understood may contribute to the cardiac abnormalities previously reported by many groups.NEW & NOTEWORTHY Dietary fat overload (DFO) is widely used to model diabetic cardiomyopathy but the utility of this model is controversial. We comprehensively characterized cardiac contractile and mitochondrial function in C57BL6/J mice fed with lard-based or saturated fat-enriched diets initiated at two ages. Despite cardiac hypertrophy, contractile and mitochondrial function is preserved, and molecular adaptations likely limit lipotoxicity. The resilience of these hearts to DFO underscores the need to develop robust alternative models of diabetic cardiomyopathy.
Collapse
MESH Headings
- Age Factors
- Animals
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diet, High-Fat
- Disease Models, Animal
- Energy Metabolism
- Female
- Fibrosis
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocardium/enzymology
- Myocardium/pathology
- Obesity/complications
- Stroke Volume
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Satya Murthy Tadinada
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Eric T Weatherford
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Greg V Collins
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jesse Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - William Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alyssa Bosko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brian T O'Neill
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
21
|
Gamage S, Hali M, Kowluru A. CARD9 mediates glucose-stimulated insulin secretion in pancreatic beta cells. Biochem Pharmacol 2021; 192:114670. [PMID: 34233162 DOI: 10.1016/j.bcp.2021.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
Caspase recruitment domain containing protein 9 (CARD9) plays key regulatory role(s) in innate and adaptive immune responses. Recent evidence implicates CARD9 in the onset of metabolic diseases including insulin resistance. However, potential contributory roles of CARD9 in glucose-stimulated insulin secretion (GSIS) remain unknown. Herein, we report that CARD9 is expressed in human islets, rat islets, mouse islets and clonal INS-1 832/13 cells. Subcellularly, CARD9 is predominantly cytosolic (~75%) in INS-1 832/13 cells. siRNA-mediated depletion of CARD9 expression significantly (~50%) suppressed GSIS in INS-1 832/13 cells. Interestingly, glucose-induced activation of Rac1, a small G-protein, which is a requisite for GSIS to occur, is unaffected in CARD9-si transfected cells, suggesting that CARD9-mediates GSIS in a Rac1-independent fashion. Furthermore, insulin secretion promoted by KCl or mastoparan (a global G protein activator), remained resistant to CARD9 depletion in INS-1 832/13 cells. In addition, pharmacological inhibition (BRD5529) of interaction between CARD9 and TRIM62, its ubiquitin ligase, exerted no significant effects on GSIS. Lastly, depletion of CARD9 prevented glucose-induced p38, not ERK1/2 phosphorylation in beta cells. Based on these observations, we propose that CARD9 might regulate GSIS via a Rac1-independent and p38-dependent signaling module.
Collapse
Affiliation(s)
- Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
22
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
23
|
Xi L. CARD9: key player or bystander in cardiac remodeling under hypertension? Hypertens Res 2020; 43:1454-1456. [DOI: 10.1038/s41440-020-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
|
24
|
Zhang H, Cai L. Zinc homeostasis plays an important role in the prevention of obesity-induced cardiac inflammation, remodeling and dysfunction. J Trace Elem Med Biol 2020; 62:126615. [PMID: 32683230 DOI: 10.1016/j.jtemb.2020.126615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 01/21/2023]
Abstract
Obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors, therefore it not only has anti-inflammatory and anti-oxidative stress functions, but also has insulin-like function, however, its role in the development of obesity-associated cardiac pathogenesis and the potentially underlying mechanism(s) remains unclear. This review aims to summarize the available evidence on the role of zinc homeostasis in the prevention of ORCH. It was recently reported that when four-week old mice were fed either high fat diet (HFD) or normal diet containing deficient, adequate or supplemented zinc, HFD induced obesity and ORCH along with increased phosphorylation of p38 MAPK and increased expression of B-cell lymphoma/ leukemia 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These effects were further aggravated by zinc deficiency and significantly alleviated by zinc supplementation. Mechanistically administration of a p38 MAPK specific inhibitor in HFD-fed mice for 3 months did not affect HFD-induced obesity and increased expression of BCL10 and CARD9, but completely abolished HFD/obesity-induced cardiac hypertrophy and inflammation. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. Taken together with other recent studies, we concluded that HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signaling. Zinc supplementation ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.
Collapse
Affiliation(s)
- Haina Zhang
- Pediatric Research Institute, Departments of Pediatric, University of Louisville School of Medicine, Louisville, KY, USA; Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatric, University of Louisville School of Medicine, Louisville, KY, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
25
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Wang Y, Zhang D, Hou Y, Shen S, Wang T. The adaptor protein CARD9, from fungal immunity to tumorigenesis. Am J Cancer Res 2020; 10:2203-2225. [PMID: 32905547 PMCID: PMC7471374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023] Open
Abstract
The adaptor protein CARD9 is in charge of mediating signals from PRRs of myeloid cells to downstream transcription factor NF-κB. CARD9 plays an indispensable role in innate immunity. Both mice and humans with CARD9 deficiency show increased susceptibility to fungal and bacterial infections. CARD9 signaling not only activates but also shapes adaptive immune responses. The role of this molecule in tumor progression is increasingly being revealed. Our early study found that CARD9 is associated with the development of colon cancer and functions as a regulator of antitumor immunity. In this review, we focus on the upstream and downstream signaling pathways of CARD9, then we summarize the immunological recognition and responses induced by CARD9 signaling. Furthermore, we review the function of CARD9 in multiple aspects of host immunity, ranging from fungal immunity to tumorigenesis.
Collapse
Affiliation(s)
- Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| |
Collapse
|
27
|
Peterson MR, Getiye Y, Bosch L, Sanders AJ, Smith AR, Haller S, Wilson K, Paul Thomas D, He G. A potential role of caspase recruitment domain family member 9 (Card9) in transverse aortic constriction-induced cardiac dysfunction, fibrosis, and hypertrophy. Hypertens Res 2020; 43:1375-1384. [PMID: 32647279 DOI: 10.1038/s41440-020-0507-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022]
Abstract
Macrophage- and monocyte-derived cytokines are elevated in the myocardium of pressure-overloaded hearts, where they play critical roles in pathological remodeling. Caspase recruitment domain family member 9 (CARD9) regulates macrophage cytokine secretion, but its role in a transverse aortic constriction (TAC) model of pressure overload has not been evaluated. To investigate whether CARD9 may serve as a valuable therapeutic target, wild-type (WT) and CARD9-knockout mice were subjected to 3 months of TAC, and then cardiac function, hypertrophy, and fibrosis were analyzed. The expression of protein markers of myocardial autophagy and nuclear factor kappa B signaling was also investigated. At 1 month after TAC, cardiomyocyte contractile dynamics were measured in a separate cohort to further assess contractility and diastolic function. In WT but not CARD9-/- mice, TAC resulted in severe cardiomyocyte contractile dysfunction at 1 month and functional decrements in fractional shortening at 3 months in vivo. Furthermore, CARD9-/- mice did not develop cardiac fibrosis or hypertrophy. CARD9-/- mice also had decreased protein expression of inhibitor of κB kinase-α/β, decreased phosphorylation of p65, and increased expression of protein markers of autophagy. These findings suggest that CARD9 plays a role in pathological remodeling and cardiac dysfunction in mouse hearts subjected to TAC and should be investigated further.
Collapse
Affiliation(s)
- Matthew R Peterson
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Yohannes Getiye
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Luiza Bosch
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Alyssa J Sanders
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Aspen R Smith
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Samantha Haller
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Kayla Wilson
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - D Paul Thomas
- Division of Kinesiology & Health, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Guanglong He
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| |
Collapse
|
28
|
Sun C, Zhang X, Yu Y, Li Z, Xie Y. CARD9 mediates T cell inflammatory response in Coxsackievirus B3-induced acute myocarditis. Cardiovasc Pathol 2020; 49:107261. [PMID: 32771878 DOI: 10.1016/j.carpath.2020.107261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/10/2020] [Accepted: 07/04/2020] [Indexed: 01/16/2023] Open
Abstract
Cardiac inflammation in Coxsackievirus B3 (CVB3)-induced myocarditis is a consequence of viral-related cardiac injury and immune response. Caspase-associated recruitment domain 9 (CARD9) is a critical adaptor protein involved in transduction of signals from various innate pattern recognition receptors. In this study, the role of CARD9 in acute viral myocarditis was evaluated. CARD9-/- and C57BL/6 mice were infected with CVB3. On day 7 postinfection, myocardial tissue and blood samples were collected and examined. After CARD9 knockout, mRNA and protein levels of transforming growth factor-β(TGF-β), interleukin-17A(IL-17A), and CARD domain of B-cell CLL/lymphoma 10(BCL-10) in the myocardium were markedly lower in CARD9-/- mice than in C57BL/6 mice with CVB3-induced viral myocarditis. This trend was similar for the pathological scores for inflammation and serum levels of cytokines interleukin-6(IL-6), interleukin-10(IL-10), interferon -γ(IFN-γ), TGF-β, and IL-17A. These results suggest that the CARD9-mediated secretion of pro-inflammatory cytokines plays an important role in the immune response to acute viral myocarditis.
Collapse
Affiliation(s)
- Changchun Sun
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Xian Zhang
- Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Kunshan, Jiangsu Province, China
| | - Yi Yu
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Zhengdong Li
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
29
|
The Role of CARD9 in Metabolic Diseases. Curr Med Sci 2020; 40:199-205. [DOI: 10.1007/s11596-020-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Indexed: 01/19/2023]
Abstract
SummaryCaspase recruitment domain containing protein 9 (CARD9) is an adaptor protein that plays a critical role in pattern recognition receptors (PRRs)-mediated activation of NF-?B and mitogen-activated protein kinase (MAPK). This elicits initiation of the pro-inflammatory cytokines and leads to inflammatory responses, which has been recognized as a critical contributor to chronic inflammation. Current researches demonstrate that CARD9 is strongly associated with metabolic diseases, such as obesity, insulin resistance, atherosclerosis and so on. In this review, we summarize CARD9 signaling pathway and the role of CARD9 in metabolic diseases.
Collapse
|
30
|
Ghnenis AB, Burns DT, Osimanjiang W, He G, Bushman JS. A Long-Term Pilot Study on Sex and Spinal Cord Injury Shows Sexual Dimorphism in Functional Recovery and Cardio-Metabolic Responses. Sci Rep 2020; 10:2762. [PMID: 32066802 PMCID: PMC7026076 DOI: 10.1038/s41598-020-59628-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
More than a quarter of a million individuals in the US live with spinal cord injury (SCI). SCI disrupts neural circuitry to vital organs in the body. Despite severe incidences of long-term peripheral complications from SCI, the cardio-metabolic consequences and divergences in sex-related responses are not well described. We examined the effects of SCI on functional recovery, cardiac structure and function, body composition, and glucose metabolism on adult female and male Sprague Dawley (SD) rats. SCI was induced at T10 via contusion. Measured outcomes include behavioral assessment, body weight, dual-energy X-ray absorptiometry (DEXA) for body composition, echocardiography for cardiac structure and function, intraperitoneal glucose tolerance test (IPGTT) for glucose metabolism, insulin tolerance test (ITT), and histology of cardiac structure at the endpoint. There was a decrease in body fat percentage in both sexes, with SCI females disproportionately affected in percent body fat change. Left ventricular internal diameter during systole (LVIDs) was decreased in SCI females more than in SCI males. No significant differences in glucose metabolism were observed up to 20 weeks post-injury (PI). These data show significant cardio-metabolic differences as a consequence of SCI and, furthermore, that sex is an underlying factor in these differences.
Collapse
Affiliation(s)
- Adel B Ghnenis
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Daniel T Burns
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Wupu Osimanjiang
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Guanglong He
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Jared S Bushman
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA.
| |
Collapse
|
31
|
Thiem K, Hoeke G, Zhou E, Hijmans A, Houben T, Boels MG, Mol IM, Lutgens E, Shiri-Sverdlov R, Bussink J, Kanneganti TD, Boon MR, Stienstra R, Tack CJ, Rensen PCN, Netea MG, Berbée JFP, van Diepen JA. Deletion of haematopoietic Dectin-2 or CARD9 does not protect from atherosclerosis development under hyperglycaemic conditions. Diab Vasc Dis Res 2020; 17:1479164119892140. [PMID: 31868000 PMCID: PMC7510497 DOI: 10.1177/1479164119892140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND C-type lectin receptors, including Dectin-2, are pattern recognition receptors on monocytes and macrophages that mainly recognize sugars and sugar-like structures present on fungi. Activation of C-type lectin receptors induces downstream CARD9 signalling, leading to the production of cytokines. We hypothesized that under hyperglycaemic conditions, as is the case in diabetes mellitus, glycosylated protein (sugar-like) structures activate C-type lectin receptors, leading to immune cell activation and increased atherosclerosis development. METHODS Low-density lipoprotein receptor-deficient mice were lethally irradiated and transplanted with bone marrow from control wild-type, Dectin-2-/- or Card9-/- mice. After 6 weeks of recovery, mice received streptozotocin injections (50 mg/g BW; 5 days) to induce hyperglycaemia. After an additional 2 weeks, mice were fed a Western-type diet (0.1% cholesterol) for 10 weeks. RESULTS AND CONCLUSION Deletion of haematopoietic Dectin-2 reduced the number of circulating Ly6Chi monocytes, increased pro-inflammatory cytokine production, but did not affect atherosclerosis development. Deletion of haematopoietic CARD9 tended to reduce macrophage and collagen content in atherosclerotic lesions, again without influencing the lesion size. Deletion of haematopoietic Dectin-2 did not influence atherosclerosis development under hyperglycaemic conditions, despite some minor effects on inflammation. Deletion of haematopoietic CARD9 induced minor alterations in plaque composition under hyperglycaemic conditions, without affecting lesion size.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/blood
- Blood Glucose/metabolism
- Bone Marrow Transplantation
- CARD Signaling Adaptor Proteins/deficiency
- CARD Signaling Adaptor Proteins/genetics
- Cells, Cultured
- Collagen/metabolism
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diet, Western
- Gene Deletion
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/metabolism
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/metabolism
- Monocytes/pathology
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Kathrin Thiem
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
- Kathrin Thiem, Department of Internal
Medicine and Radboud Institute for Molecular Life Sciences, Radboud University
Medical Center, 463, Geert Grooteplein zuid 8, 6525 GA Nijmegen, The
Netherlands.
| | - Geerte Hoeke
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Enchen Zhou
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Hijmans
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
| | - Tom Houben
- Departments of Molecular Genetics, Human
Biology and Surgery, School of Nutrition and Translational Research in Metabolism
(NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Margien G Boels
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabel M Mol
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther Lutgens
- Division of Experimental Vascular
Biology, Department of Medical Biochemistry, Academic Medical Center, University of
Amsterdam, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention,
Ludwig Maximilians University of Munich, Munich, Germany
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics, Human
Biology and Surgery, School of Nutrition and Translational Research in Metabolism
(NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology,
Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mariëtte R Boon
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
- Division of Human Nutrition,
Wageningen University, Wageningen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
| | - Patrick CN Rensen
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
- Department for Genomics and
Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn,
Bonn, Germany
| | - Jimmy FP Berbée
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Janna A van Diepen
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
| |
Collapse
|
32
|
Ma J, Abram CL, Hu Y, Lowell CA. CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 2019; 12:12/602/eaao3829. [PMID: 31594855 DOI: 10.1126/scisignal.aao3829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CARD9 is an immune adaptor protein in myeloid cells that is involved in C-type lectin signaling and antifungal immunity. CARD9 is implicated in autoimmune and inflammatory-related diseases, such as rheumatoid arthritis, IgA nephropathy, ankylosing spondylitis, and inflammatory bowel disease (IBD). Given that Lyn-deficient (Lyn-/-) mice are susceptible to both autoimmunity and IBD, we investigated the immunological role of CARD9 in the development of these diseases using the Lyn-/- mouse model. We found that genetic deletion of CARD9 was sufficient to reduce the development of both spontaneous autoimmune disease as well as DSS- or IL-10 deficiency-associated colitis in Lyn-/- mice. Mechanistically, CARD9 was a vital component of the Lyn-mediated regulation of Toll-like receptor (TLR2 and TLR4) signaling in dendritic cells, but not in macrophages. In the absence of Lyn, signaling through a CD11b-Syk-PKCδ-CARD9 pathway was amplified, leading to increased TLR-induced production of inflammatory cytokines. Dendritic cell-specific deletion of CARD9 reversed the development of autoimmune and experimental colitis observed in dendritic cell-specific, Lyn-deficient mice. These findings suggest that targeting CARD9 may suppress the development of colitis and autoimmunity by reducing dendritic cell-driven inflammation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Pierzynová A, Šrámek J, Cinkajzlová A, Kratochvílová H, Lindner J, Haluzík M, Kučera T. The number and phenotype of myocardial and adipose tissue CD68+ cells is associated with cardiovascular and metabolic disease in heart surgery patients. Nutr Metab Cardiovasc Dis 2019; 29:946-955. [PMID: 31307852 DOI: 10.1016/j.numecd.2019.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD68+ cells are a potent source of inflammatory cytokines in adipose tissue and myocardium. The development of low-grade inflammation in adipose tissue is implicated in the pathogenesis of obesity-associated disorders including type 2 diabetes mellitus (T2DM) and cardiovascular disease. The main aim of the study was to characterize and quantify myocardial and adipose tissue CD68+ cells and adipose tissue crown-like structures (CLS) in patients with obesity, coronary artery disease (CAD) and T2DM. METHODS AND RESULTS Samples were obtained from the right atrium, epicardial (EAT) and subcutaneous adipose tissue (SAT) during elective heart surgery (non-obese, n = 34 patients; obese, n = 24 patients). Immunohistochemistry was used to visualize CD68+ cells. M1-polarized macrophages were visualized by immunohistochemical detection of CD11c. The proportion of CD68+ cells was higher in EAT than in SAT (43.4 ± 25.0 versus 32.5 ± 23.1 cells per 1 mm2; p = 0.015). Myocardial CD68+ cells were more abundant in obese patients (45.6 ± 24.5 versus 27.7 ± 14.8 cells per 1 mm2; p = 0.045). In SAT, CD68+ cells were more frequent in CAD patients (37.3 ± 23.0 versus 23.1 ± 20.9 cells per 1 mm2; p = 0.012). Patients having CLS in their SAT had higher average BMI (34.1 ± 6.4 versus 29.0 ± 4.5; p = 0.024). CONCLUSIONS Regional-based increases in the frequency of CD68+ cells and changes of their phenotype in CLS were detected in obese patients and CAD patients. Therapeutic modulation of adipose tissue inflammation may represent a target for treatment of obesity.
Collapse
Affiliation(s)
- Aneta Pierzynová
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaromír Šrámek
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Cinkajzlová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Helena Kratochvílová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Lindner
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Haluzík
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
34
|
Li Y, Liang P, Jiang B, Tang Y, Lv Q, Hao H, Liu Z, Xiao X. CARD9 inhibits mitochondria-dependent apoptosis of cardiomyocytes under oxidative stress via interacting with Apaf-1. Free Radic Biol Med 2019; 141:172-181. [PMID: 31212066 DOI: 10.1016/j.freeradbiomed.2019.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/25/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Cardiomyocyte apoptosis is known to contribute to myocardial ischemia/reperfusion (I/R) injury. Caspase recruitment domain-containing protein 9 (CARD9) play a role in cardiac fibrosis and dysfunction. However, the role of CARD9 in apoptosis of cardiomyocytes in myocardial I/R injury and its underlying mechanisms are still unclear. In this study, CARD9 expression was found to increase in H9c2 cells in response to hydrogen peroxide. Loss of CARD9 significantly increased caspase-3 activation and cardiomyocyte death following oxidative stress in vitro. Conversely, CARD9 overexpression decreased apoptosis as evidenced by a reduction in caspase-3 activation and the apoptotic rate. The caspase recruitment domain (CARD) of CARD9 was necessary for the protective effect of CARD9 against oxidative stress in cardiomyocytes. CARD9 suppressed the activation of caspase-9 by interacting with Apaf-1 via its CARD domain in H9c2 cells exposed to H2O2. Ablation of caspase-9 activity by z-lehd-fmk effectively prevented the detrimental effect of CARD9 deficiency on cardiomyocytes. Wild-type (WT) and CARD9-/- mice were subjected to 30 min of left ascending coronary (LAD) ischemia and 12 h of reperfusion. TdT-mediated dUTP nick end labeling (TUNEL) staining analysis showed that CARD9-/- mice exhibited a significantly higher number of apoptotic-positive cells after myocardial I/R injury than the WT mice. These results suggest that CARD9 protects cardiomyocytes from apoptosis by interacting with Apaf-1 and interfering with apoptosome formation following myocardial I/R injury in vivo and in vitro.
Collapse
Affiliation(s)
- Yuanbin Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China.
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Qinglan Lv
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Hong Hao
- Division of Cardiovascular Medicine, Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Xianzhong Xiao
- Department of Pathophysiology, Sepsis Translational Medicine Key Lab of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| |
Collapse
|
35
|
Thiem K, Hoeke G, van den Berg S, Hijmans A, Jacobs CWM, Zhou E, Mol IM, Mouktaroudi M, Bussink J, Kanneganti TD, Lutgens E, Stienstra R, Tack CJ, Netea MG, Rensen PCN, Berbée JFP, van Diepen JA. Deletion of hematopoietic Dectin-2 or CARD9 does not protect against atherosclerotic plaque formation in hyperlipidemic mice. Sci Rep 2019; 9:4337. [PMID: 30867470 PMCID: PMC6416398 DOI: 10.1038/s41598-019-40663-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
Inflammatory reactions activated by pattern recognition receptors (PRRs) on the membrane of innate immune cells play an important role in atherosclerosis. Whether the PRRs of the C-type lectin receptor (CLR) family including Dectin-2 may be involved in the pathogenesis of atherosclerosis remains largely unknown. Recently, the CLR-adaptor molecule caspase recruitment domain family member 9 (CARD9) has been suggested to play a role in cardiovascular pathologies as it provides the link between CLR activation and transcription of inflammatory cytokines as well as immune cell recruitment. We therefore evaluated whether hematopoietic deletion of Dectin-2 or CARD9 reduces inflammation and atherosclerosis development. Low-density lipoprotein receptor (Ldlr)-knockout mice were transplanted with bone marrow from wild-type, Dectin-2- or Card9-knockout mice and fed a Western-type diet containing 0.1% (w/w) cholesterol. After 10 weeks, lipid and inflammatory parameters were measured and atherosclerosis development was determined. Deletion of hematopoietic Dectin-2 or CARD9 did not influence plasma triglyceride and cholesterol levels. Deletion of hematopoietic Dectin-2 did not affect atherosclerotic lesion area, immune cell composition, ex vivo cytokine secretion by peritoneal cells or bone marrow derived macrophages. Unexpectedly, deletion of hematopoietic CARD9 increased atherosclerotic lesion formation and lesion severity. Deletion of hematopoietic CARD9 did also not influence circulating immune cell composition and peripheral cytokine secretion. Besides a tendency to a reduced macrophage content within these lesions, plasma MCP-1 levels decreased upon WTD feeding. Deletion of hematopoietic Dectin-2 did not influence atherosclerosis development in hyperlipidemic mice. The absence of CARD9 unexpectedly increased atherosclerotic lesion size and severity, suggesting that the presence of CARD9 may protect against initiation of atherosclerosis development.
Collapse
Affiliation(s)
- Kathrin Thiem
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| | - Geerte Hoeke
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan van den Berg
- Department of Medical Biochemistry, Div. of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke Hijmans
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Cor W M Jacobs
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Enchen Zhou
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabel M Mol
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Mouktaroudi
- Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Johan Bussink
- Dept. of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Esther Lutgens
- Department of Medical Biochemistry, Div. of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, Munich, Germany
| | - Rinke Stienstra
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Div. of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Patrick C N Rensen
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Janna A van Diepen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Zou Y, Kong M. Tetrahydroxy stilbene glucoside alleviates palmitic acid-induced inflammation and apoptosis in cardiomyocytes by regulating miR-129-3p/Smad3 signaling. Cell Mol Biol Lett 2019; 24:5. [PMID: 30820195 PMCID: PMC6379973 DOI: 10.1186/s11658-018-0125-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Objective Tetrahydroxy stilbene glucoside (TSG) has been reported to exert a cytoprotective effect against various toxicants. However, the function and mechanism of TSG in palmitic acid (PA)-induced inflammation and apoptosis in cardiomyocytes are still unknown. The present study was designed to investigate the post-transcriptional mechanism in TSG-treated cardiomyocytes’ inflammation and apoptosis induced by PA. Methods The mRNA and protein levels were assayed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Cell proliferation was analyzed by CCK-8 assay. Annexin V-fluorescein isothiocyanate/polyimide (annexin V-FITC/PI) staining was used to evaluate apoptosis using flow cytometry. Results TSG restricted the detrimental effects, including the activated inflammatory response and apoptosis, of PA in cardiomyocytes, as well as the up-regulation of miR-129-3p and down-regulation of p-Smad3 expression. In addition, bioinformatics and experimental analysis suggested that Smad3 was a direct target of miR-129-3p, which could inhibit or enhance the expression of p-Smad by transfection with miR-129-3p mimics or inhibitors, respectively. Furthermore, our results demonstrated that overexpression of Smad3 reversed the inhibition of inflammation and apoptosis by overexpression of miR-129-3p in PA-stimulated cardiomyocytes. Conclusion TSG targeted to miR-129-3p/Smad3 signaling inhibited PA-induced inflammation and apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Yong Zou
- 1Department of Cardiovascular Medicine, Wuhan No. 6 Hospital, Hospital Affiliated to Jianghan University, No. 168, Xianggan Road, Wuhan, 430016 People's Republic of China
| | - Min Kong
- 2Department of Pharmacy, Wuhan No. 6 Hospital, Hospital Affiliated to Jianghan University, No. 168, Xianggan Road, Wuhan, 430016 People's Republic of China
| |
Collapse
|
37
|
Ceylan AF, Wang S, Kandadi MR, Chen J, Hua Y, Pei Z, Nair S, Ren J. Cardiomyocyte-specific knockout of endothelin receptor a attenuates obesity cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3339-3352. [DOI: 10.1016/j.bbadis.2018.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
|
38
|
Liu Y, Neumann D, Glatz JFC, Luiken JJFP. Molecular mechanism of lipid-induced cardiac insulin resistance and contractile dysfunction. Prostaglandins Leukot Essent Fatty Acids 2018; 136:131-141. [PMID: 27372802 DOI: 10.1016/j.plefa.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 01/04/2023]
Abstract
Long-chain fatty acids are the main cardiac substrates from which ATP is generated continually to serve the high energy demand and sustain the normal function of the heart. Under healthy conditions, fatty acid β-oxidation produces 50-70% of the energy demands with the remainder largely accounted for by glucose. Chronically increased dietary lipid supply often leads to excess lipid accumulation in the heart, which is linked to a variety of maladaptive phenomena, such as insulin resistance, cardiac hypertrophy and contractile dysfunction. CD36, the predominant cardiac fatty acid transporter, has a key role in setting the heart on a road to contractile dysfunction upon the onset of chronic lipid oversupply by translocating to the cell surface and opening the cellular 'doors' for fatty acids. The sequence of events after the CD36-mediated myocellular lipid accumulation is less understood, but in general it has been accepted that the excessively imported lipids cause insulin resistance, which in turn leads to contractile dysfunction. There are several gaps of knowledge in this proposed order of events which this review aims to discuss. First, the molecular mechanisms underlying lipid-induced insulin resistance are not yet completely disclosed. Specifically, several mediators have been proposed, such as diacylglycerols, ceramides, peroxisome proliferator-activated receptors (PPAR), inflammatory kinases and reactive oxygen species (ROS), but their relative contributions to the onset of insulin resistance and their putatively synergistic actions are topics of controversy. Second, there are also pieces of evidence that lipids can induce contractile dysfunction independently of insulin resistance. Perhaps, a more integrative view is needed, in which several lipid-induced pathways operate synergistically or in parallel to induce contractile dysfunction. Unraveling of these processes is expected to be important in designing effective therapeutic strategies to protect the lipid-overloaded heart.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
39
|
Falalyeyeva TM, Leschenko IV, Beregova TV, Lazarenko LM, Savchuk OM, Sichel LM, Tsyryuk OI, Vovk TB, Spivak MY. Probiotic strains of lactobacilli and bifidobacteria alter pro- and anti-inflammatory cytokines production in rats with monosodium glutamate-induced obesity. ACTA ACUST UNITED AC 2018; 63:17-25. [PMID: 29975824 DOI: 10.15407/fz63.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effect of probiotic strains of Lactobacillus casei IMV B-7280, Bifidobacterium animalis VKL, B. animalis VKB on the pro- and anti-inflammatory cytokines production in Wistar male rats with monosodium glutamate (MSG)-induced obesity. It was established that neonatal administration of MSG to rats leads to increasing levels of the interleukin (IL)-1β and IL-12, and to decreasing ofthe IL-4, IL-10 and tumor growthfactor (TGF)-β levels in the bloodserum. After administration of the B. animalis VKL - B. animalis VKB - L. casei IMV B-7280 composition to obese rats the level of the IL-lP in blood serum wasn't differ from that in the obese rats, that didn't receive of the probiotic bacteria. But there was no statistically signifcant difference comparing with intact rats. The level of the IL-12B p4O in blood serum was decreased under influence of the B. animalis VKL - B. animalis VKB - L. casei IMV B-7280 composition (18.9%, p < 0.05) and B. animalis VKL (10.5%, p < 0.05) compared with obese rats, not receiving probiotic bacteria, but remained higher than in intact animals. After administration to obese rats ofthe B. animalis VKL - B. animalis VKB - L. casei IMV B-7280 composition the levels ofthe IL-4, IL- 10 and TGF-β increased in blood serum comparing with obese rats, not receiving probiotic bacteria. The level of the IL-10 also increased under influence of the B. animalis VKB, and IL-4 - under influence of the L. casei IMVB-7280. Our results suggest that these probiotic bacteria and probiotic composition are able to down-regulation the inflammation in rats with MSG-induced obesity but the strongest anti-inflammatory effects have probiotic composition. The ability of lactobacilli and bifdobacteria to alter the pro- and anti-inflammatory cytokines production, opens perspectives to create new treatments for obesity and metabolic syndrome based on probiotics.
Collapse
|
40
|
Qin X, Peterson MR, Haller SE, Cao L, Thomas DP, He G. Caspase recruitment domain-containing protein 9 (CARD9) knockout reduces regional ischemia/reperfusion injury through an attenuated inflammatory response. PLoS One 2018; 13:e0199711. [PMID: 29940016 PMCID: PMC6016916 DOI: 10.1371/journal.pone.0199711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Ischemic heart disease remains a leading cause of morbidity and mortality in the United States. Interventional reperfusion induces further damage to the ischemic myocardium through neutrophil infiltration and acute inflammation. As caspase recruitment domain-containing protein 9 (CARD9) plays a critical role in innate immune response and inflammation, we hypothesized that CARD9 knockout would provide protection against ischemia and reperfusion (I/R) injury through attenuation of acute inflammatory responses. C57BL/6 wild-type (WT) and CARD9-/- mice were subjected to 45 min left anterior descending (LAD) coronary artery occlusion followed by 24-h reperfusion. Area at risk (AAR) and infarct size were measured by Evans blue and triphenyltetrazolium chloride (TTC) staining. Frozen heart sections were stained with anti-mouse GR-1 antibody to detect infiltrated neutrophils. Concentrations of cytokines/chemokines TNF-α, IL-6, CXCL-1 and MCP-1 were determined in heart tissue homogenate and serum by ELISA assay. Western immunoblotting analyses were performed to measure the phosphorylation of p38 MAPK. Our results indicate that following I/R, infarct size was significantly smaller in CARD9-/- mice compared to WT. The number of infiltrated neutrophils was significantly lower in CARD9-/- mice compared to WT. Levels of TNF-α, IL-6, CXCL-1 and MCP-1 were significantly reduced in heart tissue and serum from CARD9-/- mice compared to WT. CARD9-/- mice also exhibited significantly lower levels of phosphorylated p38 MAPK. Taken together, our results suggest that CARD9 knockout protects the heart from ischemia/reperfusion (I/R) injury, possibly through reduction of neutrophil infiltration and attenuation of CARD9-associated acute inflammatory signaling.
Collapse
Affiliation(s)
- Xing Qin
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, PR China
| | - Matthew R. Peterson
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Samantha E. Haller
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Li Cao
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
- College of Pharmaceutical Sciences, Soochow University, Soochow, Jiangsu, PR China
| | - D. Paul Thomas
- Division of Kinesiology & Health, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Guanglong He
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| |
Collapse
|
42
|
Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, Chung HK, Kim YK, Kang SG, Lee JH, Kim KS, Kim HJ, Kim CS, Lee CH, Williams RW, Kim H, Lee HK, Auwerx J, Shong M. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun 2018; 9:1551. [PMID: 29674655 PMCID: PMC5908799 DOI: 10.1038/s41467-018-03998-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages. M1-like polarization of macrophages is thought to control adipose inflammation and associated insulin resistance and metabolic syndrome. Here the authors show that macrophage-specific deletion of the OxPhos-related gene Crif1 results in an M1-like phenotype in mice, and that the effects can be reversed by recombinant GDF15.
Collapse
Affiliation(s)
- Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Dongryeol Ryu
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Laboratory of Molecular and Integrative Biology, Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Cuk-Seong Kim
- Department of Physiology, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea.
| |
Collapse
|
43
|
Zeng X, Du X, Zhang J, Jiang S, Liu J, Xie Y, Shan W, He G, Sun Q, Zhao J. The essential function of CARD9 in diet-induced inflammation and metabolic disorders in mice. J Cell Mol Med 2018; 22:2993-3004. [PMID: 29575791 PMCID: PMC5980191 DOI: 10.1111/jcmm.13494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation and metabolic disorder are common pathophysiological conditions, which play a vital role in the development of obesity and type 2 diabetes. The purpose of this study was to explore the effects of caspase recruitment domain (CARD) 9 in the high fat diet (HFD)‐treated mice and attempt to find a molecular therapeutic target for obesity development and treatment. Sixteen male CARD9−/− and corresponding male WT mice were fed with normal diet or high fat diet, respectively, for 12 weeks. Glucose tolerance, insulin resistance, oxygen consumption and heat production of the mice were detected. The CARD9/MAPK pathway‐related gene and protein were determined in insulin‐responsive organs using Western blotting and quantitative PCR. The results showed that HFD‐induced insulin resistance and impairment of glucose tolerance were more severe in WT mice than that in the CARD9−/− mice. CARD9 absence significantly modified O2 consumption, CO2 production and heat production. CARD9−/− mice displayed the lower expression of p38 MAPK, JNK and ERK when compared to the WT mice in both HFD‐ and ND‐treated groups. HFD induced the increase of p38 MAPK, JNK and ERK in WT mice but not in the CARD9−/− mice. The results indicated that CARD9 absence could be a vital protective factor in diet‐induced obesity via the CARD9/MAPK pathway, which may provide new insights into the development of gene knockout to improving diet‐induced obesity and metabolism disorder.
Collapse
Affiliation(s)
- Xuejiao Zeng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Shan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Ministry of Education, Fudan University, Shanghai, China
| | - Guanglong He
- College of Health Sciences, University of Wyoming School of Pharmacy, Laramie, WY, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.,The Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| |
Collapse
|
44
|
Zhong X, Chen B, Yang L, Yang Z. Molecular and physiological roles of the adaptor protein CARD9 in immunity. Cell Death Dis 2018; 9:52. [PMID: 29352133 PMCID: PMC5833731 DOI: 10.1038/s41419-017-0084-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
CARD9 is a caspase recruitment domain-containing signaling protein that plays a critical role in innate and adaptive immunity. It has been widely demonstrated that CARD9 adaptor allows pattern recognition receptors to induce NF-κB and MAPK activation, which initiates a “downstream” inflammation cytokine cascade and provides effective protection against microbial invasion, especially fungal infection. Here our aim is to update existing paradigms and summarize the most recent findings on the CARD9 signaling pathway, revealing significant mechanistic insights into the pathogenesis of CARD9 deficiency. We also discuss the effect of CARD9 genetic mutations on the in vivo immune response, and highlight clinical advances in non-infection inflammation.
Collapse
Affiliation(s)
| | - Bin Chen
- Surgery Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Liang Yang
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3128-3141. [DOI: 10.1016/j.bbadis.2017.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/28/2022]
|
46
|
Chen X, Yu W, Li W, Zhang H, Huang W, Wang J, Zhu W, Fang Q, Chen C, Li X, Liang G. An anti-inflammatory chalcone derivative prevents heart and kidney from hyperlipidemia-induced injuries by attenuating inflammation. Toxicol Appl Pharmacol 2017; 338:43-53. [PMID: 29128402 DOI: 10.1016/j.taap.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/11/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023]
Abstract
Obesity is a growing pandemic in both developed and developing countries. Lipid overload in obesity generates a chronic, low-grade inflammation state. Increased inflammation in heart and renal tissues has been shown to promote the progression of heart and renal damage in obesity. Previously, we found that a novel chalcone derivative, L6H21, inhibited lipopolysaccharide-induced inflammatory response. In the present study, we investigated the effects of L6H21 on inflammatory responses in culture and in animal models of lipid overload. We utilized palmitic acid (PA) challenging in mouse peritoneal macrophages and apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet (HFD) to study whether L6H21 mitigates the inflammatory response. Our studies show that L6H21 significantly reduced PA-induced expression of inflammatory cytokines in macrophages by inhibiting mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NFκB) signaling pathways. L6H21 also reduced fibrosis in the kidney and heart tissues, and indices of inflammatory response in the ApoE-/- mice fed a HFD. These effects in vivo were also associated with inhibition of MAPK and NFκB signaling by L6H21. These findings strongly suggest that L6H21 may be a potential agent for high fat diet-induced injuries in heart and kidney.
Collapse
Affiliation(s)
- Xiong Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihui Yu
- Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailing Zhang
- Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; College of Life Sciences, Huzhou University, Huzhou, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
47
|
Vileigas DF, de Deus AF, da Silva DCT, de Tomasi LC, de Campos DHS, Adorni CS, de Oliveira SM, Sant'Ana PG, Okoshi K, Padovani CR, Cicogna AC. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function. Physiol Rep 2017; 4:4/17/e12914. [PMID: 27582064 PMCID: PMC5027348 DOI: 10.14814/phy2.12914] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 01/13/2023] Open
Abstract
Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β‐adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high‐fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1‐ and β2‐adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA. Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high‐fat diet‐induced obesity was not effective in triggering cardiac dysfunction and impair the beta‐adrenergic signaling.
Collapse
Affiliation(s)
- Danielle F Vileigas
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Adriana F de Deus
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Danielle C T da Silva
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Loreta C de Tomasi
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Dijon H S de Campos
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Caroline S Adorni
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Scarlet M de Oliveira
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Paula G Sant'Ana
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Carlos R Padovani
- Department of Biostatistics, Biosciences Institute São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Antonio C Cicogna
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| |
Collapse
|
48
|
Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. Int J Mol Sci 2017; 18:ijms18030580. [PMID: 28272348 PMCID: PMC5372596 DOI: 10.3390/ijms18030580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is highly prevalent in type 2 diabetes (T2DM) patients. Zinc is an important essential trace metal, whose deficiency is associated with various chronic ailments, including vascular diseases. We assessed T2DM B6.BKS(D)-Leprdb/J (db/db) mice fed for six months on a normal diet containing three zinc levels (deficient, adequate, and supplemented), to explore the role of zinc in DCM development and progression. Cardiac function, reflected by ejection fraction, was significantly decreased, along with increased left ventricle mass and heart weight to tibial length ratio, in db/db mice. As a molecular cardiac hypertrophy marker, atrial natriuretic peptide levels were also significantly increased. Cardiac dysfunction and hypertrophy were accompanied by significantly increased fibrotic (elevated collagen accumulation as well as transforming growth factor β and connective tissue growth factor levels) and inflammatory (enhanced expression of tumor necrosis factor alpha, interleukin-1β, caspase recruitment domain family member 9, and B-cell lymphoma/leukemia 10, and activated p38 mitogen-activated protein kinase) responses in the heart. All these diabetic effects were exacerbated by zinc deficiency, and not affected by zinc supplementation, respectively. Mechanistically, oxidative stress and damage, mirrored by the accumulation of 3-nitrotyrosine and 4-hydroxy-2-nonenal, was significantly increased along with significantly decreased expression of Nrf2 and its downstream antioxidants (NQO-1 and catalase). This was also exacerbated by zinc deficiency in the db/db mouse heart. These results suggested that zinc deficiency promotes the development and progression of DCM in T2DM db/db mice. The exacerbated effects by zinc deficiency on the heart of db/db mice may be related to further suppression of Nrf2 expression and function.
Collapse
|
49
|
Wang S, Gu J, Xu Z, Zhang Z, Bai T, Xu J, Cai J, Barnes G, Liu QJ, Freedman JH, Wang Y, Liu Q, Zheng Y, Cai L. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway. J Cell Mol Med 2017; 21:1182-1192. [PMID: 28158919 PMCID: PMC5431126 DOI: 10.1111/jcmm.13050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.
Collapse
Affiliation(s)
- Shudong Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Junlian Gu
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Zhiguo Zhang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Bai
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianxiang Xu
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory Barnes
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA.,Autism Center, University of Louisville, Louisville, KY, USA
| | - Qiu-Ju Liu
- Department of Hematology Disorders, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Yonggang Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Quan Liu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
50
|
TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-κB/JNK-dependent activation of autophagy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2001-2011. [PMID: 28108421 DOI: 10.1016/j.bbadis.2017.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Obesity is commonly associated with a low grade systemic inflammation, which may contribute to the onset and development of myocardial remodeling and contractile dysfunction. Toll-like receptor 4 (TLR4) plays an important role in innate immunity and inflammation although its role in high fat diet-induced obesity cardiac dysfunction remains elusive. This study was designed to examine the effect of TLR4 ablation on high fat diet intake-induced cardiac anomalies, if any, and underlying mechanism(s) involved. Wild-type (WT) and TLR4 knockout mice were fed normal or high fat (60% calorie from fat) diet for 12weeks prior to assessment of mechanical and intracellular Ca2+ properties. The inflammatory signaling proteins (TLR4, NF-κB, and JNK) and autophagic markers (Atg5, Atg12, LC3B and p62) were evaluated. Our results revealed that high fat diet intake promoted obesity, marked decrease in fractional shortening, and cardiomyocyte contractile capacity with dampened intracellular Ca2+ release and clearance, elevated ROS generation and oxidative stress as measured by aconitase activity, the effects of which were significantly attenuated by TLR4 knockout. In addition, high fat intake downregulated levels of Atg5, Atg12 and LC3B, while increasing p62 accumulation. TLR4 knockout itself did not affect Atg5, Atg12, LC3B and p62 levels while it reconciled high fat diet intake-induced changes in autophagy. In addition, TLR4 knockout alleviated high fat diet-induced phosphorylation of IKKβ, JNK and mTOR. In vitro study revealed that palmitic acid suppressed cardiomyocyte contractile function, the effect of which was inhibited the TLR4 inhibitor CLI-095, the JNK inhibitor AS601245 or the NF-κB inhibitor Celastrol. Taken together, these data showed that TLR4 knockout ameliorated high fat diet-induced cardiac contractile and intracellular Ca2+ anomalies through inhibition of inflammation and ROS, possibly through a NF-κB/JNK-dependent activation of autophagy. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|