1
|
Wang Y, Chatterjee E, Li G, Xu J, Xiao J. Force-sensing protein expression in response to cardiovascular mechanotransduction. EBioMedicine 2024; 110:105412. [PMID: 39481337 PMCID: PMC11554632 DOI: 10.1016/j.ebiom.2024.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Force-sensing biophysical cues in microenvironment, including extracellular matrix performances, stretch-mediated mechanics, shear stress and flow-induced hemodynamics, have a significant influence in regulating vascular morphogenesis and cardiac remodeling by mechanotransduction. Once cells perceive these extracellular mechanical stimuli, Piezo activation promotes calcium influx by forming integrin-adhesion-coupling receptors. This induces robust contractility of cytoskeleton structures to further transmit biomechanical alternations into nuclei by regulating Hippo-Yes associated protein (YAP) signaling pathway between cytoplasmic and nuclear translocation. Although biomechanical stimuli are widely studied in cardiovascular diseases, the expression of force-sensing proteins in response to cardiovascular mechanotransduction has not been systematically concluded. Therefore, this review will summarize the force-sensing Piezo, cytoskeleton and YAP proteins to mediate extracellular mechanics, and also give the prominent emphasis on intrinsic connection of these mechanical proteins and cardiovascular mechanotransduction. Extensive insights into cardiovascular mechanics may provide some new strategies for cardiovascular clinical therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiahong Xu
- Department of Cardiology, Shanghai Gongli Hospital, Shanghai 200135, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Jin C, Su S, Yu S, Zhang Y, Chen K, Xiang M, Ma H. Essential Roles of PIEZO1 in Mammalian Cardiovascular System: From Development to Diseases. Cells 2024; 13:1422. [PMID: 39272994 PMCID: PMC11394449 DOI: 10.3390/cells13171422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Mechanical force is the basis of cardiovascular development, homeostasis, and diseases. The perception and response of mechanical force by the cardiovascular system are crucial. However, the molecular mechanisms mediating mechanotransduction in the cardiovascular system are not yet understood. PIEZO1, a novel transmembrane mechanosensitive cation channel known for its regulation of touch sensation, has been found to be widely expressed in the mammalian cardiovascular system. In this review, we elucidate the role and mechanism of PIEZO1 as a mechanical sensor in cardiovascular development, homeostasis, and disease processes, including embryo survival, angiogenesis, cardiac development repair, vascular inflammation, lymphangiogenesis, blood pressure regulation, cardiac hypertrophy, cardiac fibrosis, ventricular remodeling, and heart failure. We further summarize chemical molecules targeting PIEZO1 for potential translational applications. Finally, we address the controversies surrounding emergent concepts and challenges in future applications.
Collapse
Affiliation(s)
- Chengjiang Jin
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sheng’an Su
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yue Zhang
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Kaijie Chen
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Meixiang Xiang
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hong Ma
- Cardiovascular Key Laboratory of Zhejiang Province, National Key Laboratory of Vascular Implantable Devices, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
4
|
Aragona M, Mhalhel K, Pansera L, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Localization of Piezo 1 and Piezo 2 in Lateral Line System and Inner Ear of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9204. [PMID: 39273152 PMCID: PMC11395407 DOI: 10.3390/ijms25179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Piezo proteins have been identified as mechanosensitive ion channels involved in mechanotransduction. Several ion channel dysfunctions may be associated with diseases (including deafness and pain); thus, studying them is critical to understand their role in mechanosensitive disorders and to establish new therapeutic strategies. The current study investigated for the first time the expression patterns of Piezo proteins in zebrafish octavolateralis mechanosensory organs. Piezo 1 and 2 were immunoreactive in the sensory epithelia of the lateral line system and the inner ear. Piezo 1 (28.7 ± 1.55 cells) and Piezo 2 (28.8 ± 3.31 cells) immunopositive neuromast cells were identified based on their ultrastructural features, and their overlapping immunoreactivity to the s100p specific marker (28.6 ± 1.62 cells), as sensory cells. These findings are in favor of Piezo proteins' potential role in sensory cell activation, while their expression on mantle cells reflects their implication in the maintenance and regeneration of the neuromast during cell turnover. In the inner ear, Piezo proteins' colocalization with BDNF introduces their potential implication in neuronal plasticity and regenerative events, typical of zebrafish mechanosensory epithelia. Assessing these proteins in zebrafish could open up new scenarios for the roles of these important ionic membrane channels, for example in treating impairments of sensory systems.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
5
|
Aragona M, Mhalhel K, Cometa M, Franco GA, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Piezo 1 and Piezo 2 in the Chemosensory Organs of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:7404. [PMID: 39000511 PMCID: PMC11242578 DOI: 10.3390/ijms25137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Gianluca Antonio Franco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
da Silva AR, Gunawan F, Boezio GLM, Faure E, Théron A, Avierinos JF, Lim S, Jha SG, Ramadass R, Guenther S, Looso M, Zaffran S, Juan T, Stainier DYR. egr3 is a mechanosensitive transcription factor gene required for cardiac valve morphogenesis. SCIENCE ADVANCES 2024; 10:eadl0633. [PMID: 38748804 PMCID: PMC11095463 DOI: 10.1126/sciadv.adl0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.
Collapse
Affiliation(s)
- Agatha Ribeiro da Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Giulia L. M. Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Emilie Faure
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Alexis Théron
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - SoEun Lim
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Shivam Govind Jha
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Radhan Ramadass
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Stefan Guenther
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stéphane Zaffran
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| |
Collapse
|
7
|
Duan X, Liu R, Xi Y, Tian Z. The mechanisms of exercise improving cardiovascular function by stimulating Piezo1 and TRP ion channels: a systemic review. Mol Cell Biochem 2024:10.1007/s11010-024-05000-5. [PMID: 38625513 DOI: 10.1007/s11010-024-05000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Mechanosensitive ion channels are widely distributed in the heart, lung, bladder and other tissues, and plays an important role in exercise-induced cardiovascular function promotion. By reviewing the PubMed databases, the results were summarized using the terms "Exercise/Sport", "Piezo1", "Transient receptor potential (TRP)" and "Cardiovascular" as the keywords, 124-related papers screened were sorted and reviewed. The results showed that: (1) Piezo1 and TRP channels play an important role in regulating blood pressure and the development of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cardiac fibrosis; (2) Exercise promotes cardiac health, inhibits the development of pathological heart to heart failure, regulating the changes in the characterization of Piezo1 and TRP channels; (3) Piezo1 activates downstream signaling pathways with very broad pathways, such as AKT/eNOS, NF-κB, p38MAPK and HIPPO-YAP signaling pathways. Piezo1 and Irisin regulate nuclear localization of YAP and are hypothesized to act synergistically to regulate tissue mechanical properties of the cardiovascular system and (4) The cardioprotective effects of exercise through the TRP family are mostly accomplished through Ca2+ and involve many signaling pathways. TRP channels exert their important cardioprotective effects by reducing the TRPC3-Nox2 complex and mediating Irisin-induced Ca2+ influx through TRPV4. It is proposed that exercise stimulates the mechanosensitive cation channel Piezo1 and TRP channels, which exerts cardioprotective effects. The activation of Piezo1 and TRP channels and their downstream targets to exert cardioprotective function by exercise may provide a theoretical basis for the prevention of cardiovascular diseases and the rehabilitation of clinical patients.
Collapse
Affiliation(s)
- Xinyan Duan
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Renhan Liu
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Xie M, Cao H, Qiao W, Yan G, Qian X, Zhang Y, Xu L, Wen S, Shi J, Cheng M, Dong N. Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells. Acta Biomater 2024; 178:181-195. [PMID: 38447808 DOI: 10.1016/j.actbio.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.
Collapse
Affiliation(s)
- Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yan
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Coste B, Delmas P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circ Res 2024; 134:572-591. [PMID: 38422173 DOI: 10.1161/circresaha.123.322798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.
Collapse
Affiliation(s)
- Bertrand Coste
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| |
Collapse
|
10
|
Brown AL, Sexton ZA, Hu Z, Yang W, Marsden AL. Computational approaches for mechanobiology in cardiovascular development and diseases. Curr Top Dev Biol 2024; 156:19-50. [PMID: 38556423 DOI: 10.1016/bs.ctdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The cardiovascular development in vertebrates evolves in response to genetic and mechanical cues. The dynamic interplay among mechanics, cell biology, and anatomy continually shapes the hydraulic networks, characterized by complex, non-linear changes in anatomical structure and blood flow dynamics. To better understand this interplay, a diverse set of molecular and computational tools has been used to comprehensively study cardiovascular mechanobiology. With the continual advancement of computational capacity and numerical techniques, cardiovascular simulation is increasingly vital in both basic science research for understanding developmental mechanisms and disease etiologies, as well as in clinical studies aimed at enhancing treatment outcomes. This review provides an overview of computational cardiovascular modeling. Beginning with the fundamental concepts of computational cardiovascular modeling, it navigates through the applications of computational modeling in investigating mechanobiology during cardiac development. Second, the article illustrates the utility of computational hemodynamic modeling in the context of treatment planning for congenital heart diseases. It then delves into the predictive potential of computational models for elucidating tissue growth and remodeling processes. In closing, we outline prevailing challenges and future prospects, underscoring the transformative impact of computational cardiovascular modeling in reshaping cardiovascular science and clinical practice.
Collapse
Affiliation(s)
- Aaron L Brown
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Zachary A Sexton
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Zinan Hu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Weiguang Yang
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
11
|
Amado NG, Nosyreva ED, Thompson D, Egeland TJ, Ogujiofor OW, Yang M, Fusco AN, Passoni N, Mathews J, Cantarel B, Baker LA, Syeda R. PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome. Nat Commun 2024; 15:339. [PMID: 38184690 PMCID: PMC10771463 DOI: 10.1038/s41467-023-44594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Prune belly syndrome (PBS), also known as Eagle-Barret syndrome, is a rare, multi-system congenital myopathy primarily affecting males. Phenotypically, PBS cases manifest three cardinal pathological features: urinary tract dilation with poorly contractile smooth muscle, wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, and intra-abdominal undescended testes. Genetically, PBS is poorly understood. After performing whole exome sequencing in PBS patients, we identify one compound heterozygous variant in the PIEZO1 gene. PIEZO1 is a cation-selective channel activated by various mechanical forces and widely expressed throughout the lower urinary tract. Here we conduct an extensive functional analysis of the PIEZO1 PBS variants that reveal loss-of-function characteristics in the pressure-induced normalized open probability (NPo) of the channel, while no change is observed in single-channel currents. Furthermore, Yoda1, a PIEZO1 activator, can rescue the NPo defect of the PBS mutant channels. Thus, PIEZO1 mutations may be causal for PBS and the in vitro cellular pathophysiological phenotype could be rescued by the small molecule, Yoda1. Activation of PIEZO1 might provide a promising means of treating PBS and other related bladder dysfunctional states.
Collapse
Affiliation(s)
- Nathalia G Amado
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elena D Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas J Egeland
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Osita W Ogujiofor
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michelle Yang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandria N Fusco
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niccolo Passoni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy Mathews
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Yuan W, Zhang X, Fan X. The Role of the Piezo1 Mechanosensitive Channel in Heart Failure. Curr Issues Mol Biol 2023; 45:5830-5848. [PMID: 37504285 PMCID: PMC10378680 DOI: 10.3390/cimb45070369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Mechanotransduction (MT) is inseparable from the pathobiology of heart failure (HF). However, the effects of mechanical forces on HF remain unclear. This review briefly describes how Piezo1 functions in HF-affected cells, including endothelial cells (ECs), cardiac fibroblasts (CFs), cardiomyocytes (CMs), and immune cells. Piezo1 is a mechanosensitive ion channel that has been extensively studied in recent years. Piezo1 responds to different mechanical forces and converts them into intracellular signals. The pathways that modulate the Piezo1 switch have also been briefly described. Experimental drugs that specifically activate Piezo1-like proteins, such as Yoda1, Jedi1, and Jedi2, are available for clinical studies to treat Piezo1-related diseases. The only mechanosensitive ion-channel-specific inhibitor available is GsMTx4, which can turn off Piezo1 by modulating the local membrane tension. Ultrasound waves can modulate Piezo1 switching in vitro with the assistance of microbubbles. This review provides new possible targets for heart failure therapy by exploring the cellular functions of Piezo1 that are involved in the progression of the disease. Modulation of Piezo1 activity may, therefore, effectively delay the progression of heart failure.
Collapse
Affiliation(s)
- Weihua Yuan
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Rd, Hangzhou 310052, China
| | - Xicheng Zhang
- National Clinical Research Center for Child Health, Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Rd, Hangzhou 310052, China
| | - Xiangming Fan
- National Clinical Research Center for Child Health, Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Rd, Hangzhou 310052, China
| |
Collapse
|
13
|
Zhong G, Su S, Li J, Zhao H, Hu D, Chen J, Li S, Lin Y, Wen L, Lin X, Xian G, Xu D, Zeng Q. Activation of Piezo1 promotes osteogenic differentiation of aortic valve interstitial cell through YAP-dependent glutaminolysis. SCIENCE ADVANCES 2023; 9:eadg0478. [PMID: 37267365 PMCID: PMC10413650 DOI: 10.1126/sciadv.adg0478] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Hemodynamic overload and dysregulation of cellular metabolism are involved in development of calcific aortic valve disease (CAVD). However, how mechanical stress relates to metabolic changes in CAVD remains unclear. Here, we show that Piezo1, a mechanosensitive ion channel, regulated glutaminase 1 (GLS1)-mediated glutaminolysis to promote osteogenic differentiation of valve interstitial cells (VICs). In vivo, two models of aortic valve stenosis were constructed by ascending aortic constriction (AAC) and direct wire injury (DWI). Inhibition of Piezo1 and GLS1 in these models respectively mitigated aortic valve lesion. In vitro, Piezo1 activation induced by Yoda1 and oscillatory stress triggered osteogenic responses in VICs, which were prevented by Piezo1 inhibition or knockdown. Mechanistically, Piezo1 activation promoted calcium-dependent Yes-associated protein (YAP) activation. YAP modulated GLS1-mediated glutaminolysis, which enhanced osteogenic differentiation through histone acetylation of runt-related transcription factor 2 (RUNX2) promoters. Together, our work provided a cross-talk between mechanotransduction and metabolism in the context of CAVD.
Collapse
Affiliation(s)
- Guoheng Zhong
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Juncong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dongtu Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jun Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Shichao Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yingwen Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Xiangjie Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
14
|
Rolland L, Torrente AG, Bourinet E, Maskini D, Drouard A, Chevalier P, Jopling C, Faucherre A. Prolonged Piezo1 Activation Induces Cardiac Arrhythmia. Int J Mol Sci 2023; 24:ijms24076720. [PMID: 37047693 PMCID: PMC10094979 DOI: 10.3390/ijms24076720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The rhythmical nature of the cardiovascular system constantly generates dynamic mechanical forces. At the centre of this system is the heart, which must detect these changes and adjust its performance accordingly. Mechanoelectric feedback provides a rapid mechanism for detecting even subtle changes in the mechanical environment and transducing these signals into electrical responses, which can adjust a variety of cardiac parameters such as heart rate and contractility. However, pathological conditions can disrupt this intricate mechanosensory system and manifest as potentially life-threatening cardiac arrhythmias. Mechanosensitive ion channels are thought to be the main proponents of mechanoelectric feedback as they provide a rapid response to mechanical stimulation and can directly affect cardiac electrical activity. Here, we demonstrate that the mechanosensitive ion channel PIEZO1 is expressed in zebrafish cardiomyocytes. Furthermore, chemically prolonging PIEZO1 activation in zebrafish results in cardiac arrhythmias. indicating that this ion channel plays an important role in mechanoelectric feedback. This also raises the possibility that PIEZO1 gain of function mutations could be linked to heritable cardiac arrhythmias in humans.
Collapse
Affiliation(s)
- Laura Rolland
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Angelo Giovanni Torrente
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Dounia Maskini
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Aurélien Drouard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Philippe Chevalier
- Neuromyogene Institut, Claude Bernard University, Lyon 1, 69008 Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, 69500 Lyon, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| |
Collapse
|
15
|
Park H, Song G, Hong T, An G, Park S, Lim W. Exposure to the herbicide fluridone induces cardiovascular toxicity in early developmental stages of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161535. [PMID: 36638995 DOI: 10.1016/j.scitotenv.2023.161535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Fluridone is a systemic herbicide used to control a range of invasive aquatic plants in irrigation systems, lake, and reservoirs. Since aquatic herbicides are more likely to have a hazardous impact on ecosystems than terrestrially applied herbicides, a risk assessment is needed to determine whether to expand or limit their use. The aim of this study was to investigate the developmental toxicity of fluridone using zebrafish. Diverse toxicological results were observed for the sub-lethal endpoints, including lack of hatching, reduced heartbeat and disturbed blood circulation through dysmorphic heart, and edema formation. Abnormal apoptosis was observed in the brain and yolk sac of fluridone-exposed larvae. A computational analysis was used to predict chemical properties in non-target organisms and revealed that fluridone was highly relevant in the cardiovascular system. Double transgenic zebrafish (fli1a:EGFP;cmlc2:dsRed) were used to evaluate the effects of fluridone on the cardiovascular system during embryonic development. Ectopic growth of sub-intestinal vessels and sprouting angiogenesis in the hindbrain region were highly inhibited. Additionally, essential genes involved in the VEGF signaling and heart development were differentially expressed in dose-dependent manner. Collectively, our toxicological findings in fluridone exposure highlight defects in the cardiovascular development causing embryonic lethality that could damage aquatic communities and natural ecosystems.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
16
|
Vasileva V, Chubinskiy-Nadezhdin V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J Cell Physiol 2023; 238:918-930. [PMID: 36947588 DOI: 10.1002/jcp.31001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
PIEZO1 is a mechanosensitive channel widely presented in eukaryotic organisms. Although the PIEZO family was discovered in 2010, main questions related to the molecular structure as well as to specific activation mechanisms and regulating pathways remain open. Two hypotheses of PIEZO1 gating were formulated: the first, as a dominant hypothesis, through the plasma membrane (force-from-lipids) and the second, via the participation of the cytoskeleton and the components of the extracellular matrix (ECM) (force-from-filaments). Many researchers provide convincing evidence for both hypotheses. It was demonstrated that PIEZO1 has a propeller-like shape forming a membrane curvature within the lipid bilayer. That suggests the participation of lipids in channel modulation, and many studies demonstrate the critical role of lipids and compounds that modify the lipid bilayer in the regulation of PIEZO1 properties. At the same time, the components of ECM and cortical cytoskeleton can be affected by the membrane curvature and thus have an impact on PIEZO1 properties. In living cells, PIEZO1 properties are reported to be critically dependent on channel microenvironment that is on combinatorial influence of plasma membrane, cytoskeleton and ECM. Thus, it is necessary to understand which factors can affect PIEZO1 and consider them when interpreting the role of PIEZO1 in various physiological processes. This review summarizes the current knowledge about regulation of Piezo1 by lipids and the components of ECM and cytoskeleton.
Collapse
Affiliation(s)
- Valeria Vasileva
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladislav Chubinskiy-Nadezhdin
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
17
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
18
|
Simard C, Aize M, Chaigne S, Mpweme Bangando H, Guinamard R. Ion Channels in the Development and Remodeling of the Aortic Valve. Int J Mol Sci 2023; 24:5860. [PMID: 36982932 PMCID: PMC10055105 DOI: 10.3390/ijms24065860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The role of ion channels is extensively described in the context of the electrical activity of excitable cells and in excitation-contraction coupling. They are, through this phenomenon, a key element for cardiac activity and its dysfunction. They also participate in cardiac morphological remodeling, in particular in situations of hypertrophy. Alongside this, a new field of exploration concerns the role of ion channels in valve development and remodeling. Cardiac valves are important components in the coordinated functioning of the heart by ensuring unidirectional circulation essential to the good efficiency of the cardiac pump. In this review, we will focus on the ion channels involved in both the development and/or the pathological remodeling of the aortic valve. Regarding valve development, mutations in genes encoding for several ion channels have been observed in patients suffering from malformation, including the bicuspid aortic valve. Ion channels were also reported to be involved in the morphological remodeling of the valve, characterized by the development of fibrosis and calcification of the leaflets leading to aortic stenosis. The final stage of aortic stenosis requires, until now, the replacement of the valve. Thus, understanding the role of ion channels in the progression of aortic stenosis is an essential step in designing new therapeutic approaches in order to avoid valve replacement.
Collapse
Affiliation(s)
- Christophe Simard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Margaux Aize
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Foundation Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33600 Pessac, France
| | - Harlyne Mpweme Bangando
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Romain Guinamard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| |
Collapse
|
19
|
Brown AL, Gerosa FM, Wang J, Hsiai T, Marsden AL. Recent advances in quantifying the mechanobiology of cardiac development via computational modeling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100428. [PMID: 36583220 PMCID: PMC9794182 DOI: 10.1016/j.cobme.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mechanical forces are essential for coordinating cardiac morphogenesis, but much remains to be discovered about the interactions between mechanical forces and the mechanotransduction pathways they activate. Due to the elaborate and fundamentally multi-physics and multi-scale nature of cardiac mechanobiology, a complete understanding requires multiple experimental and analytical techniques. We identify three fundamental tools used in the field to probe these interactions: high resolution imaging, genetic and molecular analysis, and computational modeling. In this review, we focus on computational modeling and present recent studies employing this tool to investigate the mechanobiological pathways involved with cardiac development. These works demonstrate that understanding the detailed spatial and temporal patterns of biomechanical forces is crucial to building a comprehensive understanding of mechanobiology during cardiac development, and that computational modeling is an effective and efficient tool for obtaining such detail. In this context, multidisciplinary studies combining all three tools present the most compelling results.
Collapse
Affiliation(s)
- Aaron L. Brown
- Stanford University, Department of Mechanical Engineering, Stanford, USA, CA, 94305
| | - Fannie M. Gerosa
- Stanford University, Department of Pediatrics, Stanford, USA, CA 94305
- Stanford University, Institute for Computational & Mathematical Engineering, Stanford, USA, CA 94305
| | - Jing Wang
- University of California Los Angeles, Department of Bioengineering, Los Angeles, CA 90095
| | - Tzung Hsiai
- University of California Los Angeles, Department of Bioengineering, Los Angeles, CA 90095
- University of California Los Angeles, Division of Cardiology, Los Angeles, CA 90095
| | - Alison L. Marsden
- Stanford University, Department of Mechanical Engineering, Stanford, USA, CA, 94305
- Stanford University, Department of Pediatrics, Stanford, USA, CA 94305
- Stanford University, Institute for Computational & Mathematical Engineering, Stanford, USA, CA 94305
- Stanford University, Department of Bioengineering, Stanford, USA, CA 94305
| |
Collapse
|
20
|
Juan T, Ribeiro da Silva A, Cardoso B, Lim S, Charteau V, Stainier DYR. Multiple pkd and piezo gene family members are required for atrioventricular valve formation. Nat Commun 2023; 14:214. [PMID: 36639367 PMCID: PMC9839778 DOI: 10.1038/s41467-023-35843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Cardiac valves ensure unidirectional blood flow through the heart, and altering their function can result in heart failure. Flow sensing via wall shear stress and wall stretching through the action of mechanosensors can modulate cardiac valve formation. However, the identity and precise role of the key mechanosensors and their effectors remain mostly unknown. Here, we genetically dissect the role of Pkd1a and other mechanosensors in atrioventricular (AV) valve formation in zebrafish and identify a role for several pkd and piezo gene family members in this process. We show that Pkd1a, together with Pkd2, Pkd1l1, and Piezo2a, promotes AV valve elongation and cardiac morphogenesis. Mechanistically, Pkd1a, Pkd2, and Pkd1l1 all repress the expression of klf2a and klf2b, transcription factor genes implicated in AV valve development. Furthermore, we find that the calcium-dependent protein kinase Camk2g is required downstream of Pkd function to repress klf2a expression. Altogether, these data identify, and dissect the role of, several mechanosensors required for AV valve formation, thereby broadening our understanding of cardiac valvulogenesis.
Collapse
Affiliation(s)
- Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany. .,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany. .,Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Agatha Ribeiro da Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Bárbara Cardoso
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - SoEun Lim
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Violette Charteau
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.,Institute for Molecules and Materials (IMM), Department of Biomolecular Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany. .,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany. .,Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
21
|
Beech DJ. Are PIEZO1 channels a potential therapeutic target for heart failure? Getting to the heart of the matter. Expert Opin Ther Targets 2023; 27:409-411. [PMID: 37246560 DOI: 10.1080/14728222.2023.2218999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
|
22
|
Xu H, He Y, Hong T, Bi C, Li J, Xia M. Piezo1 in vascular remodeling of atherosclerosis and pulmonary arterial hypertension: A potential therapeutic target. Front Cardiovasc Med 2022; 9:1021540. [PMID: 36247424 PMCID: PMC9557227 DOI: 10.3389/fcvm.2022.1021540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular remodeling (VR) is a structural and functional change of blood vessels to adapt to the changes of internal and external environment. It is one of the common pathological features of many vascular proliferative diseases. The process of VR is mainly manifested in the changes of vascular wall structure and function, including intimal hyperplasia, thickening or thinning of media, fibrosis of adventitia, etc. These changes are also the pathological basis of aging and various cardiovascular diseases. Mechanical force is the basis of cardiovascular biomechanics, and the newly discovered mechanical sensitive ion channel Piezo1 is widely distributed in the whole cardiovascular system. Studies have confirmed that Piezo1, a mechanically sensitive ion channel, plays an important role in cardiovascular remodeling diseases. This article reviews the molecular mechanism of Piezo1 in atherosclerosis, hypertension and pulmonary hypertension, in order to provide a theoretical basis for the further study of vascular remodeling.
Collapse
Affiliation(s)
- Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu He
- Cardiovascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Tianying Hong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jing Li
| | - Mingfeng Xia
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Mingfeng Xia
| |
Collapse
|
23
|
Hu D, Dong Z, Li B, Lu F, Li Y. Mechanical Force Directs Proliferation and Differentiation of Stem Cells. TISSUE ENGINEERING PART B: REVIEWS 2022; 29:141-150. [PMID: 35979892 DOI: 10.1089/ten.teb.2022.0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cells have attracted much attention in the field of regeneration due to their unique ability to promote regeneration. Among the many approaches used to regulate directed proliferation and differentiation of stem cells, application of mechanical forces is safe, simple, and easy to implement, all of which are advantageous to practical applications. In this review, the mechanisms of mechanical regulation of stem cell proliferation and differentiation are summarized with emphasis on force transduction pathways from the extracellular matrix to the nucleus. Prospects for future clinical applications are also discussed. In conclusion, through specific signaling pathways, mechanical signals ultimately affect gene expression and thus guide cell fate. Mechanical factors can regulate proliferation and differentiation of stem cells through signaling pathways, a greater understanding of which will contribute to future research and applications of cell regeneration therapy. Impact statement Mechanical mechanics is vital for the regulation of cell fate; especially in the field of regenerative medicine, mechanical control has characteristics that are simple and comparable. Mechanically regulated pathways exist widely in cells and are distributed at various structural levels of cells. In this review, we categorized the mechanical regulatory pathways through the clue of the mechanical transmission. We tried to include some newly researched pathways, such as Piezo-related pathways, to show the recent vigorous development in this field.
Collapse
Affiliation(s)
- Delin Hu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ziqing Dong
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Bin Li
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Feng Lu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ye Li
- Southern Medical University Nanfang Hospital, Plastic and Cosmetic Surgery, guangzhou, Guangzhou, China, 510515,
| |
Collapse
|
24
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
25
|
Braidotti N, Chen SN, Long CS, Cojoc D, Sbaizero O. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling. Int J Mol Sci 2022; 23:8065. [PMID: 35897650 PMCID: PMC9330509 DOI: 10.3390/ijms23158065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy;
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Suet Nee Chen
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave., Aurora, CO 80045, USA;
| | - Carlin S. Long
- Center for the Prevention of Heart and Vascular Disease, University of California, 555 Mission Bay Blvd South, Rm 352K, San Francisco, CA 94143, USA;
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy
| |
Collapse
|
26
|
Alharbi KS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Alfawaz Altamimi AS, Singh SK, Dua K, Gupta G. A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact 2022; 363:110011. [PMID: 35728671 DOI: 10.1016/j.cbi.2022.110011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Cardiomyocyte regeneration following cardiac damage is challenging to study because of the inflammatory process, the multiplication of cells in the stroma, and the creation of scar tissue. In addition to the initial damage, the subsequent decrease in cardiac myocytes adds to heart failure. Piezo1 is remarkably understudied in the heart, which may be related to its recent discovery. Despite this, Piezo1 is expressed in a variety of cardiovascular cell populations, notably epithelial cells (EC), cardiac fibroblasts (CF), and cardiac myocytes (CM), in both animal and human samples, with fibroblasts expressing more than myocytes. Researchers have recently shown that disrupting Piezo1 signaling causes defects in zebrafish developing the outflow tract (OFT) and aortic valves. Platelet plasma membranes may provide lipid substrates, such as phosphatidylinositol bisphosphate, that aid in activating the piezo 1 ion channel in the cardiovascular system. In addition, CXC chemokine ligand 8/CXC chemokine receptor 1/2 (CXCL8-CXCR1/2) signaling was identified to establish the proliferation of coronary endothelial cells during cardiac regeneration. Notably, all these pathways are calcium-dependent, and cell proliferation and angiogenesis were necessary to recover myocardial cells. This review will examine the most current findings to understand further how platelet-rich plasma (PRP) and the piezo 1 channel might aid in cardiomyocyte regeneration.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
27
|
Mukherjee P, Rahaman SG, Goswami R, Dutta B, Mahanty M, Rahaman SO. Role of mechanosensitive channels/receptors in atherosclerosis. Am J Physiol Cell Physiol 2022; 322:C927-C938. [PMID: 35353635 PMCID: PMC9109792 DOI: 10.1152/ajpcell.00396.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Mechanical forces are critical physical cues that can affect numerous cellular processes regulating the development, tissue maintenance, and functionality of cells. The contribution of mechanical forces is especially crucial in the vascular system where it is required for embryogenesis and for maintenance of physiological function in vascular cells including aortic endothelial cells, resident macrophages, and smooth muscle cells. Emerging evidence has also identified a role of these mechanical cues in pathological conditions of the vascular system such as atherosclerosis and associated diseases like hypertension. Of the different mechanotransducers, mechanosensitive ion channels/receptors are gaining prominence due to their involvement in numerous physiological and pathological conditions. However, only a handful of potential mechanosensory ion channels/receptors have been shown to be involved in atherosclerosis, and their precise role in disease development and progression remains poorly understood. Here, we provide a comprehensive account of recent studies investigating the role of mechanosensitive ion channels/receptors in atherosclerosis. We discuss the different groups of mechanosensitive proteins and their specific roles in inflammation, endothelial dysfunction, macrophage foam cell formation, and lesion development, which are crucial for the development and progression of atherosclerosis. Results of the studies discussed here will help in developing an understanding of the current state of mechanobiology in vascular diseases, specifically in atherosclerosis, which may be important for the development of innovative and targeted therapeutics for this disease.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | | | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Manisha Mahanty
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| |
Collapse
|
28
|
Chen L, Yan Y, Kong F, Wang J, Zeng J, Fang Z, Wang Z, Liu Z, Liu F. Contribution of Oxidative Stress Induced by Sonodynamic Therapy to the Calcium Homeostasis Imbalance Enhances Macrophage Infiltration in Glioma Cells. Cancers (Basel) 2022; 14:cancers14082036. [PMID: 35454942 PMCID: PMC9027216 DOI: 10.3390/cancers14082036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Sonodynamic therapy (SDT) is a non-invasive technique that is based on the combination of a sonosensitizer and acoustic activation that destroys the mitochondrial respiratory chain, leading to increases in the levels of intracellular reactive oxygen species (ROS) and calcium overload as well as to the inhibition of proliferation, invasion, and promotion of the apoptosis of biologically more aggressive grade 4 glioma. This study aimed to better understand the calcium overload mechanism involved in SDT irradiation and killing gliomas as well as in lipid metabolism in aggressive glioma cells under the SDT treatment. In this study, we examined the hypothesis that the early application of the mechanosensitive Ca2+ channel Piezo1 antagonist (GsMTx4) could better promote the dissociation and polymerization of the Ca2+ lipid complex and further increase oxidative stress levels, leading to a better anti-tumor effect when SDT was used as a treatment. Moreover, Piezo1’s early closing state and intracellular calcium overload formation may be a key link that leads to the final tumor-infiltrating macrophages. Abstract Background: To better understand the Ca2+ overload mechanism of SDT killing gliomas, we examined the hypothesis that the early application of the mechanosensitive Ca2+ channel Piezo1 antagonist (GsMTx4) could have a better anti-tumor effect. Methods: The in vitro effect of low-energy SDT combined with GsMTx4 or agonist Yoda 1 on both the ROS-induced distribution of Ca2+ as well as on the opening of Piezo1 and the dissociation and polymerization of the Ca2+ lipid complex were assessed. The same groups were also studied to determine their effects on both tumor-bearing BALB/c-nude and C57BL/6 intracranial tumors, and their effects on the tumor-infiltrating macrophages were studied as well. Results: It was determined that ultrasound-activated Piezo1 contributes to the course of intracellular Ca2+ overload, which mediates macrophages (M1 and M2) infiltrating under the oxidative stress caused by SDT. Moreover, we explored the effects of SDT based on the dissociation of the Ca2+ lipid complex by inhibiting the expression of fatty acid binding protein 4 (FABP4). The Piezo1 channel was blocked early and combined with SDT treatment, recruited macrophages in the orthotopic transplantation glioma model. Conclusions: SDT regulates intracellular Ca2+ signals by upregulating Piezo1 leading to the inhibition of the energy supply from lipid and recruitment of macrophages. Therefore, intervening with the function of the Ca2+ channel on the glioma cell membrane in advance is likely to be the key factor to obtain a better effect combined with SDT treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Yan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Fangen Kong
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jia Zeng
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhen Fang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zheyan Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhigang Liu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Correspondence: (Z.L.); (F.L.); Tel.: +86-186-2758-5860 (Z.L.); +86-0756-861-8218 (F.L.)
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; (L.C.); (Y.Y.); (F.K.); (J.W.); (J.Z.); (Z.F.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Correspondence: (Z.L.); (F.L.); Tel.: +86-186-2758-5860 (Z.L.); +86-0756-861-8218 (F.L.)
| |
Collapse
|
29
|
Vignes H, Vagena-Pantoula C, Prakash M, Fukui H, Norden C, Mochizuki N, Jug F, Vermot J. Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis. Dev Cell 2022; 57:598-609.e5. [PMID: 35245444 DOI: 10.1016/j.devcel.2022.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.
Collapse
Affiliation(s)
- Hélène Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Strasbourg, Illkirch, France
| | | | - Mangal Prakash
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Florian Jug
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Fondazione Human Technopole, Milan, Italy
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
30
|
Zhu W, Guo S, Homilius M, Nsubuga C, Wright SH, Quan D, Kc A, Eddy SS, Victorio RA, Beerens M, Flaumenhaft R, Deo RC, MacRae CA. PIEZO1 mediates a mechanothrombotic pathway in diabetes. Sci Transl Med 2022; 14:eabk1707. [PMID: 34985971 DOI: 10.1126/scitranslmed.abk1707] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Max Homilius
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Cissy Nsubuga
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shane H Wright
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dajun Quan
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ashmita Kc
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Samuel S Eddy
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Manu Beerens
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Robert Flaumenhaft
- Harvard Medical School, Boston, MA 02115, USA.,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rahul C Deo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Calum A MacRae
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Zhou Z, Li JV, Martinac B, Cox CD. Loss-of-Function Piezo1 Mutations Display Altered Stability Driven by Ubiquitination and Proteasomal Degradation. Front Pharmacol 2021; 12:766416. [PMID: 34867393 PMCID: PMC8640252 DOI: 10.3389/fphar.2021.766416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Missense mutations in the gene that encodes for the mechanically-gated ion channel Piezo1 have been linked to a number of diseases. Gain-of-function variants are linked to a hereditary anaemia and loss-of-function variants have been linked to generalized lymphatic dysplasia and bicuspid aortic valve. Two previously characterized mutations, S217L and G2029R, both exhibit reduced plasma membrane trafficking. Here we show that both mutations also display reduced stability and higher turnover rates than wild-type Piezo1 channels. This occurs through increased ubiquitination and subsequent proteasomal degradation. Congruent with this, proteasome inhibition using N-acetyl-l-leucyl-l-leucyl-l-norleucinal (ALLN) reduced the degradation of both mutant proteins. While ALLN treatment could not rescue the function of S217L we show via multiple complementary methodologies that proteasome inhibition via ALLN treatment can not only prevent G2029R turnover but increase the membrane localized pool of this variant and the functional Piezo1 mechanosensitive currents. This data in combination with a precision medicine approach provides a new potential therapeutic avenue for the treatment of Piezo1 mediated channelopathies.
Collapse
Affiliation(s)
- Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
32
|
Gunawan F, Priya R, Stainier DYR. Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Curr Opin Cell Biol 2021; 73:26-34. [PMID: 34147705 DOI: 10.1016/j.ceb.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis-endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.
Collapse
Affiliation(s)
- Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| | - Rashmi Priya
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
33
|
Li JV, Ng CA, Cheng D, Zhou Z, Yao M, Guo Y, Yu ZY, Ramaswamy Y, Ju LA, Kuchel PW, Feneley MP, Fatkin D, Cox CD. Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Commun Biol 2021; 4:1038. [PMID: 34489534 PMCID: PMC8421374 DOI: 10.1038/s42003-021-02528-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like most plasma membrane ion channel proteins they must pass through biosynthetic quality control in the endoplasmic reticulum that results in them reaching their destination at the plasma membrane. Here we show that N-linked glycosylation of two highly conserved asparagine residues in the 'cap' region of mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature Piezo1 protein. The N-glycans in the cap are a pre-requisite for N-glycosylation in the 'propeller' regions, which are present in loops that are essential for mechanotransduction. Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and bicuspid aortic valve display reduced fully N-glycosylated Piezo1 protein. Thus the N-linked glycosylation status in vitro correlates with efficient membrane trafficking and will aid in determining the functional impact of Piezo1 variants of unknown significance.
Collapse
Affiliation(s)
- Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Chai-Ann Ng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Delfine Cheng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael P Feneley
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Department of Cardiology, St Vincent's Hospital, Sydney, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
34
|
Zhang Y, Su SA, Li W, Ma Y, Shen J, Wang Y, Shen Y, Chen J, Ji Y, Xie Y, Ma H, Xiang M. Piezo1-Mediated Mechanotransduction Promotes Cardiac Hypertrophy by Impairing Calcium Homeostasis to Activate Calpain/Calcineurin Signaling. Hypertension 2021; 78:647-660. [PMID: 34333987 DOI: 10.1161/hypertensionaha.121.17177] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yuhao Zhang
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-An Su
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wudi Li
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuankun Ma
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Wang
- Department of Endocrinology (Y.W.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yimin Shen
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Chen
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongli Ji
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- From the Department of Cardiology (Y.Z., S.-a.S., W.L., Y.M., J.S., Y.S., J.C., Y.J., Y.X., H.M., M.X.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Shinge SAU, Zhang D, Achu Muluh T, Nie Y, Yu F. Mechanosensitive Piezo1 Channel Evoked-Mechanical Signals in Atherosclerosis. J Inflamm Res 2021; 14:3621-3636. [PMID: 34349540 PMCID: PMC8328000 DOI: 10.2147/jir.s319789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022] Open
Abstract
Recently, more and more works have focused and used extensive resources on atherosclerosis research, which is one of the major causes of death globally. Alongside traditional risk factors, such as hyperlipidemia, smoking, hypertension, obesity, and diabetes, mechanical forces, including shear stress, pressure and stretches exerted on endothelial cells by flow, is proved to be crucial in atherosclerosis development. Studies have recognized the mechanosensitive Piezo1 channel as a special sensor and transducer of various mechanical forces into biochemical signals, and recent studies report its role in atherosclerosis through different mechanical forces in pressure, stretching and turbulent shear stress. Based on our expertise in this field and considering the recent advancement of atherosclerosis research, we will be focusing on the function of Piezo1 and its involvement in various cellular mechanisms and consequent involvement in the development of atherosclerosis in this review. Also, we will discuss various functions of Piezo1 involvement in atherosclerosis and come up with new mechanistic insight for future research. Based on the recent findings, we suggest Piezo1 as a valid candidate for novel therapeutic innovations, in which deep exploration and translating its findings into the clinic will be a new therapeutic strategy for cardiovascular diseases, particularly atherosclerosis.
Collapse
Affiliation(s)
- Shafiu A Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Clinical Research Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tobias Achu Muluh
- Oncology Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yongmei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fengxu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
36
|
Shah V, Patel S, Shah J. Emerging Role of Piezo Ion Channels in Cardiovascular Development. Dev Dyn 2021; 251:276-286. [PMID: 34255896 DOI: 10.1002/dvdy.401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/12/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Mechanical cues are crucial for vascular development and the proper differentiation of various cell types. Piezo1 and Piezo2 are mechanically activated cationic channels expressed in various cell types, especially in vascular smooth muscle and endothelial cells. It is present as a transmembrane homotrimeric complex, regulating calcium influx. Local blood flow associated shear stress, in addition to blood pressure associated cell membrane stretching are key Piezo channel activators. There is rising proof, showcasing Piezo channels significance in myocytes, cardiac fibroblast, vascular tone maintenance, atherosclerosis, hypertension, NO generation, and baroreceptor reflex. Here, we review the role of Piezo channels in cardiovascular development and its associated clinical disorders. Also, emphasizing on Piezo channel modulators which might lead to novel therapies for cardiovascular diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
37
|
Foo YY, Motakis E, Tiang Z, Shen S, Lai JKH, Chan WX, Wiputra H, Chen N, Chen CK, Winkler C, Foo RSY, Yap CH. Effects of extended pharmacological disruption of zebrafish embryonic heart biomechanical environment on cardiac function, morphology, and gene expression. Dev Dyn 2021; 250:1759-1777. [PMID: 34056790 DOI: 10.1002/dvdy.378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.
Collapse
Affiliation(s)
- Yoke Yin Foo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Efthymios Motakis
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shuhao Shen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jason Kuan Han Lai
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nanguang Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Roger Sik Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
38
|
Lowe V, Wisniewski L, Pellet-Many C. The Zebrafish Cardiac Endothelial Cell-Roles in Development and Regeneration. J Cardiovasc Dev Dis 2021; 8:jcdd8050049. [PMID: 34062899 PMCID: PMC8147271 DOI: 10.3390/jcdd8050049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
In zebrafish, the spatiotemporal development of the vascular system is well described due to its stereotypical nature. However, the cellular and molecular mechanisms orchestrating post-embryonic vascular development, the maintenance of vascular homeostasis, or how coronary vessels integrate into the growing heart are less well studied. In the context of cardiac regeneration, the central cellular mechanism by which the heart regenerates a fully functional myocardium relies on the proliferation of pre-existing cardiomyocytes; the epicardium and the endocardium are also known to play key roles in the regenerative process. Remarkably, revascularisation of the injured tissue occurs within a few hours after cardiac damage, thus generating a vascular network acting as a scaffold for the regenerating myocardium. The activation of the endocardium leads to the secretion of cytokines, further supporting the proliferation of the cardiomyocytes. Although epicardium, endocardium, and myocardium interact with each other to orchestrate heart development and regeneration, in this review, we focus on recent advances in the understanding of the development of the endocardium and the coronary vasculature in zebrafish as well as their pivotal roles in the heart regeneration process.
Collapse
Affiliation(s)
- Vanessa Lowe
- Heart Centre, Barts & The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Laura Wisniewski
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
39
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
40
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
41
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
42
|
Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020; 587:567-576. [PMID: 33239794 DOI: 10.1038/s41586-020-2933-1] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023]
Abstract
The ability to sense physical forces is conserved across all organisms. Cells convert mechanical stimuli into electrical or chemical signals via mechanically activated ion channels. In recent years, the identification of new families of mechanosensitive ion channels-such as PIEZO and OSCA/TMEM63 channels-along with surprising insights into well-studied mechanosensitive channels have driven further developments in the mechanotransduction field. Several well-characterized mechanosensory roles such as touch, blood-pressure sensing and hearing are now linked with primary mechanotransducers. Unanticipated roles of mechanical force sensing continue to be uncovered. Furthermore, high-resolution structures representative of nearly every family of mechanically activated channel described so far have underscored their diversity while advancing our understanding of the biophysical mechanisms of pressure sensing. Here we summarize recent discoveries in the physiology and structures of known mechanically activated ion channel families and discuss their implications for understanding the mechanisms of mechanical force sensing.
Collapse
|
43
|
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH, Yang YQ. A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol 2020; 43:e20200142. [PMID: 33306779 PMCID: PMC7783509 DOI: 10.1590/1678-4685-gmb-2020-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
TBX5 has been linked to Holt-Oram syndrome, with congenital heart defect (CHD) and atrial fibrillation (AF) being two major cardiac phenotypes. However, the prevalence of a TBX5 variation in patients with CHD and AF remains obscure. In this research, by sequencing analysis of TBX5 in 178 index patients with both CHD and AF, a novel heterozygous variation, NM_000192.3: c.577G>T; p.(Gly193*), was identified in one index patient with CHD and AF as well as bicuspid aortic valve (BAV), with an allele frequency of approximately 0.28%. Genetic analysis of the proband's pedigree showed that the variation co-segregated with the diseases. The pathogenic variation was not detected in 292 unrelated healthy subjects. Functional analysis by using a dual-luciferase reporter assay system showed that the Gly193*-mutant TBX5 protein failed to transcriptionally activate its target genes MYH6 and NPPA. Moreover, the mutation nullified the synergistic transactivation between TBX5 and GATA4 as well as NKX2-5. Additionally, whole-exome sequencing analysis showed no other genes contributing to the diseases. This investigation firstly links a pathogenic variant in the TBX5 gene to familial CHD and AF as well as BAV, suggesting that CHD and AF as well as BAV share a common developmental basis in a subset of patients.
Collapse
Affiliation(s)
- Wei-Feng Jiang
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Ying-Jia Xu
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China
| | - Cui-Mei Zhao
- Tongji University School of Medicine, Department of Cardiology, Tongji Hospital, Shanghai, China
| | - Xin-Hua Wang
- Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Renji Hospital, Shanghai, China
| | - Xing-Biao Qiu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Xu Liu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Shao-Hui Wu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Yi-Qing Yang
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Central Laboratory, Shanghai Fifth People's Hospital, Shanghai, China
| |
Collapse
|
44
|
Buyan A, Cox CD, Barnoud J, Li J, Chan HSM, Martinac B, Marrink SJ, Corry B. Piezo1 Forms Specific, Functionally Important Interactions with Phosphoinositides and Cholesterol. Biophys J 2020; 119:1683-1697. [PMID: 32949489 PMCID: PMC7642233 DOI: 10.1016/j.bpj.2020.07.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 10/25/2022] Open
Abstract
Touch, hearing, and blood pressure regulation require mechanically gated ion channels that convert mechanical stimuli into electrical currents. One such channel is Piezo1, which plays a key role in the transduction of mechanical stimuli in humans and is implicated in diseases, such as xerocytosis and lymphatic dysplasia. There is building evidence that suggests Piezo1 can be regulated by the membrane environment, with the activity of the channel determined by the local concentration of lipids, such as cholesterol and phosphoinositides. To better understand the interaction of Piezo1 with its environment, we conduct simulations of the protein in a complex mammalian bilayer containing more than 60 different lipid types together with electrophysiology and mutagenesis experiments. We find that the protein alters its local membrane composition, enriching specific lipids and forming essential binding sites for phosphoinositides and cholesterol that are functionally relevant and often related to Piezo1-mediated pathologies. We also identify a number of key structural connections between the propeller and pore domains located close to lipid-binding sites.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Acton, Canberra, Australia
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| | - Jonathan Barnoud
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jinyuan Li
- Victor Chang Cardiac Research Institute, New South Wales, Australia
| | - Hannah S M Chan
- Research School of Biology, Australian National University, Acton, Canberra, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, Canberra, Australia.
| |
Collapse
|
45
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
46
|
Sidhwani P, Leerberg DM, Boezio GLM, Capasso TL, Yang H, Chi NC, Roman BL, Stainier DYR, Yelon D. Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development 2020; 147:dev185900. [PMID: 32439760 PMCID: PMC7328156 DOI: 10.1242/dev.185900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/27/2020] [Indexed: 01/06/2023]
Abstract
Physical forces are important participants in the cellular dynamics that shape developing organs. During heart formation, for example, contractility and blood flow generate biomechanical cues that influence patterns of cell behavior. Here, we address the interplay between function and form during the assembly of the cardiac outflow tract (OFT), a crucial connection between the heart and vasculature that develops while circulation is under way. In zebrafish, we find that the OFT expands via accrual of both endocardial and myocardial cells. However, when cardiac function is disrupted, OFT endocardial growth ceases, accompanied by reduced proliferation and reduced addition of cells from adjacent vessels. The flow-responsive TGFβ receptor Acvrl1 is required for addition of endocardial cells, but not for their proliferation, indicating distinct modes of function-dependent regulation for each of these essential cell behaviors. Together, our results indicate that cardiac function modulates OFT morphogenesis by triggering endocardial cell accumulation that induces OFT lumen expansion and shapes OFT dimensions. Moreover, these morphogenetic mechanisms provide new perspectives regarding the potential causes of cardiac birth defects.
Collapse
Affiliation(s)
- Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dena M Leerberg
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia L M Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Teresa L Capasso
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hongbo Yang
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Beth L Roman
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|