1
|
Bellizzi A, Çakır S, Donadoni M, Sariyer R, Liao S, Liu H, Ruan GX, Gordon J, Khalili K, Sariyer IK. Suppression of HSV-1 infection and viral reactivation by CRISPR-Cas9 gene editing in 2D and 3D culture models. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102282. [PMID: 39176174 PMCID: PMC11339036 DOI: 10.1016/j.omtn.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Although our understanding of herpes simplex virus type 1 (HSV-1) biology has been considerably enhanced, developing therapeutic strategies to eliminate HSV-1 in latently infected individuals remains a public health concern. Current antiviral drugs used for the treatment of HSV-1 complications are not specific and do not address latent infection. We recently developed a CRISPR-Cas9-based gene editing platform to specifically target the HSV-1 genome. In this study, we further used 2D Vero cell culture and 3D human induced pluripotent stem cell-derived cerebral organoid (CO) models to assess the effectiveness of our editing constructs targeting viral ICP0 or ICP27 genes. We found that targeting the ICP0 or ICP27 genes with AAV2-CRISPR-Cas9 vectors in Vero cells drastically suppressed HSV-1 replication. In addition, we productively infected COs with HSV-1, characterized the viral replication kinetics, and established a viral latency model. Finally, we discovered that ICP0- or ICP27-targeting AAV2-CRISPR-Cas9 vector significantly reduced viral rebound in the COs that were latently infected with HSV-1. In summary, our results suggest that CRISPR-Cas9 gene editing of HSV-1 is an efficient therapeutic approach to eliminate the latent viral reservoir and treat HSV-1-associated complications.
Collapse
Affiliation(s)
- Anna Bellizzi
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Senem Çakır
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Martina Donadoni
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Rahsan Sariyer
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Shuren Liao
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Liu
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Guo-Xiang Ruan
- Excision BioTherapeutics Inc., 134 Coolidge Avenue, Watertown, MA 02472, USA
| | - Jennifer Gordon
- Excision BioTherapeutics Inc., 134 Coolidge Avenue, Watertown, MA 02472, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ilker K. Sariyer
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Fyke Z, Johansson R, Scott AI, Wiley D, Chelsky D, Zak JD, Al Nakouzi N, Koster KP, Yoshii A. Reduction of neuroinflammation and seizures in a mouse model of CLN1 batten disease using the small molecule enzyme mimetic, N-Tert-butyl hydroxylamine. Mol Genet Metab 2024; 143:108537. [PMID: 39033629 PMCID: PMC11473239 DOI: 10.1016/j.ymgme.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Infantile neuronal ceroid lipofuscinosis (CLN1 Batten Disease) is a devastating pediatric lysosomal storage disease caused by pathogenic variants in the CLN1 gene, which encodes the depalmitoylation enzyme, palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients present with visual deterioration, psychomotor dysfunction, and recurrent seizures until neurodegeneration results in death, typically before fifteen years of age. Histopathological features of CLN1 include aggregation of lysosomal autofluorescent storage material (AFSM), as well as profound gliosis. The current management of CLN1 is relegated to palliative care. Here, we examine the therapeutic potential of a small molecule PPT1 mimetic, N-tert-butyl hydroxylamine (NtBuHA), in a Cln1-/- mouse model. Treatment with NtBuHA reduced AFSM accumulation both in vitro and in vivo. Importantly, NtBuHA treatment in Cln1-/- mice reduced neuroinflammation, mitigated epileptic episodes, and normalized motor function. Live cell imaging of Cln1-/- primary cortical neurons treated with NtBuHA partially rescued aberrant synaptic calcium dynamics, suggesting a potential mechanism contributing to the therapeutic effects of NtBuHA in vivo. Taken together, our findings provide supporting evidence for NtBuHA as a potential treatment for CLN1 Batten Disease.
Collapse
Affiliation(s)
- Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rachel Johansson
- School of Medicine, University of California Davis, Sacramento, CA, United States of America; Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Anna I Scott
- Circumvent Pharmaceuticals, Portland, OR, United States of America; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, United States of America
| | - Devin Wiley
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Daniel Chelsky
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Psychology University of Illinois at Chicago, Chicago, IL, United States of America
| | - Nader Al Nakouzi
- Circumvent Pharmaceuticals, Portland, OR, United States of America.
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurobiology, University of Chicago, Chicago, IL, United States of America.
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
3
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
4
|
Peviani M, Das S, Patel J, Jno‐Charles O, Kumar R, Zguro A, Mathews TD, Cabras P, Milazzo R, Cavalca E, Poletti V, Biffi A. An innovative hematopoietic stem cell gene therapy approach benefits CLN1 disease in the mouse model. EMBO Mol Med 2023; 15:e15968. [PMID: 36876653 PMCID: PMC10086581 DOI: 10.15252/emmm.202215968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.
Collapse
Affiliation(s)
- Marco Peviani
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
- Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly
| | - Sabyasachi Das
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Janki Patel
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Odella Jno‐Charles
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Rajesh Kumar
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Ana Zguro
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Tyler D Mathews
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Paolo Cabras
- Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly
| | - Rita Milazzo
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
| | - Valentina Poletti
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Alessandra Biffi
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health DepartmentUniversity of PadovaPadovaItaly
| |
Collapse
|
5
|
Munesue Y, Ageyama N, Kimura N, Takahashi I, Nakayama S, Okabayashi S, Katakai Y, Koie H, Yagami KI, Ishii K, Tamaoka A, Yasutomi Y, Shimozawa N. Cynomolgus macaque model of neuronal ceroid lipofuscinosis type 2 disease. Exp Neurol 2023; 363:114381. [PMID: 36918063 DOI: 10.1016/j.expneurol.2023.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are autosomal-recessive fatal neurodegenerative diseases that occur in children and young adults, with symptoms including ataxia, seizures and visual impairment. We report the discovery of cynomolgus macaques carrying the CLN2/TPP1 variant and our analysis of whether the macaques could be a new non-human primate model for NCL type 2 (CLN2) disease. Three cynomolgus macaques presented progressive neuronal clinical symptoms such as limb tremors and gait disturbance after about 2 years of age. Morphological analyses using brain MRI at the endpoint of approximately 3 years of age revealed marked cerebellar and cerebral atrophy of the gray matter, with sulcus dilation, gyrus thinning, and ventricular enlargement. Histopathological analyses of three affected macaques revealed severe neuronal loss and degeneration in the cerebellar and cerebral cortices, accompanied by glial activation and/or changes in axonal morphology. Neurons observed throughout the central nervous system contained autofluorescent cytoplasmic pigments, which were identified as ceroid-lipofuscin based on staining properties, and the cerebral cortex examined by transmission electron microscopy had curvilinear profiles, the typical ultrastructural pattern of CLN2. These findings are commonly observed in all forms of NCL. DNA sequencing analysis identified a homozygous single-base deletion (c.42delC) of the CLN2/TPP1 gene, resulting in a frameshifted premature stop codon. Immunohistochemical analysis showed that tissue from the affected macaques lacked a detectable signal against TPP1, the product of the CLN2/TPP1 gene. Analysis for transmission of the CLN2/TPP1 mutated gene revealed that 47 (49.5%) and 48 (50.5%) of the 95 individuals genotyped in the CLN2-affected macaque family were heterozygous carriers and homozygous wild-type individuals, respectively. Thus, we identified cynomolgus macaques as a non-human primate model of CLN2 disease. The CLN2 macaques reported here could become a useful resource for research and the development of drugs and methods for treating CLN2 disease, which involves severe symptoms in humans.
Collapse
Affiliation(s)
- Yoshiko Munesue
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Nobuyuki Kimura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Ichiro Takahashi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Shunya Nakayama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Sachi Okabayashi
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Hiroshi Koie
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuhiro Ishii
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Tamaoka
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan.
| |
Collapse
|
6
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Effects of chronic cannabidiol in a mouse model of naturally occurring neuroinflammation, neurodegeneration, and spontaneous seizures. Sci Rep 2022; 12:11286. [PMID: 35789177 PMCID: PMC9253004 DOI: 10.1038/s41598-022-15134-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cannabidiol (CBD) has gained attention as a therapeutic agent and is purported to have immunomodulatory, neuroprotective, and anti-seizure effects. Here, we determined the effects of chronic CBD administration in a mouse model of CLN1 disease (Cln1-/-) that simultaneously exhibits neuroinflammation, neurodegeneration, and spontaneous seizures. Proteomic analysis showed that putative CBD receptors are expressed at similar levels in the brains of Cln1-/- mice compared to normal animals. Cln1-/- mice received an oral dose (100 mg/kg/day) of CBD for six months and were evaluated for changes in pathological markers of disease and seizures. Chronic cannabidiol administration was well-tolerated, high levels of CBD were detected in the brain, and markers of astrocytosis and microgliosis were reduced. However, CBD had no apparent effect on seizure frequency or neuron survival. These data are consistent with CBD having immunomodulatory effects. It is possible that a higher dose of CBD could also reduce neurodegeneration and seizure frequency.
Collapse
|
8
|
Miyata S, Kashio T, Tsuchiya K, Mitsui S. Motopsin deficiency imparts partial insensitivity to doxorubicin-induced hippocampal impairments in adult mice. Neurosci Lett 2021; 763:136181. [PMID: 34416345 DOI: 10.1016/j.neulet.2021.136181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Motopsin is a serine protease that plays a crucial role in synaptic functions. Loss of motopsin function causes severe intellectual disability in humans. In this study, we evaluated the role of motopsin in the neuropathological development of cognitive impairments following chemotherapy, also known as chemobrain. Motopsin knockout (KO) and wild-type (WT) mice were intravenously injected with doxorubicin (Dox) or saline four times every 8 days and were evaluated for open field, novel object recognition, and passive avoidance tests. Parvalbumin-positive neurons in the hippocampus were immunohistochemically analyzed. Dox administration significantly decreased the total distance in the open field test in both WT and motopsin KO mice without affecting the duration spent in the center square. A significant interaction between the genotype and drug treatment was detected in the recognition index (the rate to investigate a novel object) in the novel object recognition test, although Dox treatment did not affect the total investigation time. Additionally, Dox treatment significantly decreased the recognition index in WT mice, whereas it tended to increase the recognition index in motopsin KO mice. Dox treatment did not affect the latency to enter a dark compartment in either WT or motopsin KO mice in the passive avoidance test. Interestingly, Dox treatment increased the parvalbumin-positive neurons in the stratum oriens of the hippocampus CA1 region of only WT mice, not motopsin KO mice. Our data suggest that motopsin deficiency imparted partial insensitivity to Dox-induced hippocampal impairments. Alternatively, motopsin may contribute to the neuropathology of chemobrain.
Collapse
Affiliation(s)
- Shiori Miyata
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
| | - Taiki Kashio
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
| | - Kenji Tsuchiya
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
9
|
Sadhukhan T, Bagh MB, Appu AP, Mondal A, Zhang W, Liu A, Mukherjee AB. In a mouse model of INCL reduced S-palmitoylation of cytosolic thioesterase APT1 contributes to microglia proliferation and neuroinflammation. J Inherit Metab Dis 2021; 44:1051-1069. [PMID: 33739454 DOI: 10.1002/jimd.12379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 01/19/2023]
Abstract
S-palmitoylation is a reversible posttranslational modification in which a 16-carbon saturated fatty acid (generally palmitate) is attached to specific cysteine residues in polypeptides via thioester linkage. Dynamic S-palmitoylation (palmitoylation-depalmitoylation), like phosphorylation-dephosphorylation, regulates the function of numerous proteins, especially in the brain. While a family of 23 palmitoyl-acyl transferases (PATS), commonly known as ZDHHCs, catalyze S-palmitoylation of proteins, the thioesterases, localized either in the cytoplasm (eg, APT1) or in the lysosome (eg, PPT1) mediate depalmitoylation. Previously, we reported that APT1 requires dynamic S-palmitoylation for shuttling between the cytosol and the plasma membrane. APT1 depalmitoylated H-Ras to regulate its signaling pathway that stimulates cell proliferation. Although we demonstrated that APT1 catalyzed its own depalmitoylation, the ZDHHC(s) that S-palmitoylated APT1 had remained unidentified. We report here that ZDHHC5 and ZDHHC23 catalyze APT1 S-palmitoylation. Intriguingly, lysosomal Ppt1-deficiency in Cln1-/- mouse, a reliable animal model of INCL, markedly reduced ZDHHC5 and ZDHHC23 levels. Remarkably, in the brain of these mice decreased ZDHHC5 and ZDHHC23 levels suppressed membrane-bound APT1, thereby, increasing plasma membrane-localized H-Ras, which activated its signaling pathway stimulating microglia proliferation. Increased inflammatory cytokines produced by microglia together with increased complement C1q level contributed to the transformation of astrocytes to neurotoxic A1 phenotype. Importantly, neuroinflammation was ameliorated by treatment of Cln1-/- mice with a PPT1-mimetic small molecule, N-tert(Butyl)hydroxylamine (NtBuHA). Our results revealed a novel pathway to neuropathology in an INCL mouse model and uncovered a previously unrecognized mechanism of the neuroprotective actions of NtBuHA and its potential as a drug target.
Collapse
Affiliation(s)
- Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Maria B Bagh
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Abhilash P Appu
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zhang
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Singh RB, Gupta P, Kartik A, Farooqui N, Singhal S, Shergill S, Singh KP, Agarwal A. Ocular Manifestations of Neuronal Ceroid Lipofuscinoses. Semin Ophthalmol 2021; 36:582-595. [PMID: 34106804 DOI: 10.1080/08820538.2021.1936571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare neurodegenerative storage disorders associated with devastating visual prognosis, with an incidence of 1/1,000,000 in the United States and comparatively higher incidence in European countries. The pathophysiological mechanisms causing NCLs occur due to enzymatic or transmembrane defects in various sub-cellular organelles including lysosomes, endoplasmic reticulum, and cytoplasmic vesicles. NCLs are categorized into different types depending upon the underlying cause i.e., soluble lysosomal enzyme deficiencies or non-enzymatic deficiencies (functions of identified proteins), which are sub-divided based on an axial classification system. In this review, we have evaluated the current evidence in the literature and reported the incidence rates, underlying mechanisms and currently available management protocols for these rare set of neuroophthalmological disorders. Additionally, we also highlighted the potential therapies under development that can expand the treatment of these rare disorders beyond symptomatic relief.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Prakash Gupta
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kartik
- Department of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Naba Farooqui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sachi Singhal
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sukhman Shergill
- Department of Anesthesiology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Kanwar Partap Singh
- Department of Ophthalmology, Dayanand Medical College & Hospital, Ludhiana, India
| | - Aniruddha Agarwal
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Korneyenkov MA, Zamyatnin AA. Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics 2021; 13:pharmaceutics13050750. [PMID: 34069541 PMCID: PMC8160765 DOI: 10.3390/pharmaceutics13050750] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Today, adeno-associated virus (AAV) is an extremely popular choice for gene therapy delivery. The safety profile and simplicity of the genome organization are the decisive advantages which allow us to claim that AAV is currently among the most promising vectors. Several drugs based on AAV have been approved in the USA and Europe, but AAV serotypes’ unspecific tissue tropism is still a serious limitation. In recent decades, several techniques have been developed to overcome this barrier, such as the rational design, directed evolution and chemical conjugation of targeting molecules with a capsid. Today, all of the abovementioned approaches confer the possibility to produce AAV capsids with tailored tropism, but recent data indicate that a better understanding of AAV biology and the growth of structural data may theoretically constitute a rational approach to most effectively produce highly selective and targeted AAV capsids. However, while we are still far from this goal, other approaches are still in play, despite their drawbacks and limitations.
Collapse
Affiliation(s)
- Maxim A. Korneyenkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: ; Tel.: +7-495-622-9843
| |
Collapse
|
12
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
13
|
Uchitel J, Kantor B, Smith EC, Mikati MA. Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatr Neurol 2020; 110:5-19. [PMID: 32684374 DOI: 10.1016/j.pediatrneurol.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The past few years have witnessed rapid developments in viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders. Here, we provide pediatric neurologists with an up-to-date, comprehensive overview of these developments and note emerging trends for future research. This review presents the different types of viral vectors used in viral-mediated gene replacement therapy; the fundamental properties of viral-mediated gene replacement therapy; the challenges associated with the use of this therapy in the central nervous system; the pathway for therapy development, from translational basic science studies to clinical trials; and an overview of the therapies that have reached clinical trials in patients. Current viral platforms under investigation include adenovirus vectors, adeno-associated viral vectors, lentiviral/retroviral vectors, and herpes simplex virus type 1 vectors. This review also presents an in-depth analysis of numerous studies that investigated these viral platforms in cultured cells and in transgenic animal models for pediatric neurogenetic disorders. Viral vectors have been applied to clinical trials for many different pediatric neurogenetic disorders, including Canavan disease, metachromatic leukodystrophy, neuronal ceroid lipofuscinosis, mucopolysaccharidosis III, spinal muscular atrophy, and aromatic l-amino acid decarboxylase deficiency. Of these diseases, only spinal muscular atrophy has a viral-mediated gene replacement therapy approved for marketing. Despite significant progress in therapy development, many challenges remain. Surmounting these challenges is critical to advancing the current status of viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Edward C Smith
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
14
|
Liu W, Kleine-Holthaus SM, Herranz-Martin S, Aristorena M, Mole SE, Smith AJ, Ali RR, Rahim AA. Experimental gene therapies for the NCLs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165772. [PMID: 32220628 DOI: 10.1016/j.bbadis.2020.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.
Collapse
Affiliation(s)
- Wenfei Liu
- UCL School of Pharmacy, University College London, UK
| | | | - Saul Herranz-Martin
- UCL School of Pharmacy, University College London, UK; Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular,Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK.
| |
Collapse
|
15
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
16
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
17
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
18
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
19
|
Ren XT, Wang XH, Ding CH, Shen X, Zhang H, Zhang WH, Li JW, Ren CH, Fang F. Next-Generation Sequencing Analysis Reveals Novel Pathogenic Variants in Four Chinese Siblings With Late-Infantile Neuronal Ceroid Lipofuscinosis. Front Genet 2019; 10:370. [PMID: 31105743 PMCID: PMC6494930 DOI: 10.3389/fgene.2019.00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs) are progressive degenerative diseases mainly affect brain and retina. They are characterized by accumulation of autofluorescent storage material, mitochondrial ATPase subunit C, or sphingolipid activator proteins A and D in lysosomes of most cells. Heterogenous storage material in NCLs is not completely disease-specific. Most of CLN proteins and their natural substrates are not well-characterized. Studies have suggested variants of Late-Infantile NCLs (LINCLs) include the major type CLN2 and minor types CLN5, CLN6, CLN7, and CLN8. Therefore, combination of clinical and molecular analysis has become a more effective diagnosis method. We studied 4 late-infantile NCL siblings characterized by seizures, ataxia as early symptoms, followed by progressive regression in intelligence and behavior, but mutations are located in different genes. Symptoms and progression of 4 types of LINCLs are compared. Pathology of LINCLs is also discussed. We performed Nest-Generation Sequencing on these phenotypically similar families. Three novel variants c.1551+1insTGAT in TPP1, c.244G>T in CLN6, c.554-5A>G in MFSD8 were identified. Potential outcome of the mutations in structure and function of proteins are studied. In addition, we observed some common and unique clinical features of Chinese LINCL patient as compared with those of Western patients, which greatly improved our understanding of the LINCLs.
Collapse
Affiliation(s)
- Xiao-Tun Ren
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hui Wang
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang-Hong Ding
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | - Wei-Hua Zhang
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jiu-Wei Li
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang-Hong Ren
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fang Fang
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
21
|
Chan JKY, Gil-Farina I, Johana N, Rosales C, Tan YW, Ceiler J, Mcintosh J, Ogden B, Waddington SN, Schmidt M, Biswas A, Choolani M, Nathwani AC, Mattar CNZ. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques. FASEB J 2018; 33:3954-3967. [PMID: 30517034 PMCID: PMC6404563 DOI: 10.1096/fj.201801391r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vectors (AAVs) achieve stable therapeutic expression without long-term toxicity in adults with hemophilia. To avert irreversible complications in congenital disorders producing early pathogenesis, safety and efficacy of AAV-intrauterine gene transfer (IUGT) requires assessment. We therefore performed IUGT of AAV5 or -8 with liver-specific promoter-1 encoding either human coagulation factors IX (hFIX) or X (hFX) into Macaca fascicularis fetuses at ∼0.4 gestation. The initial cohort received 1 × 1012 vector genomes (vgs) of AAV5-hFIX (n = 5; 0.45 × 1013 vg/kg birth weight), resulting in ∼3.0% hFIX at birth and 0.6–6.8% over 19–51 mo. The next cohort received 0.2–1 × 1013 vg boluses. AAV5-hFX animals (n = 3; 3.57 × 1013 vg/kg) expressed <1% at birth and 9.4–27.9% up to 42 mo. AAV8-hFIX recipients (n = 3; 2.56 × 1013 vg/kg) established 4.2–41.3% expression perinatally and 9.8–25.3% over 46 mo. Expression with AAV8-hFX (n = 6, 3.12 × 1013 vg/kg) increased from <1% perinatally to 9.8–13.4% >35 mo. Low expressers (<1%, n = 3) were postnatally challenged with 2 × 1011 vg/kg AAV5 resulting in 2.4–13.2% expression and demonstrating acquired tolerance. Linear amplification–mediated-PCR analysis demonstrated random integration of 57–88% of AAV sequences retrieved from hepatocytes with no events occurring in or near oncogenesis-associated genes. Thus, early-IUGT in macaques produces sustained curative expression related significantly to integrated AAV in the absence of clinical toxicity, supporting its therapeutic potential for early-onset monogenic disorders.—Chan, J. K. Y., Gil-Farina I., Johana, N., Rosales, C., Tan, Y. W., Ceiler, J., Mcintosh, J., Ogden, B., Waddington, S. N., Schmidt, M., Biswas, A., Choolani, M., Nathwani, A. C., Mattar, C. N. Z. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector–mediated intrauterine gene transfer in early-gestation fetal macaques.
Collapse
Affiliation(s)
- Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Irene Gil-Farina
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Nuryanti Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Cecilia Rosales
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Yi Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jessika Ceiler
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Jenny Mcintosh
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Ogden
- SingHealth Experimental Medicine Centre, Singapore Health Services Pte, Singapore, Singapore
| | - Simon N Waddington
- Institute for Women's Health, University College London, London, United Kingdom.,Faculty of Health Sciences, Wits/South African Medical Research Council (SAMRC), Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa; and
| | - Manfred Schmidt
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom.,GeneWerk, Heidelberg, Germany
| | - Arijit Biswas
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Mahesh Choolani
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amit C Nathwani
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Citra N Z Mattar
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Lange J, Haslett LJ, Lloyd-Evans E, Pocock JM, Sands MS, Williams BP, Cooper JD. Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun 2018; 6:74. [PMID: 30089511 PMCID: PMC6081811 DOI: 10.1186/s40478-018-0575-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are the most common cause of childhood dementia and are invariably fatal. Early localized glial activation occurs in these disorders, and accurately predicts where neuronal loss is most pronounced. Recent evidence suggests that glial dysfunction may contribute to neuron loss, and we have now explored this possibility in infantile NCL (INCL, CLN1 disease). We grew primary cultures of astrocytes, microglia, and neurons derived from Ppt1 deficient mice (Ppt1−/−) and assessed their properties compared to wildtype (WT) cultures, before co-culturing them in different combinations (astrocytes with microglia, astrocytes or microglia with neurons, all three cell types together). These studies revealed that both Ppt1−/− astrocytes and microglia exhibit a more activated phenotype under basal unstimulated conditions, as well as alterations to their protein expression profile following pharmacological stimulation. Ppt1- /− astrocytes also displayed abnormal calcium signalling and an elevated cytoplasmic Ca2+ level, and a profound defect in their survival. Ppt1−/− neurons displayed decreased neurite outgrowth, altered complexity, a reduction in cell body size, and impaired neuron survival with prolonged time in culture. In co-cultures, the presence of both astrocytes and microglia from Ppt1−/− mice further impaired the morphology of both wild type and Ppt1−/− neurons. This negative influence was more pronounced for Ppt1−/− microglia, which appeared to trigger increased Ppt1−/− neuronal death. In contrast, wild type glial cells, especially astrocytes, ameliorated some of the morphological defects observed in Ppt1−/− neurons. These findings suggest that both Ppt1−/− microglia and astrocytes are dysfunctional and may contribute to the neurodegeneration observed in CLN1 disease. However, the dysfunctional phenotypes of Ppt1−/− glia are different from those present in CLN3 disease, suggesting that the pathogenic role of glia may differ between NCLs.
Collapse
|
23
|
Donsante A, Boulis NM. Progress in gene and cell therapies for the neuronal ceroid lipofuscinoses. Expert Opin Biol Ther 2018; 18:755-764. [PMID: 29936867 DOI: 10.1080/14712598.2018.1492544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The neuronal ceroid lipofuscinoses (NCLs) are a subset of lysosomal storage diseases (LSDs) that cause myoclonic epilepsy, loss of cognitive and motor function, degeneration of the retina leading to blindness, and early death. Most are caused by loss-of-function mutations in either lysosomal proteins or transmembrane proteins. Current therapies are supportive in nature. NCLs involving lysosomal enzymes are amenable to therapies that provide an exogenous source of protein, as has been used for other LSDs. Those that involve transmembrane proteins, however, require new approaches. AREAS COVERED This review will discuss potential gene and cell therapy approaches that have been, are, or may be in development for these disorders and those that have entered clinical trials. EXPERT OPINION In animal models, gene therapy approaches have produced remarkable improvements in neurological function and lifespan. However, a complete cure has not been reached for any NCL, and a better understanding of the limits of the current crop of vectors is needed to more fully address these diseases. The prospects for gene therapy, particularly those that can be delivered systemically and treat both the brain and peripheral tissue, are high. The future is beginning to look bright for NCL patients and their families.
Collapse
Affiliation(s)
- Anthony Donsante
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| | - Nicholas M Boulis
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
24
|
Chen Y, Zheng S, Tecedor L, Davidson BL. Overcoming Limitations Inherent in Sulfamidase to Improve Mucopolysaccharidosis IIIA Gene Therapy. Mol Ther 2018; 26:1118-1126. [PMID: 29503202 PMCID: PMC6079371 DOI: 10.1016/j.ymthe.2018.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/18/2022] Open
Abstract
Sulfamidase (SGSH) deficiency causes mucopolysaccharidosis type IIIA (MPS IIIA), a lysosomal storage disease (LSD) that affects the CNS. In earlier work in LSD mice and dog models, we exploited the utility of adeno-associated viruses (AAVs) to transduce brain ventricular lining cells (ependyma) for secretion of lysosomal hydrolases into the cerebrospinal fluid (CSF), with subsequent distribution of enzyme throughout the brain resulting in improved cognition and extending lifespan. A critical feature of this approach is efficient secretion of the expressed enzyme from transduced cells, for delivery by CSF to nontransduced cells. Surprisingly, we found that SGSH was poorly secreted from cells, resulting in retention of the expressed product. Using site-directed mutagenesis of native SGSH, we identified an improved secretion variant that also displayed enhanced uptake properties that were mannose-6-phosphate receptor independent. In studies in MPS IIIA-deficient mice, ependymal transduction with AAVs expressing variant SGSH improved spatial learning and reduced memory deficits, substrate accumulation, and astrogliosis. Secondary lysosomal enzyme elevations in the CSF and brain parenchyma were also resolved. In contrast, ependymal transduction with AAVs expressing wild-type SGSH had significantly lower CSF SGSH levels and limited impacts on behavior. These results demonstrate the utility of a previously undescribed SGSH variant for improved MPS IIIA brain gene therapy.
Collapse
Affiliation(s)
- Yonghong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shujuan Zheng
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis. J Neurosci 2018; 38:2341-2358. [PMID: 29378861 DOI: 10.1523/jneurosci.3081-17.2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/27/2017] [Accepted: 01/20/2018] [Indexed: 01/18/2023] Open
Abstract
Loss-of-function mutations in progranulin, a lysosomal glycoprotein, cause neurodegenerative disease. Progranulin haploinsufficiency causes frontotemporal dementia (FTD) and complete progranulin deficiency causes CLN11 neuronal ceroid lipofuscinosis (NCL). Progranulin replacement is a rational therapeutic strategy for these disorders, but there are critical unresolved mechanistic questions about a progranulin gene therapy approach, including its potential to reverse existing pathology. Here, we address these issues using an AAV vector (AAV-Grn) to deliver progranulin in Grn-/- mice (both male and female), which model aspects of NCL and FTD pathology, developing lysosomal dysfunction, lipofuscinosis, and microgliosis. We first tested whether AAV-Grn could improve preexisting pathology. Even with treatment after onset of pathology, AAV-Grn reduced lipofuscinosis in several brain regions of Grn-/- mice. AAV-Grn also reduced microgliosis in brain regions distant from the injection site. AAV-expressed progranulin was only detected in neurons, not in microglia, indicating that the microglial activation in progranulin deficiency can be improved by targeting neurons and thus may be driven at least in part by neuronal dysfunction. Even areas with sparse transduction and almost undetectable progranulin showed improvement, indicating that low-level replacement may be sufficiently effective. The beneficial effects of AAV-Grn did not require progranulin binding to sortilin. Finally, we tested whether AAV-Grn improved lysosomal function. AAV-derived progranulin was delivered to the lysosome, ameliorated the accumulation of LAMP-1 in Grn-/- mice, and corrected abnormal cathepsin D activity. These data shed light on progranulin biology and support progranulin-boosting therapies for NCL and FTD due to GRN mutations.SIGNIFICANCE STATEMENT Heterozygous loss-of-function progranulin (GRN) mutations cause frontotemporal dementia (FTD) and homozygous mutations cause neuronal ceroid lipofuscinosis (NCL). Here, we address several mechanistic questions about the potential of progranulin gene therapy for these disorders. GRN mutation carriers with NCL or FTD exhibit lipofuscinosis and Grn-/- mouse models develop a similar pathology. AAV-mediated progranulin delivery reduced lipofuscinosis in Grn-/- mice even after the onset of pathology. AAV delivered progranulin only to neurons, not microglia, but improved microgliosis in several brain regions, indicating cross talk between neuronal and microglial pathology. Its beneficial effects were sortilin independent. AAV-derived progranulin was delivered to lysosomes and corrected lysosomal abnormalities. These data provide in vivo support for the efficacy of progranulin-boosting therapies for FTD and NCL.
Collapse
|
26
|
Gene Therapy Approaches to Treat the Neurodegeneration and Visual Failure in Neuronal Ceroid Lipofuscinoses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:91-99. [PMID: 29721932 DOI: 10.1007/978-3-319-75402-4_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of fatal, inherited lysosomal storage disorders mostly affecting the central nervous system of children. Symptoms include vision loss, seizures, motor deterioration and cognitive decline ultimately resulting in premature death. Studies in animal models showed that the diseases are amenable to gene supplementation therapies, and over the last decade, major advances have been made in the (pre)clinical development of these therapies. This mini-review summarises and discusses current gene therapy approaches for NCL targeting the brain and the eye.
Collapse
|
27
|
Lau AA, King BM, Thorsen CL, Hassiotis S, Beard H, Trim PJ, Whyte LS, Tamang SJ, Duplock SK, Snel MF, Hopwood JJ, Hemsley KM. A novel conditional Sgsh knockout mouse model recapitulates phenotypic and neuropathic deficits of Sanfilippo syndrome. J Inherit Metab Dis 2017; 40:715-724. [PMID: 28451919 DOI: 10.1007/s10545-017-0044-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022]
Abstract
Mucopolysaccharidosis (MPS) type IIIA, or Sanfilippo syndrome, is a neurodegenerative lysosomal storage disorder caused by a deficiency of the lysosomal enzyme N-sulfoglucosamine sulfohydrolase (SGSH), involved in the catabolism of heparan sulfate. The clinical spectrum is broad and the age of symptom onset and the degree of preservation of cognitive and motor functions appears greatly influenced by genotype. To explore this further, we generated a conditional knockout (Sgsh KO ) mouse model with ubiquitous Sgsh deletion, and compared the clinical and pathological phenotype with that of the spontaneous Sgsh D31N MPS-IIIA mouse model. Phenotypic deficits were noted in Sgsh KO mice prior to Sgsh D31N mice, however these outcomes did not correlate with any shift in the time of appearance nor rate of accumulation of primary (heparan sulfate) or secondary substrates (GM2/GM3 gangliosides). Other disease lesions (elevations in lysosomal integral membrane protein-II expression, reactive astrocytosis and appearance of ubiquitin-positive inclusions) were also comparable between affected mouse strains. This suggests that gross substrate storage and these neuropathological markers are neither primary determinants, nor good biomarkers/indicators of symptom generation, confirming similar observations made recently in MPS-IIIA patients. The Sgsh KO mouse will be a useful tool for elucidation of the neurological basis of disease and assessment of the clinical efficacy of new treatments for Sanfilippo syndrome.
Collapse
Affiliation(s)
- Adeline A Lau
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia.
| | - Barbara M King
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Carly L Thorsen
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Helen Beard
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Paul J Trim
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Lauren S Whyte
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Sarah J Tamang
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Stephen K Duplock
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Marten F Snel
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, SA, 5001, Australia
| |
Collapse
|
28
|
Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1360182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hemanth R. Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| |
Collapse
|
29
|
Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci U S A 2017; 114:E5920-E5929. [PMID: 28673981 DOI: 10.1073/pnas.1701832114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL, or CLN1 disease) is an inherited neurodegenerative storage disorder caused by a deficiency of the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). It was widely believed that the pathology associated with INCL was limited to the brain, but we have now found unexpectedly profound pathology in the human INCL spinal cord. Similar pathological changes also occur at every level of the spinal cord of PPT1-deficient (Ppt1-/- ) mice before the onset of neuropathology in the brain. Various forebrain-directed gene therapy approaches have only had limited success in Ppt1-/- mice. Targeting the spinal cord via intrathecal administration of an adeno-associated virus (AAV) gene transfer vector significantly prevented pathology and produced significant improvements in life span and motor function in Ppt1-/- mice. Surprisingly, forebrain-directed gene therapy resulted in essentially no PPT1 activity in the spinal cord, and vice versa. This leads to a reciprocal pattern of histological correction in the respective tissues when comparing intracranial with intrathecal injections. However, the characteristic pathological features of INCL were almost completely absent in both the brain and spinal cord when intracranial and intrathecal injections of the same AAV vector were combined. Targeting both the brain and spinal cord also produced dramatic and synergistic improvements in motor function with an unprecedented increase in life span. These data show that spinal cord pathology significantly contributes to the clinical progression of INCL and can be effectively targeted therapeutically. This has important implications for the delivery of therapies in INCL, and potentially in other similar disorders.
Collapse
|
30
|
Kolicheski A, Barnes Heller HL, Arnold S, Schnabel RD, Taylor JF, Knox CA, Mhlanga-Mutangadura T, O'Brien DP, Johnson GS, Dreyfus J, Katz ML. Homozygous PPT1 Splice Donor Mutation in a Cane Corso Dog With Neuronal Ceroid Lipofuscinosis. J Vet Intern Med 2016; 31:149-157. [PMID: 28008682 PMCID: PMC5259623 DOI: 10.1111/jvim.14632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
A 10‐month‐old spayed female Cane Corso dog was evaluated after a 2‐month history of progressive blindness, ataxia, and lethargy. Neurologic examination abnormalities indicated a multifocal lesion with primarily cerebral and cerebellar signs. Clinical worsening resulted in humane euthanasia. On necropsy, there was marked astrogliosis throughout white matter tracts of the cerebrum, most prominently in the corpus callosum. In the cerebral cortex and midbrain, most neurons contained large amounts of autofluorescent storage material in the perinuclear area of the cells. Cerebellar storage material was present in the Purkinje cells, granular cell layer, and perinuclear regions of neurons in the deep nuclei. Neuronal ceroid lipofuscinosis (NCL) was diagnosed. Whole genome sequencing identified a PPT1c.124 + 1G>A splice donor mutation. This nonreference assembly allele was homozygous in the affected dog, has not previously been reported in dbSNP, and was absent from the whole genome sequences of 45 control dogs and 31 unaffected Cane Corsos. Our findings indicate a novel mutation causing the CLN1 form of NCL in a previously unreported dog breed. A canine model for CLN1 disease could provide an opportunity for therapeutic advancement, benefiting both humans and dogs with this disorder.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - H L Barnes Heller
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - S Arnold
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | | | | | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - J Dreyfus
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
31
|
Wiley LA, Burnight ER, Drack AV, Banach BB, Ochoa D, Cranston CM, Madumba RA, East JS, Mullins RF, Stone EM, Tucker BA. Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat CLN3-Associated Retinal Degeneration. Hum Gene Ther 2016; 27:835-846. [PMID: 27400765 DOI: 10.1089/hum.2016.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Bailey B Banach
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Dalyz Ochoa
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Cathryn M Cranston
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert A Madumba
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jade S East
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
32
|
Geraets RD, Koh SY, Hastings ML, Kielian T, Pearce DA, Weimer JM. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis. Orphanet J Rare Dis 2016; 11:40. [PMID: 27083890 PMCID: PMC4833901 DOI: 10.1186/s13023-016-0414-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than "curing" the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs.
Collapse
Affiliation(s)
- Ryan D. Geraets
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Seung yon Koh
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
| | - Michelle L. Hastings
- />Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Tammy Kielian
- />Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA
| | - David A. Pearce
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Jill M. Weimer
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
33
|
Segal-Salto M, Sapir T, Reiner O. Reversible Cysteine Acylation Regulates the Activity of Human Palmitoyl-Protein Thioesterase 1 (PPT1). PLoS One 2016; 11:e0146466. [PMID: 26731412 PMCID: PMC4701722 DOI: 10.1371/journal.pone.0146466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 01/24/2023] Open
Abstract
Mutations in the depalmitoylating enzyme gene, PPT1, cause the infantile form of Neuronal Ceroid Lipofuscinosis (NCL), an early onset neurodegenerative disease. During recent years there have been different therapeutic attempts including enzyme replacement. Here we show that PPT1 is palmitoylated in vivo and is a substrate for two palmitoylating enzymes, DHHC3 and DHHC7. The palmitoylated protein is detected in both cell lysates and medium. The presence of PPT1 with palmitoylated signal peptide in the cell medium suggests that a subset of the protein is secreted by a nonconventional mechanism. Using a mutant form of PPT1, C6S, which was not palmitoylated, we further demonstrate that palmitoylation does not affect intracellular localization but rather that the unpalmitoylated form enhanced the depalmitoylation activity of the protein. The calculated Vmax of the enzyme was significantly affected by the palmitoylation, suggesting that the addition of a palmitate group is reminiscent of adding a noncompetitive inhibitor. Thus, we reveal the existence of a positive feedback loop, where palmitoylation of PPT1 results in decreased activity and subsequent elevation in the amount of palmitoylated proteins. This positive feedback loop is likely to initiate a vicious cycle, which will enhance disease progression. The understanding of this process may facilitate enzyme replacement strategies.
Collapse
Affiliation(s)
- Michal Segal-Salto
- The Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tamar Sapir
- The Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Orly Reiner
- The Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
- * E-mail:
| |
Collapse
|
34
|
Thada V, Miller JN, Kovács AD, Pearce DA. Tissue-specific variation in nonsense mutant transcript level and drug-induced read-through efficiency in the Cln1(R151X) mouse model of INCL. J Cell Mol Med 2015; 20:381-5. [PMID: 26648046 PMCID: PMC4727554 DOI: 10.1111/jcmm.12744] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022] Open
Abstract
About 10% of inherited diseases are caused by nonsense mutations [Trends Mol Med 18 (2012) 688], and nonsense suppression drug therapy promoting translation through premature stop codons is an emerging therapeutic approach. Infantile neuronal ceroid lipofuscinosis (INCL), a childhood neurodegenerative disease, results from mutations in the CLN1 gene encoding the lysosomal enzyme, palmitoyl-protein thioesterase 1 (PPT1) [Biochim Biophys Acta 1832 (2013) 1806, Hum Mutat (2012) 63, Biochim Biophys Acta 1832 (2013) 1881]. The nonsense mutation p.R151X is the most common disease-causing CLN1 mutation Hum Mutat (2012) 63. In the novel Cln1(R151X) mouse model of INCL, we found large, tissue-specific variations in Cln1(R151X) mRNA level and PPT1 residual enzyme activity. These tissue-specific differences strongly influenced the read-through efficiency of ataluren (PTC124), a well-known nonsense suppression drug. A two-day treatment with ataluren (10 mg/kg) increased PPT1 enzyme activity in the liver and muscle, but not in any other tissue examined. Our study identifies a new challenge/hurdle for read-through drug therapy: variable efficiency of read-through therapy in the different tissues/organs because of tissue-specific variations in nonsense mutant transcript levels.
Collapse
Affiliation(s)
- Vaughn Thada
- Department of Biology, Augustana College, Sioux Falls, SD, USA.,Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA
| | - Jake N Miller
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
35
|
Lu JY, Nelvagal HR, Wang L, Birnbaum SG, Cooper JD, Hofmann SL. Intrathecal enzyme replacement therapy improves motor function and survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 2015; 116:98-105. [PMID: 25982063 DOI: 10.1016/j.ymgme.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/09/2015] [Accepted: 05/10/2015] [Indexed: 11/29/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of related hereditary lysosomal storage disorders characterized by progressive loss of neurons in the central nervous system resulting in dementia, loss of motor skills, seizures and blindness. A characteristic intralysosomal accumulation of autofluorescent storage material occurs in the brain and other tissues. Three major forms and nearly a dozen minor forms of NCL are recognized. Infantile-onset NCL (CLN1 disease) is caused by severe deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1) and no therapy beyond supportive care is available. Homozygous Ppt1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death around 8 months. Direct delivery of lysosomal enzymes to the cerebrospinal fluid is an approach that has gained traction in small and large animal models of several other neuropathic lysosomal storage diseases, and has advanced to clinical trials. In the current study, Ppt1 knockout mice were treated with purified recombinant human PPT1 enzyme delivered to the lumbar intrathecal space on each of three consecutive days at 6 weeks of age. Untreated PPT1 knockout mice and wild-type mice served as additional controls. Four enzyme concentration levels (0, 2.6, 5.3 and 10.6 mg/ml of specific activity 20 U/mg) were administered in a volume of 80 μl infused over 8 min. Each group consisted of 16-20 mice. The treatment was well tolerated. Disease-specific survival was 233, 267, 272, and 284days for each of the four treatment groups, respectively, and the effect of treatment was highly significant (p<0.0001). The timing of motor deterioration was also delayed. Neuropathology was improved as evidenced by decreased autofluorescent storage material in the spinal cord and a decrease in CD68 staining in the cortex and spinal cord. The improvements in motor function and survival are similar to results reported for preclinical studies involving other lysosomal storage disorders, such as CLN2/TPP1 deficiency, for which intraventricular ERT is being offered in clinical trials. If ERT delivery to the CSF proves to be efficacious in these disorders, PPT1 deficiency may also be amenable to this approach.
Collapse
Affiliation(s)
- Jui-Yun Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Hemanth R Nelvagal
- Pediatric Storage Disorders Laboratory, Department of Basic and Clinical Neuroscience, King's Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Lingling Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Jonathan D Cooper
- Pediatric Storage Disorders Laboratory, Department of Basic and Clinical Neuroscience, King's Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Sandra L Hofmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA.
| |
Collapse
|
36
|
Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep 2015; 5:12752. [PMID: 26238334 PMCID: PMC4523849 DOI: 10.1038/srep12752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/01/2015] [Indexed: 01/15/2023] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is a neurodegenerative lysosomal storage disease caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). The PPT1-deficient mouse (Cln1(-/-)) is a useful phenocopy of human INCL. Cln1(-/-) mice display retinal dysfunction, seizures, motor deficits, and die at ~8 months of age. However, little is known about the cognitive and behavioral functions of Cln1(-/-) mice during disease progression. In the present study, younger (~1-2 months of age) Cln1(-/-) mice showed minor deficits in motor/sensorimotor functions while older (~5-6 months of age) Cln1(-/-) mice exhibited more severe impairments, including decreased locomotor activity, inferior cued water maze performance, decreased running wheel ability, and altered auditory cue conditioning. Unexpectedly, certain cognitive functions such as some learning and memory capabilities seemed intact in older Cln1(-/-) mice. Younger and older Cln1(-/-) mice presented with walking initiation defects, gait abnormalities, and slowed movements, which are analogous to some symptoms reported in INCL and parkinsonism. However, there was no evidence of alterations in dopaminergic markers in Cln1(-/-) mice. Results from this study demonstrate quantifiable changes in behavioral functions during progression of murine INCL and suggest that Parkinson-like motor/sensorimotor deficits in Cln1(-/-) mice are not mediated by dopamine deficiency.
Collapse
|
37
|
|
38
|
Cooper JD, Tarczyluk MA, Nelvagal HR. Towards a new understanding of NCL pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2256-61. [PMID: 26026924 DOI: 10.1016/j.bbadis.2015.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/29/2023]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders that have been traditionally grouped together on the basis of certain shared clinical and pathological features. However, as the number of genes that appear to cause new forms of NCL continues to grow, it is timely to reassess our understanding of the pathogenesis of these disorders and what groups them together. The various NCL subtypes do indeed share features of a build-up of autofluorescent storage material, progressive neuron loss and activation of the innate immune system. The characterisation of animal models has highlighted the selective nature of neuron loss and its intimate relationship with glial activation, rather than the generalised build-up of storage material. More recent data provide evidence for the pathway-dependent nature of pathology, the contribution of glial dysfunction, and the involvement of new brain regions previously thought to be unaffected, and it is becoming apparent that pathology extends beyond the brain. These data have important implications, not just for therapy, but also for our understanding of these disorders. However, looking beneath these broadly similar pathological themes evidence emerges for marked differences in the nature and extent of these events in different forms of NCL. Indeed, given the widely different nature of the mutated gene products it is perhaps more surprising that these disorders resemble each other as much as they do. Such data raise the question whether we should rethink the collective grouping of these gene deficiencies together, or whether it would be better to consider them as separate entities. This article is part of a Special Issue entitled: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease).
Collapse
Affiliation(s)
- Jonathan D Cooper
- Pediatric Storage Disorders Laboratory (PSDL), Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | - Marta A Tarczyluk
- Pediatric Storage Disorders Laboratory (PSDL), Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hemanth R Nelvagal
- Pediatric Storage Disorders Laboratory (PSDL), Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
39
|
Neverman NJ, Best HL, Hofmann SL, Hughes SM. Experimental therapies in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2292-300. [PMID: 25957554 DOI: 10.1016/j.bbadis.2015.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses represent a group of severe childhood lysosomal storage diseases. With at least 13 identified variants they are the most common cause of inherited neurodegeneration in children. These diseases share common pathological characteristics including motor problems, vision loss, seizures, and cognitive decline, culminating in premature death. Currently, no form of the disease can be treated or cured, with only palliative care to minimise discomfort. This review focuses on current and potentially ground-breaking clinical trials, including small molecule, enzyme replacement, stem cell, and gene therapies, in the development of effective treatments for the various disease subtypes. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Nicole J Neverman
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Hannah L Best
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Sandra L Hofmann
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie M Hughes
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand.
| |
Collapse
|
40
|
Faller KME, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, Bond M. The neuronal ceroid lipofuscinoses: Opportunities from model systems. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2267-78. [PMID: 25937302 DOI: 10.1016/j.bbadis.2015.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative disorders, generally with childhood onset. Despite the fact that these diseases remain fatal, significant breakthroughs have been made in our understanding of the genetics that underpin these conditions. This understanding has allowed the development of a broad range of models to study disease processes, and to develop new therapeutic approaches. Such models have contributed significantly to our knowledge of these conditions. In this review we will focus on the advantages of each individual model, describe some of the contributions the models have made to our understanding of the broader disease biology and highlight new techniques and approaches relevant to the study and potential treatment of the neuronal ceroid lipofuscinoses. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Alamin Mohammed
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Richard I Tuxworth
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kim Wager
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Michael Bond
- MRC Laboratory for Molecular Cell Biology, University College of London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Cambiaghi M, Magri L, Cursi M. Importance of EEG in validating the chronic effects of drugs: suggestions from animal models of epilepsy treated with rapamycin. Seizure 2015; 27:30-9. [PMID: 25891924 DOI: 10.1016/j.seizure.2015.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The development of new drugs for the treatment of epilepsy is a major challenge for modern neurology and its first steps demand basic research. Preclinical studies on animal models of epilepsy are mainly based on the analysis of brain electrical activity to detect seizures, when they are not just limited to behavioral tests like the Racine scale. METHODS In the present review, we discuss the importance of using time-locked video and EEG recordings (Video-EEG) coupled with behavioral tests as tools to monitor and analyze the effects of anti-epileptic drugs in pre-clinical research. Particularly, we focus on the utility of a multimodal approach based on EEG/behavioral analysis to study the beneficial effects of chronic rapamycin treatment as a potential anti-epileptogenic therapy for a broad spectrum of epilepsy, including both genetic (as in tuberous sclerosis complex) and acquired diseases. RESULTS Changes and synchronization of neuronal activity of different areas have been correlated with specific behavior in both physiological and pathological conditions. In the epileptic brain, during a seizure there is an abnormal activation of many cells all at once, altering different networks. CONCLUSION A multimodal approach based on video, EEG analysis and behavioral tests would be the best option in preclinical studies of epilepsy.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Università degli Studi di Torino, Department of Neuroscience, Turin, Italy.
| | - Laura Magri
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Marco Cursi
- Clinical Neurophysiology Unit, Department of Neurology, Scientific Institute San Raffaele, Milan, Italy
| |
Collapse
|
42
|
|
43
|
Miller JN, Kovács AD, Pearce DA. The novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Hum Mol Genet 2015; 24:185-96. [PMID: 25205113 PMCID: PMC4326326 DOI: 10.1093/hmg/ddu428] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/19/2014] [Indexed: 11/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive neurodegenerative disorders in children characterized by the progressive onset of seizures, blindness, motor and cognitive decline and premature death. Patients with mutations in CLN1 primarily manifest with infantile NCL (INCL or Haltia-Santavuori disease), which is second only to congenital NCL for its age of onset and devastating progression. CLN1 encodes a lysosomal enzyme, palmitoyl-protein thioesterase 1 (PPT1). Nonsense mutations in CLN1 account for 52.3% of all disease causing alleles in infantile NCL, the most common of which worldwide is the p.R151X mutation. Previously, we have shown how nonsense-mediated decay is involved in the degradation of CLN1 mRNA transcripts containing the p.R151X mutation in human lymphoblast cell lines. We have also shown how the read-through drugs gentamicin and ataluren (PTC124) increase CLN1 (PPT1) enzyme activity. Here, we provide the initial characterization of the novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis that we have generated. This nonsense mutation model recapitulates the molecular, histological and behavioral phenotypes of the human disease. Cln1(R151X) mice showed a significant decrease in Cln1 mRNA level and PPT1 enzyme activity, accumulation of autofluorescent storage material, astrocytosis and microglial activation in the brain. Behavioral characterization of Cln1(R151X) mice at 3 and 5 months of age revealed significant motor deficits as measured by the vertical pole and rotarod tests. We also show how the read-through compound ataluren (PTC124) increases PPT1 enzyme activity and protein level in Cln1(R151X) mice in a proof-of-principle study.
Collapse
Affiliation(s)
- Jake N Miller
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA and
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA and
| | - David A Pearce
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD, USA and Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
44
|
Maloney SE, Noguchi KK, Wozniak DF, Fowler SC, Farber NB. Long-term Effects of Multiple Glucocorticoid Exposures in Neonatal Mice. Behav Sci (Basel) 2014; 1:4-30. [PMID: 22375274 PMCID: PMC3286606 DOI: 10.3390/behavsci1010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glucocorticoids (GCs) such as dexamethasone (DEX) or betamethasone are repeatedly administered for up to a month to prematurely born infants as a treatment for chronic lung dysfunction. Results of clinical trials have shown that the use of GCs in these infants induces long-term deficits in neuromotor function and cognition. We have previously shown that a single exposure to clinically relevant doses of DEX or other GCs in the mouse during a period corresponding to the human perinatal period produces a dramatic increase in apoptotic cell death of neural progenitor cells in the developing cerebellum. To provide a model approximating more chronic clinical dosing regimens, we evaluated possible behavioral effects resulting from repeated exposures to DEX and subsequent GC-induced neuronal loss where neonatal mouse pups were injected with 3.0 mg/kg DEX or saline on postnatal days 7, 9, and 11 (DEX3 treatment). Adult, DEX3-treated mice exhibited long-term, possibly permanent, neuromotor deficits on a complex activity wheel task, which requires higher-order motor co-ordination skills. DEX3 mice exhibited impaired performance on this task relative to saline controls in each of two independent studies involving separate cohorts of mice. Histopathology studies utilizing stereological neuronal counts conducted in behaviorally-tested mice showed that the DEX3 treatment resulted in a significant decrease in the number of neurons in the internal granule layer (IGL) of the cerebellum, although the number of neurons in the Purkinje cell layer were unchanged. The results suggest that multiple neonatal DEX exposures can produce chronic deficits in fine motor co-ordination that are associated with cerebellar IGL neuronal loss.
Collapse
Affiliation(s)
- Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; E-Mails: (S.E.M.); (K.K.N.); (N.B.F.)
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; E-Mails: (S.E.M.); (K.K.N.); (N.B.F.)
| | - David F. Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; E-Mails: (S.E.M.); (K.K.N.); (N.B.F.)
- Department of Psychiatry, Box 8134, 660 S. Euclid Ave., Washington University School of Medicine, St. Louis, MO 63110, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-314-362-5173; Fax: +1-314-362-2474
| | - Stephen C. Fowler
- Department of Pharmacology and Toxicology and Life Span Institute, University of Kansas, Lawrence, KS 66045, USA; E-Mail:
| | - Nuri B. Farber
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; E-Mails: (S.E.M.); (K.K.N.); (N.B.F.)
| |
Collapse
|
45
|
An anti-neuroinflammatory that targets dysregulated glia enhances the efficacy of CNS-directed gene therapy in murine infantile neuronal ceroid lipofuscinosis. J Neurosci 2014; 34:13077-82. [PMID: 25253854 DOI: 10.1523/jneurosci.2518-14.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited neurodegenerative lysosomal storage disease (LSD) caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). Studies in Ppt1(-/-) mice demonstrate that glial activation is central to the pathogenesis of INCL. Astrocyte activation precedes neuronal loss, while cytokine upregulation associated with microglial reactivity occurs before and concurrent with neurodegeneration. Therefore, we hypothesized that cytokine cascades associated with neuroinflammation are important therapeutic targets for the treatment of INCL. MW01-2-151SRM (MW151) is a blood-brain barrier penetrant, small-molecule anti-neuroinflammatory that attenuates glial cytokine upregulation in models of neuroinflammation such as traumatic brain injury, Alzheimer's disease, and kainic acid toxicity. Thus, we used MW151, alone and in combination with CNS-directed, AAV-mediated gene therapy, as a possible treatment for INCL. MW151 alone decreased seizure susceptibility. When combined with AAV-mediated gene therapy, treated INCL mice had increased life spans, improved motor performance, and eradication of seizures. Combination-treated INCL mice also had decreased brain atrophy, astrocytosis, and microglial activation, as well as intermediary effects on cytokine upregulation. These data suggest that MW151 can attenuate seizure susceptibility but is most effective when used in conjunction with a therapy that targets the primary genetic defect.
Collapse
|
46
|
Idol RA, Wozniak DF, Fujiwara H, Yuede CM, Ory DS, Kornfeld S, Vogel P. Neurologic abnormalities in mouse models of the lysosomal storage disorders mucolipidosis II and mucolipidosis III γ. PLoS One 2014; 9:e109768. [PMID: 25314316 PMCID: PMC4196941 DOI: 10.1371/journal.pone.0109768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/12/2014] [Indexed: 12/02/2022] Open
Abstract
UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an α2β2γ2 hexameric enzyme that catalyzes the synthesis of the mannose 6-phosphate targeting signal on lysosomal hydrolases. Mutations in the α/β subunit precursor gene cause the severe lysosomal storage disorder mucolipidosis II (ML II) or the more moderate mucolipidosis III alpha/beta (ML III α/β), while mutations in the γ subunit gene cause the mildest disorder, mucolipidosis III gamma (ML III γ). Here we report neurologic consequences of mouse models of ML II and ML III γ. The ML II mice have a total loss of acid hydrolase phosphorylation, which results in depletion of acid hydrolases in mesenchymal-derived cells. The ML III γ mice retain partial phosphorylation. However, in both cases, total brain extracts have normal or near normal activity of many acid hydrolases reflecting mannose 6-phosphate-independent lysosomal targeting pathways. While behavioral deficits occur in both models, the onset of these changes occurs sooner and the severity is greater in the ML II mice. The ML II mice undergo progressive neurodegeneration with neuronal loss, astrocytosis, microgliosis and Purkinje cell depletion which was evident at 4 months whereas ML III γ mice have only mild to moderate astrocytosis and microgliosis at 12 months. Both models accumulate the ganglioside GM2, but only ML II mice accumulate fucosylated glycans. We conclude that in spite of active mannose 6-phosphate-independent targeting pathways in the brain, there are cell types that require at least partial phosphorylation function to avoid lysosomal dysfunction and the associated neurodegeneration and behavioral impairments.
Collapse
Affiliation(s)
- Rachel A Idol
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carla M Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
47
|
Shyng C, Sands MS. Astrocytosis in infantile neuronal ceroid lipofuscinosis: friend or foe? Biochem Soc Trans 2014; 42:1282-5. [PMID: 25233404 DOI: 10.1042/bst20140188] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL; infantile Batten disease) is an inherited paediatric neurodegenerative disease. INCL is caused by a deficiency in the lysosomal enzyme palmitoyl-protein thioesterase-1 (PPT1) and is thus classified as a lysosomal storage disease. Pathological examination of both human and murine INCL brains reveals progressive, widespread neuroinflammation. In fact, astrocyte activation appears to be the first histological sign of disease. However, the role of astrocytosis in INCL was poorly understood. The hallmark of astrocyte activation is the up-regulation of intermediate filaments, such as glial fibrillary acidic protein (GFAP) and vimentin. The role of astrocytosis in INCL was studied in a murine model lacking PPT1 and the intermediate filaments GFAP and vimentin (triple-knockout). This murine model of INCL with attenuated astrocytosis had an exacerbated pathological and clinical phenotype. The triple-knockout mouse had a significantly shortened lifespan, and accelerated cellular and humoural neuroinflammatory response compared with the parental PPT1(-/-) mouse. The data obtained from the triple-knockout mouse strongly suggest that astrocyte activation plays a beneficial role in early INCL disease progression. A more thorough understanding of the glial responses to lysosomal enzyme deficiencies and the accumulation of undergraded substrates will be crucial to developing effective therapeutics.
Collapse
Affiliation(s)
- Charles Shyng
- *Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, U.S.A
| | | |
Collapse
|
48
|
Cheng SH. Gene therapy for the neurological manifestations in lysosomal storage disorders. J Lipid Res 2014; 55:1827-38. [PMID: 24683200 DOI: 10.1194/jlr.r047175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past several years, considerable progress has been made in the development of gene therapy as a therapeutic strategy for a variety of inherited metabolic diseases, including neuropathic lysosomal storage disorders (LSDs). The premise of gene therapy for this group of diseases is borne of findings that genetic modification of a subset of cells can provide a more global benefit by virtue of the ability of the secreted lysosomal enzymes to effect cross-correction of adjacent and distal cells. Preclinical studies in small and large animal models of these disorders support the application of either a direct in vivo approach using recombinant adeno-associated viral vectors or an ex vivo strategy using lentiviral vector-modified hematopoietic stem cells to correct the neurological component of these diseases. Early clinical studies utilizing both approaches have begun or are in late-stage planning for a small number of neuropathic LSDs. Although initial indications from these studies are encouraging, it is evident that second-generation vectors that exhibit a greater safety profile and transduction activity may be required before this optimism can be fully realized. Here, I review recent progress and the remaining challenges to treat the neurological aspects of various LSDs using this therapeutic paradigm.
Collapse
Affiliation(s)
- Seng H Cheng
- Genzyme, a Sanofi Company, Framingham, MA 01701-9322
| |
Collapse
|
49
|
Sondhi D, Rosenberg JB, Van de Graaf BG, Kaminsky SM, Crystal RG. Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.852081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
NCL disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1882-93. [DOI: 10.1016/j.bbadis.2013.05.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/13/2023]
|