1
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
3
|
Gonzalez-Visiedo M, Herzog RW, Munoz-Melero M, Blessinger SA, Cook-Mills JM, Daniell H, Markusic DM. Viral Vector Based Immunotherapy for Peanut Allergy. Viruses 2024; 16:1125. [PMID: 39066287 PMCID: PMC11281582 DOI: 10.3390/v16071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Food allergy (FA) is estimated to impact up to 10% of the population and is a growing health concern. FA results from a failure in the mucosal immune system to establish or maintain immunological tolerance to innocuous dietary antigens, IgE production, and the release of histamine and other mediators upon exposure to a food allergen. Of the different FAs, peanut allergy has the highest incidence of severe allergic responses, including systemic anaphylaxis. Despite the recent FDA approval of peanut oral immunotherapy and other investigational immunotherapies, a loss of protection following cessation of therapy can occur, suggesting that these therapies do not address the underlying immune response driving FA. Our lab has shown that liver-directed gene therapy with an adeno-associated virus (AAV) vector induces transgene product-specific regulatory T cells (Tregs), eradicates pre-existing pathogenic antibodies, and protects against anaphylaxis in several models, including ovalbumin induced FA. In an epicutaneous peanut allergy mouse model, the hepatic AAV co-expression of four peanut antigens Ara h1, Ara h2, Ara h3, and Ara h6 together or the single expression of Ara h3 prevented the development of a peanut allergy. Since FA patients show a reduction in Treg numbers and/or function, we believe our approach may address this unmet need.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Sophia A. Blessinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Joan M. Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| |
Collapse
|
4
|
Muñoz-Melero M, Biswas M. Role of FoxP3 + Regulatory T Cells in Modulating Immune Responses to Adeno-Associated Virus Gene Therapy. Hum Gene Ther 2024; 35:439-450. [PMID: 38450566 PMCID: PMC11302314 DOI: 10.1089/hum.2023.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Adeno-associated virus (AAV) gene therapy is making rapid strides owing to its wide range of therapeutic applications. However, development of serious immune responses to the capsid antigen or the therapeutic transgene product hinders its full clinical impact. Immune suppressive (IS) drug treatments have been used in various clinical trials to prevent the deleterious effects of cytotoxic T cells to the viral vector or transgene, although there is no consensus on the best treatment regimen, dosage, or schedule. Regulatory T cells (Tregs) are crucial for maintaining tolerance against self or nonself antigens. Of importance, Tregs also play an important role in dampening immune responses to AAV gene therapy, including tolerance induction to the transgene product. Approaches to harness the tolerogenic effect of Tregs include the use of selective IS drugs that expand existing Tregs, and skew activated conventional T cells into antigen-specific peripherally induced Tregs. In addition, Tregs can be expanded ex vivo and delivered as cellular therapy. Furthermore, receptor engineering can be used to increase the potency and specificity of Tregs allowing for suppression at lower doses and reducing the risk of disrupting protective immunity. Because immune-mediated toxicities to AAV vectors are a concern in the clinic, strategies that can enhance or preserve Treg function should be considered to improve both the safety and efficacy of AAV gene therapy.
Collapse
Affiliation(s)
- Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev 2024; 98:102321. [PMID: 38723752 DOI: 10.1016/j.arr.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. In AD, the binding of Aβ with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Dist-Birbhum, West Bengal, India
| | | | - Sunil Kumar
- Faculty of Pharmacy, P. K. University, Village, Thanra, District, Karera, Shivpuri, Madhya Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
6
|
Zhong C, Zong X, Hua B, Sun J. Anti-inflammatory effect of a novel piperazino-enaminone delivered by liposomes in a mouse model of hemophilic arthropathy. Int J Pharm 2024; 659:124291. [PMID: 38821434 DOI: 10.1016/j.ijpharm.2024.124291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Hemophilic arthropathy (HA) is a condition caused by recurrent intra-articular bleeding in patients with hemophilia. Pro-inflammatory cytokines play a crucial role in the pathogenesis of HA. Our previous research demonstrated that a novel compound, piperazino-enaminone (JODI), effectively inhibited pro-inflammatory cytokines, including IL-6, MCP-1, MIP-1α, and MIP-1β, in a mouse model of hemarthrosis. This study aims to enhance the anti-inflammatory effect of JODI by employing nanoparticle delivery systems, which could potentially improve its poor water solubility. Here, we developed liposomes modified with polyethylene glycol (PEG) for the delivery of JODI (JODI-LIP), and found that JODI-LIP exhibited uniform size, morphology, good stability and in vitro release degree. JODI-LIP mitigated cytotoxicity of JODI, and significantly suppressed the production of pro-inflammatory cytokines (TNF-α and IL-1β) and nitric oxide (NO) release in RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as the proliferation of human fibroblast-like synovial (HFLS) cells. In a murine model of HA, JODI-LIP demonstrated superior efficacy in ameliorating joint swelling and synovitis, compared to JODI. Importantly, JODI-LIP markedly reduced pro-inflammatory cytokines (TNF-α, IFN-γ, IL-33, and MCP-1) in injured joints. No hepatic or hematological toxicity was observed in mice treated with JODI-LIP. In summary, our results suggest that JODI-LIP holds promise as a therapeutic intervention for HA by attenuating pro-inflammatory cytokine levels.
Collapse
Affiliation(s)
- Chen Zhong
- Marine Science Research Institute of Shandong Province, Qingdao, People's Republic of China; School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiaoying Zong
- School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Baolai Hua
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Junjiang Sun
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Nouraein S, Lee S, Saenz VA, Del Mundo HC, Yiu J, Szablowski JO. Acoustically targeted noninvasive gene therapy in large brain volumes. Gene Ther 2024; 31:85-94. [PMID: 37696982 DOI: 10.1038/s41434-023-00421-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Focused Ultrasound Blood-Brain Barrier Opening (FUS-BBBO) can deliver adeno-associated viral vectors (AAVs) to treat genetic disorders of the brain. However, such disorders often affect large brain regions. Moreover, the applicability of FUS-BBBO in the treatment of brain-wide genetic disorders has not yet been evaluated. Herein, we evaluated the transduction efficiency and safety of opening up to 105 sites simultaneously. Increasing the number of targeted sites increased gene delivery efficiency at each site. We achieved transduction of up to 60% of brain cells with comparable efficiency in the majority of the brain regions. Furthermore, gene delivery with FUS-BBBO was safe even when all 105 sites were targeted simultaneously without negative effects on animal weight or neuronal loss. To evaluate the application of multi-site FUS-BBBO for gene therapy, we used it for gene editing using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system and found effective gene editing, but also a loss of neurons at the targeted sites. Overall, this study provides a brain-wide map of transduction efficiency, shows the synergistic effect of multi-site targeting on transduction efficiency, and is the first example of large brain volume gene editing after noninvasive gene delivery with FUS-BBBO.
Collapse
Affiliation(s)
- Shirin Nouraein
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, 77030, USA
- Synthetic, Systems, and Physical Biology Program, Rice University, Houston, TX, 77005, USA
| | - Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, 77030, USA
| | - Vidal A Saenz
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | | | - Joycelyn Yiu
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Jerzy O Szablowski
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
- Rice Neuroengineering Initiative, Rice University, Houston, TX, 77030, USA.
- Synthetic, Systems, and Physical Biology Program, Rice University, Houston, TX, 77005, USA.
- Applied Physics Program, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
8
|
Noel JC, Lagassé D, Golding B, Sauna ZE. Emerging approaches to induce immune tolerance to therapeutic proteins. Trends Pharmacol Sci 2023; 44:1028-1042. [PMID: 37903706 DOI: 10.1016/j.tips.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 11/01/2023]
Abstract
Immunogenicity affects the safety and efficacy of therapeutic proteins. This review is focused on approaches for inducing immunological tolerance to circumvent the immunogenicity of therapeutic proteins in the clinic. The few immune tolerance strategies that are used in the clinic tend to be inefficient and expensive and typically involve global immunosuppression, putting patients at risk of infections. The hallmark of a desirable immune tolerance regimen is the specific alleviation of immune responses to the therapeutic protein. In the past decade, proof-of-principle studies have demonstrated that emerging technologies, including nanoparticle-based delivery of immunomodulators, cellular targeting and depletion, cellular engineering, gene therapy, and gene editing, can be leveraged to promote tolerance to therapeutic proteins. We discuss the potential of these novel approaches and the barriers that need to be overcome for translation into the clinic.
Collapse
Affiliation(s)
- Justine C Noel
- Division of Hemostasis, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Daniel Lagassé
- Division of Hemostasis, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Basil Golding
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Division of Hemostasis, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
9
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
10
|
Markusic DM, Biswas M. Sweeten the deal: Glycopolymer-based engineering to modulate autoreactive T cell responses. Mol Ther 2023; 31:3119-3120. [PMID: 37865097 PMCID: PMC10638033 DOI: 10.1016/j.ymthe.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- David M Markusic
- Spark Therapeutics, Inc., 3025 Market Street, Philadelphia, PA 19104, USA
| | - Moanaro Biswas
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
D'Antiga L, Beuers U, Ronzitti G, Brunetti-Pierri N, Baumann U, Di Giorgio A, Aronson S, Hubert A, Romano R, Junge N, Bosma P, Bortolussi G, Muro AF, Soumoudronga RF, Veron P, Collaud F, Knuchel-Legendre N, Labrune P, Mingozzi F. Gene Therapy in Patients with the Crigler-Najjar Syndrome. N Engl J Med 2023; 389:620-631. [PMID: 37585628 DOI: 10.1056/nejmoa2214084] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
BACKGROUND Patients with the Crigler-Najjar syndrome lack the enzyme uridine diphosphoglucuronate glucuronosyltransferase 1A1 (UGT1A1), the absence of which leads to severe unconjugated hyperbilirubinemia that can cause irreversible neurologic injury and death. Prolonged, daily phototherapy partially controls the jaundice, but the only definitive cure is liver transplantation. METHODS We report the results of the dose-escalation portion of a phase 1-2 study evaluating the safety and efficacy of a single intravenous infusion of an adeno-associated virus serotype 8 vector encoding UGT1A1 in patients with the Crigler-Najjar syndrome that was being treated with phototherapy. Five patients received a single infusion of the gene construct (GNT0003): two received 2×1012 vector genomes (vg) per kilogram of body weight, and three received 5×1012 vg per kilogram. The primary end points were measures of safety and efficacy; efficacy was defined as a serum bilirubin level of 300 μmol per liter or lower measured at 17 weeks, 1 week after discontinuation of phototherapy. RESULTS No serious adverse events were reported. The most common adverse events were headache and alterations in liver-enzyme levels. Alanine aminotransferase increased to levels above the upper limit of the normal range in four patients, a finding potentially related to an immune response against the infused vector; these patients were treated with a course of glucocorticoids. By week 16, serum bilirubin levels in patients who received the lower dose of GNT0003 exceeded 300 μmol per liter. The patients who received the higher dose had bilirubin levels below 300 μmol per liter in the absence of phototherapy at the end of follow-up (mean [±SD] baseline bilirubin level, 351±56 μmol per liter; mean level at the final follow-up visit [week 78 in two patients and week 80 in the other], 149±33 μmol per liter). CONCLUSIONS No serious adverse events were reported in patients treated with the gene-therapy vector GNT0003 in this small study. Patients who received the higher dose had a decrease in bilirubin levels and were not receiving phototherapy at least 78 weeks after vector administration. (Funded by Genethon and others; ClinicalTrials.gov number, NCT03466463.).
Collapse
Affiliation(s)
- Lorenzo D'Antiga
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Ulrich Beuers
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Giuseppe Ronzitti
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Nicola Brunetti-Pierri
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Ulrich Baumann
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Angelo Di Giorgio
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Sem Aronson
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Aurelie Hubert
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Roberta Romano
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Norman Junge
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Piter Bosma
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Giulia Bortolussi
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Andrés F Muro
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Ravaka F Soumoudronga
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Philippe Veron
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Fanny Collaud
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Nathalie Knuchel-Legendre
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Philippe Labrune
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| | - Federico Mingozzi
- From Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Hospital Papa Giovanni XXIII, Bergamo (L.D., A.D.G.), Scuola Superiore Meridionale, Genomics and Experimental Medicine Program (N.B.-P.), Department of Translational Medicine, University of Naples Federico II, Naples (N.B.-P., R.R.), Telethon Institute of Genetics and Medicine, Pozzuoli (N.B.-P.), and the International Center for Genetic Engineering and Biotechnology, Trieste (G.B., A.F.M.) - all in Italy; Tytgat Institute for Liver and Intestinal Research, Department of Hepatology and Gastroenterology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam (U. Beuers, S.A., P.B.); Université d'Evry, Université Paris-Saclay, INSERM, Genethon, Integrare Research Unit UMR_S951 (G.R., F.C., F.M.) and Genethon (G.R., R.F.S., P.V., F.C., N.K.-L., F.M.), Evry, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Centre de Référence pour les Maladies Rares, Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, Clamart (A.H., P.L.), and Université Paris-Saclay and INSERM Unité 1195, Le Kremlin Bicêtre (A.H., P.L.) - all in France; the Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany (U. Baumann, N.J.); and Spark Therapeutics, Philadelphia (F.M.)
| |
Collapse
|
12
|
Nowak I, Madej M, Secemska J, Sarna R, Strzalka-Mrozik B. Virus-Based Biological Systems as Next-Generation Carriers for the Therapy of Central Nervous System Diseases. Pharmaceutics 2023; 15:1931. [PMID: 37514117 PMCID: PMC10384784 DOI: 10.3390/pharmaceutics15071931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Central nervous system (CNS) diseases are currently a major challenge in medicine. One reason is the presence of the blood-brain barrier, which is a significant limitation for currently used medicinal substances that are characterized by a high molecular weight and a short half-life. Despite the application of nanotechnology, there is still the problem of targeting and the occurrence of systemic toxicity. Viral vectors and virus-like particles (VLPs) may provide a promising solution to these challenges. Their small size, biocompatibility, ability to carry medicinal substances, and specific targeting of neural cells make them useful in research when formulating a new generation of biological carriers. Additionally, the possibility of genetic modification has the potential for gene therapy. Among the most promising viral vectors are adeno-associated viruses, adenoviruses, and retroviruses. This is due to their natural tropism to neural cells, as well as the possibility of genetic and surface modification. Moreover, VLPs that are devoid of infectious genetic material in favor of increasing capacity are also leading the way for research on new drug delivery systems. The aim of this study is to review the most recent reports on the use of viral vectors and VLPs in the treatment of selected CNS diseases.
Collapse
Affiliation(s)
- Ilona Nowak
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Julia Secemska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Robert Sarna
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
13
|
Blask C, Schulze J, Rümpel S, Süße M, Grothe M, Gross S, Dressel A, Müller R, Ruhnau J, Vogelgesang A. Modulation of cytokine release from peripheral blood mononuclear cells from multiple sclerosis patients by coenzyme A and soraphen A. J Neuroimmunol 2023; 381:578135. [PMID: 37364515 DOI: 10.1016/j.jneuroim.2023.578135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
By applying the acetyl-CoA-carboxylase inhibitors soraphen A (SorA) and coenzyme A (CoA) ex vivo, we aimed to reduce proinflammatory cytokine release by PBMCs and increase anti-inflammatory cytokine levels, thereby demonstrating a possible application of those pathways in future multiple sclerosis (MS) therapy. In a prospective exploratory monocentric study, we analysed cytokine production by PBMCs treated with SorA (10 or 50 nM) and CoA (600 μM). Thirty-one MS patients were compared to 18 healthy age-matched controls. We demonstrated the immunomodulatory potential of SorA and CoA in targeting the immune function of MS patients, with an overall reduction of cytokines except of IL-2, IL-6 and IL-10.
Collapse
Affiliation(s)
- Carolin Blask
- Dept. of Neurology, University Medicine Greifswald, Germany
| | | | - Sarah Rümpel
- Dept. of Neurology, University Medicine Greifswald, Germany
| | - Marie Süße
- Dept. of Neurology, University Medicine Greifswald, Germany
| | | | - Stefan Gross
- Dept. of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Johanna Ruhnau
- Dept. of Neurology, University Medicine Greifswald, Germany.
| | | |
Collapse
|
14
|
Xu X, Wang X, Liao YP, Luo L, Xia T, Nel AE. Use of a Liver-Targeting Immune-Tolerogenic mRNA Lipid Nanoparticle Platform to Treat Peanut-Induced Anaphylaxis by Single- and Multiple-Epitope Nucleotide Sequence Delivery. ACS NANO 2023; 17:4942-4957. [PMID: 36853930 PMCID: PMC10019335 DOI: 10.1021/acsnano.2c12420] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 05/22/2023]
Abstract
While oral desensitization is capable of alleviating peanut allergen anaphylaxis, long-term immune tolerance is the sought-after goal. We developed a liver-targeting lipid nanoparticle (LNP) platform to deliver mRNA-encoded peanut allergen epitopes to liver sinusoidal endothelial cells (LSECs), which function as robust tolerogenic antigen-presenting cells that induce FoxP3+ regulatory T-cells (Tregs). The mRNA strand was constructed by including nucleotide sequences encoding for nonallergenic MHC-II binding T-cell epitopes, identified in the dominant peanut allergen, Ara h2. These epitopes were inserted in the mRNA strand downstream of an MHC-II targeting sequence, further endowed in vitro with 5' and 3' capping sequences, a PolyA tail, and uridine substitution. Codon-optimized mRNA was used for microfluidics synthesis of LNPs with an ionizable cationic lipid, also decorated with a lipid-anchored mannose ligand for LSEC targeting. Biodistribution to the liver was confirmed by in vivo imaging, while ELISpot assays demonstrated an increase in IL-10-producing Tregs in the spleen. Prophylactic administration of tandem-repeat or a combination of encapsulated Ara h2 epitopes induced robust tolerogenic effects in C3H/HeJ mice, sensitized to and subsequently challenged with crude peanut allergen extract. In addition to alleviating physical manifestations of anaphylaxis, there was suppression of Th2-mediated cytokine production, IgE synthesis, and mast cell release, accompanied by increased IL-10 and TGF-β production in the peritoneum. Similar efficacy was demonstrated during LNP administration postsensitization. While nondecorated particles had lesser but significant effects, PolyA/LNP-Man lacked protective effects. These results demonstrate an exciting application of mRNA/LNP for treatment of food allergen anaphylaxis, with the promise to be widely applicable to the allergy field.
Collapse
Affiliation(s)
- Xiao Xu
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center
of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Lijia Luo
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center
of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center
of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Li J, Lu L, Binder K, Xiong J, Ye L, Cheng YH, Majri-Morrison S, Lu W, Lee JW, Zhang Z, Wu YZ, Zheng L, Lenardo MJ. Mechanisms of antigen-induced reversal of CNS inflammation in experimental demyelinating disease. SCIENCE ADVANCES 2023; 9:eabo2810. [PMID: 36857453 PMCID: PMC9977187 DOI: 10.1126/sciadv.abo2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Autoimmune central nervous system (CNS) demyelinating diseases are a major public health burden and poorly controlled by current immunosuppressants. More precise immunotherapies with higher efficacy and fewer side effects are sought. We investigated the effectiveness and mechanism of an injectable myelin-based antigenic polyprotein MMPt (myelin oligodendrocyte glycoprotein, myelin basic protein and proteolipid protein, truncated). We find that it suppresses mouse experimental autoimmune encephalomyelitis without major side effects. MMPt induces rapid apoptosis of the encephalitogenic T cells and suppresses inflammation in the affected CNS. Intravital microscopy shows that MMPt is taken up by perivascular F4/80+ cells but not conventional antigen-presenting dendritic cells, B cells, or microglia. MMPt-stimulated F4/80+ cells induce reactive T cell immobilization and apoptosis in situ, resulting in reduced infiltration of inflammatory cells and chemokine production. Our study reveals alternative mechanisms that explain how cognate antigen suppresses CNS inflammation and may be applicable for effectively and safely treating demyelinating diseases.
Collapse
Affiliation(s)
- Jian Li
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lisen Lu
- MoE Key Laboratory for Biomedical Photonics, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kyle Binder
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jian Xiong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan H. Cheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sonia Majri-Morrison
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jae W. Lee
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhihong Zhang
- MoE Key Laboratory for Biomedical Photonics, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu-zhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Keeler GD, Gaddie CD, Sagadevan AS, Senior KG, Côté I, Rechdan M, Min D, Mahan D, Poma B, Hoffman BE. Induction of antigen-specific tolerance by hepatic AAV immunotherapy regardless of T cell epitope usage or mouse strain background. Mol Ther Methods Clin Dev 2022; 28:177-189. [PMID: 36700122 PMCID: PMC9849872 DOI: 10.1016/j.omtm.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
In vivo induction of antigen (Ag)-specific regulatory T cells (Treg) is considered the holy grail of therapeutic strategies for restoring tolerance in autoimmunity. Unfortunately, in the autoimmune disease multiple sclerosis, an effective and durable therapy targeting the diverse repertoire of emerging Ags without compromising the patient's natural immunity has remained elusive. To address this deficiency, we have developed an Ag-specific adeno-associated virus (AAV) immunotherapy that will restore tolerance in a Treg-dependent manner. Using multiple strains of mice with different genetic and immunological backgrounds, we demonstrate that a liver directed AAV vector expressing a single transgene can prevent experimental autoimmune encephalomyelitis from developing and effectively mitigate pre-existing or established disease that was induced by one or more auto-reactive myelin oligodendrocyte glycoprotein-derived peptides. Overall, the results suggests that AAV can efficiently restore Ag-specific immune tolerance to an immunogenic protein that is neither restricted by the major histocompatibility complex haplotype, nor by the specific antigenic epitope(s) presented. These findings may pave the way for developing a comprehensive Ag-specific immunotherapy that does not require prior knowledge of the specific immunogenic epitopes and that may prove to be universally applicable to all MS patients, and adaptable for other autoimmune diseases.
Collapse
Affiliation(s)
- Geoffrey D. Keeler
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cristina D. Gaddie
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Addelynn S. Sagadevan
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA,Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kevin G. Senior
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Isabelle Côté
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michaela Rechdan
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Min
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - David Mahan
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bianca Poma
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brad E. Hoffman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA,Genetics Institute, University of Florida, Gainesville, FL 32610, USA,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA,Corresponding author: Brad E. Hoffman, PhD, University of Florida, 2033 Mowry Road Office-207, Gainesville, FL 32610, USA.
| |
Collapse
|
17
|
Zhang W, Xiao D, Li X, Zhang Y, Rasouli J, Casella G, Boehm A, Hwang D, Ishikawa LL, Thome R, Ciric B, Curtis MT, Rostami A, Zhang GX. SIRT1 inactivation switches reactive astrocytes to an antiinflammatory phenotype in CNS autoimmunity. J Clin Invest 2022; 132:e151803. [PMID: 36136587 PMCID: PMC9663155 DOI: 10.1172/jci151803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/16/2022] [Indexed: 12/02/2022] Open
Abstract
Astrocytes are highly heterogeneous in their phenotype and function, which contributes to CNS disease, repair, and aging; however, the molecular mechanism of their functional states remains largely unknown. Here, we show that activation of sirtuin 1 (SIRT1), a protein deacetylase, played an important role in the detrimental actions of reactive astrocytes, whereas its inactivation conferred these cells with antiinflammatory functions that inhibited the production of proinflammatory mediators by myeloid cells and microglia and promoted the differentiation of oligodendrocyte progenitor cells. Mice with astrocyte-specific Sirt1 knockout (Sirt1-/-) had suppressed progression of experimental autoimmune encephalomyelitis (EAE), an animal model of CNS inflammatory demyelinating disease. Ongoing EAE was also suppressed when Sirt1 expression in astrocytes was diminished by a CRISPR/Cas vector, resulting in reduced demyelination, decreased numbers of T cells, and an increased rate of IL-10-producing macrophages and microglia in the CNS, whereas the peripheral immune response remained unaffected. Mechanistically, Sirt1-/- astrocytes expressed a range of nuclear factor erythroid-derived 2-like 2 (Nfe2l2) target genes, and Nfe2l2 deficiency shifted the beneficial action of Sirt1-/- astrocytes to a detrimental one. These findings identify an approach for switching the functional state of reactive astrocytes that will facilitate the development of astrocyte-targeting therapies for inflammatory neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xing Li
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Yuan Zhang
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexandra Boehm
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Hwang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Larissa L.W. Ishikawa
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mark T. Curtis
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Gonzalez-Visiedo M, Li X, Munoz-Melero M, Kulis MD, Daniell H, Markusic DM. Single-dose AAV vector gene immunotherapy to treat food allergy. Mol Ther Methods Clin Dev 2022; 26:309-322. [PMID: 35990748 PMCID: PMC9361215 DOI: 10.1016/j.omtm.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Immunotherapies for patients with food allergy have shown some success in limiting allergic responses. However, these approaches require lengthy protocols with repeated allergen dosing and patients can relapse following discontinuation of treatment. The purpose of this study was to test if a single dose of an adeno-associated virus (AAV) vector can safely prevent and treat egg allergy in a mouse model. AAV vectors expressing ovalbumin (OVA) under an ubiquitous or liver-specific promoter were injected prior to or after epicutaneous sensitization with OVA. Mice treated with either AAV8-OVA vector were completely protected from allergy sensitization. These animals had a significant reduction in anaphylaxis mediated by a reduction in OVA-specific IgE titers. In mice with established OVA allergy, allergic responses were mitigated only in mice treated with an AAV8-OVA vector expressing OVA from an ubiquitous promoter. In conclusion, an AAV vector with a liver-specific promoter was more effective for allergy prevention, but higher OVA levels were necessary for reducing symptoms in preexisting allergy. Overall, our AAV gene immunotherapy resulted in an expansion of OVA-specific FoxP3+ CD4+ T cells, an increase in the regulatory cytokine IL-10, and a reduction in the IgE promoting cytokine IL-13.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Xin Li
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Michael D Kulis
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Markusic
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, Tarcsa E, Fang X, Hofer L, Kavita U, Upreti VV, Gupta S, Loo L, Johnson AJ, Chandode RK, Stubenrauch KG, Vinzing M, Xia CQ, Jawa V. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022; 26:471-494. [PMID: 36092368 PMCID: PMC9418752 DOI: 10.1016/j.omtm.2022.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.
Collapse
|
20
|
Ashraf H, Solla P, Sechi LA. Current Advancement of Immunomodulatory Drugs as Potential Pharmacotherapies for Autoimmunity Based Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15091077. [PMID: 36145298 PMCID: PMC9504155 DOI: 10.3390/ph15091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dramatic advancement has been made in recent decades to understand the basis of autoimmunity-mediated neurological diseases. These diseases create a strong influence on the central nervous system (CNS) and the peripheral nervous system (PNS), leading to various clinical manifestations and numerous symptoms. Multiple sclerosis (MS) is the most prevalent autoimmune neurological disease while NMO spectrum disorder (NMOSD) is less common. Furthermore, evidence supports the presence of autoimmune mechanisms contributing to the pathogenesis of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by the progressive death of motor neurons. Additionally, autoimmunity is believed to be involved in the basis of Alzheimer’s and Parkinson’s diseases. In recent years, the prevalence of autoimmune-based neurological disorders has been elevated and current findings strongly suggest the role of pharmacotherapies in controlling the progression of autoimmune diseases. Therefore, this review focused on the current advancement of immunomodulatory drugs as novel approaches in the management of autoimmune neurological diseases and their future outlook.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Leonardo Atonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbology and Virology, AOU Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
21
|
Treatment of experimental autoimmune encephalomyelitis using AAV gene therapy by blocking T cell costimulatory pathways. Mol Ther Methods Clin Dev 2022; 25:461-475. [PMID: 35615707 PMCID: PMC9118358 DOI: 10.1016/j.omtm.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by inflammation and demyelination. Presently, repeated relapses of MS necessitate long-term immune-regulatory therapy. Blocking the CD28-B7 and CD40-CD40L costimulatory pathways is an effective and synergistic method for the prevention and amelioration of clinical symptoms of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this study, to explore the efficacy and safety of MS gene therapy, we used adeno-associated virus (AAV) as a vector to deliver CTLA4-immunoglobulin (Ig) or CD40-Ig on the EAE induced by myelin oligodendrocyte glycoprotein (MOG). Our results showed that a single administration of AAV8-CTLA4-Ig, either alone or with AAV8-CD40-Ig, protected mice from EAE and reversed disease progression. Decreased CD4+ and CD8+ T cell infiltration, inhibition of MOG antibody response, and downregulation of neuroinflammation were observed in mice receiving AAV, suggesting that autoimmunity was suppressed in EAE pathology. Moreover, no hematological or hepatic toxicity was observed in AAV-treated mice. Thus, compared with treatment with recombinant CTLA4-Ig (belatacept), AAV gene therapy could effectively control clinical symptoms and suppress autoimmunity in the long term. In summary, our study provides a potential therapeutic method for blocking T cell costimulation for the treatment of MS via gene therapy.
Collapse
|
22
|
Gottwick C, Carambia A, Herkel J. Harnessing the liver to induce antigen-specific immune tolerance. Semin Immunopathol 2022; 44:475-484. [PMID: 35513495 PMCID: PMC9256566 DOI: 10.1007/s00281-022-00942-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases develop when the adaptive immune system attacks the body’s own antigens leading to tissue damage. At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.
Collapse
Affiliation(s)
- Cornelia Gottwick
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Bronge M, Högelin KA, Thomas OG, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, Kaiser A, Zeitelhofer M, Holmgren E, Linnerbauer M, Adzemovic MZ, Hellström C, Jelcic I, Liu H, Nilsson P, Hillert J, Brundin L, Fink K, Kockum I, Tengvall K, Martin R, Tegel H, Gräslund T, Al Nimer F, Guerreiro-Cacais AO, Khademi M, Gafvelin G, Olsson T, Grönlund H. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. SCIENCE ADVANCES 2022; 8:eabn1823. [PMID: 35476434 PMCID: PMC9045615 DOI: 10.1126/sciadv.abn1823] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), in which pathological T cells, likely autoimmune, play a key role. Despite its central importance, the autoantigen repertoire remains largely uncharacterized. Using a novel in vitro antigen delivery method combined with the Human Protein Atlas library, we screened for T cell autoreactivity against 63 CNS-expressed proteins. We identified four previously unreported autoantigens in MS: fatty acid-binding protein 7, prokineticin-2, reticulon-3, and synaptosomal-associated protein 91, which were verified to induce interferon-γ responses in MS in two cohorts. Autoreactive profiles were heterogeneous, and reactivity to several autoantigens was MS-selective. Autoreactive T cells were predominantly CD4+ and human leukocyte antigen-DR restricted. Mouse immunization induced antigen-specific responses and CNS leukocyte infiltration. This represents one of the largest systematic efforts to date in the search for MS autoantigens, demonstrates the heterogeneity of autoreactive profiles, and highlights promising targets for future diagnostic tools and immunomodulatory therapies in MS.
Collapse
Affiliation(s)
- Mattias Bronge
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Klara Asplund Högelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Olivia G. Thomas
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Sabrina Ruhrmann
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Claudia Carvalho-Queiroz
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Ola B. Nilsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Andreas Kaiser
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Manuel Zeitelhofer
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Holmgren
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Mathias Linnerbauer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Milena Z. Adzemovic
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH–Royal Institute of Technology, 171 65 Solna, Sweden
| | - Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Hao Liu
- Department of Protein Science, KTH–Royal Institute of Technology, 114 21 Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH–Royal Institute of Technology, 171 65 Solna, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Hanna Tegel
- Human Protein Atlas, Department of Protein Science, KTH–Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH–Royal Institute of Technology, 114 21 Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - André Ortlieb Guerreiro-Cacais
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Guro Gafvelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Hans Grönlund
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, 171 76 Stockholm, Sweden
| |
Collapse
|
24
|
Xiang Z, Kuranda K, Quinn W, Chekaoui A, Ambrose R, Hasanpourghadi M, Novikov M, Newman D, Cole C, Zhou X, Mingozzi F, Ertl HCJ. The effect of rapamycin and ibrutinib on antibody responses to adeno-associated virus vector-mediated gene transfer. Hum Gene Ther 2022; 33:614-624. [PMID: 35229644 DOI: 10.1089/hum.2021.258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adeno-associated virus (AAV) vector-mediated gene transfer is lessening the impact of monogenetic disorders. Human AAV gene therapy recipients commonly mount immune responses to AAV or the encoded therapeutic protein, which requires transient immunosuppression. Most efforts to date have focused on blunting AAV capsid-specific T cell responses, which have been implicated in elimination of AAV transduced cells. Here we explore the use of immunosuppressants, rapamycin given alone or in combination with ibrutinib to inhibit AAV vector- or transgene product-specific antibody responses. Our results show that rapamycin or ibrutinib given alone reduce primary antibody responses against AAV capsid but the combination of rapamycin and ibrutinib is more effective, blunts recall responses, and reduces numbers of circulating antibody-secreting plasma cells. The drugs fail to lower B cell memory formation or to reduce the inhibitory effects of pre-existing AAV capsid-specific antibodies on transduction efficiency.
Collapse
Affiliation(s)
- ZhiQuan Xiang
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Klaudia Kuranda
- Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States;
| | - William Quinn
- Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States;
| | - Arezki Chekaoui
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Robert Ambrose
- Wistar Institute, 36586, Philadelphia, Pennsylvania, United States;
| | - Mohadeseh Hasanpourghadi
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Mikhail Novikov
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States.,YTY Industry Sdn Bhd, R&D Department, Perak, Malaysia;
| | - Dakota Newman
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Christina Cole
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Xiangyang Zhou
- Wistar Institute, 36586, Vaccine & Immunotherapy Center, Philadelphia, Pennsylvania, United States;
| | - Federico Mingozzi
- Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States.,Spark Therapeutics Inc, 538392, Philadelphia, Pennsylvania, United States;
| | - Hildegund C J Ertl
- Wistar Institute of Anatomy and Biology, 36586, Vaccine & Immunotherapy Center, 3601 Spruce St, Philadelphia, Pennsylvania, United States, 19104-4205;
| |
Collapse
|
25
|
Harkins AL, Kopec AL, Keeler AM. Regulatory T Cell Therapeutics for Neuroinflammatory Disorders. Crit Rev Immunol 2022; 42:1-27. [PMID: 37017285 PMCID: PMC11465901 DOI: 10.1615/critrevimmunol.2022045080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A delicate balance of immune regulation exists in the central nervous system (CNS) that is often dysreg-ulated in neurological diseases, making them complicated to treat. With altered immune surveillance in the diseased or injured CNS, signals that are beneficial in the homeostatic CNS can be disrupted and lead to neuroinflammation. Recent advances in niche immune cell subsets have provided insight into the complicated cross-talk between the nervous system and the immune system. Regulatory T cells (Tregs) are a subset of T cells that are capable of suppressing effector T-cell activation and regulating immune tolerance, and play an important role in neuroprotection. Tregs have been shown to be effective therapies in a variety of immune-related disorders including, graft-versus-host disease (GVHD), type 1 diabetes (T1D), and inflammatory bowel disease (IBD), as well as within the CNS. Recently, significant advancements in engineering T cells, such as chimeric antigen receptor (CAR) T cells, have led to several approved therapies suggesting the safety and efficacy for similar engineered Treg therapies. Further, as understanding of the immune system's role in neuroinflammation has progressed, Tregs have recently become a potential therapeutic in the neurology space. In this review, we discuss Tregs and their evolving role as therapies for neuroinflammatory related disorders.
Collapse
Affiliation(s)
- Ashley L. Harkins
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Allison M. Keeler
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
26
|
Wang H, Shang J, He Z, Zheng M, Jia H, Zhang Y, Yang W, Gao X, Gao F. Dual peptide nanoparticles platform for enhanced antigen-specific immune tolerance for treatment of experimental autoimmune encephalomyelitis. Biomater Sci 2022; 10:3878-3891. [DOI: 10.1039/d2bm00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current therapeutic strategies for autoimmune diseases including multiple sclerosis (MS) are directed toward nonspecific immunosuppression which has severe side effects. The induction of antigen-specific tolerance becomes an ideal therapy for...
Collapse
|
27
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Costa-Verdera H, Collaud F, Riling CR, Sellier P, Nordin JML, Preston GM, Cagin U, Fabregue J, Barral S, Moya-Nilges M, Krijnse-Locker J, van Wittenberghe L, Daniele N, Gjata B, Cosette J, Abad C, Simon-Sola M, Charles S, Li M, Crosariol M, Antrilli T, Quinn WJ, Gross DA, Boyer O, Anguela XM, Armour SM, Colella P, Ronzitti G, Mingozzi F. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates. Nat Commun 2021; 12:6393. [PMID: 34737297 PMCID: PMC8568898 DOI: 10.1038/s41467-021-26744-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings. Here, we developed a mouse model of PD to compare the efficacy of hepatic gene transfer with adeno-associated virus (AAV) vectors expressing secretable GAA with long-term ERT. Liver expression of GAA results in enhanced pharmacokinetics and uptake of the enzyme in peripheral tissues compared to ERT. Combination of gene transfer with pharmacological chaperones boosts GAA bioavailability, resulting in improved rescue of the PD phenotype. Scale-up of hepatic gene transfer to non-human primates also successfully results in enzyme secretion in blood and uptake in key target tissues, supporting the ongoing clinical translation of the approach.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France.,Sorbonne University Paris and INSERM U974, 75013, Paris, France
| | - Fanny Collaud
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | - Pauline Sellier
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | - Umut Cagin
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Julien Fabregue
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Simon Barral
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | | | | | | | | | - Catalina Abad
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | - Marcelo Simon-Sola
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Severine Charles
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Mathew Li
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - Tom Antrilli
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - David A Gross
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Olivier Boyer
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | | | | | - Pasqualina Colella
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Giuseppe Ronzitti
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Federico Mingozzi
- Genethon, 91000, Evry, France. .,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France. .,Sorbonne University Paris and INSERM U974, 75013, Paris, France. .,Spark Therapeutics, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Biologia Futura: Emerging antigen-specific therapies for autoimmune diseases. Biol Futur 2021; 72:15-24. [PMID: 34554499 DOI: 10.1007/s42977-021-00074-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/16/2021] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases are caused by breaking the central and/or peripheral tolerance against self, leading to uncontrolled immune response to autoantigens. The incidences of autoimmune diseases have increased significantly worldwide over the last decades; nearly 5% of the world's population is affected. The current treatments aim to reduce pain and inflammation to prevent organ damage and have a general immunosuppressive effect, but they cannot cure the disease. There is a huge unmet need for autoantigen-specific therapy, without affecting the immune response against pathogens. This goal can be achieved by targeting autoantigen-specific T or B cells and by restoring self-tolerance by inducing tolerogenic antigen-presenting cells (APC) and the development of regulatory T (Treg) cells, for example, by using autoantigenic peptides bound to nanoparticles. Transferring in vitro manipulated autologous tolerogenic APC or autologous autoantigen-specific Treg cells to patients is the promising approach to develop cellular therapeutics. Most recently, chimeric autoantibody receptor T cells have been designed to specifically deplete autoreactive B cells. Limitations of these novel autoantigen-specific therapies will also be discussed.
Collapse
|
30
|
Wade M, Fausther-Bovendo H, De La Vega MA, Kobinger G. In vivo generation of collagen specific Tregs with AAV8 suppresses autoimmune responses and arthritis in DBA1 mice through IL10 production. Sci Rep 2021; 11:18204. [PMID: 34521922 PMCID: PMC8440515 DOI: 10.1038/s41598-021-97739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Available therapeutics for autoimmune disorders focused on mitigating symptoms, rather than treating the cause of the disorder. A novel approach using adeno-associated virus (AAV) could restore tolerance to the autoimmune targets and provide a permanent treatment for autoimmune diseases. Here, we evaluated the ability of collagen II T-cell epitopes packaged in adeno-associated virus serotype 8 (AAV-8) vectors to reduce pathogenic cellular and humoral responses against collagen and to mitigate the disease in the collagen-induced arthritis mouse model. The cytokines and immune cells involved in the immune suppression were also investigated. Mice treated with AAV-8 containing collagen II T-cell epitopes demonstrated a significant reduction in the arthritis symptoms, pathogenic collagen specific antibody and T cell responses. The AAV-8 mediated immune suppression was mediated by increased interleukin-10 expression and regulatory T cells expansion. Altogether, this study strengthens the notion that AAV vectors are promising candidates for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Matthew Wade
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Hugues Fausther-Bovendo
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Marc-Antoine De La Vega
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Gary Kobinger
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada. .,Department of Pathology and Laboratory Medicine, University of Pennsylvania School 27 of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Tawinwung S, Junsaeng D, Utthiya S, Khemawoot P. Immunomodulatory effect of standardized C. asiatica extract on a promotion of regulatory T cells in rats. BMC Complement Med Ther 2021; 21:220. [PMID: 34479568 PMCID: PMC8418037 DOI: 10.1186/s12906-021-03394-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background ECa 233 is a standardized extract of C. asiatica containing the triterpenoid glycosides, madecassoside to asiaticoside in the ratio of (1.5 ± 0.5):1. Anti-inflammatory activities of ECa 233 have been reported; however the immunomodulatory effects of ECa 233 on regulatory T cells, which have a pivotal role in immune regulation, has not been elucidated. Therefore, we investigated the effects of ECa 233 on regulatory T cells that may provide benefits in autoimmune and chronic inflammatory diseases. Methods ECa 233 was prepared as oral suspension in 0.5% carboxymethylcellulose and administered to male Wistar rats via oral gavage. The pharmacokinetics and toxicity of ECa 233 were evaluated. Splenic lymphocytes were isolated and analyzed by flow cytometry and qPCR to determine the immunomodulatory effects of ECa 233 on regulatory T cells. Results All rats had good tolerability to ECa 233 and other test preparations. The pharmacokinetic study showed low oral bioavailability for both triterpenoids, with the maximum plasma concentration reached at 4 h for asiaticoside and at 0.5 h for madecassoside. Multiple oral administration of ECa 233 reduced the frequency of T cells, particularly CD8 T cells in rats. ECa 233 enhanced the percentage of regulatory T cells, characterized by high expression of CD25+ and upregulation of FoxP3 gene. Conclusions The present study demonstrated that ECa 233 possesses immunosuppressive properties by enhancing regulatory T cells. These results provide in vivo evidence for the anti-inflammatory action of ECa 233, in line with previously reports, and the potential uses of ECa 233 in the treatment of chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dhirarin Junsaeng
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Japan
| | - Supanut Utthiya
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand.
| |
Collapse
|
32
|
Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, Akman HO, Gao G, Hirano M. Synergistic Deoxynucleoside and Gene Therapies for Thymidine Kinase 2 Deficiency. Ann Neurol 2021; 90:640-652. [PMID: 34338329 PMCID: PMC9307066 DOI: 10.1002/ana.26185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Carlos Lopez-Gomez
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria/Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Maria J Sanchez-Quintero
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Area del Corazón. Hospital Clínico Universitario Virgen de la Victoria, CIBERCV. Instituto de Investigación Biomédica de Málaga-IBIMA. UMA, Málaga, Spain
| | - Eung Jeon Lee
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Gulio Kleiner
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Saba Tadesse
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Jun Xie
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Hasan Orhan Akman
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Guangping Gao
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
33
|
Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. J Clin Med 2021; 10:jcm10112471. [PMID: 34199563 PMCID: PMC8199697 DOI: 10.3390/jcm10112471] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Adeno-associated viral (AAV) vector gene therapy has shown promise as a possible cure for hemophilia. However, immune responses directed against AAV vectors remain a hurdle to the broader use of this gene transfer platform. Both innate and adaptive immune responses can affect the safety and efficacy of AAV vector-mediated gene transfer in humans. These immune responses may be triggered by the viral capsid, the vector's nucleic acid payload, or other vector contaminants or excipients, or by the transgene product encoded by the vector itself. Various preclinical and clinical strategies have been explored to overcome the issues of AAV vector immunogenicity and transgene-related immune responses. Although results of these strategies are encouraging, more efficient approaches are needed to deliver safe, predictable, and durable outcomes for people with hemophilia. In addition to durability, long-term follow-up of gene therapy trial participants will allow us to address potential safety concerns related to vector integration. Herein, we describe the challenges with current methodologies to deliver optimal outcomes for people with hemophilia who choose to undergo AAV vector gene therapy and the potential opportunities to improve on the results.
Collapse
|
34
|
Li H, Lian G, Wang G, Yin Q, Su Z. A review of possible therapies for multiple sclerosis. Mol Cell Biochem 2021; 476:3261-3270. [PMID: 33886059 DOI: 10.1007/s11010-021-04119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/23/2021] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system with a wide range of symptoms, like executive function defect, cognitive dysfunction, blurred vision, decreased sensation, spasticity, fatigue, and other symptoms. This neurological disease is characterized by the destruction of the blood-brain barrier, loss of myelin, and damage to neurons. It is the result of immune cells crossing the blood-brain barrier into the central nervous system and attacking self-antigens. Heretofore, many treatments proved that they can retard the progression of the disease even though there is no cure. Therefore, treatments aimed at improving patients' quality of life and reducing adverse drug reactions and costs are essential. In this review, the treatment approaches to alleviate the progress of MS include the following: pharmacotherapy, antibody therapy, cell therapy, gene therapy, and surgery. The current treatment methods of MS are described in terms of the prevention of myelin shedding, the promotion of myelin regeneration, and the protection of neurons.
Collapse
Affiliation(s)
- Hui Li
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Gaojian Lian
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guang Wang
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Qianmei Yin
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Zehong Su
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
35
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
36
|
Derdelinckx J, Cras P, Berneman ZN, Cools N. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front Immunol 2021; 12:624685. [PMID: 33679769 PMCID: PMC7933447 DOI: 10.3389/fimmu.2021.624685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Antigen-specific therapy for multiple sclerosis may lead to a more effective therapy by induction of tolerance to a wide range of myelin-derived antigens without hampering the normal surveillance and effector function of the immune system. Numerous attempts to restore tolerance toward myelin-derived antigens have been made over the past decades, both in animal models of multiple sclerosis and in clinical trials for multiple sclerosis patients. In this review, we will give an overview of the current approaches for antigen-specific therapy that are in clinical development for multiple sclerosis as well provide an insight into the challenges for future antigen-specific treatment strategies for multiple sclerosis.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Division of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, Edegem, Belgium.,Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
37
|
De Haan P, Van Diemen FR, Toscano MG. Viral gene delivery vectors: the next generation medicines for immune-related diseases. Hum Vaccin Immunother 2021; 17:14-21. [PMID: 32412865 PMCID: PMC7872028 DOI: 10.1080/21645515.2020.1757989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses have evolved to efficiently express their genes in host cells, which makes them ideally suited as gene delivery vectors for gene and immunotherapies. Replication competent (RC) viral vectors encoding foreign or self-proteins induce strong T-cell responses that can be used for the development of effective cancer treatments. Replication-defective (RD) viral vectors encoding self-proteins are non-immunogenic when introduced in a host naïve for the cognate virus. RD viral vectors can be used to develop gene replacement therapies for genetic disorders and tolerization therapies for autoimmune diseases and allergies. Degenerative/inflammatory diseases are associated with chronic inflammation and immune responses that damage the tissues involved. These diseases therefore strongly resemble autoimmune diseases. This review deals with the use of RC and RD viral vectors for unraveling the pathogenesis of immune-related diseases and their application to the development of the next generation prophylactics and therapeutics for todays' major diseases.
Collapse
Affiliation(s)
- Peter De Haan
- Department of R&D, Amarna Therapeutics B.V, Leiden, The Netherlands
| | | | | |
Collapse
|
38
|
Moise N, Friedman A. A mathematical model of the multiple sclerosis plaque. J Theor Biol 2020; 512:110532. [PMID: 33152395 DOI: 10.1016/j.jtbi.2020.110532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects white matter in the central nervous system. It is one of the primary causes of neurological disability among young people. Its characteristic pathological lesion is called a plaque, a zone of inflammatory activity and tissue destruction that expands radially outward by destroying the myelin and oligodendrocytes of white matter. The present paper develops a mathematical model of the multiple sclerosis plaques. Although these plaques do not provide reliable information of the clinical disability in MS, they are nevertheless useful as a primary outcome measure of Phase II trials. The model consists of a system of partial differential equations in a simplified geometry of the lesion, consisting of three domains: perivascular space, demyelinated plaque, and white matter. The model describes the activity of various pro- and anti-inflammatory cells and cytokines in the plaque, and quantifies their effect on plaque growth. We show that volume growth of plaques are in qualitative agreement with reported clinical studies of several currently used drugs. We then use the model to explore treatments with combinations of such drugs, and with experimental drugs. We finally consider the benefits of early vs. delayed treatment.
Collapse
Affiliation(s)
- Nicolae Moise
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Biomedical Engineering, Ohio State University, Columbus, OH, USA
| | - Avner Friedman
- Mathematical Biosciences Institute & Department of Mathematics, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
39
|
Passerini L, Gregori S. Induction of Antigen-Specific Tolerance in T Cell Mediated Diseases. Front Immunol 2020; 11:2194. [PMID: 33133064 PMCID: PMC7550404 DOI: 10.3389/fimmu.2020.02194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
The development of novel approaches to control unwanted immune responses represents an ambitious goal in the management of a number of clinical conditions, including autoimmunity, autoinflammatory diseases, allergies and replacement therapies, in which the T cell response to self or non-harmful antigens threatens the physiological function of tissues and organs. Current treatments for these conditions rely on the use of non-specific immunosuppressive agents and supportive therapies, which may efficiently dampen inflammation and compensate for organ dysfunction, but they require lifelong treatments not devoid of side effects. These limitations induced researchers to undertake the development of definitive and specific solutions to these disorders: the underlying principle of the novel approaches relies on the idea that empowering the tolerogenic arm of the immune system would restore the immune homeostasis and control the disease. Researchers effort resulted in the development of cell-free strategies, including gene vaccination, protein-based approaches and nanoparticles, and an increasing number of clinical trials tested the ability of adoptive transfer of regulatory cells, including T and myeloid cells. Here we will provide an overview of the most promising approaches currently under development, and we will discuss their potential advantages and limitations. The field is teaching us that the success of these strategies depends primarily on our ability to dampen antigen-specific responses without impairing protective immunity, and to manipulate directly or indirectly the immunomodulatory properties of antigen presenting cells, the ultimate in vivo mediators of tolerance.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Ronzitti G, Gross DA, Mingozzi F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front Immunol 2020; 11:670. [PMID: 32362898 PMCID: PMC7181373 DOI: 10.3389/fimmu.2020.00670] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are one of the most promising in vivo gene delivery tools. Several features make rAAV vectors an ideal platform for gene transfer. However, the high homology with the parental wild-type virus, which often infects humans, poses limitations in terms of immune responses associated with this vector platform. Both humoral and cell-mediated immunity to wild-type AAV have been documented in healthy donors, and, at least in the case of anti-AAV antibodies, have been shown to have a potentially high impact on the outcome of gene transfer. While several factors can contribute to the overall immunogenicity of rAAV vectors, vector design and the total vector dose appear to be responsible of immune-mediated toxicities. While preclinical models have been less than ideal in predicting the outcome of gene transfer in humans, the current preclinical body of evidence clearly demonstrates that rAAV vectors can trigger both innate and adaptive immune responses. Data gathered from clinical trials offers key learnings on the immunogenicity of AAV vectors, highlighting challenges as well as the potential strategies that could help unlock the full therapeutic potential of in vivo gene transfer.
Collapse
Affiliation(s)
- Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, Evry, France
| | | | | |
Collapse
|
41
|
Gong Y, Liu YC, Ding XL, Fu Y, Cui LJ, Yan YP. Tanshinone IIA Ameliorates CNS Autoimmunity by Promoting the Differentiation of Regulatory T Cells. Neurotherapeutics 2020; 17:690-703. [PMID: 31845175 PMCID: PMC7283442 DOI: 10.1007/s13311-019-00789-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tanshinone IIA (TSA), an important natural lipophilic diterpene compound from the traditional Chinese herb Salvia miltiorrhiza Bunge, has long been widely used for the prevention and treatment of various diseases because of its anti-inflammatory activities; however, the anti-inflammatory mechanism remains unknown. In the present work, we examined the effects of TSA on experimental autoimmune encephalomyelitis (EAE), a model of autoreactive T/B cell-mediated central nervous system (CNS) autoimmunity. The data showed that TSA significantly attenuates the severity of EAE when administered at the pre-onset and peak of clinical disease. In vivo, the protective effects of TSA on EAE mice are correlated with diminished inflammatory infiltration, demyelination, and GM-CSF-producing CD4+ T cells in the spinal cord and selectively increased regulatory T (Treg) cell frequencies in both the spinal cord and spleen. We further confirm that TSA can promote the polarization of naïve CD4+ T cells into Treg cells both by targeting dendritic cells (DCs) to drive transforming growth factor β1 (TGF-β1) upregulation and by directly targeting naïve CD4+ T cells in vitro. Most importantly, we showed that TSA-induced Treg cells display an effective suppressive activity at a level comparable to TGF-β1-polarized Treg Cells in vitro and in vivo. Taken together, our data provide evidence that TSA can promote Treg cell differentiation, and TSA may have a promising application as a therapeutic agent for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ye Gong
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710000, China
| | - Yuan-Chu Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710000, China
| | - Xiao-Li Ding
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710000, China
| | - Ying Fu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710000, China
| | - Lang-Jun Cui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710000, China.
- , Xi'an, China.
| | - Ya-Ping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710000, China.
- , Xi'an, China.
| |
Collapse
|
42
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020; 137:104760. [PMID: 31978602 PMCID: PMC7933730 DOI: 10.1016/j.nbd.2020.104760] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
With the increasing prevalence of Parkinson’s disease (PD), there is an immediate need to interdict disease signs and symptoms. In recent years this need was met through therapeutic approaches focused on regenerative stem cell replacement and alpha-synuclein clearance. However, neither have shown long-term clinical benefit. A novel therapeutic approach designed to affect disease is focused on transforming the brain’s immune microenvironment. As disordered innate and adaptive immune functions are primary components of neurodegenerative disease pathogenesis, this has emerged as a clear opportunity for therapeutic development. Interventions that immunologically restore the brain’s homeostatic environment can lead to neuroprotective outcomes. These have recently been demonstrated in both laboratory and early clinical investigations. To these ends, efforts to increase the numbers and function of regulatory T cells over dominant effector cells that exacerbate systemic inflammation and neurodegeneration have emerged as a primary research focus. These therapeutics show broad promise in affecting disease outcomes beyond PD, such as for Alzheimer’s disease, stroke and traumatic brain injuries, which share common neurodegenerative disease processes.
Collapse
Affiliation(s)
- Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| |
Collapse
|
44
|
Abstract
Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.
Collapse
Affiliation(s)
- Jamie L Shirley
- Gene Therapy Center, University of Massachusetts, Worchester, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
45
|
Islam MA, Kundu S, Hassan R. Gene Therapy Approaches in an Autoimmune Demyelinating Disease: Multiple Sclerosis. Curr Gene Ther 2020; 19:376-385. [PMID: 32141417 DOI: 10.2174/1566523220666200306092556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Multiple Sclerosis (MS) is the most common autoimmune demyelinating disease of the Central Nervous System (CNS). It is a multifactorial disease which develops in an immune-mediated way under the influences of both genetic and environmental factors. Demyelination is observed in the brain and spinal cord leading to neuro-axonal damage in patients with MS. Due to the infiltration of different immune cells such as T-cells, B-cells, monocytes and macrophages, focal lesions are observed in MS. Currently available medications treating MS are mainly based on two strategies; i) to ease specific symptoms or ii) to reduce disease progression. However, these medications tend to induce different adverse effects with limited therapeutic efficacy due to the protective function of the blood-brain barrier. Therefore, researchers have been working for the last four decades to discover better solutions by introducing gene therapy approaches in treating MS generally by following three strategies, i) prevention of specific symptoms, ii) halt or reverse disease progression and iii) heal CNS damage by promoting remyelination and axonal repair. In last two decades, there have been some remarkable successes of gene therapy approaches on the experimental mice model of MS - experimental autoimmune encephalomyelitis (EAE) which suggests that it is not far that the gene therapy approaches would start in human subjects ensuring the highest levels of safety and efficacy. In this review, we summarised the gene therapy approaches attempted in different animal models towards treating MS.
Collapse
Affiliation(s)
- Md. Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Shoumik Kundu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
46
|
Immune Response Mechanisms against AAV Vectors in Animal Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:198-208. [PMID: 31970198 PMCID: PMC6965504 DOI: 10.1016/j.omtm.2019.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early preclinical studies in rodents and other species did not reveal that vector or transgene immunity would present a significant hurdle for sustained gene expression. While there was early evidence of mild immune responses to adeno-associated virus (AAV) in preclinical studies, it was generally believed that these responses were too weak and transient to negatively impact sustained transduction. However, translation of the cumulative success in treating hemophilia B in rodents and dogs with an AAV2-F9 vector to human studies was not as successful. Despite significant progress in recent clinical trials for hemophilia, new immunotoxicities to AAV and transgene are emerging in humans that require better animal models to assess and overcome these responses. The animal models designed to address these immune complications have provided critical information to assess how vector dose, vector capsid processing, vector genome, difference in serotypes, and variations in vector delivery route can impact immunity and to develop approaches for overcoming pre-existing immunity. Additionally, a comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vectors that can circumvent immunity.
Collapse
|
47
|
Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol 2019; 41:711-726. [PMID: 31732775 PMCID: PMC6881249 DOI: 10.1007/s00281-019-00765-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a frequent autoimmune demyelinating disease of the central nervous system (CNS). There are three clinical forms described: relapsing-remitting multiple sclerosis (RRMS), the most common initial presentation (85%) among which, if not treated, about half will transform, into the secondary progressive multiple sclerosis (SPMS) and the primary progressive MS (PPMS) (15%) that is directly progressive without superimposed clinical relapses. Inflammation is present in all subsets of MS. The relapsing/remitting form could represent itself a particular interest for the study of inflammation resolution even though it remains incomplete in MS. Successful resolution of acute inflammation is a highly regulated process and dependent on mechanisms engaged early in the inflammatory response that are scarcely studied in MS. Moreover, recent classes of disease-modifying treatment (DMTs) that are effective against RRMS act by re-establishing the inflammatory imbalance, taking advantage of the pre-existing endogenous suppressor. In this review, we will discuss the active role of regulatory immune cells in inflammation resolution as well as the role of tissue and non-hematopoietic cells as contributors to inflammation resolution. Finally, we will explore how DMTs, more specifically induction therapies, impact the resolution of inflammation during MS.
Collapse
Affiliation(s)
- F Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - S Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - C Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
48
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Ewart D, Peterson EJ, Steer CJ. A new era of genetic engineering for autoimmune and inflammatory diseases. Semin Arthritis Rheum 2019; 49:e1-e7. [DOI: 10.1016/j.semarthrit.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
|
50
|
Bronge M, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, Kaiser A, Holmgren E, Macrini C, Winklmeier S, Meinl E, Brundin L, Khademi M, Olsson T, Gafvelin G, Grönlund H. Myelin oligodendrocyte glycoprotein revisited-sensitive detection of MOG-specific T-cells in multiple sclerosis. J Autoimmun 2019; 102:38-49. [PMID: 31054941 DOI: 10.1016/j.jaut.2019.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Autoreactive CD4+ T-cells are believed to be a main driver of multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG) is considered an autoantigen, yet doubted in recent years. The reason is in part due to low frequency and titers of MOG autoantibodies and the challenge to detect MOG-specific T-cells. In this study we aimed to analyze T-cell reactivity and frequency utilizing a novel method for detection of antigen-specific T-cells with bead-bound MOG as stimulant. Peripheral blood mononuclear cells (PBMCs) from natalizumab treated persons with MS (n = 52) and healthy controls (HCs) (n = 24) were analyzed by IFNγ/IL-22/IL-17A FluoroSpot. A higher number of IFNγ (P = 0.001), IL-22 (P = 0.003), IL-17A (P < 0.0001) as well as double and triple cytokine producing MOG-specific T-cells were detected in persons with MS compared to HCs. Of the patients, 46.2-59.6% displayed MOG-reactivity. Depletion of CD4+ T-cells or monocytes or blocking HLA-DR completely eliminated the MOG specific response. Anti-MOG antibodies did not correlate with T-cell MOG-responses. In conclusion, we present a sensitive method to detect circulating autoreactive CD4+ T-cells producing IFNγ, IL-22 or IL-17A using MOG as a model antigen. Further, we demonstrate that MOG-specific T-cells are present in approximately half of persons with MS.
Collapse
Affiliation(s)
- Mattias Bronge
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Sabrina Ruhrmann
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Claudia Carvalho-Queiroz
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Ola B Nilsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Andreas Kaiser
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Erik Holmgren
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Caterina Macrini
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Lou Brundin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Guro Gafvelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Hans Grönlund
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| |
Collapse
|