1
|
Kanjia MK, Jooste EH, Illig M, Neifeld Capps J, Eisner C, Fan SZ, Lenarczyk J, Wojdacz R. Optimizing the anesthetic care of patients with aromatic l-amino acid decarboxylase deficiency. Paediatr Anaesth 2024. [PMID: 39435566 DOI: 10.1111/pan.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disorder that results in a lack of the monoamine neurotransmitters dopamine, serotonin, norepinephrine, and epinephrine. Patients present with a wide spectrum of symptoms, including motor and autonomic dysfunction, hypotonia, and developmental delay, often before the age of one. Until recently, treatment options were limited to symptom control, but the recent approval of the first gene therapy for AADC deficiency in Europe and the UK has provided an alternative to treating symptoms for this disease. Eladocagene exuparvovec is a one-time gene therapy, administered bilaterally to the putamen by magnetic resonance imaging-guided stereotactic neurosurgery. While administration of the gene therapy itself is minimally invasive, the anesthetic management of patients with AADC deficiency is challenging due to the absence of sympathetic regulation secondary to the lack of adrenergic neurotransmitters. Optimal anesthetic management requires an understanding of the complex and heterogeneous nature of the disease. Hemodynamic instability, temperature dysregulation, and hypoglycemia are of primary concern, but there are also challenges regarding intravenous access and airway management. A thorough preoperative assessment is essential and should be guided by the patient's history. Advanced planning is necessary regarding the timing of the procedure schedule and operative plan; meticulous preparation, simulation for the operating room, as well as communication with all perioperative staff members, are crucial. Intraoperatively, utmost care must be taken to protect the skin, maintain body temperature, and to prepare for inotropic and/or glycemic support as needed. Postoperative intensive care management is necessary for consideration of postoperative extubation and provision of supportive care. With careful planning, preparation, and vigilance, patients with AADC deficiency can safely undergo anesthesia.
Collapse
Affiliation(s)
- Megha K Kanjia
- Texas Children's Hospital, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Edmund H Jooste
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Melissa Illig
- Boston Children's Hospital, Boston, Massachusetts, USA
| | | | | | - Shou Zen Fan
- National Taiwan University Hospital, Taipei, Taiwan
| | - Jerzy Lenarczyk
- University Center for Women's and Newborn Health, Warsaw, Poland
| | - Rafał Wojdacz
- University Center for Women's and Newborn Health, Warsaw, Poland
| |
Collapse
|
2
|
Lee NC, Hsu PC, Liu YH, Wang HC, Chen TI, Chien YH, Hwu WL. Nigrostriatal tract defects in mice with aromatic l-amino acid decarboxylase deficiency. Neurobiol Dis 2024; 202:106707. [PMID: 39433135 DOI: 10.1016/j.nbd.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
The development of the nigrostriatal dopaminergic (DA) pathway in the brain involves many transcriptional and chemotactic molecules, and a deficiency of these molecules can cause nigrostriatal tract defects. However, the role of the end product, dopamine, in nigrostriatal pathway development has not been described. In the present study, we analyzed a mouse model of congenital dopamine and serotonin deficiency, namely, the aromatic l-amino acid decarboxylase (AADC) deficiency (DdcKI) mouse model. We found via tyrosine hydroxylase (TH) immunofluorescence staining that the number of DA fibers in the stratum of 14-day-old DdcKI mice decreased. In TH-stained cleared whole brains of DdcKI mice, the numbers of DA neurons in the substantia nigra (SN) and the number of DA nerve bundles leaving the SN were both normal. However, we found that the nigrostriatal bundles in DdcKI mice were dispersed, taking aberrant routes to the striatum and spreading over a wide area. The total volume occupied by the nigrostriatal tract was increased, and the fraction of TH staining in the tract was decreased in DdcKI mice. Single-nucleus RNA sequencing analysis for mice 0, 7, and 14 days of age, revealed delayed axonogenesis and synapse formation in the striatum of DdcKI mice. The CellChat program inferred less cell-cell communication between striatal D1/D2 neurons but increased cell-cell communication involving neural precursors in DdcKI mice. Therefore, a congenital deficiency in dopamine affects nigrostriatal axon extension and striatal innervation. These nigrostriatal tract defects may limit the treatment efficacy for patients with TH or AADC deficiency.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Chun Hsu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Han Liu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hao-Chun Wang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsu-I Chen
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Daci R, Gray-Edwards H, Shazeeb MS, Vardar Z, Vachha B, Cataltepe OI, Flotte TR. Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases. Hum Gene Ther 2024. [PMID: 39323316 DOI: 10.1089/hum.2024.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Neurological disease due to single gene defects represents a targetable entity for adeno-associated virus (AAV) mediated gene therapy. The delivery of AAV-mediated gene therapy to the brain is challenging, owing to the presence of the blood-brain barrier. Techniques in gene transfer, such as convection-enhanced intraparenchymal delivery and image-guided delivery to the cerebrospinal fluid (CSF) spaces of the brain has led the field into highly accurate delivery techniques, which provide correction of genetic defects in specific brain regions or more broadly. These techniques commonly use magnetic resonance imaging (MRI), computed tomography (CT), and fluoroscopic guidance. Even more, the neuroimaging changes evaluated by MRI, MR spectroscopy (MRS), diffusion tensor imaging (DTI), and functional MRI (fMRI) can serve as important biomarkers of therapy effect and overall disease progression. Here, we discuss the role of neuroimaging in delivering AAV vectors and monitoring the effect of gene therapy.
Collapse
Affiliation(s)
- Rrita Daci
- UMass Chan Medical School, Neurosurgery, 55 Lake Ave N, Worcester, Massachusetts, United States, 01655-0112;
| | - Heather Gray-Edwards
- University of Massachusetts Medical School , Department of Radiology, Horae Gene Therapy Center, Horae Gene Therapy Center, 368 Plantation Street, ASC6-2041, Worcester, Massachusetts, United States, 01605;
| | - Mohammed Salman Shazeeb
- University of Massachusetts Medical School, Radiology, 55 Lake Ave North, Worcester, Massachusetts, United States, 01655;
| | - Zeynep Vardar
- UMass Chan Medical School, Radiology, Worcester, Massachusetts, United States;
| | - Behroze Vachha
- UMass Chan Medical School, Radiology, Worcester, Massachusetts, United States;
| | - Oguz I Cataltepe
- University of Massachusetts Medical School, Department of Neurological Surgery, Worcester, Massachusetts, United States;
| | - Terence R Flotte
- University of Massachusetts Medical School, Pediatrics, 55 Lake Avenue North, S1-340, Worcester, Massachusetts, United States, 01655;
| |
Collapse
|
4
|
Larrey D, Delire B, Meunier L, Zahhaf A, de Martin E, Horsmans Y. Drug-induced liver injury related to gene therapy: A new challenge to be managed. Liver Int 2024. [PMID: 39248281 DOI: 10.1111/liv.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Gene therapy is being successfully developed for the treatment of several genetic disorders. Various methods of gene transfer have been developed to enable the production of the deficient enzyme or protein. One of the most important is adeno-associated virus vectors, which have been shown to be viable for use in in vivo gene therapy. Several gene therapies have already been approved. They are also promising for acquired diseases. Important examples include gene therapy for haemophilia A and B, X-linked myotubular myopathy, spinal muscular atrophy and several liver diseases such as Criggler-Najjar disease, alpha-1 antitrypsin deficiency and Fabry disease. However, the introduction of a foreign compound into hepatocytes leads to hepatic reactions with heterogeneous phenotypic expression and a wide spectrum of severity, ranging from mild transaminase elevation to acute liver failure. Several mechanisms appear to be involved in liver injury, including an immune response, but also direct toxicity depending on the method of gene transfer. As a result, the incidence, expression and severity of liver injury vary from indication to indication and from patient to patient. Patients treated for haemophilia A are more prone to transaminase elevation than those treated for haemophilia B. Corticosteroids are successfully used to correct liver reactions but also to prevent degradation of the transferred gene and loss of therapeutic activity. The aim of this review is to describe the risk of liver injury according to the indication for gene therapy and the short- and long-term management currently proposed to prevent or correct liver reactions in clinical practice.
Collapse
Affiliation(s)
- Dominique Larrey
- Liver Unit, Saint-Eloi Hospital, INSERM 1183, Montpellier School of Medicine, Montpellier, France
| | - Benedicte Delire
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc et Institut de Recherche Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Lucy Meunier
- Liver Unit, Saint-Eloi Hospital, INSERM 1183, Montpellier School of Medicine, Montpellier, France
| | - Amel Zahhaf
- Liver Unit, Saint-Eloi Hospital, INSERM 1183, Montpellier School of Medicine, Montpellier, France
| | - Eleonora de Martin
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, INSERM Unit 1193, Univ Paris-Sud, Université Paris-Saclay, FHU Hépatinov, Villejuif, France
| | - Yves Horsmans
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc et Institut de Recherche Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
6
|
Bunuales M, Garduno A, Chillon M, Bosch A, Gonzalez-Aparicio M, Espelosin M, Garcia-Gomara M, Rico AJ, Garcia-Osta A, Cuadrado-Tejedor M, Lanciego JL, Hernandez-Alcoceba R. Characterization of brain transduction capability of a BBB-penetrant AAV vector in mice, rats and macaques reveals differences in expression profiles. Gene Ther 2024; 31:455-466. [PMID: 39039204 PMCID: PMC11399087 DOI: 10.1038/s41434-024-00466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Different screening methods are being developed to generate adeno-associated viral vectors (AAV) with the ability to bypass the blood-brain barrier (BBB) upon intravenous administration. Recently, the AAV9P31 stood out as the most efficient version among a library of peptide-displaying capsids selected in C57BL/6 mice using RNA-driven biopanning. In this work we have characterized in detail its biodistribution in different mouse strains (C57BL/6 and Balb/c), as well as in Sprague Dawley rats and non-human primates (Macaca fascicularis). Using GFP and NanoLuc reporter genes, we confirmed homogeneous infection and transgene expression across the CNS of mice injected intravenously with AAV9P31. A more restricted pattern was observed upon either intracerebroventricular or intraparenchymal injection. Following intravenous delivery, region- and cell-specific differential patterns of transduction were observed in the mouse brain, including a preferential transduction of astrocytes and neurons in the cerebral cortex and striatum, whereas neurons were the only transduced cell type in subcortical locations across the hippocampus, thalamus, hypothalamus, mesencephalon, brainstem and cerebellum. Furthermore, transduced microglial cells were never found in any CNS location. Peripheral organs transduced upon intravenous administration included lung, liver, peritoneum, heart and skeletal muscle. However, a comparable performance of AAV9P31 to bypass the BBB in rats and macaques was not observed, although a more limited neuronal transduction was found in the brainstem of rats upon intravenous delivery. Finally, intracerebroventricular delivery in macaques resulted in neuronal transduction in cortical, subcortical structures and cerebellum following a patchy pattern. In conclusion, the widespread CNS transduction obtained in mice upon intravenous delivery of AAV9P31 represents a powerful tool for modeling a wide variety of neurological disorders as well as an appealing choice for the evaluation of gene therapy-based therapeutics.
Collapse
Affiliation(s)
- María Bunuales
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain
| | - Angeles Garduno
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain
| | - Miguel Chillon
- Institut de Neurociències, Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona; and Vall d'Hebron Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Assumpció Bosch
- Institut de Neurociències, Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona; and Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Maria Espelosin
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain
| | - Marta Garcia-Gomara
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, IdiSNA, 31008, Pamplona, Spain
| | - Alberto J Rico
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain
| | - Ana Garcia-Osta
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, IdiSNA, 31008, Pamplona, Spain
| | - Jose L Lanciego
- Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain.
| | | |
Collapse
|
7
|
Hoffmann MD, Sorensen RJ, Extross A, He Y, Schmidt D. Protein Carrier AAV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607995. [PMID: 39185209 PMCID: PMC11343202 DOI: 10.1101/2024.08.14.607995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
AAV is widely used for efficient delivery of DNA payloads. The extent to which the AAV capsid can be used to deliver a protein payload is unexplored. Here, we report engineered AAV capsids that directly package proteins - Protein Carrier AAV (pcAAV). Nanobodies inserted into the interior of the capsid mediate packaging of a cognate protein, including Green Fluorescent Protein (GFP), Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. We show that protein packaging efficiency is affected by the nanobody insertion position, the capsid protein isoform into which the nanobody is inserted, and the subcellular localization of the packaged protein during recombinant AAV capsid production; each of these factors can be rationally engineered to optimize protein packaging efficiency. We demonstrate that proteins packaged within pcAAV retain their enzymatic activity and that pcAAV can bind and enter the cell to deliver the protein payload. Establishing pcAAV as a protein delivery platform may expand the utility of AAV as a therapeutic and research tool.
Collapse
Affiliation(s)
- Mareike D. Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ryan J. Sorensen
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ajay Extross
- Department of Molecular, Cellular, Developmental Biology, and Genetics
| | - Yungui He
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
8
|
Hwu WL. Gene therapy for ultrarare diseases: a geneticist's perspective. J Biomed Sci 2024; 31:79. [PMID: 39138523 PMCID: PMC11321167 DOI: 10.1186/s12929-024-01070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Gene therapy has made considerable strides in recent years. More than 4000 protein-coding genes have been implicated in more than 6000 genetic diseases; next-generation sequencing has dramatically revolutionized the diagnosis of genetic diseases. Most genetic diseases are considered very rare or ultrarare, defined here as having fewer than 1:100,000 cases, but only one of the 12 approved gene therapies (excluding RNA therapies) targets an ultrarare disease. This article explores three gene supplementation therapy approaches suitable for various rare genetic diseases: lentiviral vector-modified autologous CD34+ hematopoietic stem cell transplantation, systemic delivery of adeno-associated virus (AAV) vectors to the liver, and local AAV delivery to the cerebrospinal fluid and brain. Together with RNA therapies, we propose a potential business model for these gene therapies.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Center for Precision Medicine, China Medical University Hospital, Taichung City, Taiwan.
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan.
| |
Collapse
|
9
|
Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expert Opin Biol Ther 2024; 24:773-785. [PMID: 39066718 DOI: 10.1080/14712598.2024.2386339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION In gene therapy with adeno-associated virus (AAV) vectors for diseases of the central nervous system, the vectors can be administered into blood vessels, cerebrospinal fluid space, or the brain parenchyma. When gene transfer to a large area of the brain is required, the first two methods are used, but for diseases in which local gene transfer is expected to be effective, vectors are administered directly into the brain parenchyma. AREAS COVERED Strategies for intraparenchymal vector delivery in gene therapy for Parkinson's disease, aromatic l-amino acid decarboxylase (AADC) deficiency, and epilepsy are reviewed. EXPERT OPINION Stereotactic intraparenchymal injection of AAV vectors allows precise gene delivery to the target site. Although more surgically invasive than intravascular or intrathecal administration, intraparenchymal vector delivery has the advantage of a lower vector dose, and preexisting neutralizing antibodies have little effect on the transduction efficacy. This approach improves motor function in AADC deficiency and led to regulatory approval of an AAV vector for the disease in the EU. Although further validation through clinical studies is needed, direct infusion of viral vectors into the brain parenchyma is expected to be a novel treatment for Parkinson's disease and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
10
|
Shih FH, Chang HH, Wang YC. Utilizing adeno-associated virus as a vector in treating genetic disorders or human cancers. IUBMB Life 2024. [PMID: 38970351 DOI: 10.1002/iub.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Clinical data from over two decades, involving more than 3000 treated patients, demonstrate that adeno-associated virus (AAV) gene therapy is a safe, effective, and well-tolerated therapeutic method. Clinical trials using AAV-mediated gene delivery to accessible tissues have led to successful treatments for numerous monogenic disorders and advancements in tissue engineering. Although the US Food and Drug Administration (FDA) has approved AAV for clinical use, systemic administration remains a significant challenge. In this review, we delve into AAV biology, focusing on current manufacturing technologies and transgene engineering strategies. We examine the use of AAVs in ongoing clinical trials for ocular, neurological, and hematological disorders, as well as cancers. By discussing recent advancements and current challenges in the field, we aim to provide valuable insights for researchers and clinicians navigating the evolving landscape of AAV-based gene therapy.
Collapse
Affiliation(s)
- Fu-Hsuan Shih
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsiung-Hao Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
11
|
Patel RV, Nanda P, Richardson RM. Neurosurgical gene therapy for central nervous system diseases. Neurotherapeutics 2024; 21:e00434. [PMID: 39191071 PMCID: PMC11445594 DOI: 10.1016/j.neurot.2024.e00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Viral vector mediated gene therapies for neurodegenerative and neurodevelopmental conditions that require neurosurgical administration continue to expand. We systematically reviewed the National Institutes of Health (NIH) ClinicalTrials.gov database to identify all clinical trials studying in-vivo viral vector mediated gene therapies targeted to the CNS for neurodegenerative and neurodevelopmental diseases. We isolated studies which delivered therapies using neurosurgical approaches: intracisternal, intraventricular, and/or intraparenchymal. Clinical trials primarily registered in international countries were included if they were referenced by an NIH registered clinical trial. We performed a scoping review to identify the preclinical studies that supported each human clinical trial. Key preclinical and clinical data were aggregated to characterize vector capsid design, delivery methods, gene expression profile, and clinical benefit. A total of 64 clinical trials were identified in active, completed, terminated, and long-term follow-up stages. A range of CNS conditions across pediatric and adult populations are being studied with CNS targeted viral vector gene therapy, including Alzheimer's disease, Parkinson's disease, AADC deficiency, sphingolipidoses, mucopolysaccharidoses, neuronal ceroid lipofuscinoses, spinal muscular atrophy, adrenoleukodystrophy, Canavan disease, frontotemporal dementia, Huntington's disease, Rett syndrome, Dravet syndrome, mesial temporal lobe epilepsy, and glutaric acidemia. Adeno-associated viral vectors (AAVs) were utilized by the majority of tested therapies, with vector serotypes, regulatory elements, delivery methods, and vector monitoring varying based on the disease being studied. Intraparenchymal delivery has evolved significantly, with MRI-guided convection-enhanced delivery established as a gold standard method for pioneering novel gene targets.
Collapse
Affiliation(s)
- Ruchit V Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Mackall CL, Bollard CM, Goodman N, Carr C, Gardner R, Rouce R, Sotillo E, Stoner R, Urnov FD, Wayne AS, Park J, Kohn DB. Enhancing pediatric access to cell and gene therapies. Nat Med 2024; 30:1836-1846. [PMID: 38886624 DOI: 10.1038/s41591-024-03035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Increasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions. We propose the creation of a new entity, the Pediatric Advanced Medicines Biotech, to lead late-stage development and commercialize pediatric CGTs outside the traditional biopharmaceutical model in the United States-where organized efforts to solve this problem have been lacking. The Pediatric Advanced Medicines Biotech would partner with the academic ecosystem, manufacture products in academic good manufacturing practice facilities and work closely with regulatory bodies, to ferry CGTs across the drug development 'valley of death' and, ultimately, increase access to lifesaving treatments for children in need.
Collapse
Affiliation(s)
- Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Bone Marrow Transplant and Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and Department of Pediatrics, Children's National Hospital and The George Washington University, Washington, DC, USA
| | | | - Casey Carr
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Rayne Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Fyodor D Urnov
- Innovative Genomics Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Alan S Wayne
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie Park
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics; Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Mylvara AV, Gibson AL, Gu T, Davidson CD, Incao AA, Melnyk K, Pierre-Jacques D, Cologna SM, Venditti CP, Porter FD, Pavan WJ. Optimization of systemic AAV9 gene therapy in Niemann-Pick disease type C1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597901. [PMID: 38895471 PMCID: PMC11185674 DOI: 10.1101/2024.06.07.597901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Niemann-Pick disease, type C1 (NPC1) is a rare, fatal neurodegenerative disorder caused by pathological variants in NPC1, which encodes a lysosomal cholesterol transport protein. There are no FDA approved treatments for this disorder. Both systemic and central nervous system delivery of AAV9-hNPC1 have shown significant disease amelioration in NPC1 murine models. To assess the impact of dose and window of therapeutic efficacy in Npc1 m1N mice, we systemically administered three different doses of AAV9-hNPC1 at 4 weeks old and the medium dose at pre-, early, and post-symptomatic timepoints. Higher vector doses and treatment earlier in life were associated with enhanced transduction in the nervous system and resulted in significantly increased lifespan. Similar beneficial effects were noted after gene therapy in Npc1 I1061T mice, a model that recapitulates a common human hypomorphic variant. Our findings help define dose ranges, treatment ages, and efficacy in severe and hypomorphic models of NPC1 deficiency and suggest that earlier delivery of AAV9-hNPC1 in a pre-symptomatic disease state is likely to yield optimal outcomes in individuals with NPC1.
Collapse
Affiliation(s)
- Avani V Mylvara
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Alana L Gibson
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, CA
| | - Tansy Gu
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- University of North Carolina, Chapel Hill, NC
| | - Cristin D Davidson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Art A Incao
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Katerina Melnyk
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | | | | | - Charles P Venditti
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Department of Human Health and Services, Bethesda, MD
| |
Collapse
|
14
|
Wang YC, Mao XT, Sun C, Wang YH, Zheng YZ, Xiong SH, Liu MY, Mao SH, Wang QW, Ma GX, Wu D, Li ZS, Chen JM, Zou WB, Liao Z. Pancreas-directed AAV8 -hSPINK1 gene therapy safely and effectively protects against pancreatitis in mice. Gut 2024; 73:1142-1155. [PMID: 38553043 DOI: 10.1136/gutjnl-2023-330788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Currently, there is no cure for chronic pancreatitis (CP). Germline loss-of-function variants in SPINK1 (encoding trypsin inhibitor) are common in patients with CP and are associated with acute attacks and progression of the disease. This preclinical study was conducted to explore the potential of adeno-associated virus type 8 (AAV8)-mediated overexpression of human SPINK1 (hSPINK1) for pancreatitis therapy in mice. DESIGN A capsid-optimised AAV8-mediated hSPINK1 expression vector (AAV8-hSPINK1) to target the pancreas was constructed. Mice were treated with AAV8-hSPINK1 by intraperitoneal injection. Pancreatic transduction efficiency and safety of AAV8-hSPINK1 were dynamically evaluated in infected mice. The effectiveness of AAV8-hSPINK1 on pancreatitis prevention and treatment was studied in three mouse models (caerulein-induced pancreatitis, pancreatic duct ligation and Spink1 c.194+2T>C mouse models). RESULTS The constructed AAV8-hSPINK1 vector specifically and safely targeted the pancreas, had low organ tropism for the heart, lungs, spleen, liver and kidneys and had a high transduction efficiency (the optimal expression dose was 2×1011 vg/animal). The expression and efficacy of hSPINK1 peaked at 4 weeks after injection and remained at significant level for up to at least 8 weeks. In all three mouse models, a single dose of AAV8-hSPINK1 before disease onset significantly alleviated the severity of pancreatitis, reduced the progression of fibrosis, decreased the levels of apoptosis and autophagy in the pancreas and accelerated the pancreatitis recovery process. CONCLUSION One-time injection of AAV8-hSPINK1 safely targets the pancreas with high transduction efficiency and effectively ameliorates pancreatitis phenotypes in mice. This approach is promising for the prevention and treatment of CP.
Collapse
Affiliation(s)
- Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Xiao-Tong Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Hui Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yi-Zhou Zheng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Si-Huai Xiong
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Mu-Yun Liu
- Department of Gastroenterology, No. 905 Hospital of PLA Navy Affiliated to Naval Medical University, Shanghai, China
| | - Sheng-Han Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Qi-Wen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Guo-Xiu Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Di Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| |
Collapse
|
15
|
Vogt L, Quiroz V, Ebrahimi-Fakhari D. Emerging therapies for childhood-onset movement disorders. Curr Opin Pediatr 2024; 36:331-341. [PMID: 38655812 PMCID: PMC11047116 DOI: 10.1097/mop.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.
Collapse
Affiliation(s)
- Lindsey Vogt
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto Ontario, Canada
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Milagros S, de Erenchun PRR, Guembe M, Carte B, Méndez M, Uribarri A, Aldabe R. The infectivity of AAV9 is influenced by the specific location and extent of chemically modified capsid residues. J Biol Eng 2024; 18:34. [PMID: 38745236 PMCID: PMC11092203 DOI: 10.1186/s13036-024-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Several treatments for genetic diseases utilizing recombinant adeno-associated viruses (AAVs) have recently gained approval. However, the development of a greater number of therapeutic AAVs is constrained by certain limitations. While extensive efforts have concentrated on screening AAV genetic libraries, an alternative strategy involves modifying the AAV capsid by attaching various moieties. The capsid of AAV plays a pivotal role in transducing target cells and evading immune responses, making modifications a key avenue for engineering improved variants. RESULTS In our study, we replaced specific AAV9 capsid residues with an unnatural amino acid bearing a bioorthogonal group, identifying four positions with no adverse impact on production. Utilizing click chemistry, we attached varying proportions of Cy5.5 to these positions, allowing us to assess the impact of these modifications on AAV9 infectivity in cultured cells. Our findings reveal that both the position and degree of capsid modification significantly affect AAV transduction. While higher amounts of attached molecules lead to an increased number of AAV genomes within cells, this does not positively impact transgene expression. Conversely, a negative impact on transgene expression is observed when the AAV capsid is highly modified, with the degree of this effect associated with the modified residue. CONCLUSION Careful control of both the degree and specific position of capsid modifications is crucial for optimizing transduction efficiency and minimizing undesired effects on transgene expression. These results underscore the importance of precision in AAV capsid modification to achieve optimal transduction efficiency while mitigating potential drawbacks on transgene expression.
Collapse
Affiliation(s)
- Sergio Milagros
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | | | - Maite Guembe
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Beatriz Carte
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Miriam Méndez
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Ander Uribarri
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Rafael Aldabe
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
17
|
Luo S, Jiang H, Li Q, Qin Y, Yang S, Li J, Xu L, Gou Y, Zhang Y, Liu F, Ke X, Zheng Q, Sun X. An adeno-associated virus variant enabling efficient ocular-directed gene delivery across species. Nat Commun 2024; 15:3780. [PMID: 38710714 DOI: 10.1038/s41467-024-48221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.
Collapse
Affiliation(s)
- Shuang Luo
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Yingfei Qin
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Shiping Yang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Jing Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Lingli Xu
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yan Gou
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yafei Zhang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510005, China
| | - Xiao Ke
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Chengdu Kanghong Pharmaceuticals Group Co Ltd, Chengdu, 610036, China.
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Xicluna R, Avenel A, Vandamme C, Devaux M, Jaulin N, Couzinié C, Le Duff J, Charrier A, Guilbaud M, Adjali O, Gernoux G. Prevalence Study of Cellular Capsid-Specific Immune Responses to AAV2, 4, 5, 8, 9, and rh10 in Healthy Donors. Hum Gene Ther 2024; 35:355-364. [PMID: 38581431 DOI: 10.1089/hum.2023.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors appear, more than ever, to be efficient viral vectors for in vivo gene transfer as illustrated by the approvals of 7 drugs across Europe and the United States. Nevertheless, preexisting immunity to AAV capsid in humans remains one of the major limits for a successful clinical translation. Whereas a preexisting humoral response to AAV capsid is well documented, the prevalence of preexisting capsid-specific T cell responses still needs to be studied and characterized. In this study, we investigated the prevalence of AAV-specific circulating T cells toward AAV2, 4, 5, 8, 9, and rh10 in a large cohort of healthy donors using the standard IFNγ ELISpot assay. We observed the highest prevalence of preexisting cellular immunity to AAV9 serotype followed by AAV8, AAV4, AAV2, AAVrh10, and AAV5 independently of the donors' serological status. An in-depth analysis of T cell responses toward the 2 most prevalent serotypes 8 and 9 shows that IFNγ secretion is mainly mediated by CD8 T cells for both serotypes. A polyfunctional analysis reveals different cytokine profiles between AAV8 and AAV9. Surprisingly, no IL-2 secretion was mediated by anti-AAV9 immune cells suggesting that these cells may rather be exhausted or terminally differentiated than cytotoxic T cells. Altogether, these results suggest that preexisting immunity to AAV may vary depending on the serotype and support the necessity of using multiparametric monitoring methods to better characterize anticapsid cellular immunity and foresee its impact in rAAV-mediated clinical trials.
Collapse
Affiliation(s)
- Rebecca Xicluna
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Allan Avenel
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Céline Vandamme
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Marie Devaux
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Nicolas Jaulin
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Célia Couzinié
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Johanne Le Duff
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Alicia Charrier
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Mickaël Guilbaud
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Gwladys Gernoux
- Nantes Université, CHU de Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| |
Collapse
|
19
|
Thöny B, Ng J, Kurian MA, Mills P, Martinez A. Mouse models for inherited monoamine neurotransmitter disorders. J Inherit Metab Dis 2024; 47:533-550. [PMID: 38168036 DOI: 10.1002/jimd.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Joanne Ng
- Genetic Therapy Accelerator Centre, University College London, Queen Square Institute of Neurology, London, UK
| | - Manju A Kurian
- Zayed Centre for Research into Rare Disease in Children, GOS Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Philippa Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurora Martinez
- Department of Biomedicine and Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
20
|
Hwu WL, Chang K, Liu YH, Wang HC, Lee NC, Chien YH. Gene therapy corrects the neurological deficits of mice with sialidosis. Gene Ther 2024; 31:263-272. [PMID: 38321198 DOI: 10.1038/s41434-024-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where β-Gal binds to this complex to form a multienzyme complex in order to execute its function.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Precision Medical Center, China Medical University Hospital, Taichung City, Taiwan, ROC.
| | - Karine Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yu-Han Liu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hao-Chun Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Roubertie A, Opladen T, Brennenstuhl H, Kuseyri Hübschmann O, Flint L, Willemsen MA, Leuzzi V, Cazorla AG, Kurian MA, François-Heude MC, Hwu P, Zeev BB, Kiening K, Roujeau T, Pons R, Pearson TS. Gene therapy for aromatic L-amino acid decarboxylase deficiency: Requirements for safe application and knowledge-generating follow-up. J Inherit Metab Dis 2024; 47:463-475. [PMID: 37402126 DOI: 10.1002/jimd.12649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary.
Collapse
Affiliation(s)
- Agathe Roubertie
- CHU Montpellier, Département de Neuropédiatrie, INM, Univ Montpellier, INSERM U 1298, Montpellier, France
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Germany
| | - Heiko Brennenstuhl
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Germany
- Institute Human Genetics, University Children's Hospital Heidelberg, Germany
| | - Oya Kuseyri Hübschmann
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Germany
| | | | - Michel A Willemsen
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vincenzo Leuzzi
- Department of Human Neuroscience-Unit of Child Neurology and Psychiatry, University of Rome La Sapienza
| | - Angels Garcia Cazorla
- Neurometabolism Unit, Department of Neurology, CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | | | - Paul Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karl Kiening
- Division of Stereotactic Neurosurgery, University Hospital Heidelberg, Germany
| | - Thomas Roujeau
- CHU Montpellier, Département de Neurochirurgie, Montpellier, France
| | - Roser Pons
- First Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sofia Hospital, Athens, Greece
| | - Toni S Pearson
- Division of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
22
|
Sternberg Z. Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies. Mol Neurobiol 2024; 61:2996-3018. [PMID: 37953352 DOI: 10.1007/s12035-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
Collapse
Affiliation(s)
- Zohi Sternberg
- Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
23
|
Thomas SP, Spinelli MM, Rghei AD, Lopes JA, Zielinska N, McLeod BM, Pei Y, Zhang W, Thebaud B, Karimi K, Wootton SK. Analysis of the impact of pluronic acid on the thermal stability and infectivity of AAV6.2FF. BMC Biotechnol 2024; 24:22. [PMID: 38664752 PMCID: PMC11045451 DOI: 10.1186/s12896-024-00853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.
Collapse
Affiliation(s)
- Sylvia P Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Marcus M Spinelli
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Zielinska
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Benjamin M McLeod
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Bernard Thebaud
- The Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
24
|
Spagnoli C, Battini R, Manti F, Cordelli DM, Pession A, Bellini M, Bordugo A, Cantalupo G, Riva A, Striano P, Spada M, Porta F, Fusco C. Identification of Potential Clusters of Signs and Symptoms to Prioritize Patients' Eligibility for AADCd Screening by 3-OMD Testing: An Italian Delphi Consensus. Behav Neurol 2024; 2024:1023861. [PMID: 39280026 PMCID: PMC11401676 DOI: 10.1155/2024/1023861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction AADCd is an ultrarare, underdiagnosed neurometabolic disorder for which a screening test (3-OMD dosing on dried blood spot (DBS)) and targeted gene therapy (authorized in the EU and the UK) are available. Therefore, it is mandatory to raise awareness of presenting symptoms and signs among practitioners. Delivering scientifically sound information to promote screening of patients with the correct cluster of symptoms and signs would be critical. Materials and Methods In light of the lack of sound evidence on this issue, expert opinion level of evidence was elicited with the Delphi method. Fourteen steering committee members invited a panel of 29 Italian experts to express their opinions on a series of crucial but controversial topics related to using 3-OMD DBS as a screening method in AADCd. Clusters of symptoms and signs were divided into typical or atypical, depending on age groups. Inclusion in newborn screening programs and the usefulness of a clinical score were investigated. A five-point Likert scale was used to rate the level of priority attributed to each statement. Results The following statements reached the highest priority: testing pediatric patients with hypotonia, developmental delay, movement disorders, and oculogyric crises; inclusion of 3-OMD dosing on DBS in neonatal screening programs; development of a clinical score to support patients' selection for 3-OMD screening; among atypical phenotypes based on clinical characteristics of Italian patients: testing patients with intellectual disability and parkinsonism-dystonia. Discussion. Clusters of symptoms and signs can be used to prioritize testing with 3-OMD DBS. A clinical score was rated as highly relevant for the patient's selection. The inclusion of 3-OMD dosing in newborn screening programs was advocated with high clinical priority.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Filippo Manti
- Child Neuropsychiatric Unit, Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Melissa Bellini
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, AUSL di Piacenza, Piacenza, Italy
| | - Andrea Bordugo
- Inherited Metabolic Diseases Unit and Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Gaetano Cantalupo
- Innovation Biomedicine Section, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Child Neuropsychiatry Unit and Center for Research on Epilepsy in Pediatric Age (CREP), University Hospital of Verona (full member of the European Reference Network EpiCARE), Verona, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Marco Spada
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Francesco Porta
- Department of Pediatrics, Metabolic Diseases, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
25
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
26
|
Perera A, Brock O, Ahmed A, Shaw C, Ashkan K. Taking the knife to neurodegeneration: a review of surgical gene therapy delivery to the CNS. Acta Neurochir (Wien) 2024; 166:136. [PMID: 38483631 PMCID: PMC10940433 DOI: 10.1007/s00701-024-06028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Gene supplementation and editing for neurodegenerative disorders has emerged in recent years as the understanding of the genetic mechanisms underlying several neurodegenerative disorders increases. The most common medium to deliver genetic material to cells is via viral vectors; and with respect to the central nervous system, adeno-associated viral (AAV) vectors are a popular choice. The most successful example of AAV-based gene therapy for neurodegenerative disorders is Zolgensma© which is a transformative intravenous therapy given to babies with spinal muscular atrophy. However, the field has stalled in achieving safe drug delivery to the central nervous system in adults for which treatments for disorders such as amyotrophic lateral sclerosis are desperately needed. Surgical gene therapy delivery has been proposed as a potential solution to this problem. While the field of the so-called regenerative neurosurgery has yielded pre-clinical optimism, several challenges have emerged. This review seeks to explore the field of regenerative neurosurgery with respect to AAV-based gene therapy for neurodegenerative diseases, its progress so far and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Andrea Perera
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK.
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK.
| | - Olivier Brock
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
| | - Aminul Ahmed
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Chris Shaw
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
- Centre for Brain Research, University of Auckland, 85 Park Road Grafton, Auckland, 1023, New Zealand
| | - Keyoumars Ashkan
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
| |
Collapse
|
27
|
Latzer IT, Pearl PL. Treatable inherited metabolic epilepsies. Epilepsy Behav 2024; 151:109621. [PMID: 38237465 DOI: 10.1016/j.yebeh.2024.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Inherited metabolic epilepsies (IMEs) represent inherited metabolic disorders predominately presenting with seizures. While most IMEs are currently managed with symptomatic and supportive therapies, some are amenable to disorder-specific targeted treatments. In most cases, these treatments are effective only if given in a narrow time window early in the lives of affected patients. Hence, prompt recognition of treatable inherited metabolic epilepsies at an early age and as soon as symptoms appear has paramount importance. Herein, we provide an overview of inherited metabolic epilepsies, which presently have established targeted treatments showing clinical efficacy in reducing seizure burden and improving neurodevelopmental outcomes. These therapeutic modalities range from specific diets, vitamins, and supplementation of organic compounds to synthetic pharmacological agents and novel genetic-based therapies that alter the biochemical pathways of these disorders at the cellular or molecular level, steering them to their normal function.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Mücke MM, Fong S, Foster GR, Lillicrap D, Miesbach W, Zeuzem S. Adeno-associated viruses for gene therapy - clinical implications and liver-related complications, a guide for hepatologists. J Hepatol 2024; 80:352-361. [PMID: 37890721 DOI: 10.1016/j.jhep.2023.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Gene therapy has garnered increasing interest over recent decades. Several therapies employing gene transfer mechanisms have been developed, and, of these, adeno-associated virus (AAV) vectors have demonstrated viability for use with in vivo gene therapy. Several AAV-based therapeutics have received regulatory approval in the last few years including those for retinal disease, spinal muscular atrophy or aromatic L-amino acid decarboxylase deficiency. Lately, with the introduction of novel liver-directed AAV vector-based therapeutics for the treatment of haemophilia A and B, gene therapy has attracted significant attention in the hepatology community, with the liver increasingly recognised as a target for gene therapy. However, the introduction of foreign DNA into hepatocytes is associated with a risk of hepatic reactions, with raised ALT (alanine aminotransferase) and AST (aspartate aminotransferase) being - so far - the most commonly reported side effects. The complete mechanisms underlying the ALT flairs remain to be determined and the long-term risks associated with these new treatments is not yet known. The liver community is increasingly being asked to support liver-directed gene therapy to mitigate potential liver associated harm. In this review, we focus on AAV vector-based gene therapy, shedding light on this promising technique and its remarkable success in haemophilia, with a special focus on hepatic complications and their management in daily clinical practice.
Collapse
Affiliation(s)
- Marcus Maximilian Mücke
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Fong
- Research and Early Development, BioMarin Pharmaceutical. Inc, San Rafael, United States
| | - Graham R Foster
- Barts Liver Centre, Blizard Institute, QMUL, London, United Kingdom.
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Wolfgang Miesbach
- Department of Internal Medicine II, Haemostaseology and Haemophilia Centre, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Grippa M, Graziano C. Landscape of Constitutional SOX4 Variation in Human Disorders. Genes (Basel) 2024; 15:158. [PMID: 38397148 PMCID: PMC10887744 DOI: 10.3390/genes15020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
SOX proteins are transcription factors which play a role in regulating the development of progenitor cells and tissue differentiation. Twenty members are known, clustered in eight groups named A through H and sharing a common DNA-binding domain called the HMG (high-mobility-group) box. Eleven of the SOX genes have been associated with genetic disorders so far, covering a broad spectrum of developmental diseases. SOX4 is a single-exon gene and belongs to the SOXC group, together with SOX11 and SOX12. SOX4 variants have been recently described to cause a highly penetrant but heterogeneous disorder, with a phenotypic spectrum ranging from mild developmental delays and learning difficulties to intellectual disabilities with congenital anomalies. Nineteen pathogenic variants have been reported to date, generally de novo, heterozygous, and inactivating, either stop-gain or missense, the latter ones primarily targeting the HMG domain. Further, a bi-allelic variant was reported in a single consanguineous family. Copy number variants leading to whole gene deletion or duplication are rare and not clearly associated with any neurodevelopmental disorder. Many open questions remain regarding the definition of variants of unknown significance, a possible role of missense variants outside the HMG domain, genotype-phenotype correlation, the range of phenotypic spectrum and modifying factors, and treatment options.
Collapse
Affiliation(s)
- Mina Grippa
- SSD Genetica Medica, Dipartimento Materno Infantile, AOU Policlinico Modena, 41125 Modena, Italy;
| | | |
Collapse
|
30
|
Lee HM, Mercimek-Andrews S, Horvath G, Marchese D, Poulin RE, Krolick A, Tierney KL, Turna J, Wei J, Hwu WL. A position statement on the post gene-therapy rehabilitation of aromatic I-amino acid decarboxylase deficiency patients. Orphanet J Rare Dis 2024; 19:17. [PMID: 38238766 PMCID: PMC10797739 DOI: 10.1186/s13023-024-03019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder of monoamine neurotransmitter synthesis that presents with a range of symptoms, including motor dysfunction and limited attainment of developmental motor milestones. The approval of eladocagene exuparvovec, a gene therapy for AADC deficiency with demonstrated efficacy for motor improvements, now expands the range of motor outcomes possible for patients with this disorder. However, recommendations and guidelines for therapy following treatment with gene therapy are lacking. To ensure patients can reach their full potential following treatment with gene therapy, it is essential they receive rehabilitation therapies designed specifically with their impairments and goals in mind. Therefore, we highlight specific rehabilitative needs of patients following gene therapy and propose a set of recommendations for the post-treatment period based on collective experiences of therapists, physicians, and caregivers treating and caring for patients with AADC deficiency who have been treated with gene therapy. These recommendations include a focus on periods of intensive therapy, facilitating active movements, training for functional abilities, cognitive and communication training, parent/caregiver empowerment, collaboration between therapists and caregivers to develop in-home programs, and the incorporation of supplemental forms of therapy that patients and their families may find more enjoyable and engaging. Many of these rehabilitative strategies may be employed prior to gene therapy. However, these recommendations will be valuable for therapists, caregivers, and wider treatment teams as they prepare for the post-treatment journey with these patients. Furthermore, the considerations and recommendations presented here may prove beneficial outside the AADC deficiency community as gene therapies and other treatments are developed and approved for other rare diseases.
Collapse
Affiliation(s)
- Hui-Min Lee
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 8, Chung-Shan South Road, Taipei, 100226, Taiwan
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Linong St. Beitou Dist, No. 155, Sec. 2, Taipei, 112304, Taiwan
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Gabriella Horvath
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada
| | - Diana Marchese
- Department of Pediatric Rehabilitation, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Richard E Poulin
- Thai-Chinese International School, 101/177 Moo 7 Soi Mooban Bangpleenives, Prasertsin Road, Bangplee Yai, Samut Prakan, 10540, Thailand
| | - Alexis Krolick
- PTC Therapeutics Inc, 100 Corporate Ct #2400, South Plainfield, NJ, 07080, USA
| | - Kati-Lyn Tierney
- Texas Children's Hospital, 6621 Fannin Street, Houston, TX, 77030, USA
| | - Jasmine Turna
- PTC Therapeutics Inc, 100 Corporate Ct #2400, South Plainfield, NJ, 07080, USA
| | - Judy Wei
- Ruamrudee International School, 6 Soi Ramkhamhaeng 184, Khwaeng Min Buri, Min Buri, Bangkok, 10510, Thailand
| | - Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 8, Chung-Shan South Road, Taipei, 100226, Taiwan.
- Center for Precision Medicine, China Medical University Hospital, 2 Yude Road, 404, Taichung City, Taiwan.
| |
Collapse
|
31
|
Yeow D, Rudaks LI, Siow SF, Davis RL, Kumar KR. Genetic Testing of Movements Disorders: A Review of Clinical Utility. Tremor Other Hyperkinet Mov (N Y) 2024; 14:2. [PMID: 38222898 PMCID: PMC10785957 DOI: 10.5334/tohm.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
Currently, pathogenic variants in more than 500 different genes are known to cause various movement disorders. The increasing accessibility and reducing cost of genetic testing has resulted in increasing clinical use of genetic testing for the diagnosis of movement disorders. However, the optimal use case(s) for genetic testing at a patient level remain ill-defined. Here, we review the utility of genetic testing in patients with movement disorders and also highlight current challenges and limitations that need to be considered when making decisions about genetic testing in clinical practice. Highlights The utility of genetic testing extends across multiple clinical and non-clinical domains. Here we review different aspects of the utility of genetic testing for movement disorders and the numerous associated challenges and limitations. These factors should be weighed on a case-by-case basis when requesting genetic tests in clinical practice.
Collapse
Affiliation(s)
- Dennis Yeow
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurology, Prince of Wales Hospital, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Laura I. Rudaks
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Sue-Faye Siow
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ryan L. Davis
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Kishore R. Kumar
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
32
|
Chu WS, Ng J, Waddington SN, Kurian MA. Gene therapy for neurotransmitter-related disorders. J Inherit Metab Dis 2024; 47:176-191. [PMID: 38221762 PMCID: PMC11108624 DOI: 10.1002/jimd.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Inborn errors of neurotransmitter (NT) metabolism are a group of rare, heterogenous diseases with predominant neurological features, such as movement disorders, autonomic dysfunction, and developmental delay. Clinical overlap with other disorders has led to delayed diagnosis and treatment, and some conditions are refractory to oral pharmacotherapies. Gene therapies have been developed and translated to clinics for paediatric inborn errors of metabolism, with 38 interventional clinical trials ongoing to date. Furthermore, efforts in restoring dopamine synthesis and neurotransmission through viral gene therapy have been developed for Parkinson's disease. Along with the recent European Medicines Agency (EMA) and Medicines and Healthcare Products Regulatory Agency (MHRA) approval of an AAV2 gene supplementation therapy for AADC deficiency, promising efficacy and safety profiles can be achieved in this group of diseases. In this review, we present preclinical and clinical advances to address NT-related diseases, and summarise potential challenges that require careful considerations for NT gene therapy studies.
Collapse
Affiliation(s)
- Wing Sum Chu
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Genetic Therapy Accelerator Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Genetic Therapy Accelerator Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of NeurologyGreat Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
33
|
Lv YF, Zhang H, Cui Z, Ma CJ, Li YL, Lu H, Wu HY, Yang JL, Cao CY, Sun WZ, Huang XF. Gene delivery to breast cancer by incorporated EpCAM targeted DARPins into AAV2. BMC Cancer 2023; 23:1220. [PMID: 38082377 PMCID: PMC10712102 DOI: 10.1186/s12885-023-11705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE The aim of this study is to evaluate an AAV vector that can selectively target breast cancer cells and to investigate its specificity and anti-tumor effects on breast cancer cells both in vitro and in vivo, offering a new therapeutic approach for the treatment of EpCAM-positive breast cancer. METHODS In this study, a modified AAV2 viral vector was used, in which EpCAM-specific DARPin EC1 was fused to the VP2 protein of AAV2, creating a viral vector that can target breast cancer cells. The targeting ability and anti-tumor effects of this viral vector were evaluated through in vitro and in vivo experiments. RESULTS The experimental results showed that the AAV2MEC1 virus could specifically infect EpCAM-positive breast cancer cells and accurately deliver the suicide gene HSV-TK to tumor tissue in mice, significantly inhibiting tumor growth. Compared to the traditional AAV2 viral vector, the AAV2MEC1 virus exhibited reduced accumulation in liver tissue and had no impact on tumor growth. CONCLUSION This study demonstrates that AAV2MEC1 is a gene delivery vector capable of targeting breast cancer cells and achieving selective targeting in mice. The findings offer a potential gene delivery system and strategies for gene therapy targeting EpCAM-positive breast cancer and other tumor types.
Collapse
Affiliation(s)
- Ya-Feng Lv
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Hao Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Zhi Cui
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Cui-Jiao Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Yu-Ling Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Hua Lu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Hong-Yan Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Jian-Lin Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Chun-Yu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China.
| | - Wen-Zheng Sun
- Department of Pathology, Qilu Hospital, Shandong University, Shandong, China.
| | - Xiao-Fei Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China.
| |
Collapse
|
34
|
Cursio I, Siliquini S, Carducci C, Bisello G, Mastrangelo M, Leuzzi V, Bertoldi M, Marini C. Case report: Childhood epilepsy and borderline intellectual functioning hiding an AADC deficiency disorder associated with compound heterozygous DDC gene pathogenic variants. Front Neurol 2023; 14:1284339. [PMID: 38116105 PMCID: PMC10729769 DOI: 10.3389/fneur.2023.1284339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder leading to severe combined serotonin, dopamine, norepinephrine, and epinephrine deficiency. We report on a female patient with borderline functioning and sporadic clear-cut focal to bilateral seizures from age 10 years. A neuropsychological assessment highlighted a mild impairment in executive functions, affecting attention span and visual-spatial abilities. Following the diagnosis of epilepsy with a presumed genetic etiology, we applied a diagnostic approach inclusive of a next-generation sequencing (NGS) gene panel, which uncovered two variants in trans in the DOPA decarboxylase (DDC) gene underlying an AADC deficiency. This compound heterozygous genotype was associated with a mild reduction of homovanillic acid, a low level of the norepinephrine catabolite, and a significant reduction of 5-hydroxyindoleacetic acid in cerebrospinal fluid. Remarkably, 3-O-methyldopa (3-OMD) and 5-hydroxytryptophan were instead increased. During the genetically guided re-evaluation process, some mild signs of dysautonomic dysfunction (nasal congestion, abnormal sweating, hypotension and fainting, excessive sleepiness, small hands and feet, and increased levels of prolactin, tiredness, and fatigue), more typical of AADC deficiency, were evaluated with new insight. Of the two AADC variants, the R347Q has already been characterized as a loss-of-function with severe catalytic impairments, while the novel L391P variant has been predicted to have a less severe impact. Bioinformatic analyses suggest that the amino acid substitution may affect affinity for the PLP coenzyme. Thus, the genotype corresponds to a phenotype with mild and late-onset symptoms, of which seizures were the clinical sign, leading to medical attention. This case report expands the spectrum of AADC deficiency phenotypes to encompass a less-disabling clinical condition including borderline cognitive functioning, drug-responsive epilepsy, and mild autonomic dysfunction.
Collapse
Affiliation(s)
- Ida Cursio
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Sabrina Siliquini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza - Università di Roma, Rome, Italy
| | - Giovanni Bisello
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mario Mastrangelo
- Department of Women/Child Health and Urological Science, Sapienza - Università di Roma, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza - Università di Roma, Rome, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| |
Collapse
|
35
|
Minskaia E, Galieva A, Egorov AD, Ivanov R, Karabelsky A. Viral Vectors in Gene Replacement Therapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2157-2178. [PMID: 38462459 DOI: 10.1134/s0006297923120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels. Hematological, ophthalmological, neurodegenerative, and metabolic therapeutic areas have witnessed successful treatment of hemophilia and muscular dystrophy, restoration of immune system in children with immunodeficiencies, and restoration of vision. This review focuses on three leading vector platforms of the past two decades: adeno-associated viruses (AAVs), adenoviruses (AdVs), and lentiviruses (LVs). Special attention is given to successful preclinical and clinical studies that have led to the approval of gene therapies: six AAV-based (Glybera® for lipoprotein lipase deficiency, Luxturna® for retinal dystrophy, Zolgensma® for spinal muscular atrophy, Upstaza® for AADC, Roctavian® for hemophilia A, and Hemgenix® for hemophilia B) and three LV-based (Libmeldy® for infantile metachromatic leukodystrophy, Zynteglo® for β-thalassemia, and Skysona® for ALD). The review also discusses the problems that arise in the development of gene therapy treatments, which, nevertheless, do not overshadow the successes of already developed gene therapies and the hope these treatments give to long-suffering patients and their families.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia.
| | - Alima Galieva
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander D Egorov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Roman Ivanov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander Karabelsky
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| |
Collapse
|
36
|
Simons CL, Hwu WL, Zhang R, Simons MJHG, Bergkvist M, Bennison C. Long-Term Outcomes of Eladocagene Exuparvovec Compared with Standard of Care in Aromatic L-Amino Acid Decarboxylase (AADC) Deficiency: A Modelling Study. Adv Ther 2023; 40:5399-5414. [PMID: 37803205 PMCID: PMC10611606 DOI: 10.1007/s12325-023-02689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
INTRODUCTION Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare disease with symptoms including movement disorders, developmental delays, and autonomic symptoms starting from birth; further, patients with AADC deficiency are at a high risk of death in the first decade of life. Limited information on the impact of treatment with gene therapy on patients' disease trajectories and survival, quality-of-life, and resource usage benefits are available. METHOD A cohort-based model with a lifetime horizon has been developed, based on motor milestones, to estimate the long-term benefits for patients after treatment with eladocagene exuparvovec compared to best supportive care (BSC). The model takes a National Health Service (NHS) perspective using a UK setting. The model comprises two parts: the developmental phase, in which patients with initially no motor function can progress to other motor milestone states, and a long-term projection phase. Efficacy for eladocagene exuparvovec is derived from clinical trial data with a duration up to 120 months. As the incidence of AADC deficiency is low, data for key model inputs is lacking; therefore estimates of survival by motor milestone were based on proxy diseases. A disease-specific utility study provided quality of life inputs and a burden of illness study informed inputs for disease management. RESULTS The model indicates survival (25.25 undiscounted life years gained) and quality-of-life benefits (20.21 undiscounted quality-adjusted life years [QALYs] gained) for patients treated with eladocagene exuparvovec compared to BSC. Resource usage costs are greater for patients treated with eladocagene exuparvovec, mainly due to the increased life expectancy during which patients accrue additional healthcare resource usage. Scenario analyses indicate robust results. CONCLUSION This study assessed long-term outcomes for patients with AADC deficiency. Patients treated with eladocagene exuparvovec were found to have improved survival and quality of life benefits compared to patients treated with BSC.
Collapse
Affiliation(s)
- Claire L Simons
- OPEN Health; Evidence & Access, UK, 20 Old Bailey, London, EC4M 7AN, UK
| | - Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Rongrong Zhang
- PTC Therapeutics Sweden AB, Stora Avagen 21, 436 34, Askim, Sweden.
| | - Martijn J H G Simons
- OPEN Health, Evidence & Access, Marten Meesweg 107, 3068 AV, Rotterdam, The Netherlands
| | - Mats Bergkvist
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, 07080-2449, USA
| | - Craig Bennison
- OPEN Health; Evidence & Access, UK, 20 Old Bailey, London, EC4M 7AN, UK
| |
Collapse
|
37
|
Park JE, Lee T, Ha K, Cho EH, Ki CS. Carrier frequency and incidence of aromatic L-amino acid decarboxylase deficiency: a gnomAD-based study. Pediatr Res 2023; 94:1764-1770. [PMID: 37286773 DOI: 10.1038/s41390-023-02685-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Aromatic L-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter metabolism disorder and is clinically characterized by infancy hypotonia, ophthalmic crisis, and developmental delay. With the emergence of gene therapy for AADC deficiency, accurate prediction of AADC deficiency is required. This study aimed to analyze the carrier frequency and expected incidence of AADC deficiency using exome data from the Genome Aggregation Database (gnomAD). METHODS We analyzed 125,748 exomes from gnomAD, including 9197 East Asian exomes, for the DDC gene. All identified variants were classified according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS The worldwide carrier frequency of AADC deficiency was 0.17%; the highest frequency was observed in East Asians at 0.78%, and the lowest was in Latinos at 0.07%. The estimated incidence of AADC deficiency was 1 in 1,374,129 worldwide and 1 in 65,266 in East Asians. CONCLUSION The results demonstrated that East Asians have a higher carrier frequency of AADC deficiency than other ethnic groups. The variant spectrum of DDC genes in East Asian populations differed greatly from those of other ethnic groups. Our data will serve as a reference for further investigation of AADC deficiency. IMPACT This study analyzed exome data from the Genome Aggregation Database (gnomAD) to estimate the carrier frequency and expected incidence of aromatic L-amino acid decarboxylase (AADC) deficiency. The article provides updated carrier frequency and incidence estimates for AADC deficiency, particularly in East Asian populations, and emphasizes the significant differences in the variant spectrum of DDC genes in this population compared to other ethnic groups. The study provides important information for accurate prediction and early diagnosis of AADC deficiency, particularly in high-risk populations, and may aid in the development of more effective targeted screening programs and gene therapies for this disorder.
Collapse
Affiliation(s)
- Jong Eun Park
- Department of Laboratory Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea.
| | | | | | - Eun Hye Cho
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
38
|
Pearl PL. Comment: Amenable Treatable Severe Pediatric Epilepsies. Semin Pediatr Neurol 2023; 47:101073. [PMID: 37919041 DOI: 10.1016/j.spen.2023.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
AMENABLE TREATABLE SEVERE PEDIATRIC EPILEPSIES Phillip L. Pearl Seminars in Pediatric Neurology Volume 23, Issue 2, May 2016, Pages 158-166 Vitamin-dependent epilepsies and multiple metabolic epilepsies are amenable to treatment that markedly improves the disease course. Knowledge of these amenably treatable severe pediatric epilepsies allows for early identification, testing, and treatment. These disorders present with various phenotypes, including early onset epileptic encephalopathy (refractory neonatal seizures, early myoclonic encephalopathy, and early infantile epileptic encephalop athy), infantile spasms, or mixed generalized seizure types in infancy, childhood, or even adolescence and adulthood. The disorders are presented as vitamin responsive epilepsies such as pyridoxine, pyridoxal-5-phosphate, folinic acid, and biotin; transportopathies like GLUT-1, cerebral folate deficiency, and biotin thiamine responsive disorder; amino and organic acidopathies including serine synthesis defects, creatine synthesis disorders, molybdenum cofactor deficiency, and cobalamin deficiencies; mitochondrial disorders; urea cycle disorders; neurotransmitter defects; and disorders of glucose homeostasis. In each case, targeted intervention directed toward the underlying metabolic pathophysiology affords for the opportunity to significantly effect the outcome and prognosis of an otherwise severe pediatric epilepsy.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
39
|
Ling Q, Herstine JA, Bradbury A, Gray SJ. AAV-based in vivo gene therapy for neurological disorders. Nat Rev Drug Discov 2023; 22:789-806. [PMID: 37658167 DOI: 10.1038/s41573-023-00766-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/03/2023]
Abstract
Recent advancements in gene supplementation therapy are expanding the options for the treatment of neurological disorders. Among the available delivery vehicles, adeno-associated virus (AAV) is often the favoured vector. However, the results have been variable, with some trials dramatically altering the course of disease whereas others have shown negligible efficacy or even unforeseen toxicity. Unlike traditional drug development with small molecules, therapeutic profiles of AAV gene therapies are dependent on both the AAV capsid and the therapeutic transgene. In this rapidly evolving field, numerous clinical trials of gene supplementation for neurological disorders are ongoing. Knowledge is growing about factors that impact the translation of preclinical studies to humans, including the administration route, timing of treatment, immune responses and limitations of available model systems. The field is also developing potential solutions to mitigate adverse effects, including AAV capsid engineering and designs to regulate transgene expression. At the same time, preclinical research is addressing new frontiers of gene supplementation for neurological disorders, with a focus on mitochondrial and neurodevelopmental disorders. In this Review, we describe the current state of AAV-mediated neurological gene supplementation therapy, including critical factors for optimizing the safety and efficacy of treatments, as well as unmet needs in this field.
Collapse
Affiliation(s)
- Qinglan Ling
- Department of Paediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Herstine
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University, Columbus, OH, USA
| | - Allison Bradbury
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University, Columbus, OH, USA
| | - Steven J Gray
- Department of Paediatrics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Kok CY, Tsurusaki S, Cabanes-Creus M, Igoor S, Rao R, Skelton R, Liao SH, Ginn SL, Knight M, Scott S, Mietzsch M, Fitzsimmons R, Miller J, Mohamed TM, McKenna R, Chong JJ, Hill AP, Hudson JE, Alexander IE, Lisowski L, Kizana E. Development of new adeno-associated virus capsid variants for targeted gene delivery to human cardiomyocytes. Mol Ther Methods Clin Dev 2023; 30:459-473. [PMID: 37674904 PMCID: PMC10477751 DOI: 10.1016/j.omtm.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as one of the most promising gene therapy vectors that have been successfully used in pre-clinical models of heart disease. However, this has not translated well to humans due to species differences in rAAV transduction efficiency. As a result, the search for human cardiotropic capsids is a major contemporary challenge. We used a capsid-shuffled rAAV library to perform directed evolution in human iPSC-derived cardiomyocytes (hiPSC-CMs). Five candidates emerged, with four presenting high sequence identity to AAV6, while a fifth divergent variant was related to AAV3b. Functional analysis of the variants was performed in vitro using hiPSC-CMs, cardiac organoids, human cardiac slices, non-human primate and porcine cardiac slices, as well as mouse heart and liver in vivo. We showed that cell entry was not the best predictor of transgene expression efficiency. The novel variant rAAV.KK04 was the best-performing vector in human-based screening platforms, exceeding the benchmark rAAV6. None of the novel capsids demonstrate a significant transduction of liver in vivo. The range of experimental models used revealed the value of testing for tropism differences under the conditions of human specificity, bona fide, myocardium and cell type of interest.
Collapse
Affiliation(s)
- Cindy Y. Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sindhu Igoor
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Renuka Rao
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rhys Skelton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H.Y. Liao
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Rebecca Fitzsimmons
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jessica Miller
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Tamer M.A. Mohamed
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
- Surgery Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - James J.H. Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Adam P. Hill
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| | - James E. Hudson
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney Medical School, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Centre, 24-100 Pulawy, Poland
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
41
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
42
|
Hwu W, Hsu R, Li M, Lee H, Chen H, Lee N, Chien Y. Aromatic l-amino acid decarboxylase deficiency in Taiwan. JIMD Rep 2023; 64:387-392. [PMID: 37701332 PMCID: PMC10494508 DOI: 10.1002/jmd2.12387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare inherited disorder that affects neurotransmitter biosynthesis. A DDC founder mutation c.714 + 4A > T (IVS6 + 4A > T) is prevalent in the Chinese population. This study investigated the epidemiology of AADC deficiency in Taiwan by analyzing data from National Taiwan University Hospital (NTUH), a central institution for diagnosing and treating the disease. From January 2000 to March 2023, 77 patients with AADC deficiency visited NTUH. Among them, eight were international patients seeking a second opinion, and another two had one or both non-Chinese parents; all others were ethnically Chinese. The c.714 + 4A > T mutation accounted for 85% of all mutated alleles, and 94% of patients exhibited a severe phenotype. Of the 77 patients, 31 received gene therapy at a mean age of 3.76 years (1.62-8.49) through clinical trials, and their current ages were significantly older than those of the remaining patients. Although the combined incidence of AADC deficiency in this study (1:66491 for 2004 and later) was lower than that reported in newborn screening (1:31997 to 1:42662), case surges coincided with the launch of clinical trials and the implementation of newborn screening. Currently, many young patients are awaiting for treatment.
Collapse
Affiliation(s)
- Wuh‐Liang Hwu
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Integrated MedicineChina Medical UniversityTaichung CityTaiwan
| | - Rai‐Hseng Hsu
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Mei‐Hsin Li
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Hui‐Min Lee
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Hui‐An Chen
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
| | - Ni‐Chung Lee
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Yin‐Hsiu Chien
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
43
|
Chen PW, Hwu WL, Lee NC, Chien YH. Streamlined determination of 3-O-methyldopa in dried blood spots: Prospective screening for aromatic l-amino-acid decarboxylase deficiency. Mol Genet Metab 2023; 140:107687. [PMID: 37635029 DOI: 10.1016/j.ymgme.2023.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Aromatic L-amino-acid decarboxylase (AADC) deficiency diagnosis is often delayed by low disease awareness and specific laboratory examinations. We demonstrated that an elevated concentration of L-dopa metabolite 3-O-methyldopa (3-OMD) in dried blood spots could be integrated into a newborn screening program to detect AADC deficiency. METHODS DBS samples for amino acid and acylcarnitine analysis using NeoBase™2 reagents were also analyzed for the 3-OMD concentration using 13C6-phenylalanine as an internal standard. For samples exceeding the pre-defined cutoffs, an additional spot was punched from the original filter paper for second-tier 3-OMD measurement by high performance liquid chromatography (HPLC)-MS/MS assay. Newborns with a 3-OMD concentration exceeding 500 ng/mL were referred for confirmatory testing. RESULTS From Feb. 2020 to Dec. 2022, 157,371 newborns were screened for AADC deficiency. Eight newborns exhibited an elevated 3-OMD concentration (839-5170 ng/mL). Among them, six newborns were confirmed to carry two pathogenic DDC variants, indicating an incidence of AADC deficiency of ∼1:26,000 (95% confidence interval: 1 in 12,021 to 1 in 57,228). During the follow-up period, all six patients developed typical symptoms of AADC deficiency. CONCLUSION The screening for 3-OMD, a target for AADC deficiency, could be easily integrated into the existing newborn screening programs and facilitate the future application for early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Pin-Wen Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatric, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung City, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatric, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatric, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
44
|
Balint B. Relevance of Antibody Testing in Movement Disorders. Mov Disord Clin Pract 2023; 10:S32-S35. [PMID: 37637987 PMCID: PMC10448132 DOI: 10.1002/mdc3.13772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Bettina Balint
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
45
|
Himmelreich N, Bertoldi M, Alfadhel M, Alghamdi MA, Anikster Y, Bao X, Bashiri FA, Zeev BB, Bisello G, Ceylan AC, Chien YH, Choy YS, Elsea SH, Flint L, García-Cazorla À, Gijavanekar C, Gümüş EY, Hamad MH, Hişmi B, Honzik T, Kuseyri Hübschmann O, Hwu WL, Ibáñez-Micó S, Jeltsch K, Juliá-Palacios N, Kasapkara ÇS, Kurian MA, Kusmierska K, Liu N, Ngu LH, Odom JD, Ong WP, Opladen T, Oppeboen M, Pearl PL, Pérez B, Pons R, Rygiel AM, Shien TE, Spaull R, Sykut-Cegielska J, Tabarki B, Tangeraas T, Thöny B, Wassenberg T, Wen Y, Yakob Y, Yin JGC, Zeman J, Blau N. Corrigendum to: Prevalence of DDC genotypes in patients with aromatic L-amino acid decarboxylase (AADC) deficiency and in silico prediction of structural protein changes. Mol Genet Metab 2023; 139:107647. [PMID: 37453860 DOI: 10.1016/j.ymgme.2023.107647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Nastassja Himmelreich
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Majid Alfadhel
- Medical Genomic Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Malak Ali Alghamdi
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, SA, Saudi Arabia
| | - Yair Anikster
- Metabolic Disease Unit, The Edmond and Lily Safra Childrens Hospital, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fahad A Bashiri
- Division of Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bruria Ben Zeev
- Pediatric Neurology, Safra Pediatric Hospital, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Giovanni Bisello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ahmet Cevdet Ceylan
- Ankara Yıldırım Beyazıt University, Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Yin-Hsiu Chien
- Department of Medical Genetics & Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Sarah H Elsea
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Àngels García-Cazorla
- Neurometabolic Unit, Department of Neurology, Hospital Sant Joan de Déu, CIBERER, Barcelona, Spain
| | - Charul Gijavanekar
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emel Yılmaz Gümüş
- Department of Pediatrics and Inherited Metabolic Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Muddathir H Hamad
- Neurology Division, Pediatric Department, King Saud University Medical City, Riyadh, SA, Saudi Arabia
| | - Burcu Hişmi
- Department of Pediatrics and Inherited Metabolic Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Tomas Honzik
- Dept. of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Oya Kuseyri Hübschmann
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany; Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Wuh-Liang Hwu
- Department of Medical Genetics & Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Kathrin Jeltsch
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Department of Neurology, Hospital Sant Joan de Déu, CIBERER, Barcelona, Spain
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolism, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research, UCL GOS-Institute of Child Health & Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Katarzyna Kusmierska
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Ning Liu
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lock Hock Ngu
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - John D Odom
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Winnie Peitee Ong
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Mari Oppeboen
- Children's Department, Division of Child Neurology and Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Phillip L Pearl
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Belén Pérez
- Centro de Diagnostico de Enfermedades Moleculares, CIBERER, IdiPAZ, Universidad Autonoma de Madrid, Madrid, Spain
| | - Roser Pons
- First Department of Pediatrics, Aghia Sophia Children's Hospital, University of Athens, Athens, Greece
| | - Agnieszka Magdalena Rygiel
- Department of Medical Genetics, Laboratory of Hereditary Diseases, Institute of Mother and Child, Warsaw, Poland
| | - Tan Ee Shien
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Robert Spaull
- Developmental Neurosciences, Zayed Centre for Research, UCL GOS-Institute of Child Health & Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Brahim Tabarki
- Division of Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Beat Thöny
- Divisions of Metabolism, University Children's Hospital, Zürich, Switzerland
| | | | - Yongxin Wen
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, SA, Saudi Arabia
| | - Yusnita Yakob
- Molecular Diagnostics Unit, Specialised Diagnostics Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| | - Jasmine Goh Chew Yin
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Jiri Zeman
- Dept. of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nenad Blau
- Divisions of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
46
|
Pearl PL, Tokatly Latzer I, Lee HHC, Rotenberg A. New Therapeutic Approaches to Inherited Metabolic Pediatric Epilepsies. Neurology 2023; 101:124-133. [PMID: 36878704 PMCID: PMC10382274 DOI: 10.1212/wnl.0000000000207133] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Treatment options for inherited metabolic epilepsies are rapidly expanding with advances in molecular biology and the genomic revolution. Traditional dietary and nutrient modification and inhibitors or enhancers of protein and enzyme function, the mainstays of therapy, are undergoing continuous revisions to increase biological activity and reduce toxicity. Enzyme replacement and gene replacement and editing hold promise for genetically targeted treatment and cures. Molecular, imaging, and neurophysiologic biomarkers are emerging as key indicators of disease pathophysiology, severity, and response to therapy.
Collapse
Affiliation(s)
- Phillip L Pearl
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - Itay Tokatly Latzer
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Henry H C Lee
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alexander Rotenberg
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Steel D, Reid KM, Pisani A, Hess EJ, Fox S, Kurian MA. Advances in targeting neurotransmitter systems in dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:217-258. [PMID: 37482394 DOI: 10.1016/bs.irn.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is characterised as uncontrolled, often painful involuntary muscle contractions that cause abnormal postures and repetitive or twisting movements. These movements can be continuous or sporadic and affect different parts of the body and range in severity. Dystonia and its related conditions present a huge cause of neurological morbidity worldwide. Although therapies are available, achieving optimal symptom control without major unwanted effects remains a challenge. Most pharmacological treatments for dystonia aim to modulate the effects of one or more neurotransmitters in the central nervous system, but doing so effectively and with precision is far from straightforward. In this chapter we discuss the physiology of key neurotransmitters, including dopamine, noradrenaline, serotonin (5-hydroxytryptamine), acetylcholine, GABA, glutamate, adenosine and cannabinoids, and their role in dystonia. We explore the ways in which existing pharmaceuticals as well as novel agents, currently in clinical trial or preclinical development, target dystonia, and their respective advantages and disadvantages. Finally, we discuss current and emerging genetic therapies which may be used to treat genetic forms of dystonia.
Collapse
Affiliation(s)
- Dora Steel
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kimberley M Reid
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Ellen J Hess
- Emory University School of Medicine, CA, United States
| | - Susan Fox
- Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, ON, Canada
| | - Manju A Kurian
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
48
|
Himmelreich N, Bertoldi M, Alfadhel M, Alghamdi MA, Anikster Y, Bao X, Bashiri FA, Zeev BB, Bisello G, Ceylan AC, Chien YH, Choy YS, Elsea SH, Flint L, García-Cazorla À, Gijavanekar C, Gümüş EY, Hamad MH, Hişmi B, Honzik T, Hübschmann OK, Hwu WL, Ibáñez-Micó S, Jeltsch K, Juliá-Palacios N, Kasapkara ÇS, Kurian MA, Kusmierska K, Liu N, Ngu LH, Odom JD, Ong WP, Opladen T, Oppeboen M, Pearl PL, Pérez B, Pons R, Rygiel AM, Shien TE, Spaull R, Sykut-Cegielska J, Tabarki B, Tangeraas T, Thöny B, Wassenberg T, Wen Y, Yakob Y, Yin JGC, Zeman J, Blau N. Prevalence of DDC genotypes in patients with aromatic L-amino acid decarboxylase (AADC) deficiency and in silico prediction of structural protein changes. Mol Genet Metab 2023; 139:107624. [PMID: 37348148 DOI: 10.1016/j.ymgme.2023.107624] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Majid Alfadhel
- Medical Genomic Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Malak Ali Alghamdi
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, SA, Saudi Arabia
| | - Yair Anikster
- Metabolic Disease Unit, The Edmond and Lily Safra Childrens Hospital, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fahad A Bashiri
- Division of Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bruria Ben Zeev
- Pediatric Neurology, Safra Pediatric Hospital, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Giovanni Bisello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ahmet Cevdet Ceylan
- Ankara Yıldırım Beyazıt University, Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Yin-Hsiu Chien
- Department of Medical Genetics & Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Sarah H Elsea
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Àngels García-Cazorla
- Neurometabolic Unit, Department of Neurology, Hospital Sant Joan de Déu, CIBERER, Barcelona, Spain
| | - Charul Gijavanekar
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emel Yılmaz Gümüş
- Department of Pediatrics and Inherited Metabolic Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Muddathir H Hamad
- Neurology Division, Pediatric Department, King Saud University Medical City, Riyadh, SA, Saudi Arabia
| | - Burcu Hişmi
- Department of Pediatrics and Inherited Metabolic Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Tomas Honzik
- Dept. of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Oya Kuseyri Hübschmann
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Wuh-Liang Hwu
- Department of Medical Genetics & Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Kathrin Jeltsch
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Department of Neurology, Hospital Sant Joan de Déu, CIBERER, Barcelona, Spain
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolism, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research, UCL GOS-Institute of Child Health & Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Katarzyna Kusmierska
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Ning Liu
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lock Hock Ngu
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - John D Odom
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Winnie Peitee Ong
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Mari Oppeboen
- Children's Department, Division of Child Neurology and Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Phillip L Pearl
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Belén Pérez
- Centro de Diagnostico de Enfermedades Moleculares, CIBERER, IdiPAZ, Universidad Autonoma de Madrid, Madrid, Spain
| | - Roser Pons
- First Department of Pediatrics, Aghia Sophia Children's Hospital, University of Athens, Athens, Greece
| | - Agnieszka Magdalena Rygiel
- Department of Medical Genetics, Laboratory of Hereditary Diseases, Institute of Mother and Child, Warsaw, Poland
| | - Tan Ee Shien
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Robert Spaull
- Developmental Neurosciences, Zayed Centre for Research, UCL GOS-Institute of Child Health & Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Brahim Tabarki
- Division of Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Beat Thöny
- Divisions of Metabolism, University Children's Hospital, Zürich, Switzerland
| | | | - Yongxin Wen
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, SA, Saudi Arabia
| | - Yusnita Yakob
- Molecular Diagnostics Unit, Specialised Diagnostics Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| | - Jasmine Goh Chew Yin
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Jiri Zeman
- Dept. of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nenad Blau
- Divisions of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
49
|
Santoscoy MC, Espinoza P, De La Cruz D, Mahamdeh M, Starr JR, Patel N, Maguire CA. An AAV capsid increases transduction of striatum and a ChAT promoter allows selective cholinergic neuron transduction. Mol Ther Methods Clin Dev 2023; 29:532-540. [PMID: 37359416 PMCID: PMC10285237 DOI: 10.1016/j.omtm.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
Adeno-associated virus (AAV) vectors are currently the most efficient option for intracranial gene therapies to treat neurodegenerative disease. Increased efficacy and safety will depend upon robust and specific expression of therapeutic genes into target cell-types within the human brain. In this study, we set out with two objectives: (1) to identify capsids with broader transduction of the striatum upon intracranial injection in mice and (2) to test a truncated human choline acetyltransferase (ChAT) promoter that would allow efficient and selective transduction of cholinergic neurons. We compared AAV9 and an engineered capsid, AAV-S, to mediate widespread reporter gene expression throughout the striatum. We observed that AAV-S transduced a significantly greater area of the injected hemisphere primarily in the rostral direction compared with AAV9 (CAG promoter). We tested AAV9 vectors packaging a reporter gene expression cassette driven by either the ChAT or CAG promoter. Specificity of transgene expression of ChAT neurons over other cells was 7-fold higher, and efficiency was 3-fold higher for the ChAT promoter compared with the CAG promoter. The AAV-ChAT transgene expression cassette should be a useful tool for the study of cholinergic neurons in mice, and the broader transduction area of AAV-S warrants further evaluation of this capsid.
Collapse
Affiliation(s)
- Miguel C. Santoscoy
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Espinoza
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Demitri De La Cruz
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mohammed Mahamdeh
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacqueline R. Starr
- Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nikita Patel
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Casey A. Maguire
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
50
|
Ng J, Barral S, Waddington SN, Kurian MA. Gene Therapy for Dopamine Dyshomeostasis: From Parkinson's to Primary Neurotransmitter Diseases. Mov Disord 2023; 38:924-936. [PMID: 37147851 PMCID: PMC10946997 DOI: 10.1002/mds.29416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023] Open
Abstract
Neurological disorders encompass a broad range of neurodegenerative and neurodevelopmental diseases that are complex and almost universally without disease modifying treatments. There is, therefore, significant unmet clinical need to develop novel therapeutic strategies for these patients. Viral gene therapies are a promising approach, where gene delivery is achieved through viral vectors such as adeno-associated virus and lentivirus. The clinical efficacy of such gene therapies has already been observed in two neurological disorders of pediatric onset; for spinal muscular atrophy and aromatic L-amino acid decarboxylase (AADC) deficiency, gene therapy has significantly modified the natural history of disease in these life-limiting neurological disorders. Here, we review recent advances in gene therapy, focused on the targeted delivery of dopaminergic genes for Parkinson's disease and the primary neurotransmitter disorders, AADC deficiency and dopamine transporter deficiency syndrome (DTDS). Although recent European Medicines Agency and Medicines and Healthcare products Regulatory Agency approval of Upstaza (eladocagene exuparvovec) signifies an important landmark, numerous challenges remain. Future research will need to focus on defining the optimal therapeutic window for clinical intervention, better understanding of the duration of therapeutic efficacy, and improved brain targeting. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joanne Ng
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Genetic Therapy Accelerator Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUnited Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS‐Institute of Child HealthUniversity College LondonLondonUnited Kingdom
- Department of NeurologyGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| |
Collapse
|