1
|
Huang W, Zhong Y, Chen K, Kong B, Zhang A, Guo D, Zou T, Xiang M, Ye B. The role of cochlea extracellular matrix in age-related hearing loss. Biogerontology 2024; 26:8. [PMID: 39537914 DOI: 10.1007/s10522-024-10149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Age-related hearing loss (ARHL) is a common disease among the elderly. Although its pathogenesis remains unclear by now, it is widely accepted that ARHL is associated with the degenerative alterations within each component of the cochlea. Extracellular matrix (ECM) plays a crucial role in cochlear structure and function, providing not only structural support but also participating in vital physiological processes including the development, differentiation, survival of auditory sensory cells, and sound perception. ECM is implicated in the pathogenesis of various neurodegenerative diseases, with certain ECM proteins or associated molecules emerging as potential therapeutic targets. However, few research were carried out on ECM in the cochlea and ECM associated molecules in ARHL. This review aims to delineate the composition of ECM in the cochlea, the changes of the main ECM structure in the cochlea such as the tectorial membrane (TM), the basilar membrane (BM) and the spiral ligament (SL) during aging, as well as the role of ECM associated molecules in ARHL. We hope that this review will foster further research into ARHL.
Collapse
Affiliation(s)
- Weiyi Huang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Yiming Zhong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin 2nd Road, Shanghai, 200025, China
| | - Kaili Chen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Bing Kong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, No. 227 South Chongqing Road, Shanghai, 200025, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
2
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis. Sci Rep 2024; 14:3038. [PMID: 38321040 PMCID: PMC10847169 DOI: 10.1038/s41598-024-52663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Sydney Nixon
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Soumya Korrapati
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Samuel Adadey
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA.
| |
Collapse
|
4
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
5
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) Fluorescent Reporter Mice Allow Visualization of Intermediate Cells in the Stria Vascularis. RESEARCH SQUARE 2023:rs.3.rs-3393161. [PMID: 37886521 PMCID: PMC10602146 DOI: 10.21203/rs.3.rs-3393161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Sydney Nixon
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Samuel Adadey
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | | | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| |
Collapse
|
6
|
Sekulic M, Puche R, Bodmer D, Petkovic V. Human blood-labyrinth barrier model to study the effects of cytokines and inflammation. Front Mol Neurosci 2023; 16:1243370. [PMID: 37808472 PMCID: PMC10551159 DOI: 10.3389/fnmol.2023.1243370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Hearing loss is one of the 10 leading causes of disability worldwide. No drug therapies are currently available to protect or restore hearing. Inner ear auditory hair cells and the blood-labyrinth barrier (BLB) are critical for normal hearing, and the BLB between the systemic circulation and stria vascularis is crucial for maintaining cochlear and vestibular homeostasis. BLB defects are associated with inner ear diseases that lead to hearing loss, including vascular malformations, inflammation, and Meniere's disease (MD). Antibodies against proteins in the inner ear and cytokines in the cochlea, including IL-1α, TNF-α, and NF-kβ, are detected in the blood of more than half of MD patients. There is also emerging evidence of inner ear inflammation in some diseases, including MD, progressive sensorineural hearing loss, otosclerosis, and sudden deafness. Here, we examined the effects of TNF-α, IL6, and LPS on human stria vascularis-derived primary endothelial cells cultured together with pericytes in a Transwell system. By measuring trans-endothelial electrical resistance, we found that TNF-α causes the most significant disruption of the endothelial barrier. IL6 had a moderate influence on the barrier, whereas LPS had a minimal impact on barrier integrity. The prominent effect of TNF-α on the barrier was confirmed in the expression of the major junctional genes responsible for forming the tight endothelial monolayer, the decreased expression of ZO1 and OCL. We further tested permeability using 2 μg of daptomycin (1,619 Da), which does not pass the BLB under normal conditions, by measuring its passage through the barrier by HPLC. Treatment with TNF-α resulted in higher permeability in treated samples compared to controls. LPS-treated cells behaved similarly to the untreated cells and did not show differences in permeability compared to control. The endothelial damage caused by TNF-α was confirmed by decreased expression of an essential endothelial proteoglycan, syndecan1. These results allowed us to create an inflammatory environment model that increased BLB permeability in culture and mimicked an inflammatory state within the stria vascularis.
Collapse
Affiliation(s)
- Marijana Sekulic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raoul Puche
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- University Hospital Basel, Clinic for Otorhinolaryngology, Basel, Switzerland
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Sekulic M, Abdollahi N, Graf L, Deigendesch N, Puche R, Bodmer D, Petkovic V. Human blood-labyrinth barrier on a chip: a unique in vitro tool for investigation of BLB properties. RSC Adv 2023; 13:25508-25517. [PMID: 37636514 PMCID: PMC10450574 DOI: 10.1039/d3ra04704k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Hearing loss is one of the leading causes of disability worldwide, usually as a result of hair cell damage in the inner ear due to aging, acoustic trauma, or exposure to antibiotics or chemotherapy. No drug therapies can protect or restore hearing and current in vitro and animal models used in drug discovery have a very low success rate, mostly due to major differences in anatomy and accessibility of the inner ear environment between species. The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between the blood and interstitial space in the cochlea. The BLB is critical for normal hearing, functioning as a physical, transport, and metabolic barrier. To address its complexity and accessibility, we created the first micro-engineered human model of BLB on a chip using autogenous progenitor cells from adult temporal bones. We successfully isolated the BLB from post-mortem human tissue and established an endothelial cell and pericyte culture system on a BLB chip. Using biocompatible materials, we fabricated sustainable two chamber chips. We validated the size-dependent permeability limits of our BLB model by measuring the permeability to daptomycin (molecular weight 1.6 kDa) and midazolam (molecular weight 325.78 Da). Daptomycin did not pass through the BLB layer, whereas midazolam readily passed through the BLB in our system. Thus, our BLB-chip mimicked the integrity and permeability of human stria vascularis capillaries. This represents a major step towards establishing a reliable model for the development of hearing loss treatments.
Collapse
Affiliation(s)
- Marijana Sekulic
- Department of Biomedicine, University Hospital Basel, University of Basel Basel Switzerland
| | - Narjes Abdollahi
- Department of Biomedicine, University Hospital Basel, University of Basel Basel Switzerland
| | - Lukas Graf
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel Basel Switzerland
| | | | - Raoul Puche
- Department of Biomedicine, University Hospital Basel, University of Basel Basel Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel Basel Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel Basel Switzerland
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel Basel Switzerland
| |
Collapse
|
8
|
Cosgrove D, Gratton MA, Madison J, Vosik D, Samuelson G, Meehan D, Delimont D, Phillips G, Smyth B, Pramparo T, Jarocki D, Nguyen M, Komers R, Jenkinson C. Dual inhibition of the endothelin and angiotensin receptor ameliorates renal and inner ear pathologies in Alport mice. J Pathol 2023; 260:353-364. [PMID: 37256677 PMCID: PMC10330771 DOI: 10.1002/path.6087] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dominic Cosgrove
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Madison
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Denise Vosik
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Gina Samuelson
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel Meehan
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Duane Delimont
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Grady Phillips
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan Smyth
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Diana Jarocki
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mai Nguyen
- Travere Therapeutics, San Diego, CA, USA
| | | | | |
Collapse
|
9
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Johns JD, Adadey SM, Hoa M. The role of the stria vascularis in neglected otologic disease. Hear Res 2023; 428:108682. [PMID: 36584545 PMCID: PMC9840708 DOI: 10.1016/j.heares.2022.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
The stria vascularis (SV) has been shown to play a critical role in the pathogenesis of many diseases associated with sensorineural hearing loss (SNHL), including age-related hearing loss (ARHL), noise-induced hearing loss (NIHL), hereditary hearing loss (HHL), and drug-induced hearing loss (DIHL), among others. There are a number of other disorders of hearing loss that may be relatively neglected due to being underrecognized, poorly understood, lacking robust diagnostic criteria or effective treatments. A few examples of these diseases include autoimmune inner ear disease (AIED) and/or autoinflammatory inner ear disease (AID), Meniere's disease (MD), sudden sensorineural hearing loss (SSNHL), and cytomegalovirus (CMV)-related hearing loss (CRHL). Although these diseases may often differ in etiology, there have been recent studies that support the involvement of the SV in the pathogenesis of many of these disorders. We strive to highlight a few prominent examples of these frequently neglected otologic diseases and illustrate the relevance of understanding SV composition, structure and function with regards to these disease processes. In this study, we review the physiology of the SV, lay out the importance of these neglected otologic diseases, highlight the current literature regarding the role of the SV in these disorders, and discuss the current strategies, both approved and investigational, for management of these disorders.
Collapse
Affiliation(s)
- J Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA.
| | - Samuel M Adadey
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA; Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Zhao C, Yang Z, Gong S, Du Z. Adenovirus-mediated SIRT1 protects cochlear strial marginal cells in a D-gal-induced senescent model in vitro. Mol Biol Rep 2023; 50:541-551. [PMID: 36350417 DOI: 10.1007/s11033-022-08032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND A primary obstacle in age-related hearing loss (ARHL) study is the lack of accelerated senescent models in vitro that explore the precise underlying mechanism in different types of ARHL. The damage to strial marginal cells (SMCs) is a subset of strial presbycusis-associated pathological changes. We aimed to establish a D-galactose (D-gal)-induced SMCs senescent model and study the effect of deacetylase sirtuin 1 (SIRT1) on presbycusis in vitro. METHODS SMCs from C57BL/6J neonatal mice were cultured and treated with D-gal to establish accelerated senescent models. And then D-gal-induced SMCs were transfected with adenovirus (Ad)-SIRT1-GFP or Ad-GFP. Oxidative stress and mitochondrial DNA (mtDNA) damage were determined by histological analysis or RT-PCR. Western blotting (WB) and RT-PCR were used to evaluate protein and mRNA levels of superoxide dismutase 2 (SOD2) and SIRT1, respectively. Additionally, apoptosis was investigated by WB and TUNEL staining. RESULTS D-gal-induced SMCs exhibited several characteristics of senescence, including increased the level of 8-hydroxy-2'-deoxyguanosine, which is a marker of DNA oxidative damage, and elevated the amount of mtDNA 3860-bp deletion, which is a common type of mtDNA damage in the auditory system of mice. SIRT1 overexpression effectively inhibited these changes by upregulating the level of SOD2, thereby inhibiting cytochrome c translocation from mitochondria to cytoplasm, inhibiting cell apoptosis, and ultimately delaying aging in the D-gal-induced senescent SMCs. CONCLUSIONS Altogether, the evidence suggests that the D-gal-induced SMCs accelerated aging model is successfully established, and SIRT1 overexpression protects SMCs against oxidative stress by enhancing SOD2 expression in ARHL.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China. .,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China. .,Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
12
|
Thulasiram MR, Ogier JM, Dabdoub A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front Cell Dev Biol 2022; 10:841708. [PMID: 35309932 PMCID: PMC8931286 DOI: 10.3389/fcell.2022.841708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The stria vascularis (SV) is a highly vascularized tissue lining the lateral wall of the cochlea. The SV maintains cochlear fluid homeostasis, generating the endocochlear potential that is required for sound transduction. In addition, the SV acts as an important blood-labyrinth barrier, tightly regulating the passage of molecules from the blood into the cochlea. A healthy SV is therefore vital for hearing function. Degeneration of the SV is a leading cause of age-related hearing loss, and has been associated with several hearing disorders, including Norrie disease, Meniere's disease, Alport syndrome, Waardenburg syndrome, and Cytomegalovirus-induced hearing loss. Despite the SV's important role in hearing, there is still much that remains to be discovered, including cell-specific function within the SV, mechanisms of SV degeneration, and potential protective or regenerative therapies. In this review, we discuss recent discoveries elucidating the molecular regulatory networks of SV function, mechanisms underlying degeneration of the SV, and otoprotective strategies for preventing drug-induced SV damage. We also highlight recent clinical developments for treating SV-related hearing loss and discuss future research trajectories in the field.
Collapse
Affiliation(s)
- Matsya R Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline M Ogier
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Yu W, Zong S, Du P, Zhou P, Li H, Wang E, Xiao H. Role of the Stria Vascularis in the Pathogenesis of Sensorineural Hearing Loss: A Narrative Review. Front Neurosci 2021; 15:774585. [PMID: 34867173 PMCID: PMC8640081 DOI: 10.3389/fnins.2021.774585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss is a common sensory impairment in humans caused by abnormalities in the inner ear. The stria vascularis is regarded as a major cochlear structure that can independently degenerate and influence the degree of hearing loss. This review summarizes the current literature on the role of the stria vascularis in the pathogenesis of sensorineural hearing loss resulting from different etiologies, focusing on both molecular events and signaling pathways, and further attempts to explore the underlying mechanisms at the cellular and molecular biological levels. In addition, the deficiencies and limitations of this field are discussed. With the rapid progress in scientific technology, new opportunities are arising to fully understand the role of the stria vascularis in the pathogenesis of sensorineural hearing loss, which, in the future, will hopefully lead to the prevention, early diagnosis, and improved treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Nie J, Li Q, Guo M, Li J, Yang J, Chang Q, Cai Y. The correlation between fibroblast growth factor-23 and ESRD patients with hearing impairment. PeerJ 2021; 9:e12295. [PMID: 34721981 PMCID: PMC8520394 DOI: 10.7717/peerj.12295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background End-stage renal disease (ESRD) patients often experience hearing impairment, resulting in a high rate of disability and a decline in their quality of life. Fibroblast growth factor-23 (FGF23) is a diagnostic biomarker for chronic kidney disease (CKD) and a pathogenic contributor to CKD progression. However, the correlation between FGF23 level and CKD patients with hearing impairment remains elusive. This study aimed to investigate the relationship between the FGF23 and ESRD accompanied with hearing impairment. Methods A total of 144 ESRD patients, who were admitted to the First Affiliated Hospital of Kunming Medical University from November to December 2020, were enrolled in this study. Firstly, 144 ESRD patients underwent pure-tone audiometry (PTA). Secondly, it was attempted to randomly select 20 ESRD patients with normal hearing, and 20 ESRD patients with hearing impairment (match ratio, 1:1). Age- and gender-matched healthy people (n = 20) were also recruited as controls group. The expression levels of FGF23 was detected by enzyme-linked immunosorbent assay (ELISA). Results The results of pure-tone audiometry showed that the prevalence of hearing impairment in ESRD patients was 80.5%. Male ESRD patients were more likely to develop hearing impairment compared to female patients. The incidence rate of hearing impairment at a high frequency was significantly higher than that at a low frequency (P < 0.01). The serum levels of FGF23, phosphorus, and parathyroid hormone (PTH) in ESRD patients with hearing impairment significantly increased compared with those with normal hearing and healthy controls. Conclusion ESRD patients had a higher risk of hearing loss, especially high-frequency hearing impairment. As FGF23 level increased, the risk of hearing loss was also elevated. The hearing impairment in ESRD patients was associated with the degree of kidney injury, and serum FGF23 level.
Collapse
Affiliation(s)
- Jingwen Nie
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Guo
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaqing Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiahui Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Chang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaping Cai
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Dufek B, Meehan DT, Delimont D, Wilhelm K, Samuelson G, Coenen R, Madison J, Doyle E, Smyth B, Phillips G, Gratton MA, Cosgrove D. RNA-seq analysis of gene expression profiles in isolated stria vascularis from wild-type and Alport mice reveals key pathways underling Alport strial pathogenesis. PLoS One 2020; 15:e0237907. [PMID: 32822386 PMCID: PMC7446819 DOI: 10.1371/journal.pone.0237907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Previous work demonstrates that the hearing loss in Alport mice is caused by defects in the stria vascularis. As the animals age, progressive thickening of strial capillary basement membranes (SCBMs) occurs associated with elevated levels of extracellular matrix expression and hypoxia-related gene and protein expression. These conditions render the animals susceptible to noise-induced hearing loss. In an effort to develop a more comprehensive understanding of how the underlying mutation in the COL4A3 gene influences homeostasis in the stria vascularis, we performed vascular permeability studies combined with RNA-seq analysis using isolated stria vascularis from 7-week old wild-type and Alport mice on the 129 Sv background. Alport SCBMs were found to be less permeable than wild-type littermates. RNA-seq and bioinformatics analysis revealed 68 genes were induced and 61 genes suppressed in the stria from Alport mice relative to wild-type using a cut-off of 2-fold. These included pathways involving transcription factors associated with the regulation of pro-inflammatory responses as well as cytokines, chemokines, and chemokine receptors that are up- or down-regulated. Canonical pathways included modulation of genes associated with glucose and glucose-1-PO4 degradation, NAD biosynthesis, histidine degradation, calcium signaling, and glutamate receptor signaling (among others). In all, the data point to the Alport stria being in an inflammatory state with disruption in numerous metabolic pathways indicative of metabolic stress, a likely cause for the susceptibility of Alport mice to noise-induced hearing loss under conditions that do not cause permanent hearing loss in age/strain-matched wild-type mice. The work lays the foundation for studies aimed at understanding the nature of strial pathology in Alport mice. The modulation of these genes under conditions of therapeutic intervention may provide important pre-clinical data to justify trials in humans afflicted with the disease.
Collapse
Affiliation(s)
- Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Daniel T. Meehan
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Duane Delimont
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Gina Samuelson
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Ross Coenen
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Edward Doyle
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Brendan Smyth
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Grady Phillips
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Michael Anne Gratton
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, NE, United States of America
| |
Collapse
|
16
|
Chang YC, Hahn RA, Gordon MK, Laskin JD, Gerecke DR. A type IV collagenase inhibitor, N-hydroxy-3-phenyl-2-(4-phenylbenzenesulfonamido) propanamide (BiPS), suppresses skin injury induced by sulfur mustard. Toxicol Appl Pharmacol 2020; 401:115078. [PMID: 32479919 DOI: 10.1016/j.taap.2020.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022]
Abstract
Sulfur mustard (SM) is a highly toxic blistering agent thought to mediate its action, in part, by activating matrix metalloproteinases (MMPs) in the skin and disrupting components of the basement membrane zone (BMZ). Type IV collagenases (MMP-9) degrade type IV collagen in the skin, a major component of the BMZ at the dermal-epidermal junction. In the present studies, a type IV collagenase inhibitor, N-hydroxy-3-phenyl-2-(4-phenylbenzenesulfonamido) propanamide (BiPS), was tested for its ability to protect the skin against injury induced by SM in the mouse ear vesicant model. SM induced inflammation, epidermal hyperplasia and microblistering at the dermal/epidermal junction of mouse ears 24-168 h post-exposure. This was associated with upregulation of MMP-9 mRNA and protein in the skin. Dual immunofluorescence labeling showed increases in MMP-9 in the epidermis and in the adjacent dermal matrix of the SM injured skin, as well as breakdown of type IV collagen in the basement membrane. Pretreatment of the skin with BiPS reduced signs of SM-induced cutaneous toxicity; expression of MMP-9 mRNA and protein was also downregulated in the skin by BiPS. Following BiPS pretreatment, type IV collagen appeared intact and was similar to control skin. These results demonstrate that inhibiting type IV collagenases in the skin improves basement membrane integrity after exposure to SM. BiPS may hold promise as a potential protective agent to mitigate SM induced skin injury.
Collapse
Affiliation(s)
- Yoke-Chen Chang
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States of America.
| | - Rita A Hahn
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States of America
| | - Marion K Gordon
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States of America
| | - Jeffrey D Laskin
- Department of Environmental & Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ, United States of America
| | - Donald R Gerecke
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
17
|
Dufek B, Meehan DT, Delimont D, Samuelson G, Madison J, Shi X, Boettcher F, Trosky V, Gratton MA, Cosgrove D. Pericyte abnormalities precede strial capillary basement membrane thickening in Alport mice. Hear Res 2020; 390:107935. [PMID: 32234583 DOI: 10.1016/j.heares.2020.107935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
In 129 Sv autosomal Alport mice, the strial capillary basement membranes (SCBMs) progressively thicken between 5 and 9 weeks of age resulting in a hypoxic microenvironment with metabolic stress and induction of pro-inflammatory cytokines and chemokines. These events occur concomitant with a drop in endocochlear potential and a susceptibility to noise-induced hearing loss under conditions that do not permanently affect age/strain-matched littermates. Here we aimed to gain an understanding of events that occur before the onset of SCBM thickening. Alport stria has normal thickness and shows levels of extracellular matrix (ECM) molecules in the SCBMs commensurate with wild-type mice. Hearing thresholds in the 3-week Alport mice do not differ from those of wild-type mice. We performed RNAseq analysis using RNA from stria vascularis isolated from 3-week Alport mice and wild type littermates. Data was processed using Ingenuity Pathway Analysis software and further distilled using manual procedures. RNAseq analysis revealed significant dysregulation of genes involved in cell adhesion, cell migration, formation of protrusions, and both actin and tubulin cytoskeletal dynamics. Overall, the data suggested changes in the cellular architecture of the stria might be apparent. To test this notion, we performed dual immunofluorescence analysis on whole mounts of the stria vascularis from these same animals stained with anti-isolectin gs-ib4 (endothelial cell marker) and anti-desmin (pericyte marker) antibodies. The results showed evidence of pericyte detachment and migration as well as the formation of membrane ruffling on pericytes in z-stacked confocal images from Alport mice compared to wild type littermates. This was confirmed by TEM analysis. Earlier work from our lab showed that endothelin A receptor blockade prevents SCBM thickening and ECM accumulation in the SCBMs. Treating cultured pericytes with endothelin-1 induced actin cytoskeletal rearrangement, increasing the ratio of filamentous to globular actin. Collectively, these findings suggest that the change in type IV collagen composition in the Alport SCBMs results in cellular insult to the pericyte compartment, activating detachment and altered cytoskeletal dynamics. These events precede SCBM thickening and hearing loss in Alport mice, and thus constitute the earliest event so far recognized in Alport strial pathology.
Collapse
Affiliation(s)
- Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | | | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, USA
| | - Xiourui Shi
- Oregon Health Science Center, Portland, OR, USA
| | | | | | | | | |
Collapse
|
18
|
Focal Degeneration of Vestibular Neuroepithelium in the Cristae Ampullares of Three Human Subjects. Otol Neurotol 2018; 39:e1100-e1110. [PMID: 30303940 DOI: 10.1097/mao.0000000000002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We report a unique pattern of focal degeneration of the neuroepithelium of cristae ampullares, thick subepithelial extracellular deposits, and neural degeneration in three humans. OBJECTIVE To characterize the pattern of vestibular degeneration and measure the thickness of subepithelial deposits in these three cases and controls. METHODS The subepithelial deposits of vestibular end organs in three subject cases and controls were studied using hematoxylin and eosin, periotic acid-Schiff, Gomori trichrome staining, and immunostaining for antineurofilament, antimyosin VIIa, and anticollagen 4a1. The thickness of deposit as measured by light microscopy was compared with that of control groups (age-matched controls, patients with unilateral Menière's disease, vestibular neuritis, cupulolithiasis, severe nonfocal degeneration of the vestibular neuroepithelium, and Alport syndrome). The correlation of thickness of deposits with age from 0 to 100 years was also investigated. RESULTS Focal loss of hair cells in the neuroepithelium, thick subepithelial deposits, and degeneration of subepithelial dendrites and Scarpa's ganglion were found in all three cristae of three subject cases. Immunostaining demonstrated a decrease of afferent neural fibers in the cristae and focal fragmentation of the basement membrane adjacent to the deposits. The thickness of the subepithelial deposits in three cristae of three subject cases was significantly greater than that of all controls. In the three cristae of normal controls, the thickness of deposits demonstrated a positive correlation with age. CONCLUSION Although both age and degeneration of the vestibular neuroepithelium may be associated with the thickness of the subepithelial deposits, in this unique pattern of degeneration, the thickness of the subepithelial deposits was significantly greater than that in all controls.
Collapse
|
19
|
Ungar OJ, Nadol JB, Santos F. Temporal Bone Histopathology of X-linked Inherited Alport Syndrome. Laryngoscope Investig Otolaryngol 2018; 3:311-314. [PMID: 30186963 PMCID: PMC6119774 DOI: 10.1002/lio2.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To describe the histopathologic findings within the human cochlea in X-linked Alport syndrome. STUDY DESIGN Histopathologic analysis of cellular elements within the human cochlea by light microscopy. MATERIALS AND METHODS A right and a left cochleae of a man with genetically confirmed X-linked Alport syndrome was studied post-mortem. The temporal bones underwent standard processing for histologic examination. The slides were examined by light microscopy. Graphic reconstruction of the cochlea was performed to quantify hair cells, pathologic changes of the stria vascularis, and loss of cochlear neuronal cells. RESULTS There was severe loss of inner hair cells and all three rows of outer hair cells in the apical two turns of the cochlea. The stria vascularis and spiral ligament showed areas of marked loss which became more prominent from base to apex in each ear. The spiral ganglion cell count in the Rosenthal's canal exhibited loss of 20% to 45% compared to matched historical controls. There was a zone of separation between the organ of Corti and the basilar membrane extending along the basal surface of Deiters cells, Hensen cells, Claudius cells and external sulcus cells. The tunnel of Corti and the space of Nuel were filled with cellular elements along the cochlea. CONCLUSION The histopathologic findings of cochlear involvement in Alport's syndrome are basement membrane separation from the cells of the organ of Corti, outer and inner hair cell loss, and cellular infilling of the tunnel and extracellular spaces of the organ of Corti. These observations contribute to our understanding of the mechanism of sensorineural hearing loss in these patients. LEVEL OF EVIDENCE
Collapse
Affiliation(s)
- Omer J. Ungar
- Departments of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery , Tel‐Aviv Sourasky Medical Center, Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Joseph B. Nadol
- Department of Otolaryngology Massachusetts Eye and Ear InfirmaryBostonMassachusettsU.S.A.
- the Department of Otolaryngology Harvard Medical SchoolBostonMassachusettsU.S.A.
| | - Felipe Santos
- Department of Otolaryngology Massachusetts Eye and Ear InfirmaryBostonMassachusettsU.S.A.
- the Department of Otolaryngology Harvard Medical SchoolBostonMassachusettsU.S.A.
| |
Collapse
|
20
|
Ding W, Yousefi K, Goncalves S, Goldstein BJ, Sabater AL, Kloosterboer A, Ritter P, Lambert G, Mendez AJ, Shehadeh LA. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight 2018; 3:94818. [PMID: 29563333 PMCID: PMC5926939 DOI: 10.1172/jci.insight.94818] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is a rare hereditary renal disorder with no etiologic therapy. We found that osteopontin (OPN) is highly expressed in the renal tubules of the Alport mouse and plays a causative pathological role. OPN genetic deletion ameliorated albuminuria, hypertension, tubulointerstitial proliferation, renal apoptosis, and hearing and visual deficits in the Alport mouse. In Alport renal tubules we found extensive cholesterol accumulation and increased protein expression of dynamin-3 (DNM3) and LDL receptor (LDLR) in addition to dysmorphic mitochondria with defective bioenergetics. Increased pathological cholesterol influx was confirmed by a remarkably increased uptake of injected DiI-LDL cholesterol by Alport renal tubules, and by the improved lifespan of the Alport mice when crossed with the Ldlr-/- mice with defective cholesterol influx. Moreover, OPN-deficient Alport mice demonstrated significant reduction of DNM3 and LDLR expression. In human renal epithelial cells, overexpressing DNM3 resulted in elevated LDLR protein expression and defective mitochondrial respiration. Our results suggest a potentially new pathway in Alport pathology where tubular OPN causes DNM3- and LDLR-mediated enhanced cholesterol influx and impaired mitochondrial respiration.
Collapse
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | | | | | | | | | | | | | | | - Lina A. Shehadeh
- Interdisciplinary Stem Cell Institute
- Department of Medicine, Division of Cardiology
- Vascular Biology Institute, and
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
22
|
Abstract
In this commentary, I review recent advances in Alport syndrome genetics, diagnostics, and therapeutics. I also offer some opinions regarding strategies to optimize the early identification of affected individuals to promote early therapeutic intervention.
Collapse
Affiliation(s)
- Clifford Kashtan
- Department of Pediatrics, Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
23
|
Meehan DT, Delimont D, Dufek B, Zallocchi M, Phillips G, Gratton MA, Cosgrove D. Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hear Res 2016; 341:100-108. [PMID: 27553900 PMCID: PMC5086449 DOI: 10.1016/j.heares.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/21/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ETARs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ETAR antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ETAR blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ETARs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology.
Collapse
Affiliation(s)
| | | | - Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | | | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, NE, USA; University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
24
|
Youm I, Musazzi UM, Gratton MA, Murowchick JB, Youan BBC. Label-Free Ferrocene-Loaded Nanocarrier Engineering for In Vivo Cochlear Drug Delivery and Imaging. J Pharm Sci 2016; 105:3162-3171. [PMID: 27449230 DOI: 10.1016/j.xphs.2016.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023]
Abstract
It is hypothesized that ferrocene (FC)-loaded nanocarriers (FC-NCs) are safe label-free contrast agents for cochlear biodistribution study by transmission electron microscopy (TEM). To test this hypothesis, after engineering, the poly(epsilon-caprolactone)/polyglycolide NCs are tested for stability with various types and ratios of sugar cryoprotectants during freeze-drying. Their physicochemical properties are characterized by UV-visible spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS). The biodistribution of the FC-NCs in the cochlear tissue after intratympanic injection in guinea pigs is visualized by TEM. Auditory brainstem responses are measured before and after 4-day treatments. These FC-NCs have 153.4 ± 8.7 nm, 85.5 ± 11.2%, and -22.1 ± 1.1 mV as mean diameters, percent drug association efficiency, and zeta potential, respectively (n = 3). The incorporation of FC into the NCs is confirmed by Fourier transform infrared spectroscopy and SEM/EDS spectra. Lactose (3:1 ratio, v/v) is the most effective stabilizer after a 12-day study. The administered NCs are visible by TEM in the scala media cells of the cochlea. Based on auditory brainstem response data, FC-NCs do not adversely affect hearing. Considering the electrondense, radioactive, and magnetic properties of iron inside FC, FC-NCs are promising nanotemplate for future inner ear theranostics.
Collapse
Affiliation(s)
| | - Umberto M Musazzi
- Pharmaceutical Technology & Regulatory Affairs "Maria Edvige Sangalli" Unit, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Michael Anne Gratton
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Saint-Louis University, St. Louis, Missouri 63110
| | - James B Murowchick
- Department of Geosciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, Missouri 64108.
| |
Collapse
|
25
|
Abstract
HYPOTHESIS Gene expression changes occur in conjunction with hearing threshold changes after cochlear implantation. BACKGROUND Between 30 and 50% of individuals who receive electro-acoustic stimulation (EAS) cochlear implants lose residual hearing after cochlear implantation, reducing the benefits of EAS. The mechanism underlying this hearing loss is unknown; potential pathways include mechanical damage, inflammation, or tissue remodeling changes. METHODS Guinea pigs were implanted in one ear with cochlear implant electrode arrays, with non-implanted ears serving as controls, and allowed to recover for 1, 3, 7, or 14 days. Hearing threshold changes were measured over time. Cochlear ribonucleic acid was analyzed using real-time quantitative reverse transcription-polymerase chain reaction from the following gene families: cytokines, tight junction claudins, ion and water (aquaporin) transport channels, gap junction connexins, and tissue remodeling genes. RESULTS Significant increases in expression were observed for cochlear inflammatory genes (Cxcl1, IL-1β, TNF-α, and Tnfrsf1a/b) and ion homeostasis genes (Scnn1γ, Aqp3, and Gjb3). Upregulation of tissue remodeling genes (TGF-β, MMP2, MMP9) as well as a paracrine gene (CTGF) was also observed. Hearing loss occurred rapidly, peaking at 3 days with some recovery at 7 and 14 days after implantation. MM9 exhibited extreme upregulation of expression and was qualitatively associated with changes in hearing thresholds. CONCLUSION Cochlear implantation induces similar changes as middle ear inflammation for genes involved in inflammation and ion and water transport function, whereas tissue remodeling changes differ markedly. The upregulation of MMP9 with hearing loss is consistent with previous findings linking stria vascularis vessel changes with cochlear implant-induced hearing loss.
Collapse
|
26
|
Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338:52-63. [PMID: 26802581 DOI: 10.1016/j.heares.2016.01.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically, the BLB is comprised of endothelial cells (ECs) in the strial microvasculature, elaborated tight and adherens junctions, pericytes (PCs), basement membrane (BM), and perivascular resident macrophage-like melanocytes (PVM/Ms), which together form a complex "cochlear-vascular unit" in the stria vascularis. Physical interactions between the ECs, PCs, and PVM/Ms, as well as signaling between the cells, is critical for controlling vascular permeability and providing a proper environment for hearing function. Breakdown of normal interactions between components of the BLB is seen in a wide range of pathological conditions, including genetic defects and conditions engendered by inflammation, loud sound trauma, and ageing. In this review, we will discuss prevailing views of the structure and function of the strial cochlear-vascular unit (also referred to as the "intrastrial fluid-blood barrier"). We will also discuss the disrupted homeostasis seen in a variety of hearing disorders. Therapeutic targeting of the strial barrier may offer opportunities for improvement of hearing health and amelioration of auditory disorders. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
|
27
|
Montgomery SC, Cox BC. Whole Mount Dissection and Immunofluorescence of the Adult Mouse Cochlea. J Vis Exp 2016. [PMID: 26779585 DOI: 10.3791/53561] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The organ of Corti, housed in the cochlea of the inner ear, contains mechanosensory hair cells and surrounding supporting cells which are organized in a spiral shape and have a tonotopic gradient for sound detection. The mouse cochlea is approximately 6 mm long and often divided into three turns (apex, middle, and base) for analysis. To investigate cell loss, cell division, or mosaic gene expression, the whole mount or surface preparation of the cochlea is useful. This dissection method allows visualization of all cells within the organ of Corti when combined with immunostaining and confocal microscopy to image cells at different planes in the z-axis. Multiple optical cross-sections can also be obtained from these z-stack images. In addition, the whole mount dissection method can be used for scanning electron microscopy, although a different fixation method is needed. Here, we present a method to isolate the organ of Corti as three intact cochlear turns (apex, middle, and base). This method can be used for mice ranging from one week of age through adulthood and differs from the technique used for neonatal samples where calcification of the cochlea is incomplete. A slightly modified version can be used for dissection of the rat cochlea. We also demonstrate a procedure for immunostaining with fluorescently tagged antibodies.
Collapse
Affiliation(s)
- Scott C Montgomery
- Department of Surgery, Division of Otolaryngology, Southern Illinois University, School of Medicine
| | - Brandon C Cox
- Department of Surgery, Division of Otolaryngology, Southern Illinois University, School of Medicine; Department of Pharmacology, Southern Illinois University, School of Medicine;
| |
Collapse
|
28
|
Dexamethasone inhibits interleukin-1β-induced matrix metalloproteinase-9 expression in cochlear cells. Clin Exp Otorhinolaryngol 2014; 7:175-80. [PMID: 25177432 PMCID: PMC4135152 DOI: 10.3342/ceo.2014.7.3.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/30/2013] [Accepted: 01/05/2014] [Indexed: 11/08/2022] Open
Abstract
Objectives To investigate the effect of interleukin (IL)-1β on matrix metalloproteinase (MMP)-9 expression in cochlea and regulation of IL-1β-mediated MMP-9 expression by dexamethasone and the molecular and signaling mechanisms involved. Methods House ear institute-organ of Corti 1 (HEI-OC1) cells were used and exposed to IL-1β with/without dexamethasone. Glucocorticoid receptor antagonist, RU486, was used to see the role of dexamethasone. PD98059 (an extracellular signal-regulated kinases [ERKs] inhibitor), SB203580 (a p38 mitogen-activated protein kinases [MAPK] inhibitor), SP600125 (a c-Jun N-terminal kinase [JNK] inhibitor) were also used to see the role of MAPKs signaling pathway(s) in IL-1β-induced MMP-9 expression in HEI-OC1 cells. Reverse transcription-polymerase chain reaction and gelatin zymography were used to measure mRNA expression level of MMP-9 and activity of MMP-9, respectively. Results Treatment with IL-1β-induced the expression of MMP-9 in a dose- and time-dependent manner. IL-1β (1 ng/mL)-induced MMP-9 expression was inhibited by dexamethasone. Interestingly, p38 MAPK inhibitor, SB203580, significantly inhibited IL-1β-induced MMP-9 mRNA and MMP-9 activity. However, inhibition of JNKs and ERKs had no effect on the IL-1β-induced MMP-9 expression. Conclusion These results suggest that the pro-inflammatory cytokine IL-1β strongly induces MMP-9 expression via activation of p38 MAPK signaling pathway in HEI-OC1 cells and the induction was inhibited by dexamethasone.
Collapse
|
29
|
Feng H, Pyykkö I, Zou J. Hyaluronan up-regulation is linked to renal dysfunction and hearing loss induced by silver nanoparticles. Eur Arch Otorhinolaryngol 2014; 272:2629-42. [PMID: 25082176 DOI: 10.1007/s00405-014-3213-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022]
Abstract
Increased application of silver nanoparticles (AgNPs) has raised concerns on their potential adverse effects on human health. However, the precise toxicological mechanisms are not known in detail. The current study hypothesized that AgNPs induced glycosaminoglycan accumulation in the basement membrane that associated with the up-regulation of its component hyaluronic acid, known as a hydrophilic molecule of binding and retaining water, and caused toxicities in the kidney and cochlea. Rats administered AgNPs through either intravenous or intratympanic injection were observed at different time points after exposure. The concentrations of creatinine and urea in the serum were elevated remarkably, and proteins leaked into the urine were increased. A significant hearing loss over a broad range of frequencies was indicated. AgNP exposure induced glycosaminoglycan accumulation and hyaluronic acid up-regulation in the basement membrane. Abundant apoptotic cell death was demonstrated in the AgNP-exposed organs. Our results suggested that glycosaminoglycan accumulation associated with the up-regulation of hyaluronic acid was involved in the toxicities of kidney and cochlea caused by AgNPs.
Collapse
Affiliation(s)
- Hao Feng
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Room C2165, 33520, Tampere, Finland
| | | | | |
Collapse
|
30
|
Ciuman RR. Inner ear symptoms and disease: pathophysiological understanding and therapeutic options. Med Sci Monit 2013; 19:1195-210. [PMID: 24362017 PMCID: PMC3872449 DOI: 10.12659/msm.889815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022] Open
Abstract
In recent years, huge advances have taken place in understanding of inner ear pathophysiology causing sensorineural hearing loss, tinnitus, and vertigo. Advances in understanding comprise biochemical and physiological research of stimulus perception and conduction, inner ear homeostasis, and hereditary diseases with underlying genetics. This review describes and tabulates the various causes of inner ear disease and defines inner ear and non-inner ear causes of hearing loss, tinnitus, and vertigo. The aim of this review was to comprehensively breakdown this field of otorhinolaryngology for specialists and non-specialists and to discuss current therapeutic options in distinct diseases and promising research for future therapies, especially pharmaceutic, genetic, or stem cell therapy.
Collapse
|
31
|
Metalloproteinases and their associated genes contribute to the functional integrity and noise-induced damage in the cochlear sensory epithelium. J Neurosci 2013; 32:14927-41. [PMID: 23100416 DOI: 10.1523/jneurosci.1588-12.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their related gene products regulate essential cellular functions. An imbalance in MMPs has been implicated in various neurological disorders, including traumatic injuries. Here, we report a role for MMPs and their related gene products in the modulation of cochlear responses to acoustic trauma in rats. The normal cochlea was shown to be enriched in MMP enzymatic activity, and this activity was reduced in a time-dependent manner after traumatic noise injury. The analysis of gene expression by RNA sequencing and qRT-PCR revealed the differential expression of MMPs and their related genes between functionally specialized regions of the sensory epithelium. The expression of these genes was dynamically regulated between the acute and chronic phases of noise-induced hearing loss. Moreover, noise-induced expression changes in two endogenous MMP inhibitors, Timp1 and Timp2, in sensory cells were dependent on the stage of nuclear condensation, suggesting a specific role for MMP activity in sensory cell apoptosis. A short-term application of doxycycline, a broad-spectrum inhibitor of MMPs, before noise exposure reduced noise-induced hearing loss and sensory cell death. In contrast, a 7 d treatment compromised hearing sensitivity and potentiated noise-induced hearing loss. This detrimental effect of the long-term inhibition of MMPs on noise-induced hearing loss was further confirmed using targeted Mmp7 knock-out mice. Together, these observations suggest that MMPs and their related genes participate in the regulation of cochlear responses to acoustic overstimulation and that the modulation of MMP activity can serve as a novel therapeutic target for the reduction of noise-induced cochlear damage.
Collapse
|
32
|
Kruegel J, Rubel D, Gross O. Alport syndrome--insights from basic and clinical research. Nat Rev Nephrol 2012; 9:170-8. [PMID: 23165304 DOI: 10.1038/nrneph.2012.259] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1927, Arthur C. Alport first published his description of a triad of symptoms in a family with hereditary congenital haemorrhagic nephritis, deafness and ocular changes. A few years after his death, this group of symptoms was renamed Alport syndrome. To this day, Alport syndrome still inevitably leads to end-stage renal disease and the need for renal replacement therapy, starting in young adulthood. During the past two decades, research into this rare disease has focused on the effects of mutations in collagen type IV and the role of changes in podocytes and the glomerular basement membrane that lead to early kidney fibrosis. Animal models of Alport syndrome also demonstrate the pathogenetic importance of interactions between podocytes and the extracellular matrix. Such models might also help researchers to answer basic questions about podocyte function and the development of fibrosis, and to develop new therapeutic approaches that might be of use in other kidney diseases. In this Review, we discuss the latest basic and clinical research on Alport syndrome, focusing on the roles of podocyte pathology and the extracellular matrix. We also highlight early diagnosis and treatment options for young patients with this disorder.
Collapse
Affiliation(s)
- Jenny Kruegel
- Department of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | | | | |
Collapse
|
33
|
Calzada AP, Lopez IA, Parrazal LB, Ishiyama A, Ishiyama G. Cochlin expression in vestibular endorgans obtained from patients with Meniere's disease. Cell Tissue Res 2012; 350:373-84. [PMID: 22992960 PMCID: PMC4420027 DOI: 10.1007/s00441-012-1481-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/10/2012] [Indexed: 10/27/2022]
Abstract
The distribution of cochlin and its associated basement membrane proteins (collagen IV, collagen II, laminin-β2, and nidogen-1) were evaluated in the vestibular endorgans of subjects with Meniere's disease and compared with normal specimens. Cochlin mRNA expression in vestibular endorgans from Meniere's disease specimens was also investigated. Specimens were obtained from patients who had Meniere's disease and who were undergoing ablative labyrinthectomy. Control specimens were obtained both from autopsy specimens with documented normal audiovestibular function and from patients undergoing labyrinthectomy for acoustic neuroma excision. In the normal control specimens, cochlin immunoreactivity was found evenly distributed in the stroma of the cristae ampullaris and maculae of the utricle. In Meniere's specimens, cochlin immunoreactivity was markedly increased; this was associated with an increase in cochlin mRNA expression as shown by real-time reverse transcription with the polymerase chain reaction. Collagen IV and laminin-β2 immunoreactivity was significantly decreased in Meniere's specimens. Nidogen-1 and collagen II immunoreactivity was unchanged in Meniere's specimens when compared with normal samples. Cochlin upregulation has been implicated in the hereditary audiovestibulopathy, DFNA9. The increased expression of cochlin and decreased expression of collagen IV and laminin in Meniere's disease are suggestive that the overexpression of cochlin contributes to the dysfunctional inner ear homeostasis seen in this disease.
Collapse
Affiliation(s)
- Audrey P. Calzada
- Department of Head and Neck Surgery, Universidad Veracruzana, Veracruz, Mexico
| | - Ivan A Lopez
- Department of Head and Neck Surgery, Universidad Veracruzana, Veracruz, Mexico
| | | | - Akira Ishiyama
- Department of Head and Neck Surgery, Universidad Veracruzana, Veracruz, Mexico
| | - Gail Ishiyama
- Neurology Department, UCLA School of Medicine David Geffen, 10833 Le Conte Avenue Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Fetoni AR, Picciotti PM, Paludetti G, Troiani D. Pathogenesis of presbycusis in animal models: a review. Exp Gerontol 2011; 46:413-25. [PMID: 21211561 DOI: 10.1016/j.exger.2010.12.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/04/2010] [Accepted: 12/15/2010] [Indexed: 12/14/2022]
Abstract
Presbycusis is the most common cause of hearing loss in aged subjects, reducing individual's communicative skills. Age related hearing loss can be defined as a progressive, bilateral, symmetrical hearing loss due to age related degeneration and it can be considered a multifactorial complex disorder, with both environmental and genetic factors contributing to the aetiology of the disease. The decline in hearing sensitivity caused by ageing is related to the damage at different levels of the auditory system (central and peripheral). Histologically, the aged cochlea shows degeneration of the stria vascularis, the sensorineural epithelium, and neurons of the central auditory pathways. The mechanisms responsible for age-associated hearing loss are still incompletely characterized. This work aims to give a broad overview of the scientific findings related to presbycusis, focusing mainly on experimental studies in animal models.
Collapse
Affiliation(s)
- Anna R Fetoni
- Institute of Otolaryngology, School of Medicine, Catholic University of Rome, Largo A. Gemelli, 8 00168 Rome, Italy.
| | | | | | | |
Collapse
|
35
|
Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice. Mol Cell Biochem 2009; 332:215-24. [PMID: 19590937 DOI: 10.1007/s11010-009-0194-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
Clinical study reports hearing loss in patients with low folic acid (FA) and elevated homocysteine (Hcy). We hypothesize that elevated Hcy induces imbalance in matrix turnover and oxidative stress in cochlea. Cystathione beta-synthase heterozygous knockout mice were used as model for hyperhomocysteinemia. Matrix remodeling induced by Hcy resulted from elevated MMP-2, -9, and -14. MMP-2 and -9 showed elevated gelatinase activity in CBS (+/-) cochlea. Tissue inhibitors of matrix metalloproteinase were significantly lower in CBS (+/-) cochlea. The expression analyses for MMPs and TIMPs were equally represented at protein and mRNA levels. Cochlea of CBS mice showed following structural changes; (1) detachment of tectorial membrane lying on hair cells (2) thinner s. vascularis (3) large fibroblast in spiral ligament. Hcy induced higher protein nitrotyrosination and cytosolic NADPHoxidase subunit p22(phox) in cochlea. It is thus suggested that Hcy induced matrix imbalance, structural changes and oxidative stress in cochlea.
Collapse
|
36
|
Ishiyama A, Mowry SE, Lopez IA, Ishiyama G. Immunohistochemical distribution of basement membrane proteins in the human inner ear from older subjects. Hear Res 2009; 254:1-14. [PMID: 19348877 DOI: 10.1016/j.heares.2009.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/02/2009] [Accepted: 03/27/2009] [Indexed: 11/27/2022]
Abstract
The immunolocalization of several basement membrane (BM) proteins was investigated in vestibular endorgans microdissected from temporal bones obtained from subjects with a documented normal auditory and vestibular function (n=5, average age=88 years old). Fluorescent immunostaining using antibodies directed at collagen IV alpha 2, nidogen-1, laminin-beta2, alpha-dystroglycan, and tenascin-C was applied to cryosections from human cochlea, cristae ampullares, utricular and saccular maculae. Collagen IV alpha 2, nidogen-1, and laminin-beta2 localized to all subepithelial cochlear BMs, Reissner's membrane, strial and spiral ligamental perineural and perivascular BMs, and the spiral limbus. Tenascin-C localized to the basilar membrane and the osseous spiral lamina. alpha-Dystroglycan localized to most cochlear BMs except those in the spiral ligament, basilar membrane and spiral limbus. Collagen IV, nidogen-1, and laminin-beta2 localized to the subepithelial BMs of the maculae and cristae ampullares, and the perineural and perivascular BMs within the underlying stroma. The BM underlying the transitional and dark cell region of the cristae ampullares also expressed collagen IV, nidogen-1, and laminin-beta2. Tenascin-C localized to the subepithelial BMs of the utricular maculae and cristae ampullares, and to calyx-like profiles throughout the vestibular epithelium, but not to the perineural and perivascular BMs. alpha-Dystroglycan colocalized with aquaporin-4 in the basal vestibular supporting cell, and was also expressed in the subepithelial BMs, as well as perivascular and perineural BMs. This study provides the first comprehensive immunolocalization of these ECM proteins in the human inner ear. The validity of the rodent models for inner ear disorders secondary to BM pathologies was confirmed as there is a high degree of conservation of expression of these proteins in the human inner ear. This information is critical to begin to unravel the role that BMs may play in human inner ear physiology and audiovestibular pathologies.
Collapse
Affiliation(s)
- Akira Ishiyama
- Department of Surgery, Division of Head and Neck, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1769, USA
| | | | | | | |
Collapse
|
37
|
Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations. The Journal of Laryngology & Otology 2008; 123:151-62. [DOI: 10.1017/s0022215108002624] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe regulation of inner-ear fluid homeostasis, with its parameters volume, concentration, osmolarity and pressure, is the basis for adequate response to stimulation. Many structures are involved in the complex process of inner-ear homeostasis. The stria vascularis and vestibular dark cells are the two main structures responsible for endolymph secretion, and possess many similarities. The characteristics of these structures are the basis for regulation of inner-ear homeostasis, while impaired function is related to various diseases. Their distinct morphology and function are described, and related to current knowledge of associated inner-ear diseases. Further research on the distinct function and regulation of these structures is necessary in order to develop future clinical interventions.
Collapse
|
38
|
Cosgrove D, Meehan DT, Delimont D, Pozzi A, Chen X, Rodgers KD, Tempero RM, Zallocchi M, Rao VH. Integrin alpha1beta1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:761-73. [PMID: 18258846 DOI: 10.2353/ajpath.2008.070473] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous work has shown that integrin alpha1-null Alport mice exhibit attenuated glomerular disease with decreased matrix accumulation and live much longer than strain-matched Alport mice. However, the mechanism underlying this observation is unknown. Here we show that glomerular gelatinase expression, specifically matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14, was significantly elevated in both integrin alpha1-null mice and integrin alpha1-null Alport mice relative to wild-type mice; however, only MMP-9 was elevated in glomeruli of Alport mice that express integrin alpha1. Similarly, cultured mesangial cells from alpha1-null mice showed elevated expression levels of all three MMPs, whereas mesangial cells from Alport mice show elevated expression levels of only MMP-9. In both glomeruli and cultured mesangial cells isolated from integrin alpha1-null mice, activation of the p38 and ERK branches of the mitogen-activated protein kinase pathway was also observed. The use of small molecule inhibitors demonstrated that the activation of the p38, but not ERK, pathway was linked to elevated MMP-2, -9, and -14 expression levels in mesangial cells from integrin alpha1-null mice. In contrast, elevated MMP-9 levels in mesangial cells from Alport mice were linked to ERK pathway activation. Blockade of gelatinase activity using a small molecule inhibitor (BAY-12-9566) ameliorated progression of proteinuria and restored the architecture of the glomerular basement membrane in alpha1 integrin-null Alport mice, suggesting that elevated gelatinase activity exacerbates glomerular disease progression in these mice.
Collapse
Affiliation(s)
- Dominic Cosgrove
- Boys Town National Research Hospital, 555 No. 30th St., Omaha, NE 68131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Someya S, Yamasoba T, Kujoth GC, Pugh TD, Weindruch R, Tanokura M, Prolla TA. The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase gamma. Neurobiol Aging 2007; 29:1080-92. [PMID: 17363114 PMCID: PMC4090612 DOI: 10.1016/j.neurobiolaging.2007.01.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/19/2007] [Accepted: 01/21/2007] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations may contribute to aging and age-related diseases. Previously, we reported that accumulation of mtDNA mutations is associated with age-related hearing loss in mice carrying a mutator allele of the mitochondrial Polg DNA polymerase. To elucidate the role of mtDNA mutations in the pathogenesis of age-related hearing loss or presbycusis, we performed large scale gene expression analysis to identify mtDNA mutation-responsive genes and biological process categories associated with mtDNA mutations by comparing the gene expression patterns of cochlear tissues from 9-month-old mitochondrial mutator and control mice. mtDNA mutations were associated with transcriptional alterations consistent with impairment of energy metabolism, induction of apoptosis, cytoskeletal dysfunction, and hearing dysfunction in the cochlea of aged mitochondrial mutator mice. TUNEL staining and caspase-3 immunostaining analysis demonstrated that the levels of apoptotic markers were significantly increased in the cochleae of mitochondrial mutator mice compared to age-matched controls. These observations support a new model of how mtDNA mutations impact cochlear function whereby accumulation of mtDNA mutations lead to mitochondrial dysfunction, an associated impairment of energy metabolism, and the induction of an apoptotic program. The data presented here provide the first global assessment at the molecular level of the pathogenesis of age-related disease in mitochondrial mutator mice and reveal previously unrecognized biological pathways associated with mtDNA mutations.
Collapse
Affiliation(s)
- Shinichi Someya
- Departments of Genetics & Medical Genetics, University of Wisconsin, Madison, WI 53706, USA
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo 113-8657, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, University of Tokyo, Tokyo 113-8655, Japan
| | - Gregory C. Kujoth
- Departments of Genetics & Medical Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Thomas D. Pugh
- Department of Medicine and Veterans Administration Hospital, University of Wisconsin, Madison, WI 53705, USA
| | - Richard Weindruch
- Department of Medicine and Veterans Administration Hospital, University of Wisconsin, Madison, WI 53705, USA
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo 113-8657, Japan
| | - Tomas A. Prolla
- Departments of Genetics & Medical Genetics, University of Wisconsin, Madison, WI 53706, USA
- Corresponding author at: Departments of Genetics & Medical Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI 53706, USA. Tel.: +1 608 265 5204; fax: +1 608 262 2976. (T.A. Prolla)
| |
Collapse
|
40
|
Rao VH, Meehan DT, Delimont D, Nakajima M, Wada T, Gratton MA, Cosgrove D. Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:32-46. [PMID: 16816359 PMCID: PMC1698763 DOI: 10.2353/ajpath.2006.050896] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alport syndrome is a glomerular basement membrane (GBM) disease caused by mutations in type IV collagen genes. A unique irregular thickening and thinning of the GBM characterizes the progressive glomerular pathology. The metabolic imbalances responsible for these GBM irregularities are not known. Here we show that macrophage metalloelastase (MMP-12) expression is >40-fold induced in glomeruli from Alport mice and is markedly induced in glomeruli of both humans and dogs with Alport syndrome. Treatment of Alport mice with MMI270 (CGS27023A), a broad spectrum MMP inhibitor that blocks MMP-12 activity, results in largely restored GBM ultrastructure and function. Treatment with BAY-129566, a broad spectrum MMP inhibitor that does not inhibit MMP-12, had no effect. We show that inhibition of CC chemokine receptor 2 (CCR2) receptor signaling with propagermanium blocks induction of MMP-12 mRNA and prevents GBM damage. CCR2 receptor is expressed in glomerular podocytes of Alport mice, suggesting MCP-1 activation of CCR2 on podocytes may underlie induction of MMP-12. These data indicate that the irregular GBM that characterizes Alport syndrome may be mediated, in part, by focal degradation of the GBM due to MMP dysregulation, in particular, MMP-12. Thus, MMP-12/CCR2 inhibitors may provide a novel and effective therapeutic stra-tegy for Alport glomerular disease.
Collapse
Affiliation(s)
- Velidi H Rao
- Boys Town National Research Hospital, 555 No. 30th St., Omaha, NE 68131, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
|