1
|
Makino‐Itou H, Yamatani N, Okubo A, Kiso M, Ajima R, Kanemaki MT, Saga Y. Establishment and characterization of mouse lines useful for endogenous protein degradation via an improved auxin-inducible degron system (AID2). Dev Growth Differ 2024; 66:384-393. [PMID: 39305158 PMCID: PMC11482630 DOI: 10.1111/dgd.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
The development of new technologies opens new avenues in the research field. Gene knockout is a key method for analyzing gene function in mice. Currently, conditional gene knockout strategies are employed to examine temporal and spatial gene function. However, phenotypes are sometimes not observed because of the time required for depletion due to the long half-life of the target proteins. Protein knockdown using an improved auxin-inducible degron system, AID2, overcomes such difficulties owing to rapid and efficient target depletion. We observed depletion of AID-tagged proteins within a few to several hours by a simple intraperitoneal injection of the auxin analog, 5-Ph-IAA, which is much shorter than the time required for target depletion using conditional gene knockout. Importantly, the loss of protein is reversible, making protein knockdown useful to measure the effects of transient loss of protein function. Here, we also established several mouse lines useful for AID2-medicated protein knockdown, which include knock-in mouse lines in the ROSA26 locus; one expresses TIR1(F74G), and the other is the reporter expressing AID-mCherry. We also established a germ-cell-specific TIR1 line and confirmed the protein knockdown specificity. In addition, we introduced an AID tag to an endogenous protein, DCP2 via the CAS9-mediated gene editing method. We confirmed that the protein was effectively eliminated by TIR1(F74G), which resulted in the similar phenotype observed in knockout mouse within 20 h.
Collapse
Affiliation(s)
- Hatsune Makino‐Itou
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
| | - Noriko Yamatani
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
| | - Akemi Okubo
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
| | - Makoto Kiso
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
| | - Rieko Ajima
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
| | - Masato T. Kanemaki
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
- Department of Chromosome ScienceNational Institute of Genetics, ROISMishimaJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
| |
Collapse
|
2
|
Dhamodharan A, Okada H, Muraoka M, Wright D, Okubo A, Saga Y. P-body dynamics revealed by DDX6 protein knockdown via the auxin-inducible degron system. Dev Growth Differ 2022; 64:537-547. [PMID: 36353942 DOI: 10.1111/dgd.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The transcriptome dynamically changes via several transcriptional and post-transcriptional mechanisms. RNA-binding proteins contribute to such mechanisms to regulate the cellular status. DDX6 is one such protein and a core component of processing bodies (P-bodies), membrane-less cytosolic substructures where RNA and proteins localize and are functionally regulated. Despite the importance of DDX6, owing to the lack of tightly controlled methods for protein knockdown, it was difficult to assess in high time resolution how its depletion exactly affects the P-body assembly structure. Therefore, we adopted an advanced protein degradation method, the auxin-induced degron (AID) system, to degrade DDX6 acutely in ES cells. By introducing AID-tagged DDX6 and the E3 ligase subunit of OsTIR1 into ES cells, we successfully degraded DDX6 following auxin analog (indole-3-acetic acid, IAA) treatment. The degradation rate of DDX6 was slower than that of the cytosolic reporter protein EGFP but was enhanced by increasing the OsTIR1 dosage. Lastly, we confirmed that a substantial portion of P-bodies disappears around the time of 1 hr after IAA addition consistent with DDX6 depletion detected by western blot. In accordance with this, we detected transcriptome changes by 6 hr after IAA treatment. Therefore, we demonstrated the applicability of the AID method to gain insight into the function of P-bodies and their protein components.
Collapse
Affiliation(s)
- Adithya Dhamodharan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Hajime Okada
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Masafumi Muraoka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Danelle Wright
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Akemi Okubo
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Matthes S, Mosienko V, Popova E, Rivalan M, Bader M, Alenina N. Targeted Manipulation of Brain Serotonin: RNAi-Mediated Knockdown of Tryptophan Hydroxylase 2 in Rats. ACS Chem Neurosci 2019; 10:3207-3217. [PMID: 30977636 DOI: 10.1021/acschemneuro.8b00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of the biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT). Two existing TPH isoforms are responsible for the generation of two distinct serotonergic systems in vertebrates. TPH1, predominantly expressed in the gastrointestinal tract and pineal gland, mediates 5-HT biosynthesis in non-neuronal tissues, while TPH2, mainly found in the raphe nuclei of the brain stem, is accountable for the production of 5-HT in the brain. Neuronal 5-HT is a key regulator of mood and behavior and its deficiency has been implicated in a variety of neuropsychiatric disorders, e.g., depression and anxiety. To gain further insights into the complexity of central 5-HT modulations of physiological and pathophysiological processes, a new transgenic rat model, allowing an inducible gene knockdown of Tph2, was established based on doxycycline-inducible shRNA-expression. Biochemical phenotyping revealed a functional knockdown of Tph2 mRNA expression following oral doxycycline administration, with subsequent reductions in the corresponding levels of TPH2 enzyme expression and activity. Transgenic rats showed also significantly decreased tissue levels of 5-HT and its degradation product 5-Hydroxyindoleacetic acid (5-HIAA) in the raphe nuclei, hippocampus, hypothalamus, and cortex, while peripheral 5-HT concentrations in the blood remained unchanged. In summary, this novel transgenic rat model allows inducible manipulation of 5-HT biosynthesis specifically in the brain and may help to elucidate the role of 5-HT in the pathophysiology of affective disorders.
Collapse
Affiliation(s)
- Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Valentina Mosienko
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Hatherly Building, Prince of Wales Rd., EX4 4PS Exeter, United Kingdom
| | - Elena Popova
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Marion Rivalan
- Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany
- Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
4
|
Gurumurthy CB, Lloyd KCK. Generating mouse models for biomedical research: technological advances. Dis Model Mech 2019; 12:dmm029462. [PMID: 30626588 PMCID: PMC6361157 DOI: 10.1242/dmm.029462] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, new methods and procedures have been developed to generate genetically engineered mouse models of human disease. This At a Glance article highlights several recent technical advances in mouse genome manipulation that have transformed our ability to manipulate and study gene expression in the mouse. We discuss how conventional gene targeting by homologous recombination in embryonic stem cells has given way to more refined methods that enable allele-specific manipulation in zygotes. We also highlight advances in the use of programmable endonucleases that have greatly increased the feasibility and ease of editing the mouse genome. Together, these and other technologies provide researchers with the molecular tools to functionally annotate the mouse genome with greater fidelity and specificity, as well as to generate new mouse models using faster, simpler and less costly techniques.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
| | - Kevin C Kent Lloyd
- Department of Surgery, School of Medicine, University of California, Davis, CA 95618, USA
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| |
Collapse
|
5
|
Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors. EYE AND VISION 2016; 3:34. [PMID: 28032115 PMCID: PMC5178091 DOI: 10.1186/s40662-016-0063-5] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in adults over 50 years old. Genetic, epidemiological, and molecular studies are beginning to unravel the intricate mechanisms underlying this complex disease, which implicate the lipid-cholesterol pathway in the pathophysiology of disease development and progression. Many of the genetic and environmental risk factors associated with AMD are also associated with other complex degenerative diseases of advanced age, including cardiovascular disease (CVD). In this review, we present epidemiological findings associating AMD with a variety of lipid pathway genes, cardiovascular phenotypes, and relevant environmental exposures. Despite a number of studies showing significant associations between AMD and these lipid/cardiovascular factors, results have been mixed and as such the relationships among these factors and AMD remain controversial. It is imperative that researchers not only tease out the various contributions of such factors to AMD development but also the connections between AMD and CVD to develop optimal precision medical care for aging adults.
Collapse
Affiliation(s)
- Katie L Pennington
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah, Salt Lake City, UT USA
| | - Margaret M DeAngelis
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
6
|
Lin J, Liu Y, Zhan Y, Zhuang C, Liu L, Fu X, Xu W, Li J, Chen M, Cai Z, Huang W. Synthetic Tet-inducible small hairpin RNAs targeting hTERT or Bcl-2 inhibit malignant phenotypes of bladder cancer T24 and 5637 cells. Tumour Biol 2015; 37:3115-21. [PMID: 26427661 DOI: 10.1007/s13277-015-4122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/20/2015] [Indexed: 02/05/2023] Open
Abstract
Small hairpin RNA (shRNA) can inhibit the malignant phenotypes of tumor cell through ribonucleic acid interference (RNAi). However, it is hardly to be regulated and it may induce few phenotypic changes. Here, we build a type of tetracycline (Tet)-inducible vectors which can achieve regulatable expression of shRNA in a time-dependent manner by using synthetic biology approach. In order to prove the effectiveness of this device, we chose hTERT and Bcl-2 as target genes and test the utility of the device on 5637 and T24 cell lines. The experiments show that the Tet-inducible small hairpin RNA can effectively suppress their target genes and generate anti-cancer effects on both 5637 and T24 cell lines. The device we build not only can inhibit proliferation but also can induce apoptosis and suppress migration of the bladder cancer cell lines 5637 and T24. The Tet-inducible small hairpin RNAs may provide a novel strategy for the treatment of human bladder cancer in the future.
Collapse
Affiliation(s)
- Junhao Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
- Shantou University Medical College, Shantou, 515041, China.
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Chengle Zhuang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Xing Fu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Wen Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Shantou University Medical College, Shantou, 515041, China
| | - Mingwei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
- Shantou University Medical College, Shantou, 515041, China.
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
- Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
7
|
Kim J, Badaloni A, Willert T, Zimber-Strobl U, Kühn R, Wurst W, Kieslinger M. An RNAi-based approach to down-regulate a gene family in vivo. PLoS One 2013; 8:e80312. [PMID: 24265806 PMCID: PMC3827190 DOI: 10.1371/journal.pone.0080312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Genetic redundancy poses a major problem to the analysis of gene function. RNA interference allows the down-regulation of several genes simultaneously, offering the possibility to overcome genetic redundancy, something not easily achieved with traditional genetic approaches. Previously we have used a polycistronic miR155-based framework to knockdown expression of three genes of the early B cell factor family in cultured cells. Here we develop the system further by generating transgenic mice expressing the RNAi construct in vivo in an inducible manner. Expression of the transgene from the strong CAG promoter is compatible with a normal function of the basal miRNA/RNAi machinery, and the miR155 framework readily allows inducible expression from the Rosa26 locus as shown by Gfp. However, expression of the transgene in hematopoietic cells does not lead to changes in B cell development and neuronal expression does not affect cerebellar architecture as predicted from genetic deletion studies. Protein as well as mRNA levels generated from Ebf genes in hetero- and homozygous animals are comparable to wild-type levels. A likely explanation for the discrepancy in the effectiveness of the RNAi construct between cultured cells and transgenic animals lies in the efficiency of the sequences used, possibly together with the complexity of the transgene. Since new approaches allow to overcome efficiency problems of RNAi sequences, the data lay the foundation for future work on the simultaneous knockdown of several genes in vivo.
Collapse
Affiliation(s)
- Jeehee Kim
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Aurora Badaloni
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Torsten Willert
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Matthias Kieslinger
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- * E-mail:
| |
Collapse
|
8
|
Affiliation(s)
- MA Crook
- Department of Clinical Biochemistry, University Hospital Lewisham, Lewisham, London SE13 6LH, UK
| |
Collapse
|
9
|
Garwick-Coppens SE, Herman A, Harper SQ. Construction of permanently inducible miRNA-based expression vectors using site-specific recombinases. BMC Biotechnol 2011; 11:107. [PMID: 22087765 PMCID: PMC3252340 DOI: 10.1186/1472-6750-11-107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 11/16/2011] [Indexed: 12/30/2022] Open
Abstract
Background RNA interference (RNAi) is a conserved gene silencing mechanism mediated by small inhibitory microRNAs (miRNAs). Promoter-driven miRNA expression vectors have emerged as important tools for delivering natural or artificially designed miRNAs to eukaryotic cells and organisms. Such systems can be used to query the normal or pathogenic functions of natural miRNAs or messenger RNAs, or to therapeutically silence disease genes. Results As with any molecular cloning procedure, building miRNA-based expression constructs requires a time investment and some molecular biology skills. To improve efficiency and accelerate the construction process, we developed a method to rapidly generate miRNA expression vectors using recombinases instead of more traditional cut-and-paste molecular cloning techniques. In addition to streamlining the construction process, our cloning strategy provides vectors with added versatility. In our system, miRNAs can be constitutively expressed from the U6 promoter, or inducibly expressed by Cre recombinase. We also engineered a built-in mechanism to destroy the vector with Flp recombinase, if desired. Finally, to further simplify the construction process, we developed a software package that automates the prediction and design of optimal miRNA sequences using our system. Conclusions We designed and tested a modular system to rapidly clone miRNA expression cassettes. Our strategy reduces the hands-on time required to successfully generate effective constructs, and can be implemented in labs with minimal molecular cloning expertise. This versatile system provides options that permit constitutive or inducible miRNA expression, depending upon the needs of the end user. As such, it has utility for basic or translational applications.
Collapse
Affiliation(s)
- Sara E Garwick-Coppens
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, 43205, USA
| | | | | |
Collapse
|
10
|
Podolska K, Svoboda P. Targeting genes in living mammals by RNA interference. Brief Funct Genomics 2011; 10:238-47. [DOI: 10.1093/bfgp/elr013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Ko JK, Choi KH, Zhao X, Komazaki S, Pan Z, Weisleder N, Ma J. A versatile single-plasmid system for tissue-specific and inducible control of gene expression in transgenic mice. FASEB J 2011; 25:2638-49. [PMID: 21518849 DOI: 10.1096/fj.11-181560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe a novel transgenic system for tissue-specific and inducible control of gene expression in mice. The system employs a tetracycline-responsive CMV promoter that controls transcription of a short-hairpin RNA (shRNA) that remains nonfunctional until an interrupting reporter cassette is excised by Cre recombinase. Insertion of Dicer and Drosha RNase processing sites within the shRNA allows generation of siRNA to knock down a target gene efficiently. Tissue-specific shRNA expression is achieved through the use of appropriate inducer mice with tissue-specific expression of Cre. We applied this system to regulate expression of junctophilins (JPs), genes essential for maintenance of membrane ultrastructure and Ca(2+) signaling in muscle. Transgenic mice with skeletal muscle-specific expression of shRNA against JP mRNAs displayed no basal change of JP expression before treatment with doxycycline (Dox), while inducible and reversible knockdown of JPs was achieved by feeding mice with Dox-containing water. Dox-induced knockdown of JPs led to abnormal junctional membrane structure and Ca(2+) signaling in adult muscle fibers, consistent with essential roles of JPs in muscle development and function. This transgenic approach can be applied for inducible and reversible gene knockdown or gene overexpression in many different tissues, thus providing a versatile system for elucidating the physiological gene function in viable animal models.
Collapse
Affiliation(s)
- Jae-Kyun Ko
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Interference RNA for in vivo Knock-down of gene expression or genome-wide screening using shRNA. Methods Mol Biol 2010; 597:189-209. [PMID: 20013235 DOI: 10.1007/978-1-60327-389-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
With the lack of tools available to manipulate the rat genome, alternative technologies have been investigated to generate loss-of-function rat models by gene invalidation. The recent demonstration that RNA interference (RNAi)-mediated gene silencing occurs in rodents has opened new opportunities for rat functional genetics. In this chapter, we provide some practical guidelines for RNAi working in rat, based on the recent design and development of mice and rat Knock down models.
Collapse
|
13
|
Gama Sosa MA, De Gasperi R, Elder GA. Animal transgenesis: an overview. Brain Struct Funct 2009; 214:91-109. [PMID: 19937345 DOI: 10.1007/s00429-009-0230-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
Transgenic animals are extensively used to study in vivo gene function as well as to model human diseases. The technology for producing transgenic animals exists for a variety of vertebrate and invertebrate species. The mouse is the most utilized organism for research in neurodegenerative diseases. The most commonly used techniques for producing transgenic mice involves either the pronuclear injection of transgenes into fertilized oocytes or embryonic stem cell-mediated gene targeting. Embryonic stem cell technology has been most often used to produce null mutants (gene knockouts) but may also be used to introduce subtle genetic modifications down to the level of making single nucleotide changes in endogenous mouse genes. Methods are also available for inducing conditional gene knockouts as well as inducible control of transgene expression. Here, we review the main strategies for introducing genetic modifications into the mouse, as well as in other vertebrate and invertebrate species. We also review a number of recent methodologies for the production of transgenic animals including retrovirus-mediated gene transfer, RNAi-mediated gene knockdown and somatic cell mutagenesis combined with nuclear transfer, methods that may be more broadly applicable to species where both pronuclear injection and ES cell technology have proven less practical.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | | | | |
Collapse
|
14
|
Donaldson ZR, Yang SH, Chan AWS, Young LJ. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors. Biol Reprod 2009; 81:1189-95. [PMID: 19641177 DOI: 10.1095/biolreprod.109.077529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.
Collapse
Affiliation(s)
- Zoe R Donaldson
- Program in Neuroscience, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
15
|
Lee SK, Kumar P. Conditional RNAi: towards a silent gene therapy. Adv Drug Deliv Rev 2009; 61:650-64. [PMID: 19394374 DOI: 10.1016/j.addr.2009.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
Abstract
RNA interference (RNAi) has the potential to permit the downregulation of virtually any gene. While transgenic RNAi enables stable propagation of the resulting phenotype to progeny, the dominant nature of RNAi limits its use to applications where the continued suppression of gene expression does not disturb normal cell functioning. This is of particular importance when the target gene product is essential for cell survival, development or differentiation. It is therefore desirable that knockdown be externally regulatable. This review is aimed at providing an overview of the approaches for conditional RNAi in mammalian systems, with a special mention of studies employing these approaches to target therapeutically/biologically relevant molecules, their advantages and disadvantages, and a pointer towards approaches best suited for RNAi-based gene therapy.
Collapse
Affiliation(s)
- Sang-Kyung Lee
- Department of Bioengineering, Hanyang University, Seoul 133-797, South Korea
| | | |
Collapse
|
16
|
Honda M, Hosoda M, Kanzawa N, Tsuchiya T, Toyo-oka T. Specific knockdown of delta-sarcoglycan gene in C2C12 in vitro causes post-translational loss of other sarcoglycans without mechanical stress. Mol Cell Biochem 2008; 323:149-59. [PMID: 19083155 DOI: 10.1007/s11010-008-9975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 11/28/2008] [Indexed: 11/27/2022]
Abstract
The precise role of delta-sarcoglycan (SG) that is constitutively expressed in skeletal muscle cells and may serve for maintaining the sarcolemmal integrity has not been identified. The delta-SG protein is at first among SG complex. To specifically identify the role in C(2)C(12) cells during the myogenesis, we screened several RNA interference (RNAi) candidates at first, and knocked down both levels of the mRNA and protein, employing adenovirus-mediated RNAi. We found no morphological alteration at both myoblast and myotube stages by suppression of delta-SG. The specific knockdown of delta-SG accompanied a concomitant decrease of alpha-, beta-, and gamma-SGs preserving normal levels of each transcript. As for the localization, alpha-, beta-, and gamma-SGs were weakly stained on the cell membrane in delta-SG knockdown cells, whereas each SG in control cell was localized both on the cell membrane and myoplasm abundantly. This enhanced post-translational loss would represent similitude of the progression of cardiomuscular diseases in vitro. Different from cardiac muscle cells, skeletal muscle cell culture without muscle contraction may imply that mechanical stress per se is not primarily involved in the progression of limb-girdle muscular dystrophy. Furthermore, we have observed translocation of calpain-2 to cell membrane in delta-SG knockdown cells, suggesting that Ca(2+)-sensitive proteases, calpains closely take part in post-translational proteolysis.
Collapse
Affiliation(s)
- Michiyo Honda
- Department of Materials and Life Science, Faculty of Science and Engineering, Sophia University, Tokyo, 102-8554, Japan.
| | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE Hypoxia-inducible factor-1alpha (HIF-1alpha) primarily mediates the hypoxic response. HIF-1alpha induction by various stimuli contributes to cell proliferation and survival. To investigate the effect of HIF-1alpha, we used small interfering RNA (siRNA), and expected that cell apoptosis and sensitivity to chemotherapeutic drug increase, when we blocked the HIF-1alpha gene. Thus we performed in vitro and in vivo experiment to clarify the effect of hypoxia-inducible factor-1alpha on tumor growth. MATERIALS AND METHODS We made control and HIF-1alpha siRNA using vector plasmid and then transfected Mia-paca cell lines with these RNAs. After selection with geneticin, two new cell lines were made, confirmed via immunoblotting. After treating with gemcitabine, each cell line was assayed to confirm the effect of HIF-1alpha siRNA using the cell proliferation assay and capase-3 assay. And then in vivo study was performed using female athymic nude mice. After subcutaneously injecting each new cell lines, intraperitoneal gemicitabine chemotherapy was performed for 3 weeks. During that period, we analyzed the difference of tumor growth rate. RESULTS The tumor growth of HIF-1alpha siRNA-transfected group was slower than that of the control group both in vitro and in vivo experiment. CONCLUSION The suppression of HIF-1alpha results in decrease of cell proliferation and increase of chemosensitivity of pancreatic cancer cell line. Therefore, targeting the HIF-1alpha may be useful treatment modality for some pancreatic cancers.
Collapse
Affiliation(s)
- Lily Yang
- Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
18
|
Fechner H, Kurreck J. Vector-Mediated and Viral Delivery of Short Hairpin RNAs. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Henry Fechner
- Department of Cardiology and Pneumology, Charité-University Medicine Berlin, Campus Benjamin Franklin Hindenburgdamm 30 12200 Berlin Germany
| | - Jens Kurreck
- Institute for Chemistry and Biochemistry, Free University Berlin Thielallee 63 14195 Berlin Germany
- Institute of Industrial Genetics, University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
19
|
Lin CH, Chang HS, Yu WCY. USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. J Biol Chem 2008; 283:15681-8. [PMID: 18408009 DOI: 10.1074/jbc.m708278200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HPV-16E7 is a major transforming protein, which has been implicated in the development of cervical cancer. The stability of E7 is thus important to ensure its fully functional status. Using the yeast two-hybrid system, we found that USP11 (ubiquitin-specific protease 11), a member of a protein family that cleaves polyubiquitin chains and/or ubiquitin precursors, interacts and forms a specific complex with HPV-16E7. Our results indicate that the USP11 can greatly increase the steady state level of HPV-16E7 by reducing ubiquitination and attenuating E7 degradation. In contrast, a catalytically inactive mutant of USP11 abolished the deubiquitinating ability and returned E7 to a normal rate of degradation. Moreover, USP11 not only protected E7 from ubiquitination but also influenced E7 function as a modulator of cell growth status. These results suggest that USP11 plays an important role in regulating the levels of E7 protein and subsequently affects the biological function of E7 as well as its contribution to cell transformation by HPV-16E7.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 350, Taiwan
| | | | | |
Collapse
|
20
|
Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen Med 2008; 3:217-35. [DOI: 10.2217/17460751.3.2.217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the ‘zoo’ of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, D-69120 Heidelber, Germany
| | - Leonid Eshkind
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Thomas Lehmann
- TRM-Leipzig, Philipp-Rosenthal-Strasse 55, University of Leipzig, 04103 Leipzig, Germany
| | - Jan M Braun
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Frank Emmrich
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Jan G Hengstler
- Dortmund University of Technology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Institute of Legal Medicine and Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
21
|
Abstract
Conditional gene silencing in mammalian cells, via the controlled expression of short hairpin RNAs (shRNAs), is an effective method for studying gene function, particularly if the gene is essential for cell survival or development. Here we describe a simple and rapid protocol for the generation of tetracycline (Tet)-inducible vectors that express shRNAs in a time- and dosage-dependent manner. Tet-operator (TetO) sequences responsive to occupation by the Tet-repressor (TetR) were inserted at alternative positions within the wild-type H1 promoter and cloned into a eukaryotic expression vector. Additional cloning sites downstream of the promoter enable the insertion of shRNA sequences. This Tet-inducible shRNA expression system can be used for both transient and stable RNA interference (RNAi) approaches to control gene function in a spatiotemporal fashion. The entire protocol (preparation of constructs, generation of stable cell lines and functional analysis) can be completed in 3 months.
Collapse
|
22
|
Li YL, Quarles LD, Zhou HH, Xiao ZS. RNA interference and its application in bone-related diseases. Biochem Biophys Res Commun 2007; 361:817-21. [PMID: 17686458 DOI: 10.1016/j.bbrc.2007.07.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/24/2007] [Indexed: 01/17/2023]
Abstract
RNA interference (RNAi) is the most exciting insight in biology in past decades, which provided new perspectives into the genome-wide surveys of gene function by targeted degradation of mRNA with the introduction of small interfering RNAs (siRNAs) or small hairpin RNAs (shRNAs) in a large variety of organisms, and turned out to be a more efficient and convenient method compared with the traditional knockout pathway. What's more, as the enhancement of its stability and improvement of its delivery vehicles, RNAi is bound to be a practical tool in determine gene function first in vitro and then in vivo. In this paper, we will focus on the recent achievements of RNAi and also depict the development of RNAi as a potentially powerful tool in studying bone-related diseases.
Collapse
Affiliation(s)
- Ya Lin Li
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | | | | | | |
Collapse
|
23
|
Wu RH, Cheng TL, Lo SR, Hsu HC, Hung CF, Teng CF, Wu MP, Tsai WH, Chang WT. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells. J Gene Med 2007; 9:620-34. [PMID: 17486668 DOI: 10.1002/jgm.1048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a powerful and widely used gene silencing strategy for studying gene function in mammalian cells. Transient or constitutive expression of either small interfering RNA (siRNA) or short hairpin RNA (shRNA) results in temporal or persistent inhibition of gene expression, respectively. A tightly regulated and reversibly inducible RNAi-mediated gene silencing approach could conditionally control gene expression in a temporal or spatial manner that provides an extremely useful tool for studying gene function involved in cell growth, survival and development. MATERIAL AND METHODS In this study, we have developed a lactose analog isopropyl thiogalactose (IPTG)-responsive lac repressor-operator-controlled RNA polymerase III (Pol III)-dependent human RNase P RNA (H1) promoter-driven inducible siRNA expression system. To demonstrate its tight regulation, efficient induction and reversible inhibition, we have used this system to conditionally control the expression of firefly luciferase and human tumor suppressor protein p53 in both transient transfection cells and established stable clones. RESULTS The results showed that this inducible siRNA expression system could efficiently induce conditional inhibition of these two genes in a dose- and time-dependent manner by administration of the inducing agent IPTG as well as being fully reverted after withdrawal of IPTG. In particular, this system could conditionally inhibit the expression of both the genes in not only established stable clones but also transient transfection cells, which should greatly increase its usefulness and convenience. CONCLUSIONS The results presented in this study clearly indicate that this inducible siRNA expression system could efficiently, conditionally and reversibly inhibit gene expression with only very low or undetectable background silencing effects under non-inducing condition. Thus, this inducible siRNA expression system provides an ideal genetic switcher allowing the inducible and reversible control of specific gene activity in mammalian cells.
Collapse
Affiliation(s)
- Ren-Huang Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan 701, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics. BMC Mol Biol 2007; 8:30. [PMID: 17493262 PMCID: PMC1884169 DOI: 10.1186/1471-2199-8-30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 05/10/2007] [Indexed: 12/16/2022] Open
Abstract
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes.
Collapse
|
25
|
Hameyer D, Loonstra A, Eshkind L, Schmitt S, Antunes C, Groen A, Bindels E, Jonkers J, Krimpenfort P, Meuwissen R, Rijswijk L, Bex A, Berns A, Bockamp E. Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol Genomics 2007; 31:32-41. [PMID: 17456738 DOI: 10.1152/physiolgenomics.00019.2007] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ligand-activated Cre recombinases are widely used for studying gene function in vitro and in conditional mouse models. To compare ligand-dependent Cre recombinases, different Cre estrogen receptor fusions were introduced into the ROSA26 locus of embryonic stem (ES) cells and assayed for genotoxicity and recombination efficiency. Of the tested recombinases, the CreERT2 variant showed no toxicity and was highly responsive to ligand induction. To constitutively express CreERT2 in mice and also to clarify whether the CreERT2 system displays background activity, we generated a knock-in mouse line harboring the CreERT2 coding region under the control of the ROSA26 locus. Analysis of this ROSA26-CreERT2 deleter mouse with different reporter strains revealed ubiquitous recombination in the embryo and partial recombination in peripheral and hematopoietic tissues but no effective CreERT2 expression in the brain. Furthermore, using flow cytometry, we found low-level background recombination in noninduced bitransgenic ROSA26-CreERT2/EGFP reporter mice. To determine whether background activity poses a general problem for conducting conditional in vivo experiments with the ROSA26-CreERT2 deleter, we used a sensitive conditional skin cancer model. In this assay, cancer induction was completely restricted to induced bitransgenic CreERT2/K-Ras(V12) mice, whereas noninduced control animals did not show any sign of cancer, indicating the usefulness of the ROSA-CreERT2 system for regulating conditional gene expression in vivo. The ROSA26-CreERT2 deleter strain will be a convenient experimental tool for studying gene function under circumstances requiring partial induction of recombination in peripheral tissues and will be useful for uncovering previously unknown or unsuspected phenotypes.
Collapse
Affiliation(s)
- Dorothe Hameyer
- Institute of Toxicology/Mouse Genetics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou H, Falkenburger BH, Schulz JB, Tieu K, Xu Z, Xia XG. Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 2007; 3:242-50. [PMID: 17389931 PMCID: PMC1820878 DOI: 10.7150/ijbs.3.242] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 03/02/2007] [Indexed: 01/09/2023] Open
Abstract
Transgenic RNAi, an alternative to the gene knockout approach, can induce hypomorphic phenotypes that resemble those of the gene knockout in mice. Conditional transgenic RNAi is an attractive choice of method for reverse genetics in vivo because it can achieve temporal and spatial silencing of targeted genes. Pol III promoters such as U6 are widely used to drive the expression of RNAi transgenes in animals. Tested in transgenic mice, a Cre-loxP inducible U6 promoter drove the broad expression of an shRNA against the Pink1 gene whose loss-of-functional mutations cause one form of familial Parkinson's disease. The expression of the shRNA was tightly regulated and, when induced, silenced the Pink1 gene product by more than 95% in mouse brain. However, these mice did not develop dopaminergic neurodegeneration, suggesting that silencing of the Pink1 gene expression from embryo in mice is insufficient to cause similar biochemical or morphological changes that are observed in Parkinson's disease. The results demonstrate that silencing of the PINK1 gene does not induce a reliable mouse model for Parkinson's disease, but that technically the inducible U6 promoter is useful for conditional RNAi in vivo.
Collapse
Affiliation(s)
- Hongxia Zhou
- 1. Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, 1020 Locust Avenue, Philadelphia, PA 19107, USA
| | - Björn H Falkenburger
- 2. Department of Neurodegeneration and Restorative Research, DFG Research Center Molecular Physiology of the Brain and Center of Neurological Disease, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Jörg B Schulz
- 2. Department of Neurodegeneration and Restorative Research, DFG Research Center Molecular Physiology of the Brain and Center of Neurological Disease, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Kim Tieu
- 3. Department of Environmental Medicine and Center for Aging and Developmental Biology, University of Rochester, School of Medicine and Dentistry, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Zuoshang Xu
- 4. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Xu Gang Xia
- 1. Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, 1020 Locust Avenue, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Davidson BL, Boudreau RL. RNA Interference: A Tool for Querying Nervous System Function and an Emerging Therapy. Neuron 2007; 53:781-8. [PMID: 17359914 DOI: 10.1016/j.neuron.2007.02.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNA interference (RNAi), a mediator of gene silencing, has swiftly become one of the most exciting and applicable biological discoveries. There has been rapid progress in identifying RNAi pathway components and elucidating the mechanisms of microRNA (miRNA) biogenesis and gene suppression. As a result, RNAi technologies have been successfully employed in a variety of systems as biological tools, and studies are underway to test the therapeutic utility of RNAi. In the span of several years, significant advances in the delivery of inhibitory RNAs in the nervous system have been made. We have glimpses into how endogenous miRNAs interface with neuronal development and function; in addition, RNAi has shown therapeutic efficacy in several mouse models of human neurological conditions. In this review, we summarize the current state-of-the-art of RNAi and its utility to neuroscientists.
Collapse
Affiliation(s)
- Beverly L Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
28
|
Fei Z, Chen Z, Wang Z, Fei J. Conditional RNA interference achieved by Oct-1 POU/rtTA fusion protein activator and a modified TRE-mouse U6 promoter. Biochem Biophys Res Commun 2007; 354:906-12. [PMID: 17276396 DOI: 10.1016/j.bbrc.2007.01.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 01/14/2007] [Indexed: 11/23/2022]
Abstract
RNA interference (RNAi) is a powerful technique and is widely used to down-regulate expression of specific genes in cultured cells and in vivo. In this paper, we report our development of a new tetracycline-inducible RNAi expression using a modified TRE-mouse U6 promoter in which the distal sequence element (DSE) was replaced by the tetracycline-responsive element (TRE). The modified TRE-mouse U6 promoter can be activated by a Tet-on version tetracycline-regulated artificial activator rTetOct which was constructed by fusing the rtTA DNA binding domain with the Oct-1 POU activation domain. This rTetOct/TRE-U6 system was successfully applied to conditionally and reversibly down-regulate the expression of endogenous p53 gene in MCF7 cells, and the expression of beta-defensin gene (mBin1b) either transiently expressed in COS7 cells or stably expressed in CHO cells.
Collapse
Affiliation(s)
- Zhaoliang Fei
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Model Organism Research Center, SIBS, CAS, Shanghai, China
| | | | | | | |
Collapse
|
29
|
Bock HH, Herz J, May P. Conditional animal models for the study of lipid metabolism and lipid disorders. Handb Exp Pharmacol 2007:407-39. [PMID: 17203665 DOI: 10.1007/978-3-540-35109-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The advent of technologies that allow conditional mutagenesis has revolutionized our ability to explore gene functions and to establish animal models of human diseases. Both aspects have proven to be of particular importance in the study of lipid-related disorders. Classical approaches to gene inactivation by conventional gene targeting strategies have been successfully applied to generate animal models like the LDL receptor- and the apolipoprotein E-knockout mice, which are still widely used to study diverse aspects of atherosclerosis, lipid transport, and neurodegenerative disease. In many cases, however, simply inactivating the gene of interest has resulted in early lethal or complex phenotypes which are difficult to interpret. In recent years, additional tools have therefore been developed that allow the spatiotemporally controlled manipulation of the genome, as described in detail in Part I of this volume. Our aim is to provide an exemplary survey of the application of different conditional mutagenesis techniques in lipid research in order to illustrate their potential to unravel physiological functions of a broad range of genes involved in lipid homeostasis.
Collapse
Affiliation(s)
- H H Bock
- Zentrum für Neurowissenschaften, Universität Freiburg, Albertstrasse 23, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
30
|
Abstract
Silencing of gene expression by RNA interference (RNAi) has become a powerful tool for functional genomics in mammalian cells. Furthermore, RNAi holds promise as a simple, fast and cost-effective approach to studying mammalian gene function in vivo and as a novel therapeutic approach. This review provides an overview of the progress of RNAi in vivo, with emphasis on systemic/local siRNA delivery, viral shRNA vectors, shRNA vector transgenic mice and conditional systems to control shRNA vectors. Taken together, the data from 80 in vivo studies show that RNAi is a useful tool that offers new opportunities for functional genomics in mice.
Collapse
Affiliation(s)
- R Kühn
- Institute for Developmental Genetics, GSF, National Research Center for Environment and Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
31
|
Shukla V, Coumoul X, Deng CX. RNAi-based conditional gene knockdown in mice using a U6 promoter driven vector. Int J Biol Sci 2007; 3:91-9. [PMID: 17304337 PMCID: PMC1796951 DOI: 10.7150/ijbs.3.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/05/2007] [Indexed: 01/02/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool widely used for studying gene function in a number of species. We have previously developed an approach that allows conditional expression of a polymerase III promoter based small hairpin RNA (shRNA) in mice using the Cre-LoxP system. This approach uses a U6 promoter, which is inactive due to the presence of a ploxPneo cassette in the promoter; this promoter can be activated after excision of the neo gene in transgenic mice that express a Cre recombinase transgene. As a proof of principle, we have previously knocked down over 95% of Fgfr2 transcripts in mouse germlines, leading to embryonic lethality, while restricting the knockdown to the progress zone of the limb results in live animals with malformation of digits of both the forelimbs and hindlimbs. We now provide a detailed protocol, including a simplified single-step cloning procedure for vector construction. This method provides a fast yet efficient way to decipher gene functions in vivo in a tissue specific manner.
Collapse
Affiliation(s)
- Vivek Shukla
- Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
32
|
Kourtidis A, Eifert C, Conklin DS. RNAi applications in target validation. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:1-21. [PMID: 17249494 DOI: 10.1007/978-3-540-31339-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The emergence of systems biology is certain to transform the identification and validation of therapeutic targets in modern drug discovery. A relatively recent systems biology approach is functional genomics, which identifies the molecular mechanisms responsible for a specific phenotype by interrogating the activity of all of an organism's genes. Initially undertaken in model organisms such as Caenorhabditis elegans, Saccharomyces cerevisiae, and Drosophila melanogaster, functional genomics has now moved into the realm of mammalian cells both in vitro and in vivo due to the development of RNA interference. RNA interference is a conserved biological process that has evolved to specifically and efficiently silence genes. Genome-wide screens using RNA interference have proven powerful in elucidating components of functionally related pathways and have therefore become integral for the development of new and improved therapeutic targets. This article provides an overview of many of the systems biology approaches taken, using RNA interference, in order to demonstrate how it may be used today for drug discovery and tomorrow as a targeted therapy.
Collapse
Affiliation(s)
- A Kourtidis
- Department of Biomedical Sciences, Gen"NY"Sis Center for Excellence Cancer Genomics, University at Albany, Rensselaer, NY 12144, USA
| | | | | |
Collapse
|
33
|
Abstract
RNA interference (RNAi) has emerged as a powerful tool to downregulate the expression of specific genes. Drug-inducible systems allowing for conditional RNAi that offer the unique potential to modulate expression of virtually any endogenous gene in the cell have been recently developed. Their applications are very broad, ranging from basic studies of gene function to translational research including modeling of human diseases, analysis of potential side effects of candidate drugs, testing of gene-based therapies and loss-of-function screens. Here we summarize the state of the art of systems allowing for drug-controllable knockdown, and provide a description of their current and future applications.
Collapse
Affiliation(s)
- Maciej Wiznerowicz
- School of Life Sciences, National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
34
|
Coumoul X, Deng CX. RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie 2006; 88:637-43. [PMID: 16426724 DOI: 10.1016/j.biochi.2005.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
RNA interference (RNAi) is a simple and powerful tool widely used to study gene functions in many species. Vector-based systems using RNA polymerase III promoters have been developed to achieve stable expression of small interfering RNA (siRNA) or small hairpin RNA (shRNA) in mammalian cells. Recent investigations demonstrated that when, combined with the Cre-loxP system, the vector-based RNAi can be used to achieve conditional or tissue specific knockdown of endogenous genes with high efficiency in mice. Here, we review these recent progresses and discuss the advantages, limitations and future development of this emerging technology.
Collapse
Affiliation(s)
- Xavier Coumoul
- INSERM UMR-S 490, Unite de Toxicologie Moléculaire, 45, rue des Saints-Pères, 75270 Paris cedex 06, France.
| | | |
Collapse
|
35
|
Tian X, Zhang P, Zamek-Gliszczynski MJ, Brouwer KLR. Knocking down transport: applications of RNA interference in the study of drug transport proteins. Drug Metab Rev 2006; 37:705-23. [PMID: 16393889 DOI: 10.1080/03602530500364098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) is a gene silencing process mediated by double-stranded RNA (dsRNA). The silencing process is comprised of an initiation step, in which small interfering RNA (siRNA) is introduced to the cell, and an effector step, which involves degrading mRNA molecules of the target gene. RNA interference has been observed in most organisms from plants to vertebrates. As a gene silencing approach, RNAi has proven to be extremely useful in characterizing gene function and developing new tools in cancer therapy and drug delivery. The development of RNAi-related technologies is an emerging area in biomedical research. In this review, recent progress in the application of RNAi to the study of transport proteins is summarized and evaluated; the advantages, disadvantages and future directions of RNAi technology are discussed.
Collapse
Affiliation(s)
- Xianbin Tian
- University of North Carolina at Chapel Hill, School of Pharmacy, Chapel Hill, North Carolina 27599-7360, USA
| | | | | | | |
Collapse
|
36
|
Xia XG, Zhou H, Samper E, Melov S, Xu Z. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet 2006; 2:e10. [PMID: 16450009 PMCID: PMC1358942 DOI: 10.1371/journal.pgen.0020010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 12/14/2005] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) has been used increasingly for reverse genetics in invertebrates and mammalian cells, and has the potential to become an alternative to gene knockout technology in mammals. Thus far, only RNA polymerase III (Pol III)–expressed short hairpin RNA (shRNA) has been used to make shRNA-expressing transgenic mice. However, widespread knockdown and induction of phenotypes of gene knockout in postnatal mice have not been demonstrated. Previous studies have shown that Pol II synthesizes micro RNAs (miRNAs)—the endogenous shRNAs that carry out gene silencing function. To achieve efficient gene knockdown in mammals and to generate phenotypes of gene knockout, we designed a construct in which a Pol II (ubiquitin C) promoter drove the expression of an shRNA with a structure that mimics human miRNA miR-30a. Two transgenic lines showed widespread and sustained shRNA expression, and efficient knockdown of the target gene Sod2. These mice were viable but with phenotypes of SOD2 deficiency. Bigenic heterozygous mice generated by crossing these two lines showed nearly undetectable target gene expression and phenotypes consistent with the target gene knockout, including slow growth, fatty liver, dilated cardiomyopathy, and premature death. This approach opens the door of RNAi to a wide array of well-established Pol II transgenic strategies and offers a technically simpler, cheaper, and quicker alternative to gene knockout by homologous recombination for reverse genetics in mice and other mammalian species. Reverse genetics studies gene functions by altering a gene and observing the consequences. A powerful method of reverse genetics in mammals is gene knockout by homologous recombination, which mutates a gene to prevent its functional expression. Using this method, investigators have revealed the functions of many genes. However, this method is relatively complex, time-consuming, and costly. In addition, this method is limited to studies in mice because it is not well established in other mammalian species. The authors of this study tested an alternative method using RNA interference (RNAi), which is a widely conserved mechanism in eukaryotes and can mediate gene-specific silencing. These investigators used RNA polymerase II (Pol II) to express a short hairpin RNA (shRNA) that triggers destruction of the mRNA-encoding Mn superoxide dismutase (SOD2) in transgenic mice. These mice exhibit phenotypes that were typical in Sod2 knockout mice, including elevated levels of oxidative stress in various tissues, fat deposition in liver and muscles, dilated cardiomyopathy, and premature death. These results open the door of RNAi to a wide array of well-established Pol II transgenic strategies and offer a technically simpler, cheaper, and quicker alternative to gene knockout for reverse genetics in mice and other mammalian species.
Collapse
Affiliation(s)
- Xu-Gang Xia
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hongxia Zhou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Enrique Samper
- Buck Institute for Age Research, Novato, California, United States of America
| | - Simon Melov
- Buck Institute for Age Research, Novato, California, United States of America
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Alisky JM. Neurotransmitter depletion may be a cause of dementia pathology rather than an effect. Med Hypotheses 2006; 67:556-60. [PMID: 16647220 DOI: 10.1016/j.mehy.2006.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is widespread loss of acetylcholine and other neurotransmitters in Alzheimer's disease and vascular dementia. It has generally been assumed that death of neurons causes neurotransmitter loss, but alternatively neurotransmitter depletion itself may at least contribute to neurodegeneration. PRESENTATION OF THE HYPOTHESIS Transgenic mice and pigs with inducible 50% depletion of acetylcholine, dopamine, norepinephrine, serotonin, gamma-aminobutyric acid (GABA) and corticotrophin releasing factor will reproduce Alzheimer's disease or vascular dementia neuropathology, and pharmacologically restoring neurotransmitters will attenuate neuronal injury. TESTING THE HYPOTHESIS Through nuclear transfer cloning, transgenic mice and pigs would be created with transgenes on one X chromosome, so that transgenes would only be expressed in half of all cells in female animals. Transgenes would encode tetracycline-inducible short hairpin RNA (shRNA) designed to form small interfering RNA (siRNA) to knock down neurotransmitter biosynthesis in late adulthood. Transgene expressing neurons could be readily identified in tissue sections with fluorescent reporter genes. Cholinesterase inhibitors, antidepressants, benzodiazepines and CRF would then be administered in an attempt to rescue degenerating neurons. IMPLICATIONS OF THE HYPOTHESIS The mice and pigs could serve as an important new model for the pathogenesis of dementia, especially if pharmacologically restoring neurotransmitters rescues degenerating neurons. The animals may also be useful for as models for other disorders such as multi-system atrophy, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Joseph Martin Alisky
- Marshfield Clinic Research Foundation, 1000 Oak Avenue, Marshfield, WI 54449, USA.
| |
Collapse
|
38
|
Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107:222-39. [PMID: 15908010 PMCID: PMC7112686 DOI: 10.1016/j.pharmthera.2005.03.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 12/23/2022]
Abstract
In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21–23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.
Collapse
|
39
|
Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett 2005; 579:5974-81. [PMID: 16199038 DOI: 10.1016/j.febslet.2005.08.070] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/26/2005] [Accepted: 08/28/2005] [Indexed: 01/03/2023]
Abstract
Successful applications of RNAi in mammalian cells depend upon effective knockdown of targeted transcripts and efficient intracellular delivery of either preformed si/shRNAs or vector expressed si/shRNAs. We have previously demonstrated that 27 base pair double stranded RNAs which are substrates for Dicer can be up to 100 times more potent than 21mer siRNAs. In this mini-review we elaborate upon the rationale and design strategies for creating Dicer substrate RNAs that provide enhanced knockdown of targeted RNAs and minimize the utilization of the sense strand as RNAi effectors. Expression of shRNAs or siRNAs in mammalian cells can be achieved via transcription from either Pol II or Pol III promoters. There are certain constrictions in designing such vectors, and these are described here. Additionally, we review strategies for inducible shRNA expression and the various viral vectors that can be used to transduce shRNA genes into a variety of cells and tissues. The overall goal of this mini-review is to provide an overview of available approaches for optimizing RNAi mediated down regulation of gene expression in mammalian cells via RNA interference. Although the primary focus is the use of RNAi mediated cleavage of targeted transcripts, it is highly probable that some of the approaches described herein will be applicable to RNAi mediated inhibition of translation and transcriptional gene silencing.
Collapse
Affiliation(s)
- Mohammed Amarzguioui
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010-3011, USA
| | | | | |
Collapse
|
40
|
Shoji M, Chuma S, Yoshida K, Morita T, Nakatsuji N. RNA interference during spermatogenesis in mice. Dev Biol 2005; 282:524-34. [PMID: 15950615 DOI: 10.1016/j.ydbio.2005.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Spermatogenesis consists of complex cellular and developmental processes, such as the mitotic proliferation of spermatogonial stem cells, meiotic division of spermatocytes, and morphogenesis of haploid spermatids. In this study, we show that RNA interference (RNAi) functions throughout spermatogenesis in mice. We first carried out in vivo DNA electroporation of the testis during the first wave of spermatogenesis to enable foreign gene expression in spermatogenic cells at different stages of differentiation. Using prepubertal testes at different ages and differentiation stage-specific promoters, reporter gene expression was predominantly observed in spermatogonia, spermatocytes, and round spermatids. This method was next applied to introduce DNA vectors that express small hairpin RNAs, and the sequence-specific reduction in the reporter gene products was confirmed at each stage of spermatogenesis. RNAi against endogenous Dmc1, which encodes a DNA recombinase that is expressed and functionally required in spermatocytes, led to the same phenotypes observed in null mutant mice. Thus, RNAi is effective in male germ cells during mitosis and meiosis as well as in haploid cells. This experimental system provides a novel tool for the rapid, first-pass assessment of the physiological functions of spermatogenic genes in vivo.
Collapse
Affiliation(s)
- Masanobu Shoji
- Department of Development and Differentiation, Institute for Frontier Medical Science, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
41
|
Coumoul X, Shukla V, Li C, Wang RH, Deng CX. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 2005; 33:e102. [PMID: 15987787 PMCID: PMC1159121 DOI: 10.1093/nar/gni100] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA interference (RNAi)-mediated gene knockdown is a potent approach for studying gene function. We have previously reported a plasmid-based, tamoxifen-inducible gene knockdown system in cultured cells using a combined RNAi and Cre-LoxP system. Here, we validate this system in mouse and show that it can be used to suppress the expression of an endogenous gene (Fgfr2) with high efficiency. We show that transgenic mice carrying the U6-ploxPneo-Fgfr2 RNAi construct are normal, displaying Fgfr2 transcripts equivalent to those of wild-type controls, indicating that the U6 promoter is inactive in vivo due to the presence of the neo in the promoter. After excision of the neo by crossing with transgenic mice that express Cre in the mouse germline, the U6 promoter is activated, leading to over 95% reduction of Fgfr2 transcripts, and consequently, embryonic lethality. On the other hand, activation of the U6 promoter using transgenic mice that express Cre in the progress zone of the limb results in live mice with malformation of digits of both the forelimbs and hindlimbs. This method provides a fast, yet efficient way to decipher gene functions in vivo in a tissue-specific manner.
Collapse
Affiliation(s)
| | | | | | | | - Chu-Xia Deng
- To whom the correspondence should be addressed. Tel: +1 301 402 7225; Fax: +1 301 480 1135;
| |
Collapse
|