1
|
Hunsberger HC, Lee S, Jin M, Lanio M, Whye A, Cha J, Scarlata M, Matthews LC, Jayaseelan K, Denny CA. Sex-Specific Effects of Anxiety on Cognition and Activity-Dependent Neural Networks: Insights From (Female) Mice and (Wo)men. Biol Psychiatry 2025; 97:900-914. [PMID: 39349155 PMCID: PMC11949853 DOI: 10.1016/j.biopsych.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Neuropsychiatric symptoms, such as depression and anxiety, are observed in 90% of patients with Alzheimer's disease (AD), two-thirds of whom are women. Neuropsychiatric symptoms usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brainwide neuronal mechanisms. METHODS To gain mechanistic insight into how anxiety affects AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity using the ArcCreERT2 x eYFP (enhanced yellow fluorescent protein) x amyloid precursor protein/presenilin 1 (APP/PS1) (AD) mice. The Alzheimer's Disease Neuroimaging Initiative dataset was used to determine the impact of anxiety on AD progression in humans. RESULTS Female APP/PS1 mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control mice and male mice. Brainwide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in APP/PS1 mice. Sex-specific eYFP+/c-Fos+ changes were observed; female APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in dorsal CA3, whereas male APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in the dorsal dentate gyrus. In the Alzheimer's Disease Neuroimaging Initiative dataset, anxiety predicted transition to dementia. Female participants positive for anxiety and amyloid transitioned more quickly to dementia than male participants. CONCLUSIONS While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that there are sex differences in AD network dysfunction and that personalized medicine may benefit male and female patients with AD rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York; Mental Health Data Science, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Michelle Jin
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Marcos Lanio
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Alicia Whye
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Jiook Cha
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Data Science Institute, Columbia University, New York, New York; Department of Psychology, Seoul National University, Seoul, South Korea
| | - Miranda Scarlata
- Department of Neuroscience, Vassar College, Poughkeepsie, New York
| | - Louise C Matthews
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York.
| |
Collapse
|
2
|
O'Mahony C, Hidalgo-Lanussa O, Barreto GE. Unveiling FOXO3's metabolic contribution to menopause and Alzheimer's disease. Exp Gerontol 2025; 200:112679. [PMID: 39778695 DOI: 10.1016/j.exger.2025.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The increasing prevalence of Alzheimer's disease (AD) calls for a comprehensive exploration of its complex etiology, with a focus on sex-specific vulnerability, particularly the heightened susceptibility observed in postmenopausal women. Neurometabolic alterations during the endocrine transition emerge as early indicators of AD pathology, including reduced glucose metabolism and increased amyloid-beta (Aβ) deposition. The fluctuating endocrine environment, marked by declining estradiol levels and reduced estrogen receptor beta (ERβ) activity, further exacerbates this process. In this context, here we explore the potential of forkhead box O3 (FOXO3) as a critical mediator linking metabolic disturbances to hormonal decline. We propose that FOXO3 plays a key role in the intersection of menopause and AD, given its dysregulation in both AD patients and postmenopausal women, modulating cellular metabolism through interactions with the AMPK/AKT/PI3K pathways. This relationship highlights the intersection between hormonal changes and increased AD susceptibility. This review aims to open a discussion on FOXO3's contribution to the metabolic dysregulation seen in menopause and its impact on the progression of AD. Understanding the functional role of FOXO3 in menopause-associated metabolic changes could lead to targeted therapeutic strategies, offering novel insights for managing for this condition.
Collapse
Affiliation(s)
- Christopher O'Mahony
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Oscar Hidalgo-Lanussa
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
3
|
Almutairi JA, Kidd EJ. Biological Sex Disparities in Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:79-104. [PMID: 39485650 DOI: 10.1007/7854_2024_545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Alzheimer's disease is a highly complex and multifactorial neurodegenerative disorder, with age being the most significant risk factor. The incidence of Alzheimer's disease doubles every 5 years after the age of 65. Consequently, one of the major challenges in Alzheimer's disease research is understanding how the brain changes with age. Gaining insights into these changes could help identify individuals who are more prone to developing Alzheimer's disease as they age. Over the past 25 years, studies on brain aging have examined thousands of human brains to explore the neuronal basis of age-related cognitive decline. However, most of these studies have focused on adults over 60, often neglecting the critical menopause transition period. During menopause, women experience a substantial decline in ovarian sex hormone production, with a decrease of about 90% in estrogen levels. Estrogen is known for its neuroprotective effects, and its significant loss during menopause affects various biological systems, including the brain. Importantly, despite known differences in dementia risk between sexes, the impact of biological sex and sex hormones on brain aging and the development of Alzheimer's disease remains underexplored.
Collapse
Affiliation(s)
- Jawza A Almutairi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emma J Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Rizoska B, Zachrisson O, Appelkvist P, Boström E, Björklund M, Rachalski A, Gkanatsiou E, Kylefjord H, Söderberg L, Nygren P, Eriksson F, Ishikawa Y, Fukushima T, Koyama A, Osswald G, Lannfelt L, Möller C. Disease modifying effects of the amyloid-beta protofibril-selective antibody mAb158 in aged Tg2576 transgenic mice. Mol Cell Neurosci 2024; 130:103950. [PMID: 38901655 DOI: 10.1016/j.mcn.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Amyloid beta (Aβ) peptides, which aggregate to form neocortical plaques in Alzheimer's disease, exist in states that range from soluble monomers and oligomers/protofibrils to insoluble fibrillar amyloid. The present study evaluated the effects of mAb158, a mouse monoclonal antibody version of lecanemab that preferentially binds to soluble Aβ protofibrils, in aged transgenic mice (Tg2576) with Aβ pathology. Female Tg2576 mice (12 months old) received weekly intraperitoneal mAb158 (35 mg/kg) or vehicle for 4 weeks or for 18 weeks, with or without a subsequent 12-week off-treatment period. Aβ protofibril levels were significantly lower in mAb158-treated animals at both 4 and 18 weeks, while longer treatment duration (18 weeks) was required to observe significantly lower Aβ42 levels in insoluble brain fractions and lower Aβ plaque load. Following the off-treatment period, comparison of the vehicle- and mAb158-treated mice demonstrated that the Aβ protofibril levels, insoluble Aβ42 levels and Aβ plaque load remained significantly lower in mAb158-treated animals, as compared with age-matched controls. However, there was a significant increase of brain accumulation of both the Aβ protofibril levels, insoluble Aβ42 levels and Aβ plaque load after treatment cessation. Thus, repeated mAb158 treatment of aged Tg2576 mice first reduced Aβ protofibril levels within 4 weeks of treatment, which then was followed by a reduction of amyloid plaque pathology within 18 weeks of treatment. These effects were maintained 12 weeks after the final dose, indicating that mAb158 had a disease-modifying effect on the Aβ pathology in this mouse model. In addition, brain accumulation of both Aβ protofibril levels and amyloid pathology progressed after discontinuation of the treatment which supports the importance of continued treatment with mAb158 to maintain the effects on Aβ pathology.
Collapse
Affiliation(s)
| | | | | | - Emma Boström
- BioArctic AB, Warfvinges väg 35, 112 51 Stockholm, Sweden
| | - My Björklund
- BioArctic AB, Warfvinges väg 35, 112 51 Stockholm, Sweden
| | | | | | | | | | - Patrik Nygren
- BioArctic AB, Warfvinges väg 35, 112 51 Stockholm, Sweden
| | | | | | | | | | | | - Lars Lannfelt
- BioArctic AB, Warfvinges väg 35, 112 51 Stockholm, Sweden; Dept. of Public Health/Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | | |
Collapse
|
5
|
Kolahchi Z, Henkel N, Eladawi MA, Villarreal EC, Kandimalla P, Lundh A, McCullumsmith RE, Cuevas E. Sex and Gender Differences in Alzheimer's Disease: Genetic, Hormonal, and Inflammation Impacts. Int J Mol Sci 2024; 25:8485. [PMID: 39126053 PMCID: PMC11313277 DOI: 10.3390/ijms25158485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Two-thirds of Americans with Alzheimer's disease are women, indicating a profound variance between the sexes. Variances exist between the sexes in the age and intensity of the presentation, cognitive deficits, neuroinflammatory factors, structural and functional brain changes, as well as psychosocial and cultural circumstances. Herein, we summarize the existing evidence for sexual dimorphism and present the available evidence for these distinctions. Understanding these complexities is critical to developing personalized interventions for the prevention, care, and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Nicholas Henkel
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Mahmoud A. Eladawi
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Emma C. Villarreal
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Prathik Kandimalla
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Anna Lundh
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
- ProMedica Neurosciences Center, Toledo, OH 43606, USA
| | - Elvis Cuevas
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| |
Collapse
|
6
|
Singhaarachchi PH, Antal P, Calon F, Culmsee C, Delpech JC, Feldotto M, Geertsema J, Hoeksema EE, Korosi A, Layé S, McQualter J, de Rooij SR, Rummel C, Slayo M, Sominsky L, Spencer SJ. Aging, sex, metabolic and life experience factors: Contributions to neuro-inflammaging in Alzheimer's disease research. Neurosci Biobehav Rev 2024; 162:105724. [PMID: 38762130 DOI: 10.1016/j.neubiorev.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.
Collapse
Affiliation(s)
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, 1111, Hungary
| | - Frédéric Calon
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec-Laval University, Quebec G1V0A6, Canada; International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg D-35032, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany
| | - Jean-Christophe Delpech
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Jorine Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Emmy E Hoeksema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Sophie Layé
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, 1018, the Netherlands
| | - Christoph Rummel
- Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Luba Sominsky
- Barwon Health, Geelong, Victoria 3220, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3217, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
7
|
Ono M, Ito T, Yamaki S, Hori Y, Zhou Q, Zhao X, Muramoto S, Yamamoto R, Furuyama T, Sakata-Haga H, Hatta T, Hamaguchi T, Kato N. Spatiotemporal development of the neuronal accumulation of amyloid precursor protein and the amyloid plaque formation in the brain of 3xTg-AD mice. Heliyon 2024; 10:e28821. [PMID: 38596059 PMCID: PMC11002285 DOI: 10.1016/j.heliyon.2024.e28821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
The amyloid plaque is a hallmark of Alzheimer's disease. The accumulation of the amyloid precursor protein (APP) in the neuronal structure is assumed to lead to amyloid plaque formation through the excessive production of β-amyloid protein. To study the relationship between the neuronal accumulation of APP and amyloid plaque formation, we histologically analyzed their development in the different brain regions in 3xTg-AD mice, which express Swedish mutated APP (APPSWE) in the neurons. Observation throughout the brain revealed APPSWE-positive somata in the broad regions. Quantitative model analysis showed that the somatic accumulation of APPSWE developed firstly in the hippocampus from a very early age (<1 month) and proceeded slower in the isocortex. In line with this, the hippocampus was the first region to form amyloid plaques at the age of 9-12 months, while amyloid plaques were rarely observed in the isocortex. Females had more APPSWE-positive somata and plaques than males. Furthermore, amyloid plaques were observed in the lateral septum and pontine grey, which did not contain APPSWE-positive somata but only the APPSWE-positive fibers. These results suggested that neuronal accumulation of APPSWE, both in somatodendritic and axonal domains, is closely related to the formation of amyloid plaques.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama, 930-0194, Japan
| | - Sachiko Yamaki
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Yoshie Hori
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Qing Zhou
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Xirun Zhao
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Shinji Muramoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| |
Collapse
|
8
|
Liu P, Lapcinski IP, Hlynialuk CJ, Steuer EL, Loude TJ, Shapiro SL, Kemper LJ, Ashe KH. Aβ∗56 is a stable oligomer that impairs memory function in mice. iScience 2024; 27:109239. [PMID: 38433923 PMCID: PMC10905009 DOI: 10.1016/j.isci.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Aβ∗56 is a non-fibrillar Aβ assembly that is linked to memory deficits. Previous studies did not decipher specific forms of Aβ present in Aβ∗56. Here, we confirmed the memory-impairing characteristics of Aβ∗56 and extended its biochemical characterization. We used anti-Aβ(1-x), anti-Aβ(x-40), anti-Aβ(x-42), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576, 5xFAD, and APP/TTA mice. In Tg2576, Aβ∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aβ(1-40). In 5xFAD, Aβ∗56 is composed of Aβ(1-42), whereas in APP/TTA, it contains both Aβ(1-40) and Aβ(1-42). When injected into the hippocampus of wild-type mice, Aβ∗56 derived from Tg2576 mice impairs memory. The unusual stability of this oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
Affiliation(s)
- Peng Liu
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ian P. Lapcinski
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris J.W. Hlynialuk
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L. Steuer
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas J. Loude
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha L. Shapiro
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa J. Kemper
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen H. Ashe
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Criscuolo C, Chartampila E, Ginsberg SD, Scharfman HE. Dentate Gyrus Granule Cells Show Stability of BDNF Protein Expression in Mossy Fiber Axons with Age, and Resistance to Alzheimer's Disease Neuropathology in a Mouse Model. eNeuro 2024; 11:ENEURO.0192-23.2023. [PMID: 38164567 PMCID: PMC10913042 DOI: 10.1523/eneuro.0192-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is important in the development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated in Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are often downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus granule cells (GCs), has been understudied, and not in controlled conditions. Therefore, we evaluated MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild-type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-β (Aβ) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either the genotype or sex. Notably, MF BDNF protein was correlated with GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. We also report the novel finding that Aβ in GCs or the GC layer was minimal even at old ages. The results indicate that MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity dependent. The resistance of GCs to long-term Aβ accumulation provides an opportunity to understand how to protect vulnerable neurons from increased Aβ levels and therefore has translational implications.
Collapse
Affiliation(s)
- Chiara Criscuolo
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child & Adolescent Psychiatry, NewYork University Grossman School of Medicine, New York, NY 10016
| | - Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience & Physiology, NewYork University Grossman School of Medicine, New York, NY 10016
- Psychiatry, NewYork University Grossman School of Medicine, New York, NY 10016
- NYU Neuroscience Institute, NewYork University Grossman School of Medicine, New York, NY 10016
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child & Adolescent Psychiatry, NewYork University Grossman School of Medicine, New York, NY 10016
- Department of Neuroscience & Physiology, NewYork University Grossman School of Medicine, New York, NY 10016
- NYU Neuroscience Institute, NewYork University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
10
|
Ceyzériat K, Jaques E, Gloria Y, Badina A, Millet P, Koutsouvelis N, Dipasquale G, Frisoni GB, Zilli T, Garibotto V, Tournier BB. Low-Dose Radiation Therapy Impacts Microglial Inflammatory Response without Modulating Amyloid Load in Female TgF344-AD Rats. J Alzheimers Dis 2024; 98:1001-1016. [PMID: 38489181 DOI: 10.3233/jad-231153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background Low-dose radiation therapy (LD-RT) has demonstrated in preclinical and clinical studies interesting properties in the perspective of targeting Alzheimer's disease (AD), including anti-amyloid and anti-inflammatory effects. Nevertheless, studies were highly heterogenous with respect to total doses, fractionation protocols, sex, age at the time of treatment and delay post treatment. Recently, we demonstrated that LD-RT reduced amyloid peptides and inflammatory markers in 9-month-old TgF344-AD (TgAD) males. Objective As multiple studies demonstrated a sex effect in AD, we wanted to validate that LD-RT benefits are also observed in TgAD females analyzed at the same age. Methods Females were bilaterally treated with 2 Gy×5 daily fractions, 2 Gy×5 weekly fractions, or 10 fractions of 1 Gy delivered twice a week. The effect of each treatment on amyloid load and inflammation was evaluated using immunohistology and biochemistry. Results A daily treatment did not affect amyloid and reduced only microglial-mediated inflammation markers, the opposite of the results obtained in our previous male study. Moreover, altered fractionations (2 Gy×5 weekly fractions or 10 fractions of 1 Gy delivered twice a week) did not influence the amyloid load or neuroinflammatory response in females. Conclusions A daily treatment consequently appears to be the most efficient for AD. This study also shows that the anti-amyloid and anti-inflammatory response to LD-RT are, at least partly, two distinct mechanisms. It also emphasizes the necessity to assess the sex impact when evaluating responses in ongoing pilot clinical trials testing LD-RT against AD.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
- CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emma Jaques
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Yesica Gloria
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Bertarelli Foundation Gene Therapy Platform, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Aurélien Badina
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Nikolaos Koutsouvelis
- Department of Oncology, Division of Radiation Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanna Dipasquale
- Department of Oncology, Division of Radiation Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Department of Oncology, Division of Radiation Oncology, Geneva University Hospitals, Geneva, Switzerland
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
- CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
11
|
Hanafy AS, Lamprecht A, Dietrich D. Local perfusion of capillaries reveals disrupted beta-amyloid homeostasis at the blood-brain barrier in Tg2576 murine Alzheimer's model. Fluids Barriers CNS 2023; 20:85. [PMID: 37993886 PMCID: PMC10666337 DOI: 10.1186/s12987-023-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Parenchymal accumulation of beta-amyloid (Aβ) characterizes Alzheimer's disease (AD). Aβ homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aβ transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aβ by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aβ accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aβ fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aβ-RAGE binding.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Hunsberger HC, Lee S, Jin M, Lanio M, Whye A, Cha J, Scarlata M, Jayaseelan K, Denny CA. Sex-Specific Effects of Anxiety on Cognition and Activity-Dependent Neural Networks: Insights from (Female) Mice and (Wo)Men. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548180. [PMID: 37503264 PMCID: PMC10369916 DOI: 10.1101/2023.07.07.548180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms. METHODS To gain mechanistic insight into how anxiety impacts AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity utilizing the ArcCreERT2 x enhanced yellow fluorescent protein (eYFP) x APP/PS1 (AD) mice. The ADNI dataset was used to determine the impact of anxiety on AD progression in human subjects. RESULTS Female AD mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control (Ctrl) mice and male mice. Brain-wide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in AD mice. Sex-specific memory trace changes were observed; female AD mice exhibited impaired memory traces in dorsal CA3 (dCA3), while male AD mice exhibited impaired memory traces in the dorsal dentate gyrus (dDG). In the ADNI dataset, anxiety predicted transition to dementia. Female subjects positive for anxiety and amyloid transitioned more quickly to dementia than male subjects. CONCLUSIONS While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that AD network dysfunction is sexually dimorphic, and that personalized medicine may benefit male and female AD patients rather than a one size fits all approach.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, USA
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science/The Chicago Medical School; North Chicago, IL, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC); New York, NY, USA
- Mental Health Data Science, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | - Michelle Jin
- Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY, USA
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Marcos Lanio
- Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY, USA
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Alicia Whye
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC); New York, NY, USA
| | - Jiook Cha
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University; New York, NY, USA
- Division of Child and Adolescent Psychiatry, NYSPI/RFMH; New York, NY, USA
- Data Science Institute, Columbia University; New York, NY, USA
- Department of Psychology, Seoul National University; Seoul, South Korea
| | - Miranda Scarlata
- Department of Neuroscience, Vassar College; Poughkeepsie, NY USA
- Department of Social Policy and Intervention, University of Oxford; Oxford, England
| | - Keerthana Jayaseelan
- Barnard College, Columbia University; New York, NY, USA
- Department of Medicine, New York Medical College/Westchester Medical Center; Valhalla, NY, USA
| | - Christine. A. Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC); New York, NY, USA
| |
Collapse
|
13
|
Calvo N, Einstein G. Steroid hormones: risk and resilience in women's Alzheimer disease. Front Aging Neurosci 2023; 15:1159435. [PMID: 37396653 PMCID: PMC10313425 DOI: 10.3389/fnagi.2023.1159435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
More women have Alzheimer disease (AD) than men, but the reasons for this phenomenon are still unknown. Including women in clinical research and studying their biology is key to understand not just their increased risk but also their resilience against the disease. In this sense, women are more affected by AD than men, but their reserve or resilience mechanisms might delay symptom onset. The aim of this review was to explore what is known about mechanisms underlying women's risk and resilience in AD and identify emerging themes in this area that merit further research. We conducted a review of studies analyzing molecular mechanisms that may induce neuroplasticity in women, as well as cognitive and brain reserve. We also analyzed how the loss of steroid hormones in aging may be linked to AD. We included empirical studies with human and animal models, literature reviews as well as meta-analyses. Our search identified the importance of 17-b-estradiol (E2) as a mechanism driving cognitive and brain reserve in women. More broadly, our analysis revealed the following emerging perspectives: (1) the importance of steroid hormones and their effects on both neurons and glia for the study of risk and resilience in AD, (2) E2's crucial role in women's brain reserve, (3) women's verbal memory advantage as a cognitive reserve factor, and (4) E2's potential role in linguistic experiences such as multilingualism and hearing loss. Future directions for research include analyzing the reserve mechanisms of steroid hormones on neuronal and glial plasticity, as well as identifying the links between steroid hormone loss in aging and risk for AD.
Collapse
Affiliation(s)
- Noelia Calvo
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Women’s College Research Institute, Toronto, ON, Canada
- Centre for Life Course and Aging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Xi Y, Zhang Y, Zhou Y, Liu Q, Chen X, Liu X, Grune T, Shi L, Hou M, Liu Z. Effects of methionine intake on cognitive function in mild cognitive impairment patients and APP/PS1 Alzheimer's Disease model mice: Role of the cystathionine-β-synthase/H 2S pathway. Redox Biol 2022; 59:102595. [PMID: 36608589 PMCID: PMC9813720 DOI: 10.1016/j.redox.2022.102595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
As a dietary intervention, methionine restriction (MR) has been reported to increase longevity and improve metabolism disorders. However, the effects of MR on alleviating neurodegenerative diseases such as Alzheimer's disease (AD) are largely unexplored. Here we sought to investigate the neuroprotective effects of low methionine intake in mild cognitive impairment (MCI) patients and APP/PS1 AD model mice, and to uncover the underlying mechanisms. In a cohort composed of 45 individuals diagnosed with MCI and 61 healthy controls without cognitive impairment, methionine intake was found to be positively associated with the increased risk of MCI, where no sex differences were observed. We further conducted a 16-week MR intervention (0.17% methionine, w/w) on APP/PS1 AD model mice. Although MR reduced Aβ accumulation in the brain of both male and female APP/PS1 mice, MR improved cognitive function only in male mice, as assessed by the Morris water maze test. Consistently, MR restored synapse ultrastructure and alleviated mitochondrial dysfunction by enhancing mitochondrial biogenesis in the brain of male APP/PS1 mice. Importantly, MR effectively balanced the redox status and activated cystathionine-β-synthase (CBS)/H2S pathway in the brain of male APP/PS1 mice. Together, our study indicated that lower dietary methionine intake is associated with improved cognitive function, in which CBS/H2S pathway plays an essential role. MR could be a promising nutritional intervention for preventing AD development.
Collapse
Affiliation(s)
- Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiwen Zhou
- School of Public Health, College of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qing Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 710119, China.
| | - Min Hou
- School of Public Health, College of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Northwest A&F University, Shenzhen Research Institute, Shenzen, Guangdong, 518000, China.
| |
Collapse
|
15
|
Zhao DP, Lei X, Wang YY, Xue A, Zhao CY, Xu YM, Zhang Y, Liu GL, Geng F, Xu HD, Zhang N. Sagacious confucius’ pillow elixir ameliorates Dgalactose induced cognitive injury in mice via estrogenic effects and synaptic plasticity. Front Pharmacol 2022; 13:971385. [PMID: 36249769 PMCID: PMC9555387 DOI: 10.3389/fphar.2022.971385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing concern in modern society, and there is currently a lack of effective therapeutic drugs. Sagacious Confucius’ Pillow Elixir (SCPE) has been studied for the treatment of neurodegenerative diseases such as AD. This study aimed to reveal the key components and mechanisms of SCPE’s anti-AD effect by combining Ultra-high Performance Liquid Chromatography-electrostatic field Orbitrap combined high-resolution Mass Spectrometry (UPLC-LTQ/Orbitrap-MS) with a network pharmacology approach. And the mechanism was verified by in vivo experiments. Based on UPLC-LTQ/Orbitrap-MS technique identified 9 blood components from rat serum containing SCPE, corresponding to 113 anti-AD targets, and 15 of the 113 targets had high connectivity. KEGG pathway enrichment analysis showed that estrogen signaling pathway and synaptic signaling pathway were the most significantly enriched pathways in SCPE anti-AD, which has been proved by in vivo experiments. SCPE can exert estrogenic effects in the brain by increasing the amount of estrogen in the brain and the expression of ERα receptors. SCPE can enhance the synaptic structure plasticity by promoting the release of brain-derived neurotrophic factor (BDNF) secretion and improving actin polymerization and coordinates cofilin activity. In addition, SCPE also enhances synaptic functional plasticity by increasing the density of postsynaptic densified 95 (PSD95) proteins and the expression of functional receptor AMPA. SCPE is effective for treatment of AD and the mechanism is related to increasing estrogenic effects and improving synaptic plasticity. Our study revealed the synergistic effect of SCPE at the system level and showed that SCPE exhibits anti-AD effects in a multi-component, multi-target and multi-pathway manner. All these provide experimental support for the clinical application and drug development of SCPE in the prevention and treatment of AD.
Collapse
Affiliation(s)
- De-Ping Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xia Lei
- Institute of Traditional Chinese Medicine, Wuxi Traditional Chinese Medicine Hospital, Jiangsu, Wuxi, China
| | - Yue-Ying Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ao Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yu Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yan-Ming Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Yue Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Guo-Liang Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Fang Geng
- Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, China
- *Correspondence: Fang Geng, ; Hong-Dan Xu, ; Ning Zhang,
| | - Hong-Dan Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
- College of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu, China
- *Correspondence: Fang Geng, ; Hong-Dan Xu, ; Ning Zhang,
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
- *Correspondence: Fang Geng, ; Hong-Dan Xu, ; Ning Zhang,
| |
Collapse
|
16
|
Boitet M, Eun H, Lee T, Kim J, Grailhe R. Non-invasive In Vivo Brain Astrogenesis and Astrogliosis Quantification Using a Far-red E2-Crimson Transgenic Reporter Mouse. Mol Neurobiol 2022; 59:6740-6753. [PMID: 36001234 DOI: 10.1007/s12035-022-02997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Despite the adaptation of major clinical imaging modalities for small animals, optical bioluminescence imaging technology is the main approach readily reporting gene activity. Yet, in vivo bioluminescence monitoring requires the administration and diffusion of a substrate to the tissues of interest, resulting in experimental variability, high reagent cost, long acquisition time, and stress to the animal. In our study, we avoid such issues upon generating a new transgenic mouse (GFAP-E2crimson) expressing the far-red fluorescent protein E2-crimson under the control of the glial fibrillary acidic protein (GFAP) promoter. Using microscopy, we validated the selective expression of the reporter in the astrocyte cell population and by non-invasive in vivo fluorescence imaging its detection through the scalps and skulls of live animals. In addition, we performed a longitudinal study validating by in vivo imaging that the E2-crimson fluorescence signal is up-regulated, in pups during astrogenesis and in adult mice during astrogliosis upon kainic acid administration. Furthermore, upon crossing GFAP-E2crimson transgenic with 5XFAD Alzheimer's disease mice model, we were able to quantify the chronic inflammation triggered by amyloid deposit and aging over 18 months. As many diseases and conditions can trigger neuroinflammation, we believe that the GFAP-E2crimson reporter mice model delivers tremendous value for the non-invasive quantification of astrogliosis responses in living animals.
Collapse
Affiliation(s)
- Maylis Boitet
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Taekwan Lee
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea.
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
17
|
Freire-Regatillo A, Diaz-Pacheco S, Frago LM, Arévalo MÁ, Argente J, Garcia-Segura LM, de Ceballos ML, Chowen JA. Sex Differences in Hypothalamic Changes and the Metabolic Response of TgAPP Mice to a High Fat Diet. Front Neuroanat 2022; 16:910477. [PMID: 35958733 PMCID: PMC9361789 DOI: 10.3389/fnana.2022.910477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
The propensity to develop neurodegenerative diseases is influenced by diverse factors including genetic background, sex, lifestyle, including dietary habits and being overweight, and age. Indeed, with aging, there is an increased incidence of obesity and neurodegenerative processes, both of which are associated with inflammatory responses, in a sex-specific manner. High fat diet (HFD) commonly leads to obesity and markedly affects metabolism, both peripherally and centrally. Here we analyzed the metabolic and inflammatory responses of middle-aged (11–12 months old) transgenic amyloid precursor protein (TgAPP) mice of both sexes to HFD for 18 weeks (starting at 7–8 months of age). We found clear sex differences with females gaining significantly more weight and fat mass than males, with a larger increase in circulating leptin levels and expression of inflammatory markers in visceral adipose tissue. Glycemia and insulin levels increased in HFD fed mice of both sexes, with TgAPP mice being more affected than wild type (WT) mice. In the hypothalamus, murine amyloid β (Aβ) levels were increased by HFD intake exclusively in males, reaching statistical significance in TgAPP males. On a low fat diet (LFD), TgAPP males had significantly lower mRNA levels of the anorexigenic neuropeptide proopiomelanocortin (POMC) than WT males, with HFD intake decreasing the expression of the orexigenic neuropeptides Agouti-related peptide (AgRP) and neuropeptide Y (NPY), especially in TgAPP mice. In females, HFD increased POMC mRNA levels but had no effect on AgRP or NPY mRNA levels, and with no effect on genotype. There was no effect of diet or genotype on the hypothalamic inflammatory markers analyzed or the astrogliosis marker glial acidic protein (GFAP); however, levels of the microglial marker Iba-1 increased selectively in male TgAPP mice. In summary, the response to HFD intake was significantly affected by sex, with fewer effects due to genotype. Hypothalamic inflammatory cytokine expression and astrogliosis were little affected by HFD in middle-aged mice, although in TgAPP males, which showed increased Aβ, there was microglial activation. Thus, excess intake of diets high in fat should be avoided because of its possible detrimental consequences.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Universidad Aútonoma de Madrid, Madrid, Spain
| | | | - Laura M. Frago
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Universidad Aútonoma de Madrid, Madrid, Spain
- Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Ángeles Arévalo
- Cajal Institute, CSIC, Madrid, Spain
- Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Universidad Aútonoma de Madrid, Madrid, Spain
- Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Luis M. Garcia-Segura
- Cajal Institute, CSIC, Madrid, Spain
- Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Julie A. Chowen
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen
| |
Collapse
|
18
|
Effects of Genistein and Exercise Training on Brain Damage Induced by a High-Fat High-Sucrose Diet in Female C57BL/6 Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1560435. [PMID: 35620577 PMCID: PMC9129997 DOI: 10.1155/2022/1560435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
In recent decades, a shift in the nutritional landscape to the Western-style diet has led to an unprecedented rise in the prevalence of obesity and neurodegenerative diseases. Consumption of a healthy diet and engaging in regular physical activity represents safe and affordable approaches known to mitigate the adverse consequences of the Western diet. We examined whether genistein treatment, exercise training, and a combination treatment (genistein and exercise training) mitigated the effects of a Western diet-induced by high-fat, high-sugar (HFHS) in brain of female mice. HFHS increased the amyloid-beta (Aβ) load and phosphorylation of tau, apoptosis, and decreased brain-derived neurotrophic factor (BDNF) levels. Exercise training and genistein each afforded modest protection on Aβ accumulation and apoptosis, and both increased BDNF. The greatest neuroprotective effect occurred with combination treatment. BDNF and all markers of Aβ accumulation, phosphorylation of tau, and apoptosis were improved with combined treatment. In a separate series of experiments, PC12 cells were exposed to high glucose (HG) and palmitate (PA) to determine cell viability with genistein as well as in the presence of tamoxifen, an estrogen receptor antagonist, to assess a mechanism of action of genistein on cell apoptosis. Genistein prevented the neurotoxic effects of HG and PA in PC12 cells and tamoxifen blocked the beneficial effects of genistein on apoptosis. Our results indicate the beneficial effects of genistein and exercise training on HFHS-induced brain damage. The benefits of genistein may occur via estrogen receptor-mediated pathways.
Collapse
|
19
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
20
|
Lecordier S, Pons V, Rivest S, ElAli A. Multifocal Cerebral Microinfarcts Modulate Early Alzheimer’s Disease Pathology in a Sex-Dependent Manner. Front Immunol 2022; 12:813536. [PMID: 35173711 PMCID: PMC8841345 DOI: 10.3389/fimmu.2021.813536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) constitutes a major cause of dementia, affecting more women than men. It is characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles (NFTs) formation, associated with a progressive cognitive decline. Evidence indicates that AD onset increases the prevalence of cerebral microinfarcts caused by vascular pathologies, which occur in approximately in half of AD patients. In this project, we postulated that multifocal cerebral microinfarcts decisively influence early AD-like pathology progression in a sex dependent manner in young APP/PS1 mice. For this purpose, we used a novel approach to model multifocal microinfarcts in APP/PS1 mice via the sporadic occlusions of the microvasculature. Our findings indicate that microinfarcts reduced Aβ deposits without affecting soluble Aβ levels in the brain of male and female APP/PS1 mice, while causing rapid and prolonged cognitive deficits in males, and a mild and transient cognitive decline in females. In male APP/PS1 mice, microinfarcts triggered an acute hypoperfusion followed by a chronic hyperperfusion. Whereas in female APP/PS1 mice, microinfarcts caused an acute hypoperfusion, which was recovered in the chronic phase. Microinfarcts triggered a robust microglial activation and recruitment of peripheral monocytes to the lesion sites and Aβ plaques more potently in female APP/PS1 mice, possibly accounting for the reduced Aβ deposition. Finally, expression of Dickkopf-1 (DKK1), which plays a key role in mediating synaptic and neuronal dysfunction in AD, was strongly induced at the lesion sites of male APP/PS1 mice, while its expression was reduced in females. Our findings suggest that multifocal microinfarcts accelerate AD pathology more potently in young males compared to young females independently upon Aβ pathology via modulation of neurovascular coupling, inflammatory response, and DKK1 expression. Our results suggest that the effects of microinfarcts should be taken into consideration in AD diagnosis, prognosis, and therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Vincent Pons
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Ayman ElAli,
| |
Collapse
|
21
|
Bouter C, Irwin C, Franke TN, Beindorff N, Bouter Y. Quantitative Brain Positron Emission Tomography in Female 5XFAD Alzheimer Mice: Pathological Features and Sex-Specific Alterations. Front Med (Lausanne) 2021; 8:745064. [PMID: 34901060 PMCID: PMC8661108 DOI: 10.3389/fmed.2021.745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Successful back-translating clinical biomarkers and molecular imaging methods of Alzheimer's disease (AD), including positron emission tomography (PET), are very valuable for the evaluation of new therapeutic strategies and increase the quality of preclinical studies. 18F-Fluorodeoxyglucose (FDG)–PET and 18F-Florbetaben–PET are clinically established biomarkers capturing two key pathological features of AD. However, the suitability of 18F-FDG– and amyloid–PET in the widely used 5XFAD mouse model of AD is still unclear. Furthermore, only data on male 5XFAD mice have been published so far, whereas studies in female mice and possible sex differences in 18F-FDG and 18F-Florbetaben uptake are missing. The aim of this study was to evaluate the suitability of 18F-FDG– and 18F-Florbetaben–PET in 7-month-old female 5XFAD and to assess possible sex differences between male and female 5XFAD mice. We could demonstrate that female 5XFAD mice showed a significant reduction in brain glucose metabolism and increased cerebral amyloid deposition compared with wild type animals, in accordance with the pathology seen in AD patients. Furthermore, we showed for the first time that the hypometabolism in 5XFAD mice is gender-dependent and more pronounced in female mice. Therefore, these results support the feasibility of small animal PET imaging with 18F-FDG- and 18F-Florbetaben in 5XFAD mice in both, male and female animals. Moreover, our findings highlight the need to account for sex differences in studies working with 5XFAD mice.
Collapse
Affiliation(s)
- Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Timon N Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
22
|
Wartchow KM, Rodrigues L, Swierzy I, Buchfelder M, de Souza DO, Gonçalves CA, Kleindienst A. Amyloid-β Processing in Aged S100B Transgenic Mice Is Sex Dependent. Int J Mol Sci 2021; 22:ijms221910823. [PMID: 34639161 PMCID: PMC8509484 DOI: 10.3390/ijms221910823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Calcium-binding protein S100B is involved in neuroregeneration but has also been associated with neurodegeneration. These contrasting effects may result from concentration or duration of exposure. We investigated the effect of long-term increased S100B levels on amyloid-β processing in one-year-old transgenic (tg) mice with 12 copies of the murine S100B gene with specific consideration of sex and specific brain regions. (2) Methods: S100B and amyloid-β 42 (Aβ42) were quantified in serum, cerebrospinal fluid (CSF), adipose tissue, and different brain regions by ELISA in wild-type (wt) and S100Btg mice (each n = 7 per group). Thioflavin T (ThT) and Aβ immunostaining were performed for visualization of Aβ deposition. (3) Results: S100B in serum, CSF, and brain was significantly increased in S100Btg mice of both sexes. Aβ42 was significantly increased in the hippocampus of male S100Btg mice (p = 0.0075), and the frontal cortex of female S100Btg mice (p = 0.0262). ThT and Aβ immunostaining demonstrated Aβ deposition in different brain regions in S100Btg mice of both sexes and female wt. (4) Conclusion: Our data validate this experimental model for studying the role of S100B in neurodegeneration and indicate that Aβ processing is sex-dependent and brain region-specific, which deserves further investigation of signaling pathways and behavioral responses.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Leticia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Izabela Swierzy
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Diogo Onofre de Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
- Correspondence:
| |
Collapse
|
23
|
Yanguas-Casás N, Torres C, Crespo-Castrillo A, Diaz-Pacheco S, Healy K, Stanton C, Chowen JA, Garcia-Segura LM, Arevalo MA, Cryan JF, de Ceballos ML. High-fat diet alters stress behavior, inflammatory parameters and gut microbiota in Tg APP mice in a sex-specific manner. Neurobiol Dis 2021; 159:105495. [PMID: 34478848 DOI: 10.1016/j.nbd.2021.105495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long-term high-fat diet (HFD) consumption commonly leads to obesity, a major health concern of western societies and a risk factor for Alzheimer's disease (AD). Both conditions present glial activation and inflammation and show sex differences in their incidence, clinical manifestation, and disease course. HFD intake has an important impact on gut microbiota, the bacteria present in the gut, and microbiota dysbiosis is associated with inflammation and certain mental disorders such as anxiety. In this study, we have analyzed the effects of a prolonged (18 weeks, starting at 7 months of age) HFD on male and female mice, both wild type (WT) and TgAPP mice, a model for AD, investigating the behavioral profile, gut microbiota composition and inflammatory/phagocytosis-related gene expression in hippocampus. In the open-field test, no overt differences in motor activity were observed between male and female or WT and TgAPP mice on a low-fat diet (LFD). However, HFD induced anxiety, as judged by decreased motor activity and increased time in the margins in the open-field, and a trend towards increased immobility time in the tail suspension test, with increased defecation. Intriguingly, female TgAPP mice on HFD showed less immobility and defecation compared to female WT mice on HFD. HFD induced dysbiosis of gut microbiota, resulting in reduced microbiota diversity and abundance compared with LFD fed mice, with some significant differences due to sex and little effect of genotype. Gene expression of pro-inflammatory/phagocytic markers in the hippocampus were not different between male and female WT mice, and in TgAPP mice of both sexes, some cytokines (IL-6 and IFNγ) were higher than in WT mice on LFD, more so in female TgAPP (IL-6). HFD induced few alterations in mRNA expression of inflammatory/phagocytosis-related genes in male mice, whether WT (IL-1β, MHCII), or TgAPP (IL-6). However, in female TgAPP, altered gene expression returned towards control levels following prolonged HFD (IL-6, IL-12β, TNFα, CD36, IRAK4, PYRY6). In summary, we demonstrate that HFD induces anxiogenic symptoms, marked alterations in gut microbiota, and increased expression of inflammatory genes, except for female TgAPP that appear to be resistant to the diet effects. Lifestyle interventions should be introduced to prevent AD onset or exacerbation by reducing inflammation and its associated symptoms; however, our results suggest that the eventual goal of developing prevention and treatment strategies should take sex into consideration.
Collapse
Affiliation(s)
- Natalia Yanguas-Casás
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain; Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Madrid, Spain
| | - Cristina Torres
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, 43007 Tarragona, Spain
| | | | | | - Kiera Healy
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Catherine Stanton
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain; Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; The Madrid Institute for the advanced study of Food (IMDEA de Alimentación), Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Arevalo
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - John F Cryan
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
24
|
Maniskas ME, Mack AF, Morales-Scheihing D, Finger C, Zhu L, Paulter R, Urayama A, McCullough LD, Manwani B. Sex differences in a murine model of Cerebral Amyloid Angiopathy. Brain Behav Immun Health 2021; 14:100260. [PMID: 34589766 PMCID: PMC8474688 DOI: 10.1016/j.bbih.2021.100260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is one of the common causes of lobar intracerebral hemorrhage and vascular cognitive impairment (VCI) in the aging population. Increased amyloid plaque deposition within cerebral blood vessels, specifically the smooth muscle layer, is linked to increased cerebral microbleeds (CMBs) and impaired cognition in CAA. Studies in Alzheimer's disease (AD) have shown that amyloid plaque pathology is more prevalent in the brains of elderly women (2/3rd of the dementia population) compared with men, however, there is a paucity of studies on sex differences in CAA. The objective of this study was to discern the sexual dichotomies in CAA. We utilized male and female Tg-SwDI mice (mouse model of CAA) at 12-14 months of age for this study. We evaluated sex differences in CMBs, cognitive function and inflammation. Cognition was assessed using Y-maze (spatial working memory) and Fear Conditioning (contextual memory). CMBs were quantified by ex vivo brain MRI scans. Inflammatory cytokines in brain were quantified using ELISA. Our results demonstrated that aging Tg-SwDI female mice had a significantly higher burden of CMBs on MRI as compared to males. Interestingly, these aging Tg-SwDI female mice also had significantly impaired spatial and contextual memory on Y maze and Fear Conditioning respectively. Furthermore, female mice had significantly lower circulating inflammatory cytokines, IL-1α, IL-2, IL-9, and IFN-γ, as compared to males. Our results demonstrate that aging female Tg-SwDI mice are more cognitively impaired and have higher number of CMBs, as compared to males at 12-14 months of age. This may be secondary to reduced levels of neural repair cytokines (IL-1α, IL-2, IL-9 and IFN-γ) involved in sex specific inflammatory signaling in CAA.
Collapse
Affiliation(s)
- Michael E. Maniskas
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alexis F. Mack
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Carson Finger
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liang Zhu
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Robia Paulter
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Akihiko Urayama
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bharti Manwani
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Cuervo-Zanatta D, Garcia-Mena J, Perez-Cruz C. Gut Microbiota Alterations and Cognitive Impairment Are Sexually Dissociated in a Transgenic Mice Model of Alzheimer's Disease. J Alzheimers Dis 2021; 82:S195-S214. [PMID: 33492296 DOI: 10.3233/jad-201367] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer's disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-β pathology in male (M), but not in female (F) mice. OBJECTIVE The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. METHODS Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. RESULTS We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. CONCLUSION This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.
Collapse
Affiliation(s)
- Daniel Cuervo-Zanatta
- Pharmacology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of Neuroplasticity and Neurodegeneration, Mexico City, Mexico.,Genetics and Molecular Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of reference and support for the characterization of genomes, transcriptomes and microbiomes, Mexico City, Mexico
| | - Jaime Garcia-Mena
- Genetics and Molecular Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of reference and support for the characterization of genomes, transcriptomes and microbiomes, Mexico City, Mexico
| | - Claudia Perez-Cruz
- Pharmacology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of Neuroplasticity and Neurodegeneration, Mexico City, Mexico
| |
Collapse
|
26
|
Androvičová R, Pfaus JG, Ovsepian SV. Estrogen pendulum in schizophrenia and Alzheimer's disease: Review of therapeutic benefits and outstanding questions. Neurosci Lett 2021; 759:136038. [PMID: 34116197 DOI: 10.1016/j.neulet.2021.136038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Although produced largely in the periphery, gonadal steroids play a key role in regulating the development and functions of the central nervous system and have been implicated in several chronic neuropsychiatric disorders, with schizophrenia and Alzheimer's disease (AD) most prominent. Despite major differences in pathobiology and clinical manifestations, in both conditions, estrogen transpires primarily with protective effects, buffering the onset and progression of diseases at various levels. As a result, estrogen replacement therapy (ERT) emerges as one of the most widely discussed adjuvant interventions. In this review, we revisit evidence supporting the protective role of estrogen in schizophrenia and AD and consider putative cellular and molecular mechanisms. We explore the underlying functional processes relevant to the manifestation of these devastating conditions, with a focus on synaptic transmission and plasticity mechanisms. We discuss specific effects of estrogen deficit on neurotransmitter systems such as cholinergic, dopaminergic, serotoninergic, and glutamatergic. While the evidence from both, preclinical and clinical reports, in general, are supportive of the protective effects of estrogen from cognitive decline to synaptic pathology, numerous questions remain, calling for further research.
Collapse
Affiliation(s)
- Renáta Androvičová
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Saak V Ovsepian
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
27
|
The Past as Seen by Women and Men With Alzheimer Disease: Sex Differences in Autobiographical Memory. Alzheimer Dis Assoc Disord 2021; 34:170-174. [PMID: 31913962 DOI: 10.1097/wad.0000000000000363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although there is a large body of research demonstrating the negative effects of Alzheimer disease (AD) on autobiographical memory (ie, memory of personal information), little is known about sex differences in autobiographical retrieval in AD. METHODS We addressed this issue by inviting patients with AD and healthy control participants to retrieve autobiographical memories and analyzed them with regard to specificity, subjective experience (ie, time travel, emotion, and visual imagery), and retrieval time. RESULTS Analyses demonstrated no significant differences between women and men with AD with regard to autobiographical specificity, time travel, visual imagery, or retrieval time. However, the higher emotional value was attributed to memories by women with AD than by men with AD. DISCUSSION AD seems to equally affect the ability of women and men with AD to construct specific autobiographical memories, to mentally travel in time to relive these memories, to construct mental visual images during memory retrieval, and to organize and monitor search processes, as the latter are mirrored by retrieval time. However, women with AD seem to attribute greater emotional value to autobiographical memories than men with AD.
Collapse
|
28
|
Guo L, Ravindran N, Shamsher E, Hill D, Cordeiro MF. Retinal Changes in Transgenic Mouse Models of Alzheimer's Disease. Curr Alzheimer Res 2021; 18:89-102. [PMID: 33855942 DOI: 10.2174/1567205018666210414113634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, the most common form of dementia. AD is characterised by amyloid-β (Aβ) plaques and neurofibrillary tangles (NFT) in the brain, in association with neuronal loss and synaptic failure, causing cognitive deficits. Accurate and early diagnosis is currently unavailable in lifespan, hampering early intervention of potential new treatments. Visual deficits have been well documented in AD patients, and the pathological changes identified in the brain are also believed to be found in the retina, an integral part of the central nervous system. Retinal changes can be detected by real-time non-invasive imaging, due to the transparent nature of the ocular media, potentially allowing an earlier diagnosis as well as monitoring disease progression and treatment outcome. Animal models are essential for AD research, and this review has a focus on retinal changes in various transgenic AD mouse models with retinal imaging and immunohistochemical analysis as well as therapeutic effects in those models. We also discuss the limitations of transgenic AD models in clinical translations.
Collapse
Affiliation(s)
- Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nivedita Ravindran
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ehtesham Shamsher
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Daniel Hill
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
29
|
van Olst L, Roks SJ, Kamermans A, Verhaar BJH, van der Geest AM, Muller M, van der Flier WM, de Vries HE. Contribution of Gut Microbiota to Immunological Changes in Alzheimer's Disease. Front Immunol 2021; 12:683068. [PMID: 34135909 PMCID: PMC8200826 DOI: 10.3389/fimmu.2021.683068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that both central and peripheral immunological processes play an important role in the pathogenesis of Alzheimer's disease (AD), but regulatory mechanisms remain unknown. The gut microbiota and its key metabolites are known to affect neuroinflammation by modulating the activity of peripheral and brain-resident immune cells, yet an overview on how the gut microbiota contribute to immunological alterations in AD is lacking. In this review, we discuss current literature on microbiota composition in AD patients and relevant animal models. Next, we highlight how microbiota and their metabolites may contribute to peripheral and central immunological changes in AD. Finally, we offer a future perspective on the translation of these findings into clinical practice by targeting gut microbiota to modulate inflammation in AD. Since we find that gut microbiota alterations in AD can induce peripheral and central immunological changes via the release of microbial metabolites, we propose that modulating their composition may alter ongoing inflammation and could therefore be a promising future strategy to fight progression of AD.
Collapse
Affiliation(s)
- Lynn van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sigrid J.M. Roks
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Barbara J. H. Verhaar
- Department of Internal Medicine, Section Geriatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Section Geriatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Ruiz-Riquelme A, Mao A, Barghash MM, Lau HHC, Stuart E, Kovacs GG, Nilsson KPR, Fraser PE, Schmitt-Ulms G, Watts JC. Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice. Acta Neuropathol Commun 2021; 9:83. [PMID: 33971978 PMCID: PMC8112054 DOI: 10.1186/s40478-021-01187-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
When injected into genetically modified mice, aggregates of the amyloid-β (Aβ) peptide from the brains of Alzheimer’s disease (AD) patients or transgenic AD mouse models seed cerebral Aβ deposition in a prion-like fashion. Within the brain, Aβ exists as a pool of distinct C-terminal variants with lengths ranging from 37 to 43 amino acids, yet the relative contribution of individual C-terminal Aβ variants to the seeding behavior of Aβ aggregates remains unknown. Here, we have investigated the relative seeding activities of Aβ aggregates composed exclusively of recombinant Aβ38, Aβ40, Aβ42, or Aβ43. Cerebral Aβ42 levels were not increased in AppNL−F knock-in mice injected with Aβ38 or Aβ40 aggregates and were only increased in a subset of mice injected with Aβ42 aggregates. In contrast, significant accumulation of Aβ42 was observed in the brains of all mice inoculated with Aβ43 aggregates, and the extent of Aβ42 induction was comparable to that in mice injected with brain-derived Aβ seeds. Mice inoculated with Aβ43 aggregates exhibited a distinct pattern of cerebral Aβ pathology compared to mice injected with brain-derived Aβ aggregates, suggesting that recombinant Aβ43 may polymerize into a unique strain. Our results indicate that aggregates containing longer Aβ C-terminal variants are more potent inducers of cerebral Aβ deposition and highlight the potential role of Aβ43 seeds as a crucial factor in the initial stages of Aβ pathology in AD.
Collapse
|
31
|
Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer's disease: Behavioral analysis and neural basis in rodent models of Alzheimer's-related neuropathology. Neurosci Biobehav Rev 2021; 127:647-658. [PMID: 33979573 DOI: 10.1016/j.neubiorev.2021.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| | | | - Tia N Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| |
Collapse
|
32
|
Dennison JL, Ricciardi NR, Lohse I, Volmar CH, Wahlestedt C. Sexual Dimorphism in the 3xTg-AD Mouse Model and Its Impact on Pre-Clinical Research. J Alzheimers Dis 2021; 80:41-52. [PMID: 33459720 PMCID: PMC8075398 DOI: 10.3233/jad-201014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Female sex is a leading risk factor for developing Alzheimer’s disease (AD). Sexual dimorphism in AD is gaining attention as clinical data show that women are not only more likely to develop AD but also to experience worse pathology and faster cognitive decline. Pre-clinical AD research in animal models often neglects to address sexual dimorphism in evaluation of behavioral or molecular characteristics and outcomes. This can compromise its translation to a clinical setting. The triple-transgenic AD mouse model (3xTg-AD) is a commonly used but unique AD model because it exhibits both amyloid and tau pathology, essential features of the human AD phenotype. Mounting evidence has revealed important sexually dimorphic characteristics of this animal model that have yet to be reviewed and thus, are often overlooked in studies using the 3xTg-AD model. In this review we conduct a thorough analysis of reports of sexual dimorphism in the 3xTg-AD model including findings of molecular, behavioral, and longevity-related sex differences in original research articles through August 2020. Importantly, we find results to be inconsistent, and that strain source and differing methodologies are major contributors to lack of consensus regarding traits of each sex. We first touch on the nature of sexual dimorphism in clinical AD, followed by a brief summary of sexual dimorphism in other major AD murine models before discussing the 3xTg-AD model in depth. We conclude by offering four suggestions to help unify pre-clinical mouse model AD research inspired by the NIH expectations for considering sex as a biological variable.
Collapse
Affiliation(s)
- Jessica L Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie R Ricciardi
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
33
|
Morales R, Duran-Aniotz C, Bravo-Alegria J, Estrada LD, Shahnawaz M, Hu PP, Kramm C, Morales-Scheihing D, Urayama A, Soto C. Infusion of blood from mice displaying cerebral amyloidosis accelerates amyloid pathology in animal models of Alzheimer's disease. Acta Neuropathol Commun 2020; 8:213. [PMID: 33287898 PMCID: PMC7720397 DOI: 10.1186/s40478-020-01087-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
Previous studies showed that injection of tissue extracts containing amyloid-β (Aβ) aggregates accelerate amyloid deposition in the brain of mouse models of Alzheimer's disease (AD) through prion-like mechanisms. In this study, we evaluated whether brain amyloidosis could be accelerated by blood infusions, procedures that have been shown to transmit prion diseases in animals and humans. Young transgenic mice infused with whole blood or plasma from old animals with extensive Aβ deposition in their brains developed significantly higher levels brain amyloidosis and neuroinflammation compared to untreated animals or mice infused with wild type blood. Similarly, intra-venous injection of purified Aβ aggregates accelerated amyloid pathology, supporting the concept that Aβ seeds present in blood can reach the brain to promote neuropathological alterations in the brain of treated animals. However, an amyloid-enhancing effect of other factors present in the blood of donors cannot be discarded. Our results may help to understand the role of peripheral (amyloid-dependent or -independent) factors implicated in the development of AD and uncover new strategies for disease intervention.
Collapse
Affiliation(s)
- Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| | - Claudia Duran-Aniotz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640, Santiago, Chile
| | - Javiera Bravo-Alegria
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Lisbell D Estrada
- Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Mohammad Shahnawaz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Ping-Ping Hu
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Carlos Kramm
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Diego Morales-Scheihing
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Akihiko Urayama
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School at Houston, Houston, TX, 77030, USA.
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile.
| |
Collapse
|
34
|
Datki Z, Galik-Olah Z, Janosi-Mozes E, Szegedi V, Kalman J, Hunya ÁG, Fulop L, Tamano H, Takeda A, Adlard PA, Bush AI. Alzheimer risk factors age and female sex induce cortical Aβ aggregation by raising extracellular zinc. Mol Psychiatry 2020; 25:2728-2741. [PMID: 32518388 DOI: 10.1038/s41380-020-0800-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
Aging and female sex are the major risk factors for Alzheimer's disease and its associated brain amyloid-β (Aβ) neuropathology, but the mechanisms mediating these risk factors remain uncertain. Evidence indicates that Aβ aggregation by Zn2+ released from glutamatergic neurons contributes to amyloid neuropathology, so we tested whether aging and sex adversely influences this neurophysiology. Using acute hippocampal slices, we found that extracellular Zn2+-elevation induced by high K+ stimulation was significantly greater with older (65 weeks vs 10 weeks old) rats, and was exaggerated in females. This was driven by slower reuptake of extracellular Zn2+, which could be recapitulated by mitochondrial intoxication. Zn2+:Aβ aggregates were toxic to the slices, but Aβ alone was not. Accordingly, high K+ caused synthetic human Aβ added to the slices to form soluble oligomers as detected by bis-ANS, attaching to neurons and inducing toxicity, with older slices being more vulnerable. Age-dependent energy failure impairing Zn2+ reuptake, and a higher maximal capacity for Zn2+ release by females, could contribute to age and sex being major risk factors for Alzheimer's disease.
Collapse
Affiliation(s)
- Zsolt Datki
- Department of Psychiatry, University of Szeged, Szeged, 6725, Hungary.
| | - Zita Galik-Olah
- Department of Psychiatry, University of Szeged, Szeged, 6725, Hungary
| | | | - Viktor Szegedi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, 6726, Hungary
| | - Janos Kalman
- Department of Psychiatry, University of Szeged, Szeged, 6725, Hungary
| | - Ákos Gábor Hunya
- Department of Medical Chemistry, University of Szeged, Szeged, 6726, Hungary
| | - Livia Fulop
- Department of Medical Chemistry, University of Szeged, Szeged, 6726, Hungary
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Paul A Adlard
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience & Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience & Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
35
|
Swaminathan SK, Zhou AL, Ahlschwede KM, Curran GL, Lowe VJ, Li L, Kandimalla KK. High-Density Lipoprotein Mimetic Peptide 4F Efficiently Crosses the Blood-Brain Barrier and Modulates Amyloid- β Distribution between Brain and Plasma. J Pharmacol Exp Ther 2020; 375:308-316. [PMID: 32778535 PMCID: PMC7589947 DOI: 10.1124/jpet.120.265876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Treatments to elevate high-density lipoprotein (HDL) levels in plasma have decreased cerebrovascular amyloid -β (Aβ) deposition and mitigated cognitive decline in Alzheimer disease (AD) transgenic mice. Since the major protein component of HDL particles, apolipoprotein A-I (ApoA-I), has very low permeability at the blood-brain barrier (BBB), we investigated 4F, an 18-amino-acid ApoA-I/HDL mimetic peptide, as a therapeutic alternative. Specifically, we examined the BBB permeability of 4F and its effects on [125I]Aβ trafficking from brain to blood and from blood to brain. After systemic injection in mice, the BBB permeability of [125I]4F, estimated as the permeability-surface area (PS) product, ranged between 2 and 5 × 10-6 ml/g per second in various brain regions. The PS products of [125I]4F were ∼1000-fold higher compared with those determined for [125I]ApoA-I. Moreover, systemic infusion with 4F increased the brain efflux of intracerebrally injected [125I]Aβ42. Conversely, 4F infusion decreased the brain influx of systemically injected [125I]Aβ42. Interestingly, 4F did not significantly alter the brain influx of [125I]Aβ40. To corroborate the in vivo findings, we evaluated the effects of 4F on [125I]Aβ42 transcytosis across polarized human BBB endothelial cell (hCMEC/D3) monolayers. Treatment with 4F increased the abluminal-to-luminal flux and decreased the luminal-to-abluminal flux of [125I]Aβ42 across the hCMEC/D3 monolayers. Additionally, 4F decreased the endothelial accumulation of fluorescein-labeled Aβ42 in the hCMEC/D3 monolayers. These findings provide a mechanistic interpretation for the reductions in brain Aβ burden reported in AD mice after oral 4F administration, which represents a novel strategy for treating AD and cerebral amyloid angiopathy. SIGNIFICANCE STATEMENT: The brain permeability of the ApoA-I mimetic peptide 4F was estimated to be ∼1000-fold greater than ApoA-I after systemic injection of radiolabeled peptide/protein in mice. Further, 4F treatment increased the brain efflux of amyloid -β and also decreased its brain influx, as evaluated in mice and in blood-brain barrier cell monolayers. Thus, 4F represents a potential therapeutic strategy to mitigate brain amyloid accumulation in cerebral amyloid angiopathy and Alzheimer disease.
Collapse
Affiliation(s)
- Suresh K Swaminathan
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Andrew L Zhou
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Kristen M Ahlschwede
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Geoffry L Curran
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Val J Lowe
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
36
|
Manji Z, Rojas A, Wang W, Dingledine R, Varvel NH, Ganesh T. 5xFAD Mice Display Sex-Dependent Inflammatory Gene Induction During the Prodromal Stage of Alzheimer's Disease. J Alzheimers Dis 2020; 70:1259-1274. [PMID: 31322556 DOI: 10.3233/jad-180678] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) pathology consists of extracellular deposits of amyloid-β peptides (Aβ) and intracellular neurofibrillary tangles. These pathological alterations are accompanied by a neuroinflammatory response consisting of increased expression of inflammatory mediators. An anti-inflammatory strategy designed to prevent or delay the development of AD would benefit from knowing when neuroinflammation appears in the transgenic models during prodromal disease stages relative to Aβ pathology. We investigated the expression patterns of inflammatory mediators in the brain of 5xFAD mice in comparison to development of Aβ deposition. Expression changes in inflammatory mediators and glial markers are more robust in female mice starting at three months of age, in contrast to males in which there is no clear trend through five months. Female and male 5xFAD mice also displayed an age-dependent increase in cortical Aβ deposition congruent with neuroinflammation. Thus, in the 5xFAD mouse model of AD, administration of an anti-inflammatory agent would be most efficacious when administered before three months of age.
Collapse
Affiliation(s)
- Zahra Manji
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas H Varvel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Xu Y, Zhang Y, Zhang JH, Han K, Zhang X, Bai X, You LH, Yu P, Shi Z, Chang YZ, Gao G. Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice. Free Radic Biol Med 2020; 158:84-95. [PMID: 32707154 DOI: 10.1016/j.freeradbiomed.2020.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Iron overload in the brain and iron-induced oxidative damage have been considered to play key roles in the pathogenesis of Alzheimer's disease (AD). Hepcidin is a peptide that regulates systemic iron metabolism by interacting with iron exporter ferroportin 1 (FPN1). Studies have indicated that the astrocyte hepcidin could regulate brain iron intake at the blood-brain barrier and injection of hepcidin into brain attenuated iron deposition in the brain. However, whether overexpression of hepcidin in astrocytes of APP/PS1 transgenic mice can alleviate AD symptoms by reducing iron deposition has not been evaluated. In this study, we overexpressed hepcidin in astrocytes of APP/PS1 mice and investigated its effects on β-amyloid (Aβ) aggregation, neuronal loss, iron deposition and iron-induced oxidative damages. Our results showed that the elevated expression of astrocyte hepcidin in APP/PS1 mice significantly improved their cognitive decline, and partially alleviated the formation of Aβ plaques in cortex and hippocampus. Further investigations revealed that overexpression of hepcidin in astrocytes significantly reduced iron levels in cortex and hippocampus of APP/PS1 mice, especially iron content in neurons, which led to the reduction of iron accumulation-induced oxidative stress and neuroinflammation, and finally decreased neuronal cell death in the cortex and hippocampus of APP/PS1 mice. This study demonstrated that overexpression of hepcidin in astrocytes of APP/PS1 mice could partially alleviate AD symptoms and delay the pathological process of AD.
Collapse
Affiliation(s)
- Yong Xu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Yating Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Jian-Hua Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Kang Han
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Xinwei Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Xue Bai
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Lin-Hao You
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China.
| |
Collapse
|
38
|
Brown AMC, Gervais NJ. Role of Ovarian Hormones in the Modulation of Sleep in Females Across the Adult Lifespan. Endocrinology 2020; 161:5879359. [PMID: 32735650 PMCID: PMC7450669 DOI: 10.1210/endocr/bqaa128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ovarian hormones, including 17β-estradiol, are implicated in numerous physiological processes, including sleep. Beginning at puberty, girls report more sleep complaints than boys, which is maintained throughout the reproductive life stage. Sleep problems are exacerbated during the menopausal transition, evidenced by greater risk for sleep disorders. There is emerging evidence that menopause-associated hormone loss contributes to this elevated risk, but age is also an important factor. The extent to which menopause-associated sleep disturbance persists into postmenopause above and beyond the effects of age remains unknown. Untreated sleep disturbances have important implications for cognitive health, as they are emerging as risk factors for dementia. Given that sleep loss impairs memory, an important knowledge gap concerns the role played by menopause-associated hormone loss in exacerbating sleep disturbance and, ultimately, cognitive function in aging women. In this review, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining the sleep-wake cycle in younger and middle-aged females, with evidence implicating 17β-estradiol in supporting the memory-promoting effects of sleep. Sleep physiology is briefly reviewed before turning to behavioral and neural evidence from young females linking 17β-estradiol to sleep-wake cycle maintenance. Implications of menopause-associated 17β-estradiol loss is also reviewed before discussing how ovarian hormones may support the memory-promoting effects of sleep, and why menopause may exacerbate pathological aging via effects on sleep. While still in its infancy, this research area offers a new sex-based perspective on aging research, with a focus on a modifiable risk factor for pathological aging.
Collapse
Affiliation(s)
- Alana M C Brown
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Nicole J. Gervais, University of Toronto, Department of Psychology, 100 St. George Street, Toronto, ON, Canada M5S 3G3. E-mail:
| |
Collapse
|
39
|
Davis EJ, Broestl L, Abdulai-Saiku S, Worden K, Bonham LW, Miñones-Moyano E, Moreno AJ, Wang D, Chang K, Williams G, Garay BI, Lobach I, Devidze N, Kim D, Anderson-Bergman C, Yu GQ, White CC, Harris JA, Miller BL, Bennett DA, Arnold AP, De Jager PL, Palop JJ, Panning B, Yokoyama JS, Mucke L, Dubal DB. A second X chromosome contributes to resilience in a mouse model of Alzheimer's disease. Sci Transl Med 2020; 12:eaaz5677. [PMID: 32848093 PMCID: PMC8409261 DOI: 10.1126/scitranslmed.aaz5677] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.
Collapse
Affiliation(s)
- Emily J Davis
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lauren Broestl
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Samira Abdulai-Saiku
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kurtresha Worden
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luke W Bonham
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elena Miñones-Moyano
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arturo J Moreno
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin Chang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gina Williams
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bayardo I Garay
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nino Devidze
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Daniel Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Charles C White
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bruce L Miller
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Phil L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jorge J Palop
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer S Yokoyama
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lennart Mucke
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
40
|
Haghani A, Cacciottolo M, Doty KR, D'Agostino C, Thorwald M, Safi N, Levine ME, Sioutas C, Town TC, Forman HJ, Zhang H, Morgan TE, Finch CE. Mouse brain transcriptome responses to inhaled nanoparticulate matter differed by sex and APOE in Nrf2-Nfkb interactions. eLife 2020; 9:e54822. [PMID: 32579111 PMCID: PMC7314548 DOI: 10.7554/elife.54822] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotoxicity of air pollution is undefined for sex and APOE alleles. These major risk factors of Alzheimer's disease (AD) were examined in mice given chronic exposure to nPM, a nano-sized subfraction of urban air pollution. In the cerebral cortex, female mice had two-fold more genes responding to nPM than males. Transcriptomic responses to nPM had sex-APOE interactions in AD-relevant pathways. Only APOE3 mice responded to nPM in genes related to Abeta deposition and clearance (Vav2, Vav3, S1009a). Other responding genes included axonal guidance, inflammation (AMPK, NFKB, APK/JNK signaling), and antioxidant signaling (NRF2, HIF1A). Genes downstream of NFKB and NRF2 responded in opposite directions to nPM. Nrf2 knockdown in microglia augmented NFKB responses to nPM, suggesting a critical role of NRF2 in air pollution neurotoxicity. These findings give a rationale for epidemiologic studies of air pollution to consider sex interactions with APOE alleles and other AD-risk genes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Mafalda Cacciottolo
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Kevin R Doty
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUnited States
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Nikoo Safi
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Morgan E Levine
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern CaliforniaLos AngelesUnited States
| | - Terrence C Town
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUnited States
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Dornsife College, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
41
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 PMCID: PMC11448899 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
42
|
Buckley RF, Mormino EC, Rabin JS, Hohman TJ, Landau S, Hanseeuw BJ, Jacobs HIL, Papp KV, Amariglio RE, Properzi MJ, Schultz AP, Kirn D, Scott MR, Hedden T, Farrell M, Price J, Chhatwal J, Rentz DM, Villemagne VL, Johnson KA, Sperling RA. Sex Differences in the Association of Global Amyloid and Regional Tau Deposition Measured by Positron Emission Tomography in Clinically Normal Older Adults. JAMA Neurol 2020; 76:542-551. [PMID: 30715078 DOI: 10.1001/jamaneurol.2018.4693] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Mounting evidence suggests that sex differences exist in the pathologic trajectory of Alzheimer disease. Previous literature shows elevated levels of cerebrospinal fluid tau in women compared with men as a function of apolipoprotein E (APOE) ε4 status and β-amyloid (Aβ). What remains unclear is the association of sex with regional tau deposition in clinically normal individuals. Objective To examine sex differences in the cross-sectional association between Aβ and regional tau deposition as measured with positron emission tomography (PET). Design, Setting and Participants This is a study of 2 cross-sectional, convenience-sampled cohorts of clinically normal individuals who received tau and Aβ PET scans. Data were collected between January 2016 and February 2018 from 193 clinically normal individuals from the Harvard Aging Brain Study (age range, 55-92 years; 118 women [61%]) who underwent carbon 11-labeled Pittsburgh Compound B and flortaucipir F18 PET and 103 clinically normal individuals from the Alzheimer's Disease Neuroimaging Initiative (age range, 63-94 years; 55 women [51%]) who underwent florbetapir and flortaucipir F 18 PET. Main Outcomes and Measures A main association of sex with regional tau in the entorhinal cortices, inferior temporal lobe, and a meta-region of interest, which was a composite of regions in the temporal lobe. Associations between sex and global Aβ as well as sex and APOE ε4 on these regions after controlling for age were also examined. Results The mean (SD) age of all individuals was 74.2 (7.6) years (81 APOE ε4 carriers [31%]; 89 individuals [30%] with high Aβ). There was no clear association of sex with regional tau that was replicated across studies. However, in both cohorts, clinically normal women exhibited higher entorhinal cortical tau than men (meta-analytic estimate: β [male] = -0.11 [0.05]; 95% CI, -0.21 to -0.02; P = .02), which was associated with individuals with higher Aβ burden. A sex by APOE ε4 interaction was not associated with regional tau (meta-analytic estimate: β [male, APOE ε4+] = -0.15 [0.09]; 95% CI, -0.32 to 0.01; P = .07). Conclusions and Relevance Early tau deposition was elevated in women compared with men in individuals on the Alzheimer disease trajectory. These findings lend support to a growing body of literature that highlights a biological underpinning for sex differences in Alzheimer disease risk.
Collapse
Affiliation(s)
- Rachel F Buckley
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.,The Florey Institute, The University of Melbourne, Victoria, Australia.,Melbourne School of Psychological Science, University of Melbourne, Victoria, Australia
| | | | - Jennifer S Rabin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley
| | - Bernard J Hanseeuw
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Cliniques Universitaires St-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kathryn V Papp
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rebecca E Amariglio
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael J Properzi
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Aaron P Schultz
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dylan Kirn
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Matthew R Scott
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Trey Hedden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michelle Farrell
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Julie Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jasmeer Chhatwal
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dorene M Rentz
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Victoria, Australia
| | - Keith A Johnson
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Reisa A Sperling
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
43
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
44
|
Krivinko JM, Koppel J, Savonenko A, Sweet RA. Animal Models of Psychosis in Alzheimer Disease. Am J Geriatr Psychiatry 2020; 28:1-19. [PMID: 31278012 PMCID: PMC6858948 DOI: 10.1016/j.jagp.2019.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Psychosis in Alzheimer Disease (AD) represents a distinct clinicopathologic variant associated with increased cognitive and functional morbidity and an accelerated disease course. To date, extant treatments offer modest benefits with significant risks. The development of new pharmacologic treatments for psychosis in AD would be facilitated by validated preclinical models with which to test candidate interventions. The current review provides a brief summary of the process of validating animal models of human disease together with a critical analysis of the challenges posed in attempting to apply those standards to AD-related behavioral models. An overview of phenotypic analogues of human cognitive and behavioral impairments, with an emphasis on those relevant to psychosis, in AD-related mouse models is provided, followed by an update on recent progress in efforts to translate findings in the pathophysiology of psychotic AD into novel models. Finally, some future directions are suggested to expand the catalogue of psychosis-relevant phenotypes that may provide a sturdier framework for model development and targets for preclinical treatment outcomes.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
45
|
Escrig A, Canal C, Sanchis P, Fernández-Gayol O, Montilla A, Comes G, Molinero A, Giralt M, Giménez-Llort L, Becker-Pauly C, Rose-John S, Hidalgo J. IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer's disease. Brain Behav Immun 2019; 82:145-159. [PMID: 31401302 DOI: 10.1016/j.bbi.2019.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aβ40 and Aβ42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.
Collapse
Affiliation(s)
- Anna Escrig
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Carla Canal
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Olaya Fernández-Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Alejandro Montilla
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Lydia Giménez-Llort
- Institute of Neurosciences and Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Spain
| | - Christoph Becker-Pauly
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain.
| |
Collapse
|
46
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
47
|
Nair RR, Corrochano S, Gasco S, Tibbit C, Thompson D, Maduro C, Ali Z, Fratta P, Arozena AA, Cunningham TJ, Fisher EMC. Uses for humanised mouse models in precision medicine for neurodegenerative disease. Mamm Genome 2019; 30:173-191. [PMID: 31203387 PMCID: PMC6759662 DOI: 10.1007/s00335-019-09807-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are very limited treatments, and no cures, for most of these diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington Disease, and Motor Neuron Diseases. Mouse and other animal models provide hope by analysing them to understand pathogenic mechanisms, to identify drug targets, and to develop gene therapies and stem cell therapies. However, despite many decades of research, virtually no new treatments have reached the clinic. Increasingly, it is apparent that human heterogeneity within clinically defined neurodegenerative disorders, and between patients with the same genetic mutations, significantly impacts disease presentation and, potentially, therapeutic efficacy. Therefore, stratifying patients according to genetics, lifestyle, disease presentation, ethnicity, and other parameters may hold the key to bringing effective therapies from the bench to the clinic. Here, we discuss genetic and cellular humanised mouse models, and how they help in defining the genetic and environmental parameters associated with neurodegenerative disease, and so help in developing effective precision medicine strategies for future healthcare.
Collapse
Affiliation(s)
- Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Silvia Corrochano
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Samanta Gasco
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Charlotte Tibbit
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Zeinab Ali
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Abraham Acevedo Arozena
- Unidad de Investigación Hospital Universitario de Canarias, FUNCANIS, Instituto de Tecnologías Biomédicas ULL, and CIBERNED, La Laguna, 38320, Tenerife, Spain
| | | | - Elizabeth M C Fisher
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK.
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
48
|
Ullah MF, Ahmad A, Bhat SH, Abu-Duhier FM, Barreto GE, Ashraf GM. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci Biobehav Rev 2019; 102:95-105. [DOI: 10.1016/j.neubiorev.2019.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023]
|
49
|
Galts CP, Bettio LE, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102:56-84. [DOI: 10.1016/j.neubiorev.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
50
|
Kim DH, Jang YS, Jeon WK, Han JS. Assessment of Cognitive Phenotyping in Inbred, Genetically Modified Mice, and Transgenic Mouse Models of Alzheimer's Disease. Exp Neurobiol 2019; 28:146-157. [PMID: 31138986 PMCID: PMC6526110 DOI: 10.5607/en.2019.28.2.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Genetically modified mouse models are being used predominantly to understand brain functions and diseases. Well-designed and controlled behavioral analyses of genetically modified mice have successfully led to the identification of gene functions, understanding of brain diseases, and development of treatments. Recently, complex and higher cognitive functions have been examined in mice with genetic mutations. Therefore, research strategies for cognitive phenotyping should be sophisticated and evolve to convey the exact meaning of the findings and provide robust translational tools for testing hypotheses and developing treatments. This review addresses issues of experimental design and discusses studies that have examined cognitive function using mouse strain differences, genetically modified mice, and transgenic mice for Alzheimer's disease.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon-Sun Jang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|