1
|
Kuan CH, Chang L, Ho CY, Tsai CH, Liu YC, Huang WY, Wang YN, Wang WH, Wang TW. Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing. Biomaterials 2025; 314:122848. [PMID: 39342917 DOI: 10.1016/j.biomaterials.2024.122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Chronic wound healing often encounters challenges characterized by prolonged inflammation and impaired angiogenesis. While the immune response plays a pivotal role in orchestrating the intricate process of wound healing, excessive inflammation can hinder tissue repair. In this study, a bilayer alginate hydrogel system encapsulating polyelectrolyte complex nanoparticles (PCNs) loaded with anti-inflammatory cytokines and angiogenic growth factors is developed to address the challenges of chronic wound healing. The alginate hydrogel is designed using two distinct crosslinking methods to achieve differential degradation, thereby enabling precise spatial and temporal controlled release of PCNs. Initially, interleukin-10 (IL-10) is released to mitigate inflammation, while unsaturated PCNs bind and remove accumulated pro-inflammatory cytokines at the wound site. Subsequently, angiogenic growth factors, including vascular endothelial growth factor and platelet-derived growth factor, are released to promote vascularization and vessel maturation. Our results demonstrate that the bilayer hydrogel exhibits distinct degradation kinetics between the two layers, facilitating the staged release of multiple signaling molecules. In vitro experiments reveal that IL-10 can activate the Jak1/STAT3 pathway, thereby suppressing pro-inflammatory cytokines and chemokines while down-regulating inflammation-related genes. In vivo studies demonstrate that application of the hydrogel in chronic wounds using diabetic murine model promotes healing by positively modulating multiple integral reparative mechanisms. These include reducing inflammation, promoting macrophage polarization towards a pro-regenerative phenotype, enhancing keratinocyte migration, stimulating angiogenesis, and expediting wound closure. In conclusion, our hydrogel system effectively mitigates inflammatory responses and provides essential physiological cues by inducing a synergistic angiogenic effect, thus offering a promising approach for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taiwan.
| | - Ling Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Yu Ho
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan; Department of Bioengineering, Rice University, Houston, USA
| | - Chia-Hsuan Tsai
- Division of Plastic Surgery, Department of Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taiwan
| | - Yu-Chung Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan; Department of Biomedical Engineering, University of Michigan-Ann Arbor, Michigan, USA
| | - Wei-Yuan Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ning Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Hung Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Najer A, Kim J, Saunders C, Che J, Baum J, Stevens MM. Enhanced Antimalarial and Antisequestration Activity of Methoxybenzenesulfonate-Modified Biopolymers and Nanoparticles for Tackling Severe Malaria. ACS Infect Dis 2024; 10:732-745. [PMID: 38271991 PMCID: PMC10862538 DOI: 10.1021/acsinfecdis.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Severe malaria is a life-threatening condition that is associated with a high mortality. Severe Plasmodium falciparum infections are mediated primarily by high parasitemia and binding of infected red blood cells (iRBCs) to the blood vessel endothelial layer, a process known as sequestration. Here, we show that including the 5-amino-2-methoxybenzenesulfonate (AMBS) chemical modification in soluble biopolymers (polyglutamic acid and heparin) and poly(acrylic acid)-exposing nanoparticles serves as a universal tool to introduce a potent parasite invasion inhibitory function in these materials. Importantly, the modification did not add or eliminated (for heparin) undesired anticoagulation activity. The materials protected RBCs from invasion by various parasite strains, employing both major entry pathways. Two further P. falciparum strains, which either expose ligands for chondroitin sulfate A (CSA) or intercellular adhesion molecule 1 (ICAM-1) on iRBCs, were tested in antisequestration assays due to their relevance in placental and cerebral malaria, respectively. Antisequestration activity was found to be more efficacious with nanoparticles vs gold-standard soluble biopolymers (CSA and heparin) against both strains, when tested on receptor-coated dishes. The nanoparticles also efficiently inhibited and reversed the sequestration of iRBCs on endothelial cells. First, the materials described herein have the potential to reduce the parasite burden by acting at the key multiplication stage of reinvasion. Second, the antisequestration ability could help remove iRBCs from the blood vessel endothelium, which could otherwise cause vessel obstruction, which in turn can lead to multiple organ failure in severe malaria infections. This approach represents a further step toward creation of adjunctive therapies for this devastating condition to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Junyoung Kim
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Junyi Che
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
3
|
Onodera Y, Kobayashi J, Mitani S, Hosoda C, Banno K, Horie K, Okano T, Shimizu T, Shima M, Tatsumi K. Terminus-Selective Covalent Immobilization of Heparin on a Thermoresponsive Surface Using Click Chemistry for Efficient Binding of Basic Fibroblast Growth Factor. Macromol Biosci 2024; 24:e2300307. [PMID: 37774391 DOI: 10.1002/mabi.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Cell therapy using endothelial cells (ECs) has great potential for the treatment of congenital disorders, such as hemophilia A. Cell sheet technology utilizing a thermoresponsive culture dish is a promising approach to efficiently transplant donor cells. In this study, a new method to prepare terminus-selective heparin-immobilized thermoresponsive culture surfaces is developed to facilitate the preparation of EC sheets. Alkynes are introduced to the reducing terminus of heparin via reductive amination. Cu-catalyzed azide-alkyne cycloaddition (CuAAC) facilitates efficient immobilization of the terminus of heparin on a thermoresponsive surface, resulting in a higher amount of immobilized heparin while preserving its function. Heparin-immobilized thermoresponsive surfaces prepared using CuAAC exhibit good adhesion to human endothelial colony-forming cells (ECFCs). In addition, upon further binding to basic fibroblast growth factor (bFGF) on heparin-immobilized surfaces, increased proliferation of ECFCs on the surface is observed. The confluent ECFC monolayer cultured on bFGF-bound heparin-immobilized thermoresponsive surfaces exhibits relatively high fibronectin accumulation and cell number and detaches at 22 °C while maintaining the sheet-like structure. Because heparin has an affinity for several types of bioactive molecules, the proposed method can be applied to facilitate efficient cultures and sheet formations of various cell types.
Collapse
Affiliation(s)
- Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kimihiko Banno
- Department of Physiology II, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Midori Shima
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
4
|
Battulga T, Dagaerbieke A, Bai C, Asai D, Koshikawa T, Takemura H, Miyazaki K, Yoshida T. Electrostatic interaction between sulfated polysaccharides and oligopeptides from viral envelope glycoproteins using surface plasmon resonance. Carbohydr Res 2023; 528:108815. [PMID: 37121180 DOI: 10.1016/j.carres.2023.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Biotinylated oligopeptides from the envelope glycoproteins of dengue fever virus, influenza A and B viruses, and human immunodeficiency virus (HIV) were synthesized and their interaction with curdlan and dextran sulfates was investigated using surface plasmon resonance to evaluate the antiviral mechanisms of sulfated polysaccharides. More than two clusters consisting of basic amino acids in the oligopeptides from dengue fever virus, strongly interacted with the sulfated polysaccharides elucidated by the association- and dissociation-rate constants. Interactions decreased with the decreasing molecular weights of the sulfated polysaccharides. Although oligopeptides from influenza A virus potently interacted with the sulfated polysaccharides, no interaction was detected on a B/Hong Kong virus oligopeptide bearing few basic amino acids. For the C terminus and V3 region short and long oligopeptides from HIV gp120, the interaction was enhanced by the number of clustered basic amino acids and was inhibited by acidic and bulky amino acids.
Collapse
Affiliation(s)
- Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, S. Zorig street, Ulaanbaatar, 14210, Mongolia
| | - Ayiguli Dagaerbieke
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, 090-8507, Japan
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Daisuke Asai
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Takuro Koshikawa
- St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hiromu Takemura
- St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kensuke Miyazaki
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, 090-8507, Japan
| | - Takashi Yoshida
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, 090-8507, Japan.
| |
Collapse
|
5
|
Suzuki K, Kaseyama-Takemoto H, Ito S. Highly sensitive quantification of bacterial chondroitin in a culture based on ELISA techniques. J Microbiol Methods 2022; 202:106579. [PMID: 36122794 DOI: 10.1016/j.mimet.2022.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/27/2022]
Abstract
Some bacteria produce non-sulfated chondroitin (CH). Accurate, rapid, and high throughput methods to quantify CH in fermented cultures helps to improve microbial breeding and fermentation conditions efficiently. In this study, highly sensitive methods to quantify bacterial CH were developed based on ELISA techniques. An assay using an anti-K4 antiserum successfully determined the concentration of fructosylated CH in the range from 9 to 800 ng/mL. The method also enabled the determination of CH concentration exceeding 9 μg/mL. To improve the assay sensitivity for CH, hyaluronan (HA) binding protein (HABP) was applied instead of a capture antibody. HABP was bound to CH, but not to chemically desulfated chondroitin sulfate or fructosylated CH. The quantification limit of CH was 18 μg/mL in the HA assay using HABP. Replacing the HA-coated microplate with a CH-coated microplate increased the sensitivity >1000 times (assay range = 14 to 1000 ng/mL). Pretreatment with hyaluronidase enabled us to accurately quantify CH in samples mixed with HA.
Collapse
Affiliation(s)
- Kiyoshi Suzuki
- Central Research Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo 207-0021, Japan.
| | - Hiromi Kaseyama-Takemoto
- Central Research Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo 207-0021, Japan.
| | - Shigeyasu Ito
- Central Research Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo 207-0021, Japan.
| |
Collapse
|
6
|
Warner H, Wu Y, Wagner WD. Syndecan-4 functionalization of tissue regeneration scaffolds improves interaction with endothelial progenitor cells. Regen Biomater 2021; 8:rbab070. [PMID: 34900335 PMCID: PMC8659348 DOI: 10.1093/rb/rbab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Key to most implanted cell free scaffolds for tissue regeneration is the ability to sequester and retain undifferentiated mesenchymal stem cells at the repair site. In this report, syndecan-4, a heparan sulfate containing proteoglycan, was investigated as a unique molecule for use in scaffold functionalization. An electrospun hybrid scaffold comprised of poly (glycerol) sebacate (PGS), silk fibroin and type I collagen (PFC) was used as a model scaffold to develop a procedure and test the hypothesis that functionalization would result in increased scaffold binding of endothelial progenitor cells (EPCs). For these studies both Syndecan-4 and stromal derived factor-1α (SDF-1α) were used in functionalization PFC. Syndecan-4 functionalized PFC bound 4.8 fold more SDF-1α compared to nonfunctionalized PFC. Binding was specific as determined by heparin displacement studies. After culture for 7 days, significantly, more EPCs were detected on PFC scaffolds having both syndecan-4 and SDF-1α compared to scaffolds of PFC with only syndecan-4, or PFC adsorbed with SDF-1α, or PFC alone. Taken together, this study demonstrates that EPCs can be bound to and significantly expanded on PFC material through syndecan-4 mediated growth factor binding. Syndecan-4 with a multiplicity of binding sites has the potential to functionalize and expand stem cells on a variety of scaffold materials for use in tissue regeneration.
Collapse
Affiliation(s)
- Harleigh Warner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - Yidi Wu
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - William D Wagner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
7
|
Chhabra M, Doherty GG, See NW, Gandhi NS, Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. CHEM REC 2021; 21:3087-3101. [PMID: 34145723 PMCID: PMC8441866 DOI: 10.1002/tcr.202100125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Indexed: 12/16/2022]
Abstract
Heparan sulfate (HS) is a complex, polyanionic polysaccharide ubiquitously expressed on cell surfaces and in the extracellular matrix. HS interacts with numerous proteins to mediate a vast array of biological and pathological processes. Inhibition of HS-protein interactions is thus an attractive approach for new therapeutic development for cancer and infectious diseases, including COVID-19; however, synthesis of well-defined native HS oligosaccharides remains challenging. This has aroused significant interest in the development of HS mimetics which are more synthetically tractable and have fewer side effects, such as undesired anticoagulant activity. This account provides a perspective on the design and synthesis of different classes of HS mimetics with useful properties, and the development of various assays and molecular modelling tools to progress our understanding of their interactions with HS-binding proteins.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Gareth G. Doherty
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Nicholas W. See
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Neha S. Gandhi
- School of Chemistry and PhysicsQueensland University of Technology4000BrisbaneQLDAustralia
| | - Vito Ferro
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| |
Collapse
|
8
|
BMP-4 Extraction from Extracellular Matrix and Analysis of Heparin-Binding Properties. Mol Biotechnol 2021; 64:156-170. [PMID: 34550550 DOI: 10.1007/s12033-021-00403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Recombinant human BMP-4 growth factor (GF) has significant commercial potential as therapeutic for regenerating bone and as cell culture supplement. However, its commercial utility has been limited as large-scale attempts to express and purify human BMP-4 GF have proved challenging. We have established a novel approach to obtain significant quantities of pure and bioactive BMP-4 GF from Chinese hamster ovary cell cultures by extracting the GF moiety from the extracellular matrix or cell pellet fraction. This approach increased yields approximately one 100-fold over BMP-4 GF purified from CM. The molecular activities of the two fractions are indistinguishable. We further analyzed binding of BMP-4 GF to the proteoglycan Heparin and showed that an N-terminal basic sequence is essential for this interaction. Taken together, these results provide novel insights into the purification, localization, and Heparin binding of human BMP-4 that have implications for its bioprocessing and biological function.
Collapse
|
9
|
Gludovacz E, Schuetzenberger K, Resch M, Tillmann K, Petroczi K, Vondra S, Vakal S, Schosserer M, Virgolini N, Pollheimer J, Salminen TA, Jilma B, Borth N, Boehm T. Human diamine oxidase cellular binding and internalization in vitro and rapid clearance in vivo are not mediated by N-glycans but by heparan sulfate proteoglycan interactions. Glycobiology 2021; 31:444-458. [PMID: 32985651 DOI: 10.1093/glycob/cwaa090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Human diamine oxidase (hDAO) rapidly inactivates histamine by deamination. No pharmacokinetic data are available to better understand its potential as a new therapeutic modality for diseases with excess local and systemic histamine, like anaphylaxis, urticaria or mastocytosis. After intravenous administration of recombinant hDAO to rats and mice, more than 90% of the dose disappeared from the plasma pool within 10 min. Human DAO did not only bind to various endothelial and epithelial cell lines in vitro, but was also unexpectedly internalized and visible in granule-like structures. The uptake of rhDAO into cells was dependent on neither the asialoglycoprotein-receptor (ASGP-R) nor the mannose receptor (MR) recognizing terminal galactose or mannose residues, respectively. Competition experiments with ASGP-R and MR ligands did not block internalization in vitro or rapid clearance in vivo. The lack of involvement of N-glycans was confirmed by testing various glycosylation mutants. High but not low molecular weight heparin strongly reduced the internalization of rhDAO in HepG2 cells and HUVECs. Human DAO was readily internalized by CHO-K1 cells, but not by the glycosaminoglycan- and heparan sulfate-deficient CHO cell lines pgsA-745 and pgsD-677, respectively. A docked heparin hexasaccharide interacted well with the predicted heparin binding site 568RFKRKLPK575. These results strongly imply that rhDAO clearance in vivo and cellular uptake in vitro is independent of N-glycan interactions with the classical clearance receptors ASGP-R and MR, but is mediated by binding to heparan sulfate proteoglycans followed by internalization via an unknown receptor.
Collapse
Affiliation(s)
- Elisabeth Gludovacz
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Kornelia Schuetzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Marlene Resch
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Katharina Tillmann
- Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku 20520, Finland
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Nikolaus Virgolini
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku 20520, Finland
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| |
Collapse
|
10
|
Haque A, Cortes C, Alam MN, Sreedhar M, Ferreira VP, Pangburn MK. Characterization of Binding Properties of Individual Functional Sites of Human Complement Factor H. Front Immunol 2020; 11:1728. [PMID: 32849614 PMCID: PMC7417313 DOI: 10.3389/fimmu.2020.01728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 01/15/2023] Open
Abstract
Factor H exists as a 155,000 dalton, extended protein composed of twenty small domains which is flexible enough that it folds back on itself. Factor H regulates complement activation through its interactions with C3b and polyanions. Three binding sites for C3b and multiple polyanion binding sites have been identified on Factor H. In intact Factor H these sites appear to act synergistically making their individual contributions difficult to distinguish. Recombinantly expressed fragments of human Factor H were examined using surface plasmon resonance (SPR) for interactions with C3, C3b, iC3b, C3c, and C3d. Eleven recombinant proteins of lengths from one to twenty domains were used to show that the three C3b-binding sites exhibit 100-fold different affinities for C3b. The N-terminal site [complement control protein (CCP) domains 1-6] bound C3b with a Kd of 0.08 μM and this interaction was not influenced by the presence or absence of domains 7 and 8. Full length Factor H similarly exhibited a Kd for C3b of 0.1 μM. Unexpectedly, the N-terminal site (CCP 1-6) bound native C3 with a Kd of 0.4 μM. The C-terminal domains (CCP 19-20) exhibited a Kd of 1.7 μM for C3b. We localized a weak third C3b binding site in the CCP 13-15 region with a Kd estimated to be ~15 μM. The C-terminal site (CCP 19-20) bound C3b, iC3b, and C3d equally well with a Kd of 1 to 2 μM. In order to identify and compare regions of Factor H that interact with polyanions a family of 18 overlapping three domain recombinant proteins spanning the entire length of Factor H were expressed and purified. Immobilized heparin was used as a model polyanion and SPR confirmed the presence of heparin binding sites in CCP 6-8 (Kd 1.2 μM) and in CCP 19-20 (4.9 μM) and suggested the existence of a weak third polyanion binding site in the center of Factor H (CCP 11-13). Our results unveil the relative contributions of different regions of Factor H to its regulation of complement, and may contribute to the understanding of how defects in certain Factor H domains lead to disease.
Collapse
Affiliation(s)
- Aftabul Haque
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - M Nurul Alam
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,Department of Biology, College of Arts, Sciences, and Education, Texas A&M University-Texarkana, Texarkana, TX, United States
| | - Maladi Sreedhar
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Michael K Pangburn
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| |
Collapse
|
11
|
Betala J, Bae S, Langan EM, LaBerge M, Lee JS. Combinatorial therapy of sirolimus and heparin by nanocarrier inhibits restenosis after balloon angioplasty ex vivo. Nanomedicine (Lond) 2020; 15:1205-1220. [PMID: 32340540 DOI: 10.2217/nnm-2020-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop poly(lactide-co-glycolide)-graft-polyethylenimine (PgP) as a dual drug-delivery carrier for sirolimus (SR) and heparin (Hep) to inhibit restenosis after balloon angioplasty. Materials & methods: SR was loaded in the hydrophobic core and negatively charged Hep complexed with the positively charged hydrophilic shell of PgP. SR- and Hep-loaded PgP was tested on rat aortic smooth muscle cells in vitro and injured porcine coronary arteries after balloon angioplasty ex vivo. Results & conclusion: SR and Hep loading efficiency in PgP were approximately 37 and 82%, respectively. SR- and Hep-loaded PgP treatment decreased smooth muscle cell proliferation up to 14 days post-treatment and decreased proliferation, collagen deposition and neointimal thickness and increased patency in porcine coronary arteries after balloon angioplasty ex vivo.
Collapse
Affiliation(s)
- Jayesh Betala
- Department of Bioengineering, Clemson University, SC 29634, USA
| | - Sooneon Bae
- Department of Bioengineering, Clemson University, SC 29634, USA
| | - Eugene M Langan
- Department of Vascular Surgery, Greenville Health System, Greenville, SC 29615, USA
| | - Martine LaBerge
- Department of Bioengineering, Clemson University, SC 29634, USA
| | - Jeoung Soo Lee
- Department of Bioengineering, Clemson University, SC 29634, USA
| |
Collapse
|
12
|
Hachim D, Whittaker TE, Kim H, Stevens MM. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. J Control Release 2019; 313:131-147. [PMID: 31629041 PMCID: PMC6900262 DOI: 10.1016/j.jconrel.2019.10.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Controlled, localized drug delivery is a long-standing goal of medical research, realization of which could reduce the harmful side-effects of drugs and allow more effective treatment of wounds, cancers, organ damage and other diseases. This is particularly the case for protein "drugs" and other therapeutic biological cargoes, which can be challenging to deliver effectively by conventional systemic administration. However, developing biocompatible materials that can sequester large quantities of protein and release them in a sustained and controlled manner has proven challenging. Glycosaminoglycans (GAGs) represent a promising class of bio-derived materials that possess these key properties and can additionally potentially enhance the biological effects of the delivered protein. They are a diverse group of linear polysaccharides with varied functionalities and suitabilities for different cargoes. However, most investigations so far have focused on a relatively small subset of GAGs - particularly heparin, a readily available, promiscuously-binding GAG. There is emerging evidence that for many applications other GAGs are in fact more suitable for regulated and sustained delivery. In this review, we aim to illuminate the beneficial properties of various GAGs with reference to specific protein cargoes, and to provide guidelines for informed choice of GAGs for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hyemin Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
13
|
Malaeb W, Bahmad HF, Abou-Kheir W, Mhanna R. The sulfation of biomimetic glycosaminoglycan substrates controls binding of growth factors and subsequent neural and glial cell growth. Biomater Sci 2019; 7:4283-4298. [PMID: 31407727 DOI: 10.1039/c9bm00964g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) are key structural and functional extracellular matrix (ECM) molecules involved in numerous signaling pathways mainly through their interaction with growth factors. Alginate sulfate mimics sulfated GAGs and binds growth factors such as basic fibroblast growth factor (FGF-2). Here, natural biomimetic substrates were engineered by immobilizing biotinylated alginate sulfates with varying degrees of sulfation (DS, from 0 to 2.7) on gold and polystyrene substrates using biotin-streptavidin binding. The build-up of films and the effect of the DS and biotinylation method on FGF-2 binding were assessed using quartz crystal microbalance with dissipation monitoring (QCM-D) and immunohistochemistry. The role of substrate sulfation and FGF-2 loading on the growth of A172 (human glioblastoma multiforme), SH-SY5Y (human neuroblastoma), and PC-12 (rat pheochromocytoma) cell lines was evaluated in vitro using proliferation and neurite outgrowth assessment. An increase in the DS of alginates resulted in augmented FGF-2 binding as evidenced by higher frequency and dissipation shifts measured with QCM-D and confirmed with immunostaining. All sulfated alginate substrates supported the attachment and growth of neural/glial cell lines better than controls with the highest increase in cell proliferation observed for the highest DS (p < 0.05 for all the cell lines). Moreover, FGF-2 loaded substrates with the highest DS induced the most significant increase in neurite-positive PC-12 cells and average neurite length. The developed biomimetic coatings can be used to functionalize substrates for biosensing applications (e.g. gold substrates) and to induce defined cellular responses via controlled growth factor delivery for basic and applied sciences.
Collapse
Affiliation(s)
- Waddah Malaeb
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
14
|
Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv 2019; 2:381-389. [PMID: 29467192 DOI: 10.1182/bloodadvances.2017013391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022] Open
Abstract
Relapses in acute myelogenous leukemia (AML) are a result of quiescent leukemic stem cells (LSCs) in marrow stromal niches, where they resist chemotherapy. LSCs employ CXCL12/CXCR4 to home toward protective marrow niches. Heparin disrupts CXCL12-mediated sequestration of cells in the marrow. CX-01 is a low-anticoagulant heparin derivative. In this pilot study, we combined CX-01 with chemotherapy for the treatment of AML. Induction consisted of cytarabine and idarubicin (7 + 3) with CX-01. Twelve patients were enrolled (median age, 56 years; 3 women). Three, 5, and 4 patients had good-, intermediate-, and poor-risk disease, respectively. Day 14 bone marrows were available on 11 patients and were aplastic in all without detectable leukemia. Eleven patients (92%) had morphologic complete remission after 1 induction (CR1). Eight patients were alive at a median follow-up of 24 months (4 patients in CR1). Three patients received an allogeneic stem cell transplant in CR1. Median disease-free survival was 14.8 months. Median overall survival was not attained at the maximum follow-up time of 29.4 months. No CX-01-associated serious adverse events occurred. Median day to an untransfused platelet count of at least 20 × 109/L was 21. CX-01 is well tolerated when combined with intensive therapy for AML and appears associated with enhanced count recovery and treatment efficacy.
Collapse
|
15
|
Battulga T, Tumurbaatar O, Ganzorig O, Ishimura T, Kanamoto T, Nakashima H, Miyazaki K, Yoshida T. Analysis of interaction between sulfated polysaccharides and HIV oligopeptides by surface plasmon resonance. Int J Biol Macromol 2018; 125:909-914. [PMID: 30521896 DOI: 10.1016/j.ijbiomac.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/22/2018] [Accepted: 12/01/2018] [Indexed: 11/15/2022]
Abstract
This study aims to quantitatively investigate the interaction between sulfated polysaccharides with potent anti-HIV activity, dextran and curdlan sulfates with negatively charged sulfate groups, and poly-L-lysine as a model protein and oligopeptides from a HIV surface glycoprotein gp120 with positively charged amino acids using surface plasmon resonance (SPR) and dynamic light scattering (DLS) to elucidate the anti-HIV mechanism of sulfated polysaccharides. The apparent association- (ka) and dissociation rate (kd) constants of dextran and curdlan sulfates against poly-L-lysine were ka = 6.92 × 104-2.17 × 106 1/Ms and kd = 4.29 × 10-5-2.22 × 10-4 1/s; these kinetic constants were dependent on the molecular weights and degree of sulfation of sulfated polysaccharides. For interaction, the three oligopeptides from the HIV gp120 were peptide A 297TRPNNNTRKRIRIQRGPGRA316 with several lysine (K) and arginine (R) in the V3 loop region, peptide B 493PLGVAPTKAKRRVVQREKR511 with several K and R in the C-terminus region, and oligopeptide C 362KQSSGGDPEIVTHSFNCGG380 with few basic amino acids in the CD4 binding domain. Sulfated polysaccharides exhibited strong interaction against oligopeptides A and B, (ka = 5.48 × 104-2.96 × 106 1/Ms. and kd = 1.74 × 10-4-6.24 × 10-3 1/s), no interaction was noted against oligopeptide C. Moreover, the particle size and zeta potential by DLS indicated the interaction between sulfated polysaccharides and oligopeptides A and B, suggesting the anti-HIV mechanism of sulfated polysaccharides to be the electrostatic interaction of negatively charged sulfated polysaccharides and HIV at the positively charged amino acid regions.
Collapse
Affiliation(s)
- Tungalag Battulga
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Oyunjargal Tumurbaatar
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Oyundelger Ganzorig
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Takahisa Ishimura
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Taisei Kanamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hideki Nakashima
- St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kensuke Miyazaki
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Takashi Yoshida
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan.
| |
Collapse
|
16
|
Thieker DF, Xu Y, Chapla D, Nora C, Qiu H, Felix T, Wang L, Moremen KW, Liu J, Esko JD, Woods RJ. Downstream Products are Potent Inhibitors of the Heparan Sulfate 2-O-Sulfotransferase. Sci Rep 2018; 8:11832. [PMID: 30087361 PMCID: PMC6081452 DOI: 10.1038/s41598-018-29602-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
Heparan Sulfate (HS) is a cell signaling molecule linked to pathological processes ranging from cancer to viral entry, yet fundamental aspects of its biosynthesis remain incompletely understood. Here, the binding preferences of the uronyl 2-O-sulfotransferase (HS2ST) are examined with variably-sulfated hexasaccharides. Surprisingly, heavily sulfated oligosaccharides formed by later-acting sulfotransferases bind more tightly to HS2ST than those corresponding to its natural substrate or product. Inhibition assays also indicate that the IC50 values correlate simply with degree of oligosaccharide sulfation. Structural analysis predicts a mode of inhibition in which 6-O-sulfate groups located on glucosamine residues present in highly-sulfated oligosaccharides occupy the canonical binding site of the nucleotide cofactor. The unexpected finding that oligosaccharides associated with later stages in HS biosynthesis inhibit HS2ST indicates that the enzyme must be separated temporally and/or spatially from downstream products during biosynthesis in vivo, and highlights a challenge for the enzymatic synthesis of lengthy HS chains in vitro.
Collapse
Affiliation(s)
- David F Thieker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Chelsea Nora
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Hong Qiu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Thomas Felix
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert J Woods
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Bae S, DiBalsi MJ, Meilinger N, Zhang C, Beal E, Korneva G, Brown RO, Kornev KG, Lee JS. Heparin-Eluting Electrospun Nanofiber Yarns for Antithrombotic Vascular Sutures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8426-8435. [PMID: 29461035 DOI: 10.1021/acsami.7b14888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The surgical connection of blood vessels, anastomosis, is a critical procedure in many reparative, transplantation, and reconstructive surgical procedures. However, effective restoration of circulation is complicated by pathological clotting (thrombosis) or progressive occlusion due to excess cell proliferation that often leads to additional surgeries and increases morbidity and mortality risk for patients. Pharmaceutical agents have been tested to prevent these complications, but many have unacceptable systemic side effects. Therefore, an alternative approach to deliver these drugs at the site of injury in a controlled manner is necessary. The objective of this study was to develop electrospun nanofibers composed of polyester poly(lactide- co-glycolide) (PLGA), poly(ethylene oxide) (PEO), and positively charged copolymer, poly(lactide- co-glycolide)- graft-polyethylenimine (PgP) for electrostatic binding and release of heparin for application as an antithrombotic microvascular suture. PgP was synthesized with different coupling ratios between PLGA and branched polyethylenimine (bPEI) to obtain PgP1 (∼1 PLGA grafted to 1 bPEI) and PgP3.7 (∼3.7 PLGA grafted to 1 bPEI). Nanofiber yarns (PLGA/PEO/PgP1 and PLGA/PEO/PgP3.7) were fabricated by electrospinning. Heparin immobilization on the positively charged nanofiber yarns was visualized using fluorescein-conjugated heparin (F-Hep), and the amount of immobilized F-Hep was higher on both PLGA/PEO/PgP3.7 and PLGA/PEO/PgP1 than yarns without PgP (PLGA/PEO). We also found that F-Hep was released from both PgP-containing yarns in a sustained manner over 20 days, while over 60% of F-Hep was released within 4 h from PLGA/PEO. Finally, we observed that heparin-eluting nanofiber yarns with both PgP1 and PgP3.7 showed significantly longer clotting times than nanofiber yarns without PgP. The clotting time of PLGA/PEO/PgP3.7 was not significantly different than that of free heparin (0.5 μg/mL). These results show that heparin-eluting electrospun nanofiber yarns may offer a basis for the development of microvascular sutures with anticoagulant activity.
Collapse
Affiliation(s)
- Sooneon Bae
- Dental and Craniofacial Trauma Research & Tissue Regeneration Directorate , United States Army Institute of Surgical Research , JBSA Fort Sam Houston , Texas 78234 , United States
| | | | | | | | | | | | - Robert O Brown
- Department of Head & Neck Surgery , Greenville Health System , Greenville , South Carolina 29615 , United States
| | | | | |
Collapse
|
18
|
Katner SJ, Johnson WE, Peterson EJ, Page P, Farrell NP. Comparison of Metal-Ammine Compounds Binding to DNA and Heparin. Glycans as Ligands in Bioinorganic Chemistry. Inorg Chem 2018; 57:3116-3125. [PMID: 29473748 DOI: 10.1021/acs.inorgchem.7b03043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present spectroscopic and biophysical approaches to examine the affinity of metal-ammine coordination complexes for heparin as a model for heparan sulfate (HS). Similar to nucleic acids, the highly anionic nature of heparin means it is associated in vivo with physiologically relevant cations, and this work extends their bioinorganic chemistry to substitution-inert metal-ammine compounds (M). Both indirect and direct assays were developed. M compounds are competitive inhibitors of methylene blue (MB)-heparin binding, and the change in the absorbance of the dye in the presence or absence of heparin can be used as an indirect reporter of M-heparin affinity. A second indirect assay uses the change in fluorescence of TAMRA-R9, a nonaarginine linked to a fluorescent TAMRA moiety, as a reporter for M-heparin binding. Direct assays are surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). The Kd values for TriplatinNC-heparin varied to some extent depending on the technique from 33.1 ± 2 nM (ITC) to 66.4 ± 1.3 nM (MB absorbance assay) and 340 ± 30 nM (SPR). The differences are explained by the nature of the technique and the use of heparin of differing molecular weight. Indirect probes using the displacement of ethidium bromide from DNA or, separately, fluorescently labeled oligonucleotide (DNA-Fl) can measure the relative affinities of heparin and DNA for M compounds. These assays showed essentially equivalent affinity of TriplatinNC for heparin and DNA. The generality of these methods was confirmed with a series of mononuclear cobalt, ruthenium, and platinum compounds with significantly lower affinity because of their smaller overall positive charge but in the order [Co(NH3)6]3+ > [Ru(NH3)6]3+ > [Pt(NH3)4]2+. The results on heparin can be extrapolated to glycosoaminoglycans such as HS, emphasizing the relevance of glycan interactions in understanding the biological properties of coordination compounds and the utility of the metalloglycomics concept for extending bioinorganic chemistry to this class of important biomolecules.
Collapse
Affiliation(s)
- Samantha J Katner
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| | - Wyatt E Johnson
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| | - Erica J Peterson
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| | - Phillip Page
- Reichert Technologies , Depew , New York 14043 , United States
| | - Nicholas P Farrell
- Department of Chemistry and Massey Cancer Center , Virginia Commonwealth University (VCU) , Richmond , Virginia 23284 , United States
| |
Collapse
|
19
|
Abstract
Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical use as an inhibitor of blood coagulation. The history of its identification a century ago unfolded amid one of the most fascinating scientific controversies turning around the distribution of credit for its discovery. The composition, purification and structure-function relationship of this naturally occurring glycosaminoglycan regarding its classical role as anticoagulant will be dealt with before proceeding to discuss its therapeutic potential in, among other, inflammatory and infectious disease, cancer treatment, cystic fibrosis and Alzheimer's disease. The first bibliographic reference hit using the words 'nanomedicine' and 'heparin' is as recent as 2008. Since then, nanomedical applications of heparin have experienced an exponential growth that will be discussed in detail, with particular emphasis on its antimalarial activity. Some of the most intriguing potential applications of heparin nanomedicines will be exposed, such as those contemplating the delivery of drugs to the mosquito stages of malaria parasites.
Collapse
Affiliation(s)
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain.,Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| |
Collapse
|
20
|
Sanden C, Mori M, Jogdand P, Jönsson J, Krishnan R, Wang X, Erjefält JS. Broad Th2 neutralization and anti-inflammatory action of pentosan polysulfate sodium in experimental allergic rhinitis. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:300-309. [PMID: 28497614 PMCID: PMC5569365 DOI: 10.1002/iid3.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 01/21/2023]
Abstract
Background Th2 cytokines like interleukin‐4, ‐5, and ‐13 are regarded as important drivers of the immunopathology underlying allergic rhinitis (AR) and asthma. The present study explores the capacity of pentosan polysulfate sodium (PPS), a semi‐synthetic heparin‐like macromolecular carbohydrate, to bind Th2 cytokines and exert biological neutralization in vitro, as well as anti‐inflammatory actions in vivo. Methodology The capacity of PPS to bind recombinant Th2 cytokines was tested with surface plasmon resonance (SPR) technology and biological Th2 neutralization was assessed by Th2‐dependent proliferation assays. The in vivo anti‐inflammatory action of PPS was studied using a validated Guinea‐pig model of AR. Results Binding studies revealed a strong and specific binding of PPS to IL‐4, IL‐5, and IL‐13 with IC values suggesting as stronger cytokine binding than for heparin. Cytokine binding translated to a biological neutralization as PPS dose dependently inhibited Th2‐dependent cell proliferation. Topical administration of PPS 30 min prior to nasal allergen challenge of sensitized animals significantly reduced late phase plasma extravasation, luminal influx of eosinophils, neutrophils, and total lavage leukocytes. Similar, albeit not statistically secured, effects were found for tissue leukocytes and mucus hyper‐secretion. The anti‐inflammatory effects of PPS compared favorably with established topical nasal steroid treatment. Conclusion This study points out PPS as a potent Th2 cytokine‐binding molecule with biological neutralization capacity and broad anti‐inflammatory effects in vivo. As such PPS fulfills the role as a potential candidate molecule for the treatment of AR and further studies of clinical efficacy seems highly warranted.
Collapse
Affiliation(s)
- Caroline Sanden
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Medetect AB, Lund, Sweden
| | - Michiko Mori
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Prajakta Jogdand
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jimmie Jönsson
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Medetect AB, Lund, Sweden
| | - Ravi Krishnan
- Paradigm Biopharmaceuticals Ltd., Melbourne, Victoria, Australia
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Ayerst BI, Smith RAA, Nurcombe V, Day AJ, Merry CLR, Cool SM. Growth Differentiation Factor 5-Mediated Enhancement of Chondrocyte Phenotype Is Inhibited by Heparin: Implications for the Use of Heparin in the Clinic and in Tissue Engineering Applications. Tissue Eng Part A 2017; 23:275-292. [PMID: 27899064 PMCID: PMC5397242 DOI: 10.1089/ten.tea.2016.0364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The highly sulfated glycosaminoglycan (GAG) heparin is widely used in the clinic as an anticoagulant, and researchers are now using it to enhance stem cell expansion/differentiation protocols, as well as to improve the delivery of growth factors for tissue engineering (TE) strategies. Growth differentiation factor 5 (GDF5) belongs to the bone morphogenetic protein family of proteins and is vital for skeletal formation; however, its interaction with heparin and heparan sulfate (HS) has not been studied. We identify GDF5 as a novel heparin/HS binding protein and show that HS proteoglycans are vital in localizing GDF5 to the cell surface. Clinically relevant doses of heparin (≥10 nM), but not equivalent concentrations of HS, were found to inhibit GDF5's biological activity in both human mesenchymal stem/stromal cell-derived chondrocyte pellet cultures and the skeletal cell line ATDC5. We also found that heparin inhibited both GDF5 binding to cell surface HS and GDF5-induced induction of Smad 1/5/8 signaling. Furthermore, GDF5 significantly increased aggrecan gene expression in chondrocyte pellet cultures, without affecting collagen type X expression, making it a promising target for the TE of articular cartilage. Importantly, this study may explain the variable (and disappointing) results seen with heparin-loaded biomaterials for skeletal TE and the adverse skeletal effects reported in the clinic following long-term heparin treatment. Our results caution the use of heparin in the clinic and in TE applications, and prompt the transition to using more specific GAGs (e.g., HS derivatives), with better-defined structures and fewer off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,2 Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester , Manchester, United Kingdom
| | - Raymond A A Smith
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Victor Nurcombe
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anthony J Day
- 2 Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester , Manchester, United Kingdom
| | - Catherine L R Merry
- 3 School of Materials, University of Manchester , Manchester, United Kingdom .,4 Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Simon M Cool
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,5 Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| |
Collapse
|
22
|
Kanoatov M, Mehrabanfar S, Krylov SN. Systematic Approach to Optimization of Experimental Conditions in Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures. Anal Chem 2016; 88:9300-8. [DOI: 10.1021/acs.analchem.6b02882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mirzo Kanoatov
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sina Mehrabanfar
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N. Krylov
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
23
|
Migliorini E, Thakar D, Kühnle J, Sadir R, Dyer DP, Li Y, Sun C, Volkman BF, Handel TM, Coche-Guerente L, Fernig DG, Lortat-Jacob H, Richter RP. Cytokines and growth factors cross-link heparan sulfate. Open Biol 2016; 5:rsob.150046. [PMID: 26269427 PMCID: PMC4554917 DOI: 10.1098/rsob.150046] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.
Collapse
Affiliation(s)
- Elisa Migliorini
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain
| | - Dhruv Thakar
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - Jens Kühnle
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Rabia Sadir
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Douglas P Dyer
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Liliane Coche-Guerente
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Ralf P Richter
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
24
|
Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium. Sci Rep 2016; 6:24368. [PMID: 27071342 PMCID: PMC4829872 DOI: 10.1038/srep24368] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/21/2016] [Indexed: 11/10/2022] Open
Abstract
The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses.
Collapse
|
25
|
Pakulska MM, Miersch S, Shoichet MS. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016; 351:aac4750. [PMID: 26989257 DOI: 10.1126/science.aac4750] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shane Miersch
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site. Glycoconj J 2016; 33:227-36. [PMID: 26979432 DOI: 10.1007/s10719-016-9660-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Vitronectin (VN) plays an important role in tissue regeneration. We previously reported that VN from partial hepatectomized (PH) rats results in a decrease of sialylation of VN and de-sialylation of VN decreases the cell spreading of hepatic stellate cells. In this study, we analyzed the mechanism how sialylation of VN regulates the properties of mouse primary cultured dermal fibroblasts (MDF) and a dermal fibroblast cell line, Swiss 3T3 cells. At first, we confirmed that VN from PH rats or de-sialylated VN also decreased cell spreading in MDF and Swiss 3T3 cells. The de-sialylation suppressed stress fiber formation in Swiss 3T3 cells. Next, we analyzed the effect of the de-sialylation of VN on stress fiber formation in Swiss 3T3 cells. RGD peptide, an inhibitor for a cell binding site of VN, did not affect the cell attachment of Swiss 3T3 cells on untreated VN but significantly decreased it on de-sialylated VN, suggesting that the de-sialylation attenuates the binding activity of an RGD-independent binding site in VN. To analyze a candidate RGD-independent binding site, an inhibition experiment of stress fiber formation for a heparin binding site was performed. The addition of heparin and treatment of cells with heparinase decreased stress fiber formation in Swiss 3T3 cells. Furthermore, de-sialylation increased the binding activity of VN to heparin, as detected by surface plasmon resonance (SPR). These results demonstrate that sialylation of VN glycans regulates stress fiber formation and cell spreading of dermal fibroblast cells via a heparin binding site.
Collapse
|
27
|
Repair of segmental ulna defects using a β-TCP implant in combination with a heparan sulfate glycosaminoglycan variant. Acta Biomater 2015; 28:193-204. [PMID: 26384700 DOI: 10.1016/j.actbio.2015.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/06/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Given the wide spread clinical use of ceramic-based bone void fillers, we sought to determine the efficacy of an FDA-approved β-tricalcium phosphate bone graft substitute (JAX™) in combination with a carboxymethyl cellulose (CMC) handling agent that included a particular heparan glycosaminoglycan (GAG) variant, herein referred to as HS3. Having recently demonstrated efficacy of a combination collagen/HS3 device, we further aimed to determine the support that HS3 could offer a handling agent used to administer a more tissue-relevant bone void filler. This study evaluated the JAX™-HS3 combination device in 1.5 cm critical-sized defects in the ulna bones of 27 male New Zealand White rabbits. Treatment groups consisted of JAX™ applied with CMC alone, or JAX™ with CMC containing either 30 μg or 100 μg of the HS3 GAG. Data based on radiographic, μCT, mechanical, and histological analyses at 4 and 8 weeks post-surgery, clearly demonstrate enhanced new bone formation in the JAX™-HS3 combination treated defects compared to treatment with JAX™ alone. The efficacy of such a combination advocates for inclusion of HS3 in handling agents used in the preparation of various bone void fillers being used in orthopaedic surgery. STATEMENT OF SIGNIFICANCE Synthetic bone grafts and demineralized bone matrices are gaining prominence as alternatives to autologous and allogeneic bone grafts and are frequently administered in granular form, necessitating their combination with a handling agent. Typical handling agents include glycerol, gelatin, cellulose, hyaluronic acid and lecithin, formulated as hydrogels, which can be further enhanced by the addition of heparan sulfate (HS) glycosaminoglycans that augment the osteostimulatory properties of the graft. Here we assessed the efficacy of β-TCP granules combined with a hydrogel consisting of carboxymethyl cellulose and the HS variant (HS3) previously shown to enhance osteogenic healing. The data advocates for HS3 to be included during the formulation of hydrogel-based carriers that support the various bone void fillers being used in orthopaedic surgery.
Collapse
|
28
|
Pineda G, Shen Z, de Albuquerque CP, Reynoso E, Chen J, Tu CC, Tang W, Briggs S, Zhou H, Wang JYJ. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. BMC Res Notes 2015; 8:616. [PMID: 26515650 PMCID: PMC4627417 DOI: 10.1186/s13104-015-1569-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Eukaryotic RNA polymerase II contains a C-terminal repeated domain (CTD) consisting of 52 consensus heptad repeats of Y1S2P3T4S5P6S7 that mediate interactions with many cellular proteins to regulate transcription elongation, RNA processing and chromatin structure. A number of CTD-binding proteins have been identified and the crystal structures of several protein-CTD complexes have demonstrated considerable conformational flexibility of the heptad repeats in those interactions. Furthermore, phosphorylation of the CTD at tyrosine, serine and threonine residues can regulate the CTD-protein interactions. Although the interactions of CTD with specific proteins have been elucidated at the atomic level, the capacity and specificity of the CTD-interactome in mammalian cells is not yet determined. RESULTS A proteomic study was conducted to examine the mammalian CTD-interactome. We utilized six synthetic peptides each consisting of four consensus CTD-repeats with different combinations of serine and tyrosine phosphorylation as affinity-probes to pull-down nuclear proteins from HeLa cells. The pull-down fractions were then analyzed by MUDPIT mass spectrometry, which identified 100 proteins with the majority from the phospho-CTD pull-downs. Proteins pulled-down by serine-phosphorylated CTD-peptides included those containing the previously defined CTD-interacting domain (CID). Using SILAC mass spectrometry, we showed that the in vivo interaction of RNA polymerase II with the mammalian CID-containing RPRD1B is disrupted by CID mutation. We also showed that the CID from four mammalian proteins interacted with pS2-phosphorylated but not pY1pS2-doubly phosphorylated CTD-peptides. However, we also found proteins that were preferentially pulled-down by pY1pS2- or pY1pS5-doubly phosphorylated CTD-peptides. We prepared an antibody against tyrosine phosphorylated CTD and showed that ionizing radiation (IR) induced a transient increase in CTD tyrosine phosphorylation by immunoblotting. Combining SILAC and IMAC purification of phospho-peptides, we found that IR regulated the phosphorylation at four CTD tyrosine sites in different ways. CONCLUSION Upon phosphorylation, the 52 repeats of the CTD have the capacity to generate a large number of binding sites for cellular proteins. This study confirms previous findings that serine phosphorylation stimulates whereas tyrosine phosphorylation inhibits the protein-binding activity of the CTD. However, tyrosine phosphorylation of the CTD can also stimulate other CTD-protein interactions. The CTD-peptide affinity pull-down method described here can be adopted to survey the mammalian CTD-interactome in various cell types and under different biological conditions.
Collapse
Affiliation(s)
- Gabriel Pineda
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Department of Medicine, Division of Hematology-Oncology, University of California, San Diego, George Palade Laboratories Room 256, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Zhouxin Shen
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Claudio Ponte de Albuquerque
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Eduardo Reynoso
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jeffrey Chen
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Chi-Chiang Tu
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Wingchung Tang
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Steve Briggs
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jean Y J Wang
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Department of Medicine, Division of Hematology-Oncology, University of California, San Diego, George Palade Laboratories Room 256, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
29
|
Hayashida O, Kojima M, Kusano S. Biotinylated Cyclophane: Synthesis, Cyclophane-Avidin Conjugates, and Their Enhanced Guest-Binding Affinity. J Org Chem 2015; 80:9722-7. [PMID: 26360807 DOI: 10.1021/acs.joc.5b01809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cationic and anionic cyclophanes bearing a biotin moiety were synthesized as a water-soluble host (1a and 1b, respectively). Both hosts 1a and 1b were found to strongly bind avidin with binding constants of 1.3 × 10(8) M(-1), as confirmed by surface plasmon resonance measurements. The present conjugate of 1a with avidin (1a-avidin) showed an enhanced guest binding affinity toward fluorescence guests such as TNS and 2,6-ANS. The K values of 1a-avidin conjugate with TNS and 2,6-ANS were ~19-fold larger than those of monocyclic cyclophane 1a with the identical guests. Favorable hydrophobic and electrostatic interactions between 1a-avidin and TNS were suggested by computer-aided molecular modeling calculations. Moreover, addition of excess biotin to the complexes of 1a-avidin with the guests resulted in dissociation of 1a-avidin to avidin and 1a having less guest-binding affinity. Conversely, such enhancements in the guest-binding affinity were not obviously observed for the conjugate of anionic 1b with avidin (1b-avidin) due to electrostatic repulsion between anionic 1b and anionic guests.
Collapse
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | - Miwa Kojima
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | - Shuhei Kusano
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| |
Collapse
|
30
|
Altgärde N, Eriksson C, Peerboom N, Phan-Xuan T, Moeller S, Schnabelrauch M, Svedhem S, Trybala E, Bergström T, Bally M. Mucin-like Region of Herpes Simplex Virus Type 1 Attachment Protein Glycoprotein C (gC) Modulates the Virus-Glycosaminoglycan Interaction. J Biol Chem 2015; 290:21473-85. [PMID: 26160171 DOI: 10.1074/jbc.m115.637363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/09/2023] Open
Abstract
Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.
Collapse
Affiliation(s)
- Noomi Altgärde
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Charlotta Eriksson
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Nadia Peerboom
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tuan Phan-Xuan
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Stephanie Moeller
- the Department of Biomaterials, INNOVENT e.V., Pruessingstrasse 27 B, D-07745 Jena, Germany, and
| | - Matthias Schnabelrauch
- the Department of Biomaterials, INNOVENT e.V., Pruessingstrasse 27 B, D-07745 Jena, Germany, and
| | - Sofia Svedhem
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Edward Trybala
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Tomas Bergström
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Marta Bally
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, the Institut Curie, Centre de Recherche, CNRS, UMR 168, Physico-Chimie Curie, F-75248 Paris, France
| |
Collapse
|
31
|
A fast capillary electrophoresis method to assess the binding affinity of recombinant antithrombin toward heparin directly from cell culture supernatants. J Pharm Biomed Anal 2015; 111:64-70. [DOI: 10.1016/j.jpba.2015.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
|
32
|
Watanabe I, Hikita T, Mizuno H, Sekita R, Minami A, Ishii A, Minamisawa Y, Suzuki K, Maeda H, Hidari KIPJ, Suzuki T. Isolation and characterization of monoclonal antibodies specific for chondroitin sulfate E. Glycobiology 2015; 25:953-62. [PMID: 26036195 DOI: 10.1093/glycob/cwv039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 12/26/2022] Open
Abstract
Chondroitin sulfate E (CSE) is a polysaccharide containing mainly disaccharide units of D-glucuronic acid (GlcA) and 4,6-O-disulfated N-acetyl-D-galactosamine (GalNAc) residues (E-unit) in the amount of ∼ 60%. CSE is involved in many biological and pathological processes. In this study, we established new monoclonal antibodies, termed E-12C and E-18H, by using CSE that contained more than 70% of E-units as an immunogen. These antibodies recognized CSE but not other CSs isomers or dermatan sulfate (DS). We evaluated the reactivities of the antibodies to 6-O-sulfated CSA (6S-CSA) and DS (6S-DS) that possessed ∼ 60% of GalNAc (4S, 6S) moieties in their structures. Neither of the antibodies reacted with 6S-DS. The antibodies strictly distinguished the structural difference of GlcA and L-iduronic acid in the polysaccharide. Binding affinities of the antibodies were determined by a surface plasmon resonance assay using CSE and 6S-CSA. The binding affinities were strongly associated with the molecular weight of CSE and the E-unit content of 6S-CSA. Moreover, we demonstrated that the antibodies are applicable to histochemical analysis. In conclusion, the new anti-CSE monoclonal antibodies specifically recognize the E-unit of CSE. The antibodies will become useful tools for the investigation of the biological and pathological significance of CSE.
Collapse
Affiliation(s)
- Ippei Watanabe
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Tomoya Hikita
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Haruka Mizuno
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Risa Sekita
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Yuka Minamisawa
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Kiyoshi Suzuki
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Hiroshi Maeda
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato-shi, Tokyo 207-0021, Japan
| | - Kazuya I P J Hidari
- Department of Food and Nutrition, Junior College Division, University of Aizu, 1-1 Aza-Kadota Yahata, Ikki-machi, Aizuwakamatsu-shi, Fukushima 965-8570, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| |
Collapse
|
33
|
Bin Mohamed Suffian IF, Nishimura Y, Morita K, Nakamura-Tsuruta S, Al-Jamal KT, Ishii J, Ogino C, Kondo A. Mutation of arginine residues to avoid non-specific cellular uptakes for hepatitis B virus core particles. J Nanobiotechnology 2015; 13:15. [PMID: 25890025 PMCID: PMC4334417 DOI: 10.1186/s12951-015-0074-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hepatitis B virus core (HBc) particle is known as a promising new carrier for the delivery of drugs and nucleic acids. However, since the arginine-rich domain that is located in the C-terminal region of the HBc monomer binds to the heparan sulphate proteoglycan on the cell surface due to its positive charge, HBc particles are introduced non-specifically into a wide range of cells. To avoid non-specific cellular uptake with the intent to control the ability of cell targeting, we individually replaced the respective arginine (R) residues of the arginine-rich domain located in amino acid positions 150-159 in glycine (G) residues. RESULTS The mutated HBc particles in which R154 was replaced with glycine (G) residue (R154G) showed a drastic decrease in the ability to bind to the heparan sulphate proteoglycan and to avoid non-specific cellular uptake by several types of cancer cells. CONCLUSIONS Because this mutant particle retains most of its C-terminal arginine-rich residues, it would be useful in the targeting of specificity-altered HBc particles in the delivery of nucleic acids.
Collapse
Affiliation(s)
- Izzat Fahimuddin Bin Mohamed Suffian
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan. .,Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Yuya Nishimura
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan.
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.
| | - Sachiko Nakamura-Tsuruta
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Jun Ishii
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan.
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.
| |
Collapse
|
34
|
Yang X, Du H, Liu J, Zhai G. Advanced Nanocarriers Based on Heparin and Its Derivatives for Cancer Management. Biomacromolecules 2015; 16:423-36. [DOI: 10.1021/bm501532e] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoye Yang
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Hongliang Du
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jiyong Liu
- Department
of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guangxi Zhai
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| |
Collapse
|
35
|
Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, Grandfils C, Fernàndez-Busquets X. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1719-28. [DOI: 10.1016/j.nano.2014.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 02/06/2023]
|
36
|
Vulic K, Shoichet MS. Affinity-Based Drug Delivery Systems for Tissue Repair and Regeneration. Biomacromolecules 2014; 15:3867-80. [DOI: 10.1021/bm501084u] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katarina Vulic
- Department of Chemistry, ‡Department of Chemical
Engineering and Applied Chemistry, §Institute of Biomaterials
and Biomedical Engineering, Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Molly S. Shoichet
- Department of Chemistry, ‡Department of Chemical
Engineering and Applied Chemistry, §Institute of Biomaterials
and Biomedical Engineering, Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| |
Collapse
|
37
|
Gerlza T, Hecher B, Jeremic D, Fuchs T, Gschwandtner M, Falsone A, Gesslbauer B, Kungl AJ. A combinatorial approach to biophysically characterise chemokine-glycan binding affinities for drug development. Molecules 2014; 19:10618-34. [PMID: 25054442 PMCID: PMC6271861 DOI: 10.3390/molecules190710618] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 01/06/2023] Open
Abstract
Chemokine binding to glycosaminoglycans (GAGs) is recognised to be an important step in inflammation and other pathological disorders like tumor growth and metastasis. Although different ways and strategies to interfere with these interactions are being pursued, no major breakthrough in the development of glycan-targeting drugs has been reported so far. We have engineered CXCL8 towards a dominant-negative form of this chemokine (dnCXCL8) which was shown to be highly active in various inflammatory animal models due to its inability to bind/activate the cognate CXCL8 GPC receptors on neutrophils in combination with its significantly increased GAG-binding affinity [1]. For the development of GAG-targeting chemokine-based biopharmaceuticals, we have established a repertoire of methods which allow the quantification of protein-GAG interactions. Isothermal fluorescence titration (IFT), surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and a novel ELISA-like competition assay (ELICO) have been used to determine Kd and IC50 values for CXCL8 and dnCXCL8 interacting with heparin and heparan sulfate (HS), the proto-typical members of the GAG family. Although the different methods gave different absolute affinities for the four protein-ligand pairs, the relative increase in GAG-binding affinity of dnCXCL8 compared to the wild type chemokine was found by all methods. In combination, these biophysical methods allow to discriminate between unspecific and specific protein-GAG interactions.
Collapse
Affiliation(s)
- Tanja Gerlza
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Humboldtstrasse 46, A-8010 Graz, Austria
| | - Bianca Hecher
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Humboldtstrasse 46, A-8010 Graz, Austria
| | - Dalibor Jeremic
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, A-802 Graz, Austria
| | - Thomas Fuchs
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, A-802 Graz, Austria
| | | | - Angelika Falsone
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, A-802 Graz, Austria
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Humboldtstrasse 46, A-8010 Graz, Austria
| | - Andreas J Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Humboldtstrasse 46, A-8010 Graz, Austria.
| |
Collapse
|
38
|
Miller T, Goude MC, McDevitt TC, Temenoff JS. Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery. Acta Biomater 2014; 10:1705-19. [PMID: 24121191 PMCID: PMC3960340 DOI: 10.1016/j.actbio.2013.09.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/19/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022]
Abstract
Glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides that interact with a variety of positively charged growth factors. In this review article the effects of engineering GAG chemistry for molecular delivery applications in regenerative medicine are presented. Three major areas of focus at the structure-function-property interface are discussed: (1) macromolecular properties of GAGs; (2) effects of chemical modifications on protein binding; (3) degradation mechanisms of GAGs. GAG-protein interactions can be based on: (1) GAG sulfation pattern; (2) GAG carbohydrate conformation; (3) GAG polyelectrolyte behavior. Chemical modifications of GAGs, which are commonly performed to engineer molecular delivery systems, affect protein binding and are highly dependent on the site of modification on the GAG molecules. The rate and mode of degradation can determine the release of molecules as well as the length of GAG fragments to which the cargo is electrostatically coupled and eventually released from the delivery system. Overall, GAG-based polymers are a versatile biomaterial platform offering novel means to engineer molecular delivery systems with a high degree of control in order to better treat a range of degenerated or injured tissues.
Collapse
Affiliation(s)
- Tobias Miller
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Melissa C Goude
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Todd C McDevitt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
39
|
Kanoatov M, Cherney LT, Krylov SN. Extracting Kinetics from Affinity Capillary Electrophoresis (ACE) Data: A New Blade for the Old Tool. Anal Chem 2014; 86:1298-305. [DOI: 10.1021/ac4038976] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mirzo Kanoatov
- Department
of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Leonid T. Cherney
- Department
of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N. Krylov
- Department
of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
40
|
Thakar D, Migliorini E, Coche-Guerente L, Sadir R, Lortat-Jacob H, Boturyn D, Renaudet O, Labbe P, Richter RP. A quartz crystal microbalance method to study the terminal functionalization of glycosaminoglycans. Chem Commun (Camb) 2014; 50:15148-51. [DOI: 10.1039/c4cc06905f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
QCM-D is demonstrated as a novel method to quantify the reaction yields and stability of the reducing-end conjugation of glycosaminoglycans.
Collapse
Affiliation(s)
- Dhruv Thakar
- Université Grenoble Alpes
- DCM
- 38000 Grenoble, France
- CNRS
- DCM
| | | | | | - Rabia Sadir
- Université Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- 38027 Grenoble, France
- CNRS
- IBS
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- 38027 Grenoble, France
- CNRS
- IBS
| | - Didier Boturyn
- Université Grenoble Alpes
- DCM
- 38000 Grenoble, France
- CNRS
- DCM
| | | | - Pierre Labbe
- Université Grenoble Alpes
- DCM
- 38000 Grenoble, France
- CNRS
- DCM
| | | |
Collapse
|
41
|
Green JV, Orsborn KI, Zhang M, Tan QKG, Greis KD, Porollo A, Andes DR, Long Lu J, Hostetter MK. Heparin-binding motifs and biofilm formation by Candida albicans. J Infect Dis 2013; 208:1695-704. [PMID: 23904295 PMCID: PMC4038792 DOI: 10.1093/infdis/jit391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/30/2013] [Indexed: 01/02/2023] Open
Abstract
Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms.
Collapse
|
42
|
Altgärde N, Nilebäck E, de Battice L, Pashkuleva I, Reis RL, Becher J, Möller S, Schnabelrauch M, Svedhem S. Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction. Acta Biomater 2013; 9:8158-66. [PMID: 23747326 DOI: 10.1016/j.actbio.2013.05.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/17/2022]
Abstract
Molecular interactions involving glycosaminoglycans (GAGs) are important for biological processes in the extracellular matrix (ECM) and at cell surfaces, and also in biotechnological applications. Enzymes in the ECM constantly modulate the molecular structure and the amount of GAGs in our tissues. Specifically, the changeable sulfation patterns of many GAGs are expected to be important in interactions with proteins. Biotinylation is a convenient method for immobilizing molecules to surfaces. When studying interactions at the molecular, cell and tissue level, the native properties of the immobilized molecule, i.e. its biofunctionality, need to be retained upon immobilization. Here, the GAGs hyaluronan (HA) and chondroitin sulfate (CS), and synthetically sulfated derivatives of the two, were immobilized using biotin-streptavidin binding. The degree of biotinylation and the placement of biotin groups (end-on/side-on) were varied. The introduction of biotin groups could have unwanted effects on the studied molecule, but this aspect that is not always straightforward to evaluate. Hyaluronidase, an enzyme that degrades HA and CS in the ECM, was investigated as a probe to evaluate the biofunctionality of the immobilized GAGs, using both quartz crystal microbalance and high-performance liquid chromatography. Our results showed that end-on biotinylated HA was efficiently degraded by hyaluronidase, whereas already a low degree of side-on biotinylation destroyed the degrading ability of the enzyme. Synthetically introduced sulfate groups also had this effect. Hence hyaluronidase degradation is a cheap and easy way to investigate how molecular function is influenced by the introduced functional groups. Binding experiments with the proteoglycan aggrecan emphasized the influence of protein size and surface orientation of the GAGs for in-depth studies of GAG behavior.
Collapse
Affiliation(s)
- Noomi Altgärde
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fredenburgh JC, Leslie BA, Stafford AR, Lim T, Chan HH, Weitz JI. Zn2+ mediates high affinity binding of heparin to the αC domain of fibrinogen. J Biol Chem 2013; 288:29394-402. [PMID: 23990470 DOI: 10.1074/jbc.m113.469916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn(2+) in this interaction because Zn(2+) is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn(2+) promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn(2+)-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn(2+)-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn(2+) is present. These results reveal the mechanism by which Zn(2+) augments the capacity of fibrinogen to impair the anticoagulant activity of heparin.
Collapse
|
44
|
Novel feature of Mycobacterium avium subsp. paratuberculosis, highlighted by characterization of the heparin-binding hemagglutinin adhesin. J Bacteriol 2013; 195:4844-53. [PMID: 23974028 DOI: 10.1128/jb.00671-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis comprises two genotypically defined groups, known as the cattle (C) and sheep (S) groups. Recent studies have reported phenotypic differences between M. avium subsp. paratuberculosis groups C and S, including growth rates, infectivity for macrophages, and iron metabolism. In this study, we investigated the genotypes and biological properties of the virulence factor heparin-binding hemagglutinin adhesin (HBHA) for both groups. In Mycobacterium tuberculosis, HBHA is a major adhesin involved in mycobacterium-host interactions and extrapulmonary dissemination of infection. To investigate HBHA in M. avium subsp. paratuberculosis, we studied hbhA polymorphisms by fragment analysis using the GeneMapper technology across a large collection of isolates genotyped by mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) and IS900 restriction fragment length polymorphism (RFLP-IS900) analyses. Furthermore, we analyzed the structure-function relationships of recombinant HBHA proteins of types C and S by heparin-Sepharose chromatography and surface plasmon resonance (SPR) analyses. In silico analysis revealed two forms of HBHA, corresponding to the prototype genomes for the C and S types of M. avium subsp. paratuberculosis. This observation was confirmed using GeneMapper on 85 M. avium subsp. paratuberculosis strains, including 67 strains of type C and 18 strains of type S. We found that HBHAs from all type C strains contain a short C-terminal domain, while those of type S present a long C-terminal domain, similar to that produced by Mycobacterium avium subsp. avium. The purification of recombinant HBHA from M. avium subsp. paratuberculosis of both types by heparin-Sepharose chromatography highlighted a correlation between their affinities for heparin and the lengths of their C-terminal domains, which was confirmed by SPR analysis. Thus, types C and S of M. avium subsp. paratuberculosis may be distinguished by the types of HBHA they produce, which differ in size and adherence properties, thereby providing new evidence that strengthens the genotypic differences between the C and S types of M. avium subsp. paratuberculosis.
Collapse
|
45
|
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:5287-98. [PMID: 23891937 DOI: 10.1016/j.bbagen.2013.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Sulf1 is a cell-surface sulfatase removing internal 6-O-sulfate groups from heparan sulfate (HS) chains. Thereby it modulates the activity of HS-dependent growth factors. For HS interaction Sulf1 employs a unique hydrophilic domain (HD). METHODS Affinity-chromatography, AFM-single-molecule force spectroscopy (SMFS) and immunofluorescence on living cells were used to analyze specificity, kinetics and structural basis of this interaction. RESULTS Full-length Sulf1 interacts broadly with sulfated glycosaminoglycans (GAGs) showing, however, higher affinity toward HS and heparin than toward chondroitin sulfate or dermatan sulfate. Strong interaction depends on the presence of Sulf1-substrate groups, as Sulf1 bound significantly weaker to HS after enzymatic 6-O-desulfation by Sulf1 pretreatment, hence suggesting autoregulation of Sulf1/substrate association. In contrast, HD alone exhibited outstanding specificity toward HS and did not interact with chondroitin sulfate, dermatan sulfate or 6-O-desulfated HS. Dynamic SMFS revealed an off-rate of 0.04/s, i.e., ~500-fold higher than determined by surface plasmon resonance. SMFS allowed resolving the dynamics of single dissociation events in each force-distance curve. HD subdomain constructs revealed heparin interaction sites in the inner and C-terminal regions of HD. CONCLUSIONS Specific substrate binding of Sulf1 is mediated by HD and involves at least two separate HS-binding sites. Surface plasmon resonance KD-values reflect a high avidity resulting from multivalent HD/heparin interaction. While this ensures stable cell-surface HS association, the dynamic cooperation of binding sites at HD and also the catalytic domain enables processive action of Sulf1 along or across HS chains. GENERAL SIGNIFICANCE HD confers a novel and highly dynamic mode of protein interaction with HS.
Collapse
|
46
|
Valle-Delgado JJ, Urbán P, Fernàndez-Busquets X. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy. NANOSCALE 2013; 5:3673-3680. [PMID: 23306548 DOI: 10.1039/c2nr32821f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.
Collapse
Affiliation(s)
- Juan José Valle-Delgado
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, Barcelona E08028, Spain
| | | | | |
Collapse
|
47
|
Jia L, Xu L, Wang Z, Xu J, Ji J. Label-free Fluorescent Sensor for Probing Heparin-Protein Interaction Based on Supramolecular Assemblies. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Littlechild SL, Zhang Y, Tomich JM, Conrad GW. Fibrinogen, riboflavin, and UVA to immobilize a corneal flap--molecular mechanisms. Invest Ophthalmol Vis Sci 2012; 53:5991-6003. [PMID: 22879413 DOI: 10.1167/iovs.12-10201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Tissue glue containing fibrinogen (FIB) and riboflavin (RF), upon exposure to long wavelength ultraviolet light (UVA, 365 nM) has been proposed potentially to solve long-standing problems presented by corneal wound and epithelial ingrowth side-effects from laser-assisted in situ keratomileuis (LASIK). Data presented in a previous study demonstrated an ability of FIB + RF + UVA to adhere two stromal surfaces; however, to our knowledge no molecular mechanisms have been proposed to account for interactions occurring between corneal extracellular matrix (ECM) and tissue glue molecules. Here, we document several covalent and noncovalent interactions between these classes of macromolecules. METHODS SDS-PAGE and Western blot techniques were used to identify covalent interactions between tissue glue molecules and corneal ECM molecules in either the presence or absence of RF and UVA, in vitro and ex vivo. Surface plasmon resonance (SPR) was used to characterize noncovalent interactions, and obtain k(a), k(d), and K(D) binding affinity values. RESULTS SDS-PAGE and Western blot analyses indicated that covalent interactions occurred between neighboring FIB molecules, as well as between FIB and collagen type I (Coll-I) proteins (in vitro and ex vivo). These interactions occurred only in the presence of RF and UVA. SPR data demonstrated the ability of FIB to bind noncovalently to corneal stroma molecules, Coll-I, decorin, dermatan sulfate, and corneal basement membrane molecules, laminin and heparan sulfate--only in the presence of Zn(2+). CONCLUSIONS Covalent and (zinc-mediated) noncovalent mechanisms involving FIB and stromal ECM molecules contribute to the adhesion created by FIB + RF + UVA.
Collapse
Affiliation(s)
- Stacy L Littlechild
- Division of Biology, Kansas State University, Manhattan, Kansas 66506-4901, USA.
| | | | | | | |
Collapse
|
49
|
Baldwin AD, Robinson KG, Militar J, Derby CD, Kiick KL, Akins RE. In situ crosslinkable heparin-containing poly(ethylene glycol) hydrogels for sustained anticoagulant release. J Biomed Mater Res A 2012; 100:2106-18. [PMID: 22615105 PMCID: PMC4096162 DOI: 10.1002/jbm.a.34050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/29/2011] [Indexed: 11/08/2022]
Abstract
Low-molecular weight heparin (LMWH) is widely used in anticoagulation therapies and for the prevention of thrombosis. LMWH is administered by subcutaneous injection usually once or twice per day. This frequent and invasive delivery modality leads to compliance issues for individuals on prolonged therapeutic courses, particularly pediatric patients. Here, we report a long-term delivery method for LMWH via subcutaneous injection of long-lasting hydrogels. LMWH is modified with reactive maleimide groups so that it can be crosslinked into continuous networks with four-arm thiolated poly(ethylene glycol) (PEG-SH). Maleimide-modified LMWH (Mal-LMWH) retains bioactivity as indicated by prolonged coagulation time. Hydrogels comprising PEG-SH and Mal-LMWH degrade via hydrolysis, releasing bioactive LMWH by first-order kinetics with little initial burst release. Separately dissolved Mal-LMWH and PEG-SH solutions were co-injected subcutaneously in New Zealand White rabbits. The injected solutions successfully formed hydrogels in situ and released LMWH as measured via chromogenic assays on plasma samples, with accumulation of LMWH occurring at day 2 and rising to near-therapeutic dose equivalency by day 5. These results demonstrate the feasibility of using LMWH-containing, crosslinked hydrogels for sustained and controlled release of anticoagulants.
Collapse
Affiliation(s)
- Aaron D. Baldwin
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Karyn G. Robinson
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jaimee Militar
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Christopher D. Derby
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19716, USA
| | - Robert E. Akins
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
50
|
Condac E, Strachan H, Gutierrez-Sanchez G, Brainard B, Giese C, Heiss C, Johnson D, Azadi P, Bergmann C, Orlando R, Esmon CT, Harenberg J, Moremen K, Wang L. The C-terminal fragment of axon guidance molecule Slit3 binds heparin and neutralizes heparin's anticoagulant activity. Glycobiology 2012; 22:1183-92. [PMID: 22641771 DOI: 10.1093/glycob/cws087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Slit3 is a large molecule with multiple domains and belongs to axon guidance families. To date, the biological functions of Slit3 are still largely unknown. Our recent study demonstrated that the N-terminal fragment of Slit3 is a novel angiogenic factor. In this study, we examined the biological function of the C-terminal fragment of human Slit3 (HSCF). The HSCF showed a high-affinity binding to heparin. The binding appeared to be heparin/heparan sulfate-specific and depends on the size, the degree of sulfation, the presence of N- and 6-O-sulfates and carboxyl moiety of the polysaccharide. Functional studies observed that HSCF inhibited antithrombin binding to heparin and neutralized the antifactor IIa and Xa activities of heparin and the antifactor IIa activity of low-molecular-weight heparin (LMWH). Thromboelastography analysis observed that HSCF reversed heparin's anticoagulation in global plasma coagulation. Taken together, these observations demonstrate that HSCF is a novel heparin-binding protein that potently neutralizes heparin's anticoagulation activity. This study reveals a potential for HSCF to be developed as a new antidote to treat overdosing of both heparin and LMWH in clinical applications.
Collapse
Affiliation(s)
- Eduard Condac
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|