1
|
Xu X, Liu L, Xu L, Zhang Y, Hafeez R, Ijaz M, Ali HM, Shahid MS, Ahmed T, Ondrasek G, Li B. Regulatory mechanism of C4-dicarboxylates in cyclo (Phe-Pro) production. Microb Cell Fact 2024; 23:255. [PMID: 39342283 PMCID: PMC11437626 DOI: 10.1186/s12934-024-02527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Cyclo (Phe-Pro) (cFP), a cyclic dipeptide with notable antifungal, antibacterial, and antiviral properties, shows great promise for biological control of plant diseases. Produced as a byproduct by non-ribosomal peptide synthetases (NRPS), the regulatory mechanism of cFP biosynthesis remains unclear. In a screening test of 997 Tn5 mutants of Burkholderia seminalis strain R456, we identified eight mutants with enhanced antagonistic effects against Fusarium graminearum (Fg). Among these, mutant 88's culture filtrate contained cFP, confirmed through HPLC and LC-MS, which actively inhibited Fg. The gene disrupted in mutant 88 is part of the Dct transport system (Dct-A, -B, -D), responsible for C4-dicarboxylate transport. Knockout mutants of Dct genes exhibited higher cFP levels than the wild type, whereas complementary strains showed no significant difference. Additionally, the presence of exogenous C4-dicarboxylates reduced cFP production in wild type R456, indicating that these substrates negatively regulate cFP synthesis. Given that cFP synthesis is related to NRPS, we previously identified an NRPS cluster in R456, horizontally transferred from algae. Specifically, knocking out gene 2061 within this NRPS cluster significantly reduced cFP production. A Fur box binding site was predicted upstream of gene 2061, and yeast one-hybrid assays confirmed Fur protein binding, which increased with additional C4-dicarboxylates. Knockout of the Fur gene led to up-regulation of gene 2061 and increased cFP production, suggesting that C4-dicarboxylates suppress cFP synthesis by enhancing Fur-mediated repression of gene 2061.
Collapse
Affiliation(s)
- Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liu Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Xianghu Laboratory, Hangzhou, 311231, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, Zagreb, 10000, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Karnachuk OV, Lukina AP, Avakyan MR, Kadnikov VV, Begmatov S, Beletsky AV, Vlasova KG, Novikov AA, Shcherbakova VA, Mardanov AV, Ravin NV. Novel thermophilic genera Geochorda gen. nov. and Carboxydochorda gen. nov. from the deep terrestrial subsurface reveal the ecophysiological diversity in the class Limnochordia. Front Microbiol 2024; 15:1441865. [PMID: 39376703 PMCID: PMC11456536 DOI: 10.3389/fmicb.2024.1441865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
The class Limnochordia harbors a single cultivated member, the mesophilic Limnochorda pilosa, which was isolated from a meromictic lake. Despite numerous molecular signatures reported in various ecosystems, the ecophysiological versatility of this deeply branched lineage of Firmicutes (Bacillota) remains poorly understood. The objective of this study was to use targeted cultivation, based on metagenome-assembled genomes from a deep terrestrial aquifer in Western Siberia, to isolate two new thermophilic members of the class. These isolates, described as Geochorda subterranea gen. nov. sp. nov. and Carboxydochorda subterranea gen. nov. sp. nov. within the Geochordaceae fam. nov., were capable of both anaerobic and aerobic respiration using fumarate and O2, respectively, with simple sugars as electron donors. The cultivated Geochordaceae have demonstrated fermentative growth and degradation of various polymers, including starch, maltose, maltodextrin, xylan, and chitin. The carboxydotrophic C. subterranea sp. nov. exhibited autotrophic growth via the Calvin-Benson-Bassham cycle, using CO, H2, and formate as electron donors and O2 as an electron acceptor, adding metabolic flexibility to the bacterium in the nutrient-depleted "deep biosphere" and supporting the possibility of aerobic metabolism in the deep subsurface. The broad physiological potential deciphered from physiological experiments and comparative genomic data explains the widespread distribution of uncultivated members of the class Limnochordia in various ecosystems, where they can oxidize complex organic substrates through both aerobic and anaerobic respiration, as well as pursue a chemolithotrophic lifestyle through the oxidation of H2 or CO.
Collapse
Affiliation(s)
- Olga V. Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Anastasia P. Lukina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Marat R. Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjahon Begmatov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ksenia G. Vlasova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | | | - Viktoria A. Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Funnicelli MIG, de Carvalho LAL, Teheran-Sierra LG, Dibelli SC, Lemos EGDM, Pinheiro DG. Unveiling genomic features linked to traits of plant growth-promoting bacterial communities from sugarcane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174577. [PMID: 38981540 DOI: 10.1016/j.scitotenv.2024.174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Microorganisms are ubiquitous, and those inhabiting plants have been the subject of several studies. Plant-associated bacteria exhibit various biological mechanisms that enable them to colonize host plants and, in some cases, enhance their fitness. In this study, we describe the genomic features predicted to be associated with plant growth-promoting traits in six bacterial communities isolated from sugarcane. The use of highly accurate single-molecule real-time sequencing technology for metagenomic samples from these bacterial communities allowed us to recover 17 genomes. The taxonomic assignments for the binned genomes were performed, revealing taxa distributed across three main phyla: Bacillota, Bacteroidota, and Pseudomonadota, with the latter being the most representative. Subsequently, we functionally annotated the metagenome-assembled genomes (MAGs) to characterize their metabolic pathways related to plant growth-promoting traits. Our study successfully identified the enrichment of important functions related to phosphate and potassium acquisition, modulation of phytohormones, and mechanisms for coping with abiotic stress. These findings could be linked to the robust colonization of these sugarcane endophytes.
Collapse
Affiliation(s)
- Michelli Inácio Gonçalves Funnicelli
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil
| | - Luis Guillermo Teheran-Sierra
- Agronomy Research Program, Colombian Oil Palm Research Center, Cenipalma, Calle 98 No. 70-91, Piso 14, Bogotá 111121, Colombia
| | - Sabrina Custodio Dibelli
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil; Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil
| | - Daniel Guariz Pinheiro
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
4
|
Gevorgyan H, Baghdasaryan L, Trchounian K. Regulation of metabolism and proton motive force generation during mixed carbon fermentation by an Escherichia coli strain lacking the F OF 1-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149034. [PMID: 38354879 DOI: 10.1016/j.bbabio.2024.149034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Proton FOF1-ATPase is the key enzyme in E. coli under fermentative conditions. In this study the role of E. coli proton ATPase in the μ and formation of metabolic pathways during the fermentation of mixture of glucose, glycerol and formate using the DK8 (lacking FOF1) mutant strain was investigated. It was shown that the contribution of FOF1-ATPase in the specific growth rate was ∼45 %. Formate was not taken up in the DK8 strain during the initial hours of the growth. The utilization rates of glucose and glycerol were unchanged in DK8, however, the production of succinate, lactate and ethanol was decreased causing a reduction of the redox state up to -450 mV. Moreover, the contribution of FOF1-ATPase in the interplay between H+ and H2 cycles was described depending on the bacterial growth phase and main utilizing substrate. Besides, the H2 production rate in the DK8 strain was decreased by ∼60 % at 20 h and was absent at 72 h. Δp was decreased from -157 ± 4.8 mV to -140 ± 4.2 mV at 20 h and from -195 ± 5.9 mV to -148 ± 4.4 mV at 72 h, compared to WT. Taken together it can be concluded that during fermentation of mixed carbon sources metabolic cross talk between FOF1-ATPase-TrkA-Hyd-Fdh-H is taking place for maintaining the cell energy balance via regulation proton motive force.
Collapse
Affiliation(s)
- Heghine Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia; Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| | - Lilit Baghdasaryan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia; Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia.
| |
Collapse
|
5
|
Mahmood B, Paunkov A, Kupc M, Burián K, Nagy E, Leitsch D, Sóki J. Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis. Antibiotics (Basel) 2024; 13:207. [PMID: 38534642 DOI: 10.3390/antibiotics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Previously, we reported that metronidazole MICs are not dependent on the expression levels of nim genes in B. fragilis strains and we compared the proteomes of metronidazole-resistant laboratory B. fragilis strains to those of their susceptible parent strains. Here, we used RT-qPCR to correlate the expression levels of 18 candidate genes in a panel of selected, clinical nim gene-positive and -negative B. fragilis strains to their metronidazole MICs. Metronidazole MICs were correlated with the expression of certain tested genes. Specifically, lactate dehydrogenase expression correlated positively, whereas cytochrome fumarate reductase/succinate dehydrogenase, malate dehydrogenase, phosphoglycerate kinase redox and gat (GCN5-like acetyltransferase), and relA (stringent response) regulatory gene expressions correlated negatively with metronidazole MICs. This result provides evidence for the involvement of carbohydrate catabolic enzymes in metronidazole resistance in B. fragilis. This result was supported by direct substrate utilization tests. However, the exact roles of these genes/proteins should be determined in deletion-complementation tests. Moreover, the exact redox cofactor(s) participating in metronidazole activation need to be identified.
Collapse
Affiliation(s)
- Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- Department of Biology, University of Garmian, Kalar 2562, Kurdistan Region, Iraq
| | - Ana Paunkov
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Malgorzata Kupc
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
6
|
Mock J, Schühle K, Linne U, Mock M, Heider J. A Synthetic Pathway for the Production of Benzylsuccinate in Escherichia coli. Molecules 2024; 29:415. [PMID: 38257328 PMCID: PMC10818641 DOI: 10.3390/molecules29020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
(R)-Benzylsuccinate is generated in anaerobic toluene degradation by the radical addition of toluene to fumarate and further degraded to benzoyl-CoA by a β-oxidation pathway. Using metabolic modules for benzoate transport and activation to benzoyl-CoA and the enzymes of benzylsuccinate β-oxidation, we established an artificial pathway for benzylsuccinate production in Escherichia coli, which is based on its degradation pathway running in reverse. Benzoate is supplied to the medium but needs to be converted to benzoyl-CoA by an uptake transporter and a benzoate-CoA ligase or CoA-transferase. In contrast, the second substrate succinate is endogenously produced from glucose under anaerobic conditions, and the constructed pathway includes a succinyl-CoA:benzylsuccinate CoA-transferase that activates it to the CoA-thioester. We present first evidence for the feasibility of this pathway and explore product yields under different growth conditions. Compared to aerobic cultures, the product yield increased more than 1000-fold in anaerobic glucose-fermenting cultures and showed further improvement under fumarate-respiring conditions. An important bottleneck to overcome appears to be product excretion, based on much higher recorded intracellular concentrations of benzylsuccinate, compared to those excreted. While no export system is known for benzylsuccinate, we observed an increased product yield after adding an unspecific mechanosensitive channel to the constructed pathway.
Collapse
Affiliation(s)
- Johanna Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Karola Schühle
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Uwe Linne
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Fachbereich Chemie, Philipps-University Marburg, Hans-Meerwein-Str. 10, 35043 Marburg, Germany
| | - Marco Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Johann Heider
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| |
Collapse
|
7
|
Narla AV, Hwa T, Murugan A. Dynamic coexistence driven by physiological transitions in microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575059. [PMID: 38260536 PMCID: PMC10802591 DOI: 10.1101/2024.01.10.575059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.
Collapse
Affiliation(s)
| | - Terence Hwa
- Department of Physics, University of California, San Diego
| | | |
Collapse
|
8
|
Xie X, Deng X, Chen J, Chen L, Yuan J, Chen H, Wei C, Liu X, Qiu G. Two new clades recovered at high temperatures provide novel phylogenetic and genomic insights into Candidatus Accumulibacter. ISME COMMUNICATIONS 2024; 4:ycae049. [PMID: 38808122 PMCID: PMC11131965 DOI: 10.1093/ismeco/ycae049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024]
Abstract
Candidatus Accumulibacter, a key genus of polyphosphate-accumulating organisms, plays key roles in lab- and full-scale enhanced biological phosphorus removal (EBPR) systems. A total of 10 high-quality Ca. Accumulibacter genomes were recovered from EBPR systems operated at high temperatures, providing significantly updated phylogenetic and genomic insights into the Ca. Accumulibacter lineage. Among these genomes, clade IIF members SCELSE-3, SCELSE-4, and SCELSE-6 represent the to-date known genomes encoding a complete denitrification pathway, suggesting that Ca. Accumulibacter alone could achieve complete denitrification. Clade IIC members SSA1, SCUT-1, SCELCE-2, and SCELSE-8 lack the entire set of denitrifying genes, representing to-date known non-denitrifying Ca. Accumulibacter. A pan-genomic analysis with other Ca. Accumulibacter members suggested that all Ca. Accumulibacter likely has the potential to use dicarboxylic amino acids. Ca. Accumulibacter aalborgensis AALB and Ca. Accumulibacter affinis BAT3C720 seemed to be the only two members capable of using glucose for EBPR. A heat shock protein Hsp20 encoding gene was found exclusively in genomes recovered at high temperatures, which was absent in clades IA, IC, IG, IIA, IIB, IID, IIG, and II-I members. High transcription of this gene in clade IIC members SCUT-2 and SCUT-3 suggested its role in surviving high temperatures for Ca. Accumulibacter. Ambiguous clade identity was observed for newly recovered genomes (SCELSE-9 and SCELSE-10). Five machine learning models were developed using orthogroups as input features. Prediction results suggested that they belong to a new clade (IIK). The phylogeny of Ca. Accumulibacter was re-evaluated based on the laterally derived polyphosphokinase 2 gene, showing improved resolution in differentiating different clades.
Collapse
Affiliation(s)
- Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
9
|
Matsumoto N, Matsutani M, Tanimoto Y, Nakanishi R, Tanaka S, Kanesaki Y, Theeragool G, Kataoka N, Yakushi T, Matsushita K. Implication of amino acid metabolism and cell surface integrity for the thermotolerance mechanism in the thermally adapted acetic acid bacterium Acetobacter pasteurianus TH-3. J Bacteriol 2023; 205:e0010123. [PMID: 37930061 PMCID: PMC10662122 DOI: 10.1128/jb.00101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Acetobacter pasteurianus, an industrial vinegar-producing strain, is suffered by fermentation stress such as fermentation heat and/or high concentrations of acetic acid. By an experimental evolution approach, we have obtained a stress-tolerant strain, exhibiting significantly increased growth and acetic acid fermentation ability at higher temperatures. In this study, we report that only the three gene mutations of ones accumulated during the adaptation process, ansP, dctD, and glnD, were sufficient to reproduce the increased thermotolerance of A. pasteurianus. These mutations resulted in cell envelope modification, including increased phospholipid and lipopolysaccharide synthesis, increased respiratory activity, and cell size reduction. The phenotypic changes may cooperatively work to make the adapted cell thermotolerant by enhancing cell surface integrity, nutrient or oxygen availability, and energy generation.
Collapse
Affiliation(s)
- Nami Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoko Tanimoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Rina Nakanishi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shuhei Tanaka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
- Research Institute of Green Science and Technology, Shizuoka University, , Shizuoka, Japan
| | - Gunjana Theeragool
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
10
|
Spiteri D, Griffin S, Karatzas KA, Scerri C, Valdramidis VP. Escherichia coli K-12 Transcriptomics for Assessing the Mechanism of Action of High-Power Ultrasound. Microorganisms 2023; 11:2768. [PMID: 38004779 PMCID: PMC10673019 DOI: 10.3390/microorganisms11112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
An investigation into the mechanisms of action on bacteria involving exposure to stress factors was conducted in this study. The effects of ultrasound on Escherichia coli K-12 MG1655 and its isogenic mutant, ∆gadW, under high power ultrasound treatments (26 kHz) were screened and identified by analysing their transcriptome differences between primary and secondary sequential treatments using RNA-Seq. This also helped to assess any developed protection for cells between different generations. According to our results, 1825 genes of all tested conditions were expressed, playing different roles in the cell. The expression of these genes is associated with DNA damage, cell membrane integrity, and also metabolic effects. The studied strains also showed different differential expressed genes (DEGs), with some genes being directly responsible for defence mechanisms, while others play an indirect effect due to cell damage. A gradual decrease in the expression of the genes, as we moved from just one cycle of ultrasound treatment to sequential treatment, was evident from a heat map analysis of the results. Overall, E. coli K-12 builds a self-protection mechanism by increasing the expression of genes involved in the respiration for increased growth, and production of flagellum and pili. It can be concluded that high power ultrasound is a technology that triggers several different defence mechanisms which directly link to E. coli.
Collapse
Affiliation(s)
- David Spiteri
- Department of Food Science and Nutrition, University of Malta, MSD 2080 Msida, Malta; (D.S.); (S.G.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta;
| | - Sholeem Griffin
- Department of Food Science and Nutrition, University of Malta, MSD 2080 Msida, Malta; (D.S.); (S.G.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta;
| | | | - Christian Scerri
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta;
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta
| | - Vasilis P. Valdramidis
- Department of Food Science and Nutrition, University of Malta, MSD 2080 Msida, Malta; (D.S.); (S.G.)
- Department of Chemistry, National and Kapodistrian University of Athens, 34400 Psachna, Greece
| |
Collapse
|
11
|
Liu B, Jiang L, Liu Y, Sun H, Yan J, Kang C, Yang B. Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization. Nat Commun 2023; 14:7227. [PMID: 37945607 PMCID: PMC10636207 DOI: 10.1038/s41467-023-43149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China.
| |
Collapse
|
12
|
Cho YB, Park JW, Unden G, Kim OB. Asuc_0142 of Actinobacillus succinogenes 130Z is the l-aspartate/C4-dicarboxylate exchanger DcuA. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001411. [PMID: 37906508 PMCID: PMC10634366 DOI: 10.1099/mic.0.001411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Anaerobic bacteria often use antiporters DcuB (malate/succinate antiport) or DcuA (l-aspartate/succinate antiport) for the excretion of succinate during fumarate respiration. The rumen bacterium Actinobacillus succinogenes is able to produce large amounts of succinate by fumarate respiration, using the DcuB-type transporter DcuE for l-malate/succinate antiport. Asuc_0142 was annotated as a second DcuB-type transporter. Deletion of Asuc_0142 decreased the uptake rate for l-[14C]aspartate into A. succinogenes cells. Properties of transport by heterologously expressed Asuc_0142 were investigated in an Escherichia coli mutant deficient of anaerobic C4DC transporters. Expression of Asuc_0142 resulted in high uptake activity for l-[14C]fumarate or l-[14C]aspartate, but the former showed a strong competitive inhibition by l-aspartate. In E. coli loaded with l-[14C]aspartate, [14C]succinate or [14C]fumarate, extracellular C4DCs initiated excretion of the intracellular substrates, with a preference for l-aspartateex/succinatein or l-aspartateex/fumaratein antiport. These findings indicate that Asuc_0142 represents a DcuA-type transporter for l-aspartate uptake and l-aspartateex/C4DCin antiport, differentiating it from the DcuB-type transporter DcuE for l-malateex/succinatein antiport. Sequence analysis and predicted structural characteristics confirm structural similarity of Asuc_0142 to DcuA, and Asuc_0142 was thus re-named as DcuAAs. The bovine rumen fluid contains l-aspartate (99.6 µM), whereas fumarate and l-malate are absent. Therefore, bovine rumen colonisers depend on l-aspartate as an exogenous substrate for fumarate respiration. A. succinogenes encodes HemG (protoporphyrinogen oxidase) and PyrD (dihydroorotate dehydrogenase) for haem and pyrimidine biosynthesis. The enzymes require fumarate as an electron acceptor, suggesting an essential role for l-aspartate, DcuAAs, and fumarate respiration for A. succinogenes growing in the bovine rumen.
Collapse
Affiliation(s)
- Young Bin Cho
- Division of EcoScience and Interdisciplinary Program of EcoCreative, Graduate School, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Won Park
- Division of EcoScience and Interdisciplinary Program of EcoCreative, Graduate School, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology, Johannes Gutenberg-University, Biozentrum II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Ok Bin Kim
- Division of EcoScience and Interdisciplinary Program of EcoCreative, Graduate School, Ewha Womans University, Seoul, 03760, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
13
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Johnson ET, Lyon R, Zaitlin D, Khan AB, Jairajpuri MA. A comparison of transporter gene expression in three species of Peronospora plant pathogens during host infection. PLoS One 2023; 18:e0285685. [PMID: 37262030 PMCID: PMC10234565 DOI: 10.1371/journal.pone.0285685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Protein transporters move essential metabolites across membranes in all living organisms. Downy mildew causing plant pathogens are biotrophic oomycetes that transport essential nutrients from their hosts to grow. Little is known about the functions and gene expression levels of membrane transporters produced by downy mildew causing pathogens during infection of their hosts. Approximately 170-190 nonredundant transporter genes were identified in the genomes of Peronospora belbahrii, Peronospora effusa, and Peronospora tabacina, which are specialized pathogens of basil, spinach, and tobacco, respectively. The largest groups of transporter genes in each species belonged to the major facilitator superfamily, mitochondrial carriers (MC), and the drug/metabolite transporter group. Gene expression of putative Peronospora transporters was measured using RNA sequencing data at two time points following inoculation onto leaves of their hosts. There were 16 transporter genes, seven of which were MCs, expressed in each Peronospora species that were among the top 45 most highly expressed transporter genes 5-7 days after inoculation. Gene transcripts encoding the ADP/ATP translocase and the mitochondrial phosphate carrier protein were the most abundant mRNAs detected in each Peronospora species. This study found a number of Peronospora genes that are likely critical for pathogenesis and which might serve as future targets for control of these devastating plant pathogens.
Collapse
Affiliation(s)
- Eric T Johnson
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - Rebecca Lyon
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Abdul Burhan Khan
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | | |
Collapse
|
15
|
Schubert C, Unden G. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation. Adv Microb Physiol 2023; 82:267-299. [PMID: 36948656 DOI: 10.1016/bs.ampbs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIAGlc from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
16
|
Mao C, Wang Y, Yang Y, Li L, Yuan K, Cao H, Qiu Z, Guo G, Wu J, Peng J. Cec4-Derived Peptide Inhibits Planktonic and Biofilm-Associated Methicillin Resistant Staphylococcus epidermidis. Microbiol Spectr 2022; 10:e0240922. [PMID: 36453944 PMCID: PMC9769716 DOI: 10.1128/spectrum.02409-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus epidermidis is part of the normal microbiota that colonizes the skin and mucosal surfaces of human beings. Previous studies suggested that S. epidermidis possessed low virulence, but recent studies confirmed that it can acquire high virulence from Staphylococcus aureus and with the increasing detection of methicillin-resistant S. epidermidis. It has become a major pathogen of graft-associated and hospital-acquired infections. In previous studies, we modified the antimicrobial peptide Cec4 (41 amino acids) and obtained the derived peptide C9 (16 amino acids) showing better antimicrobial activity against S. epidermidis with an MIC value of 8 μg/mL. The peptide has rapid bactericidal activity without detectable high-level resistance, showing certain inhibition and eradication ability on S. epidermidis biofilms. The damage of cell membrane structures by C9 was observed by scanning emission microscopy (SEM) and transmission electron microscopy (TEM). In addition, C9 altered the S. epidermidis cell membrane permeability, depolarization levels, fluidity, and reactive oxygen species (ROS) accumulation and possessed the ability to bind genomic DNA. Analysis of the transcriptional profiles of C9-treated cells revealed changes in genes involved in cell wall and ribosome biosynthesis, membrane protein transport, oxidative stress, and DNA transcription regulation. At the same time, the median lethal dose of C9 in mice was more than 128 mg/kg, and the intraperitoneal administration of 64 mg/kg was less toxic to the liver and kidneys of mice. Furthermore, C9 also showed a certain therapeutic effect on the mouse bacteremia model. In conclusion, C9 may be a candidate drug against S. epidermidis, which has the potential to be further developed as an antibacterial therapeutic agent. IMPORTANCE S. epidermidis is one of the most important pathogens of graft-related infection and hospital-acquired infection. The growing problem of antibiotic resistance, as well as the emergence of bacterial pathogenicity, highlights the need for antimicrobials with new modes of action. Antimicrobial peptides have been extensively studied over the past 30 years as ideal alternatives to antibiotics, and we report here that the derived peptide C9 is characterized by rapid bactericidal and antibiofilm activity, avoiding the development of resistance by acting on multiple nonspecific targets of the cell membrane or cell components. In addition, it has therapeutic potential against S. epidermidis infection in vivo. This study provides a rationale for the further development and application of C9 as an effective candidate antibiotic.
Collapse
Affiliation(s)
- Chengju Mao
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yue Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yifan Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Lu Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kexin Yuan
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huijun Cao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhilang Qiu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Jianwei Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Wei Q, Zhang J, Luo F, Shi D, Liu Y, Liu S, Zhang Q, Sun W, Yuan J, Fan H, Wang H, Qi L, Liu G. Molecular mechanisms through which different carbon sources affect denitrification by Thauera linaloolentis: Electron generation, transfer, and competition. ENVIRONMENT INTERNATIONAL 2022; 170:107598. [PMID: 36395558 DOI: 10.1016/j.envint.2022.107598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Characterizing the molecular mechanism through which different carbon sources affect the denitrification process would provide a basis for the proper selection of carbon sources, thus avoiding excessive carbon source dosing and secondary pollution while also improving denitrification efficiency. Here, we selected Thauera linaloolentis as a model organism of denitrification, whose genomic information was elucidated by draft genome sequencing and KEGG annotations, to investigate the growth kinetics, denitrification performances and characteristics of metabolic pathways under diverse carbon source conditions. We reconstructed a metabolic network of Thauera linaloolentis based on genomic analysis to help develop a systematic method of researching electron pathways. Our findings indicated that carbon sources with simple metabolic pathways (e.g., ethanol and sodium acetate) promoted the reproduction of Thauera linaloolentis, and its maximum growth density reached OD600 = 0.36 and maximum specific growth rate reached 0.145 h-1. These carbon sources also accelerated the denitrification process without the accumulation of intermediates. Nitrate could be reduced completely under any carbon source condition; but in the "glucose group", the maximum accumulation of nitrite was 117.00 mg/L (1.51 times more than that in the "ethanol group", which was 77.41 mg/L), the maximum accumulation of nitric oxide was 363.02 μg/L (7.35 times more than that in the "ethanol group", which was 49.40 μg/L), and the maximum accumulation of nitrous oxide was 22.58 mg/L (26.56 times more than that in the "ethanol group", which was 0.85 mg/L). Molecular biological analyses demonstrated that diverse types of carbon sources directly induced different carbon metabolic activities, resulting in variations in electron generation efficiency. Furthermore, the activities of the electron transport system were positively correlated with different carbon metabolic activities. Finally, these differences were reflected in the phenomenon of electronic competition between denitrifying reductases. Thus we concluded that this was the main molecular mechanism through which the carbon source type affected the denitrification process. In brief, carbon sources with simple metabolic pathways induced higher efficiency of electron generation, transfer, and competition, which promoted rapid proliferation and complete denitrification; otherwise Thauera linaloolentis would grow slowly and intermediate products would accumulate seriously. Our study established a method to evaluate and optimize carbon source utilization efficiency based on confirmed molecular mechanisms.
Collapse
Affiliation(s)
- Qi Wei
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Jinsen Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Fangzhou Luo
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Dinghuan Shi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Yuchen Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Shuai Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Qian Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Wenzhuo Sun
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Junli Yuan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Haitao Fan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Hongchen Wang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Lu Qi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Guohua Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| |
Collapse
|
18
|
Wang L, Shen Z, Cheng X, Hwang JS, Guo Y, Sun M, Cao J, Liu R, Fang J. Metagenomic insights into the functions of microbial communities in sulfur-rich sediment of a shallow-water hydrothermal vent off Kueishan Island. Front Microbiol 2022; 13:992034. [DOI: 10.3389/fmicb.2022.992034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrothermal vent (HTV) systems are important habitats for understanding the biological processes of extremophiles on Earth and their relative contributions to material and energy cycles in the ocean. Current understanding on hydrothermal systems have been primarily focused on deep-sea HTVs, and little is known about the functions and metabolisms of microorganisms in shallow-water HTVs (SW-HTVs), which are distinguished from deep-sea HTVs by a depth limit of 200 m. In this study, we analyzed metagenomes of sulfur-rich sediment samples collected from a SW-HTV of Kueishan Island, located in a marginal sea of the western Pacific Ocean. Comparing with a previously published report of pelagic samples from the nearby sampling site, microbial communities in the SW-HTV sediments enriching with genes of both aerobic and anaerobic respiration inferred variable environments in the tested sediments. Abundant genes of energy metabolism encoding sulfur oxidation, H2 oxidation, and carbon fixation were detected from the sediment samples. Sixty-eight metagenome-assembled-genomes (MAGs) were reconstructed to further understand the metabolism and potential interactions between different microbial taxa in the SW-HTVs sediment. MAGs with the highest abundant were chemolithotrophic sulfur-oxidization bacteria, including Sulfurovum represented Campylobacteria involved sox multienzyme, sulfide oxidation genes and rTCA cycle, and Gammaproteobacteria involved dsr gene and CBB cycle. In addition, Desulfobacterota with the potential to participate in sulfur-disproportionating processes also had higher abundance than the sample’s overall mean value. The interaction of these bacterial groups allows the microbial communities to efficiently metabolize a large variety of sulfur compounds. In addition, the potential to use simple organic carbon, such as acetate, was found in chemolithotrophic Campylobacterial MAGs. Collectively, our results revealed the complexity of environmental conditions of the vent sediment and highlight the interactive relationships of the dominant microbial populations in driving sulfur cycles in the SW-HTV sediments off Kueishan Island.
Collapse
|
19
|
Park J, Jung H, Mannaa M, Lee SY, Lee HH, Kim N, Han G, Park DS, Lee SW, Lee SW, Seo YS. Genome-guided comparative in planta transcriptome analyses for identifying cross-species common virulence factors in bacterial phytopathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1030720. [PMID: 36466249 PMCID: PMC9709210 DOI: 10.3389/fpls.2022.1030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Plant bacterial disease is a complex outcome achieved through a combination of virulence factors that are activated during infection. However, the common virulence factors across diverse plant pathogens are largely uncharacterized. Here, we established a pan-genome shared across the following plant pathogens: Burkholderia glumae, Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. By overlaying in planta transcriptomes onto the pan-genome, we investigated the expression profiles of common genes during infection. We found over 70% of identical patterns for genes commonly expressed by the pathogens in different plant hosts or infection sites. Co-expression patterns revealed the activation of a signal transduction cascade to recognize and respond to external changes within hosts. Using mutagenesis, we uncovered a relationship between bacterial virulence and functions highly conserved and shared in the studied genomes of the bacterial phytopathogens, including flagellar biosynthesis protein, C4-dicarboxylate ABC transporter, 2-methylisocitrate lyase, and protocatechuate 3,4-dioxygenase (PCD). In particular, the disruption of PCD gene led to attenuated virulence in all pathogens and significantly affected phytotoxin production in B. glumae. This PCD gene was ubiquitously distributed in most plant pathogens with high homology. In conclusion, our results provide cross-species in planta models for identifying common virulence factors, which can be useful for the protection of crops against diverse pathogens.
Collapse
Affiliation(s)
- Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Seung Yeup Lee
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Dong-Soo Park
- Paddy Crop Division, National Institute of Crop Science, Rural Development Administration, Miryang, South Korea
| | - Sang-Won Lee
- Department of Plant Molecular Systems Biotech & Crop Biotech Institute, KyungHee University, Yongin, South Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
20
|
Improvement of dicarboxylic acid production with Methylorubrum extorquens by reduction of product reuptake. Appl Microbiol Biotechnol 2022; 106:6713-6731. [PMID: 36104545 PMCID: PMC9529712 DOI: 10.1007/s00253-022-12161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Abstract
The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids.
Key points
• 2,2-Difluorosuccinic acid is used to select for dicarboxylic acid uptake mutations.
• Deletion of dctA2 leads to reduction of dicarboxylic acid uptake.
• Transporter-deficient strains show improved production of citramalic acid.
Collapse
|
21
|
Schubert C, Kim NY, Unden G, Kim OB. C4-dicarboxylate metabolons: interaction of C4-dicarboxylate transporters of Escherichia coli with cytosolic enzymes. FEMS Microbiol Lett 2022; 369:6679557. [PMID: 36044995 DOI: 10.1093/femsle/fnac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolons represent the structural organization of proteins for metabolic or regulatory pathways. Here the interaction of fumarase FumB, aspartase AspA, and L-tartrate dehydratase TtdAB with the C4-dicarboxylate (C4-DC) transporters DcuA, DcuB, DcuC, and the L-tartrate transporter TtdT of Escherichia coli was tested by a bacterial two-hybrid (BACTH) assay in situ, or by co-chromatography using mSPINE (membrane Streptavidin protein interaction experiment). From the general C4-DC transporters, DcuB interacted with FumB and AspA, DcuA with AspA, whereas DcuC interacted with neither FumB nor AspA. Moreover, TtdT did not interact with TtdAB. The fumB-dcuB, the dcuA-aspA, and the ttdAB-ttdT genes encoding the respective proteins co-localize on the genome and each pair of genes forms co-transcripts whereas the dcuC gene lies alone. The data suggest the formation of DcuB/FumB and DcuB/AspA metabolons for the uptake of L-malate, or L-aspartate, and their conversion to fumarate for fumarate respiration and excretion of the product succinate. The DcuA/AspA metabolon catalyzes uptake and conversion of L-Asp to fumarate coupled to succinate excretion. The DcuA/AspA metabolon provides ammonia at the same time for nitrogen assimilation (ammonia shuttle). On the other hand, TtdT and TtdAB are not organized in a metabolon. Reasons for the formation (DcuA/AspA, DcuB/FumB, DcuB/AspA) or non-formation (DcuC, TtdT and TtdAB) of metabolons are discussed based on their metabolic roles.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Nam Yeun Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Gottfried Unden
- Institute for Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Ok Bin Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
22
|
Begmatov S, Beletsky AV, Dedysh SN, Mardanov AV, Ravin NV. Genome analysis of the candidate phylum MBNT15 bacterium from a boreal peatland predicted its respiratory versatility and dissimilatory iron metabolism. Front Microbiol 2022; 13:951761. [PMID: 35992725 PMCID: PMC9386147 DOI: 10.3389/fmicb.2022.951761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Uncultured bacteria of the candidate phylum MBNT15, distantly related to Desulfobacterota, have been identified in a broad range of mostly organic-rich aquatic environments. We assembled a near-complete genome of a member of MBNT15 from a boreal peatland metagenome and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated SHF-111, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Genome-based phylogenetic analysis supported the phylum-level classification of the MBNT15 lineage. Genome annotation and metabolic reconstruction revealed the presence of the Embden-Meyerhof, Entner-Doudoroff and pentose phosphate pathways, as well as the complete tricarboxylic acid (TCA) cycle, and suggested a facultatively anaerobic chemoheterotrophic lifestyle with the ability to ferment peptides, amino acids, fatty acids and simple sugars, and completely oxidize these substrates through aerobic and anaerobic respiration. The SHF-111 genome encodes multiple multiheme c-type cytochromes that probably enable dissimilatory iron reduction. Consistently, the relative abundance of MBNT15 in peatlands positively correlated with iron concentration. Apparently, in the wetland ecosystem, MBNT15 representatives play the role of scavengers, carrying out the complete mineralization of low molecular weight organic substances formed as a result of microbial degradation of complex polymeric substrates. Comparative genome analysis of the MBNT15 phylum revealed that vast majority of its members are capable of aerobic respiration and dissimilatory iron reduction and some species also can reduce sulfur and nitrogen compounds, but not sulfate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Deferrimicrobium borealis, within a candidate phylum Deferrimicrobiota.
Collapse
Affiliation(s)
- Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Tight Complex Formation of the Fumarate Sensing DcuS-DcuR Two-Component System at the Membrane and Target Promoter Search by Free DcuR Diffusion. mSphere 2022; 7:e0023522. [PMID: 35862816 PMCID: PMC9429925 DOI: 10.1128/msphere.00235-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Signaling of two-component systems by phosphoryl transfer requires interaction of the sensor kinase with the response regulator. Interaction of the C4-dicarboxylate-responsive and membrane-integral sensor kinase DcuS with the response regulator DcuR was studied. In vitro, the cytoplasmic part of DcuS (PASC-Kin) was employed. Stable complexes were formed, when either DcuS or DcuR were phosphorylated (Kd 22 ± 11 and 28 ± 7 nM, respectively). The unphosphorylated proteins produced a more labile complex (Kd 1380 ± 395 nM). Bacterial two-hybrid studies confirm interaction of DcuR with DcuS (and PASC-Kin) in vivo. The absolute contents of DcuR (197-979 pmol mg−1 protein) in the bacteria exceeded those of DcuS by more than 1 order of magnitude. According to the Kd values, DcuS exists in complex, with phosphorylated but also unphosphorylated DcuR. In live cell imaging, the predominantly freely diffusing DcuR becomes markedly less mobile after phosphorylation and activation of DcuS by fumarate. Portions of the low mobility fraction accumulated at the cell poles, the preferred location of DcuS, and other portions within the cell, representing phosphorylated DcuR bound to promoters. In the model, acitvation of DcuS increases the affinity toward DcuR, leading to DcuS-P × DcuR formation and phosphorylation of DcuR. The complex is stable enough for phosphate-transfer, but labile enough to allow exchange between DcuR from the cytosol and DcuR-P of the complex. Released DcuR-P diffuses to target promoters and binds. Uncomplexed DcuR-P in the cytosol binds to nonactivated DcuS and becomes dephosphorylated. The lower affinity between DcuR and DcuS avoids blocking of DcuS and allows rapid exchange of DcuR. IMPORTANCE Complex formation of membrane-bound sensor kinases with the response regulators represents an inherent step of signaling from the membrane to the promoters on the DNA. In the C4-dicarboxylate-sensing DcuS-DcuR two-component system, complex formation is strengthened by activation (phosphorylation) in vitro and in vivo, with trapping of the response regulator DcuR at the membrane. Single-molecule tracking of DcuR in the bacterial cell demonstrates two populations of DcuR with decreased mobility in the bacteria after activation: one at the membrane, but a second in the cytosol, likely representing DNA-bound DcuR. The data suggest a model with binding of DcuR to DcuS-P for phosphorylation, and of DcuR-P to DcuS for dephosphorylation, allowing rapid adaptation of the DcuR phosphorylation state. DcuR-P is released and transferred to DNA by 3D diffusion.
Collapse
|
24
|
Schubert C, Unden G. C 4-Dicarboxylates as Growth Substrates and Signaling Molecules for Commensal and Pathogenic Enteric Bacteria in Mammalian Intestine. J Bacteriol 2022; 204:e0054521. [PMID: 34978458 PMCID: PMC9017328 DOI: 10.1128/jb.00545-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C4-dicarboxylates (C4-DC) l-aspartate and l-malate have been identified as playing an important role in the colonization of mammalian intestine by enteric bacteria, such as Escherichia coli and Salmonella enterica serovar Typhimurium, and succinate as a signaling molecule for host-enteric bacterium interaction. Thus, endogenous and exogenous fumarate respiration and related functions are required for efficient initial growth of the bacteria. l-Aspartate represents a major substrate for fumarate respiration in the intestine and a high-quality substrate for nitrogen assimilation. During nitrogen assimilation, DcuA catalyzes an l-aspartate/fumarate antiport and serves as a nitrogen shuttle for the net uptake of ammonium only, whereas DcuB acts as a redox shuttle that catalyzes the l-malate/succinate antiport during fumarate respiration. The C4-DC two-component system DcuS-DcuR is active in the intestine and responds to intestinal C4-DC levels. Moreover, in macrophages and in mice, succinate is a signal that promotes virulence and survival of S. Typhimurium and pathogenic E. coli. On the other hand, intestinal succinate is an important signaling molecule for the host and activates response and protective programs. Therefore, C4-DCs play a major role in supporting colonization of enteric bacteria and as signaling molecules for the adaptation of host physiology.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
25
|
Genes Differentially Expressed by Haemophilus ducreyi during Anaerobic Growth Significantly Overlap Those Differentially Expressed during Experimental Infection of Human Volunteers. J Bacteriol 2022; 204:e0000522. [PMID: 35377183 DOI: 10.1128/jb.00005-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. In humans, H. ducreyi is found in the anaerobic environment of an abscess; previous studies comparing bacterial gene expression levels in pustules with the inocula (∼4-h aerobic mid-log-phase cultures) identified several upregulated differentially expressed genes (DEGs) that are associated with anaerobic metabolism. To determine how H. ducreyi alters its gene expression in response to anaerobiosis, we performed RNA sequencing (RNA-seq) on both aerobic and anaerobic broth cultures harvested after 4, 8, and 18 h of growth. Principal-coordinate analysis (PCoA) plots showed that anaerobic growth resulted in distinct transcriptional profiles compared to aerobic growth. During anaerobic growth, early-time-point comparisons (4 versus 8 h) identified few DEGs at a 2-fold change in expression and a false discovery rate (FDR) of <0.01. By 18 h, we observed 18 upregulated and 16 downregulated DEGs. DEGs involved in purine metabolism, the uptake and use of alternative carbon sources, toxin production, nitrate reduction, glycine metabolism, and tetrahydrofolate synthesis were upregulated; DEGs involved in electron transport, thiamine biosynthesis, DNA recombination, peptidoglycan synthesis, and riboflavin synthesis or modification were downregulated. To examine whether transcriptional changes that occur during anaerobiosis overlap those that occur during infection of human volunteers, we compared the overlap of DEGs obtained from 4 h of aerobic growth to 18 h of anaerobic growth to those found between the inocula and pustules in previous studies; the DEGs significantly overlapped. Thus, a major component of H. ducreyi gene regulation in vivo involves adaptation to anaerobiosis. IMPORTANCE In humans, H. ducreyi resides in the anaerobic environment of an abscess and appears to upregulate genes involved in anaerobic metabolism. How anaerobiosis alone affects gene transcription in H. ducreyi is unknown. Using RNA-seq, we investigated how anaerobiosis affects gene transcription over time compared to aerobic growth. Our results suggest that a substantial component of H. ducreyi gene regulation in vivo overlaps the organism's response to anaerobiosis in vitro. Our data identify potential therapeutic targets that could be inhibited during in vivo growth.
Collapse
|
26
|
Adaptation Potential of Three Psychrotolerant Aquatic Bacteria in the Pan-Okhotsk Region. WATER 2022. [DOI: 10.3390/w14071107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Pan-Okhotsk region, which is part of the western North Pacific Ocean, is famous for its active volcanoes, which are part of the Pacific Ring of Fire and that enrich the surrounding waters with essential chemicals. Therefore, this region, including the Sea of Okhotsk and the Sea of Japan, is characterized by rich biota. Bacterioplankton plays a significant part in biological communities and is an indicator of ecosystem function. Analyzing the adaptability of three representatives of the microbiota of the Pan-Okhotsk region was the goal of our investigation. Marinomonas primoryensis KMM3633T (MP), Yersinia ruckeri KMM821 (YR), and Yersinia pseudotuberculosis 598 (YP) from the G.B. Elyakov Pacific Institute of Bioorganic Chemistry were studied by means of genomic and bioinformatic methods. The list of membrane translocator proteins, metabolism pathways, and cold shock and antifreeze proteins that were revealed in the genome of MP characterized this bacterium as being adaptable to free living in marine conditions, even at winter temperatures. The genomic potential of YR and YP makes not only survival in the environment of the Pan-Okhotsk region but also pathogenesis in eukaryotic organisms possible. The data obtained will serve as a basis for further ecosystem monitoring with the help of microbiota research.
Collapse
|
27
|
Turgay M, Falentin H, Irmler S, Fröhlich-Wyder MT, Meola M, Oberhaensli S, Berthoud-dit-Gallon Marchand H. Genomic rearrangements in the aspA-dcuA locus of Propionibacterium freudenreichii are associated with aspartase activity. Food Microbiol 2022; 106:104030. [DOI: 10.1016/j.fm.2022.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 03/20/2022] [Indexed: 11/25/2022]
|
28
|
Alpha-ketoglutarate, a key molecule involved in nitrogen circulation in both animals and plants, in the context of human gut microbiota and protein metabolism. Adv Med Sci 2022; 67:142-147. [PMID: 35245838 DOI: 10.1016/j.advms.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Nitrogen (N2) is an indispensable metabolite required for the synthesis of protein. In animals, gut bacteria and, to a certain extent, even hepatocytes, are able to assimilate nitrogen from ammonium (NH4+), which is essentially derived from the amine group (-NH2) and which is at the same time a very toxic metabolite. Initially, NH4+ is coupled to alpha-ketoglutarate (AKG), a reaction which results in the appearance of glutamate (one amine group), and after that, in the appearance of glutamine - containing two amine groups. The surplus of NH4+ which is not utilized by AKG/glutamate/glutamine is eliminated as urea in the urine, via the urea cycle in hepatocytes. Plants bacteria also assimilate nitrogen from NH4+, by its fixation to ammonia (NH3)/NH4+. MATERIALS/METHODS Previous studies have shown that AKG (also known as 2-oxo-glutaric acid or 2-oxopentanedioic acid), the primary metabolite of Rhizobium and gut bacteria, is essential for the assimilation of nitrogen. RESULTS Symbiotic bacteria produce AKG, which together with glutamate dehydrogenase (GDH), 'generates' primarily amine groups from NH4+. The final product is glutamate - the first amino acid. Glutamate has the capacity to be converted to glutamine, through the action of glutamine synthetase, after the assimilation of the second nitrogen from NH4+. CONCLUSION Glutamate/glutamine, derivatives of AKG metabolism, are capable of donating amine groups for the creation of other amino acids, following NH2 transamination to certain metabolites e.g., short chain fatty acids (SCFA).
Collapse
|
29
|
Taylor JA, Díez-Vives C, Nielsen S, Wemheuer B, Thomas T. Communality in microbial stress response and differential metabolic interactions revealed by time-series analysis of sponge symbionts. Environ Microbiol 2022; 24:2299-2314. [PMID: 35229422 DOI: 10.1111/1462-2920.15962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 11/03/2022]
Abstract
The diversity and function of sponge-associated symbionts is now increasingly understood, however, we lack an understanding on how they dynamically behave to ensure holobiont stability in the face of environmental variation. Here we performed a metatransciptomics analysis of three microbial symbionts of the sponge Cymbastela concentrica in situ over 14 months and through differential gene expression and correlation analysis to environmental variables uncovered differences that speak to their metabolic activities and level of symbiotic and environmental interactions. The nitrite-oxidising Ca. Porinitrospira cymbastela maintained a seemingly stable metabolism, with the few differentially expressed genes related only to stress responses. The heterotrophic Ca. Porivivens multivorans displayed differential use of holobiont-derived compounds and respiration modes, while the ammonium-oxidising archaeon Ca. Nitrosopumilus cymbastelus differentially expressed genes related to phosphate metabolism and symbiosis effectors. One striking similarity between the symbionts was their similar variation in expression of stress-related genes. Our timeseries study showed that the microbial community of C. concentrica undertakes dynamic gene expression adjustments in response to the surroundings, tuned to deal with general stress and metabolic interactions between holobiont members. The success of these dynamic adjustments likely underpins the stability of the sponge holobiont and may provide resilience against environmental change. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica A Taylor
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Cristina Díez-Vives
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | - Shaun Nielsen
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Nedashkovkaya OI, Kim SG, Balabanova LA, Zhukova NV, Son OM, Tekutyeva LA, Mikhailov VV. Genome-Based Classification of Strain 16-SW-7, a Marine Bacterium Capable of Converting B Red Blood Cells, as Pseudoalteromonas distincta and Proposal to Reclassify Pseudoalteromonas paragorgicola as a Later Heterotypic Synonym of Pseudoalteromonas distincta. Front Microbiol 2022; 12:809431. [PMID: 35222308 PMCID: PMC8865838 DOI: 10.3389/fmicb.2021.809431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
A strictly aerobic, Gram-stain-negative, rod-shaped, and motile bacterium, designated strain 16-SW-7, isolated from a seawater sample, was investigated in detail due to its ability to produce a unique α-galactosidase converting B red blood cells into the universal type blood cells. The phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain 16-SW-7 is a member of the Gammaproteobacteria genus Pseudoalteromonas. The closest relatives of the environmental isolate were Pseudoalteromonas distincta KMM 638T and Pseudoalteromonas paragorgicola KMM 3548T, with the plural paralogous 16S rRNA genes of 99.87-100% similarity. The strain 16-SW-7 grew with 1-10% NaCl and at 4-34°C, and hydrolyzed casein, gelatin, tyrosine, and DNA. The genomic DNA G+C content was 39.3 mol%. The prevalent fatty acids were C16:1 ω7c, C16:0, C17:1 ω8c, C18:1 ω7c, C17:0, and C12:0 3-OH. The polar lipid profile was characterized by the presence of phosphatidylethanolamine, phosphatidylglycerol, two unidentified amino lipids, and three unidentified lipids. The major respiratory quinone was Q-8. The finished genome of the strain 16-SW-7 (GenBank assembly accession number: GCA_005877035.1) has a size of 4,531,445 bp and comprises two circular chromosomes L1 and S1, deposited in the GenBank under the accession numbers CP040558 and CP040559, respectively. The strain 16-SW-7 has the ANI values of 98.2% with KMM 638T and KMM 3548T and the DDH values of 84.4 and 83.5%, respectively, indicating clearly that the three strains belonged to a single species. According to phylogenetic evidence and similarity for the chemotaxonomic and genotypic properties, the strain 16-SW-7 (= KCTC 52772 = KMM 701) represents a novel member of the species Pseudoalteromonas distincta. Also, we have proposed to reclassify Pseudoalteromonas paragorgicola as a later heterotypic synonym of P. distincta based on the rules of priority with the emendation of the species.
Collapse
Affiliation(s)
- Olga I. Nedashkovkaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Song-Gun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Larissa A. Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Natalia V. Zhukova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Oksana M. Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
| | - Liudmila A. Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
| | - Valery V. Mikhailov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
31
|
Vanyan L, Trchounian K. HyfF subunit of hydrogenase 4 is crucial for regulating F OF 1 dependent proton/potassium fluxes during fermentation of various concentrations of glucose. J Bioenerg Biomembr 2022; 54:69-79. [PMID: 35106641 DOI: 10.1007/s10863-022-09930-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Escherichia coli anaerobically ferment glucose and perform proton/potassium exchange at pH 7.5. The role of hyf (hydrogenase 4) subunits (HyfBDF) in sensing different concentrations of glucose (2 g L-1 or 8 g L-1) via regulating H+/K+ exchange was studied. HyfB, HyfD and HyfF part of a protein family of NADH-ubiquinone oxidoreductase ND2, ND4 and ND5 subunits is predicted to operate as proton pump. Specific growth rate was optimal in wild type and mutants grown on 2 g L-1 glucose reaching ~ 0.8 h-1. It was shown that in wild type cells proton but not potassium fluxes were stimulated ~ 1.7 fold reaching up to 1.95 mmol/min when cells were grown in the presence of 8 g L-1 glucose. Interestingly, cells grown on peptone only had similar proton/potassium fluxes as grown on 2 g L-1glucose. H+/K+ fluxes of the cells grown on 2 g L-1 but not 8 g L-1 glucose depend on externally added glucose concentration in the assays. DCCD-sensitive H+ fluxes were tripled and K+ fluxes doubled in wild type cells grown on 8 g L-1 glucose compared to 2 g L-1 when in the assays 2 g L-1glucose was added. Interestingly, in hyfF mutant when cells were grown on 2 g L-1glucose and in 2 g L-1 assays DCCD-sensitive fluxes were not determined compared to wild type while in hyfD mutant it was doubled reaching up to 0.657 mmol/min. In hyf mutants DCCD-sensitive K+ fluxes were stimulated in hyfD and hyfF mutants compared to wild type but depend on external glucose concentration. DCCD-sensitive H+/K+ ratio was equal to ~ 2 except hyfF mutant grown and assayed on 2 g L-1glucose while in 8 g L-1 conditions role of hyfB and hyfD is considered. Taken together it can be concluded that Hyd-4 subunits (HyfBDF) play key role in sensing glucose concentration for regulation of DCCD-sensitive H+/K+ fluxes for maintaining proton motive force generation.
Collapse
Affiliation(s)
- Liana Vanyan
- Department of Biochemistry, Microbiology and Biotechnology, Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia
- Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia.
- Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia.
| |
Collapse
|
32
|
Wei Z, Xu Y, Xu Q, Cao W, Huang H, Liu H. Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects. Front Bioeng Biotechnol 2021; 9:765685. [PMID: 34660563 PMCID: PMC8511312 DOI: 10.3389/fbioe.2021.765685] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Malic acid, a four-carbon dicarboxylic acid, is widely used in the food, chemical and medical industries. As an intermediate of the TCA cycle, malic acid is one of the most promising building block chemicals that can be produced from renewable sources. To date, chemical synthesis or enzymatic conversion of petrochemical feedstocks are still the dominant mode for malic acid production. However, with increasing concerns surrounding environmental issues in recent years, microbial fermentation for the production of L-malic acid was extensively explored as an eco-friendly production process. The rapid development of genetic engineering has resulted in some promising strains suitable for large-scale bio-based production of malic acid. This review offers a comprehensive overview of the most recent developments, including a spectrum of wild-type, mutant, laboratory-evolved and metabolically engineered microorganisms for malic acid production. The technological progress in the fermentative production of malic acid is presented. Metabolic engineering strategies for malic acid production in various microorganisms are particularly reviewed. Biosynthetic pathways, transport of malic acid, elimination of byproducts and enhancement of metabolic fluxes are discussed and compared as strategies for improving malic acid production, thus providing insights into the current state of malic acid production, as well as further research directions for more efficient and economical microbial malic acid production.
Collapse
Affiliation(s)
- Zhen Wei
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yongxue Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
33
|
Stopp M, Steinmetz PA, Unden G. Properties of transmembrane helix TM1 of the DcuS sensor kinase of Escherichia coli, the stator for TM2 piston signaling. Biol Chem 2021; 402:1239-1246. [PMID: 34355547 DOI: 10.1515/hsz-2021-0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
The sensor kinase DcuS of Escherichia coli perceives extracellular fumarate by a periplasmic PASP sensor domain. Transmembrane (TM) helix TM2, present as TM2-TM2' homo-dimer, transmits fumarate activation in a piston-slide across the membrane. The second TM helix of DcuS, TM1, is known to lack piston movement. Structural and functional properties of TM1 were analyzed. Oxidative Cys-crosslinking (CL) revealed homo-dimerization of TM1 over the complete membrane, but only the central part showed α-helical +3/+4 spacing of the CL maxima. The GALLEX bacterial two-hybrid system indicates TM1/TM1' interaction, and the presence of a TM1-TM1' homo-dimer is suggested. The peripheral TM1 regions presented CL in a spacing atypical for α-helical arrangement. On the periplasmic side the deviation extended over 11 AA residues (V32-S42) between the α-helical part of TM1 and the onset of PASP. In the V32-S42 region, CL efficiency decreased in the presence of fumarate. Therefore, TM1 exists as a homo-dimer with α-helical arrangement in the central membrane region, and non-α-helical arrangement in the connector to PASP. The fumarate induced structural response in the V32-S42 region is suggested to represent a structural adaptation to the shift of TM2 in the TM1-TM1'/TM2-TM2' four-helical bundle.
Collapse
Affiliation(s)
- Marius Stopp
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, BZ II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Philipp A Steinmetz
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, BZ II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, BZ II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| |
Collapse
|
34
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
35
|
Stopp M, Schubert C, Unden G. Conversion of the Sensor Kinase DcuS to the Fumarate Sensitive State by Interaction of the Bifunctional Transporter DctA at the TM2/PAS C-Linker Region. Microorganisms 2021; 9:microorganisms9071397. [PMID: 34203512 PMCID: PMC8307970 DOI: 10.3390/microorganisms9071397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The membrane-bound C4-dicarboxylate (C4DC) sensor kinase DcuS of Escherichia coli typically forms a protein complex with the C4DC transporter DctA. The DctA × DcuS complex is able to respond to C4DCs, whereas DcuS without DctA is in the permanent ON state. In DctA, the C-terminal helix 8b (H8b) serves as the site for interaction with DcuS. Here the interaction site in DcuS and the related structural and functional adaptation in DcuS were determined. The Linker connecting transmembrane helix 2 (TM2) and the cytosolic PASC (Per-ARNT-SIM) domain of DcuS, was identified as the major site for interaction with DctA-H8b by in vivo interaction studies. The Linker is known to convert the piston-type transmembrane signaling of TM2 to a tilting motion which relies on a resolution of the Linker-Linker’ homodimer in the presence of C4DCs. Absence of DctA caused decreased cross-linking in the Linker, as identified by oxidative Cys-cross-linking. This response resembled structurally and functionally that of fumarate activation in the DctA × DcuS complex. Overall, formation of the DctA × DcuS complex is based on the interaction of the DcuS Linker with DctA H8b; the interaction is required to set DcuS in the C4DC-responsive state by stabilizing the linker-linker’ homodimer in DcuS. This work identifies DctA as a structural co-regulator of DcuS sensor kinase.
Collapse
|
36
|
Karapetyan L, Mikoyan G, Vassilian A, Valle A, Bolivar J, Trchounian A, Trchounian K. Escherichia coli Dcu C 4-dicarboxylate transporters dependent proton and potassium fluxes and F OF 1-ATPase activity during glucose fermentation at pH 7.5. Bioelectrochemistry 2021; 141:107867. [PMID: 34118553 DOI: 10.1016/j.bioelechem.2021.107867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022]
Abstract
During fermentation in Escherichia coli succinate is transported via Dcu transporters, encoded dcuA, dcuB, dcuC and dcuD although the role of DcuD protein has not been elucidated yet. It has been shown contribution of Dcu transporters in the N,N'-dicyclohexylcarbodiimide (DCCD) sensitive proton and potassium transport through the cytoplasmic membrane and membrane-associated ATPase activity. Total H± efflux was decreased ~ 40% while K± uptake was absent in dcuD mutant. DCCD-sensitive H± flux was absent in dcuD nevertheless it was increased ~ 3 fold in dcuACB. K± uptake in dcuACB was stimulated ~ 30% compared to wild type but in DCCD assays K± ions were effluxed with the rate of 0.15 mmol/min per 109 cells/ml. In dcuACB mutant membrane potential (ΔΨ) was ~ 30 mV higher than in wild type. dcuD gene expression was increased in the dcuACB mutant respect to wild type at pH 7.5 (~120%), suggesting that an increment of DcuD activity compensates the lack of DcuA, DcuC and DcuB carriers. It can be concluded that active DcuD is important for H± efflux via the FOF1-ATPase and K± uptake at pH 7.5. In addition, DcuA, DcuB and DcuC transporters are crucial for regulating DCCD-sensitive K± transport and ΔΨ in E. coli.
Collapse
Affiliation(s)
- L Karapetyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia; Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia
| | - G Mikoyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia
| | - A Vassilian
- Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia
| | - A Valle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, University of Cádiz, Avda. República Saharui s/n, 11510 Puerto Real, Cádiz, Spain
| | - J Bolivar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, University of Cádiz, Avda. República Saharui s/n, 11510 Puerto Real, Cádiz, Spain
| | - A Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia; Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia
| | - K Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia; Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian str., 0025 Yerevan, Armenia.
| |
Collapse
|
37
|
Schubert C, Winter M, Ebert‐Jung A, Kierszniowska S, Nagel‐Wolfrum K, Schramm T, Link H, Winter S, Unden G. C4
‐dicarboxylates and
l
‐aspartate utilization by
Escherichia coli
K‐12 in the mouse intestine:
l
‐aspartate as a major substrate for fumarate respiration and as a nitrogen source. Environ Microbiol 2021; 23:2564-2577. [DOI: 10.1111/1462-2920.15478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | - Maria Winter
- Department of Microbiology UT Southwestern Medical Center Dallas TX 75287 USA
| | - Andrea Ebert‐Jung
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | | | - Kerstin Nagel‐Wolfrum
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | - Thorben Schramm
- Max Planck Institute for Terrestrial Microbiology Karl‐von‐Frisch‐Straße 10 Marburg 35043 Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology Karl‐von‐Frisch‐Straße 10 Marburg 35043 Germany
| | - Sebastian Winter
- Department of Microbiology UT Southwestern Medical Center Dallas TX 75287 USA
| | - Gottfried Unden
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| |
Collapse
|
38
|
Lundgren BR, Shoytush JM, Scheel RA, Sain S, Sarwar Z, Nomura CT. Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP. BMC Microbiol 2021; 21:83. [PMID: 33722201 PMCID: PMC7962211 DOI: 10.1186/s12866-021-02145-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Glutamate and aspartate are preferred nutrients for a variety of microorganisms. In the case for many Pseudomonas spp., utilization of these amino acids is believed to be dependent on a transporter complex comprised of a periplasmic-solute binding protein (AatJ), two permease domains (AatQM) and an ATP-binding component (AatP). Notably, expression of this transporter complex is hypothesized to be regulated at the transcriptional level by the enhancer-binding protein AauR and the alternative sigma factor RpoN. The purpose of the current study was to determine the biological significance of the putative aatJ-aatQMP operon and its regulatory aauR and rpoN genes in the utilization of L-glutamate, L-glutamine, L-aspartate and L-asparagine in Pseudomonas aeruginosa PAO1. Results Deletion of the aatJ-aatQMP, aauR or rpoN genes did not affect the growth of P. aeruginosa PAO1 on L-glutamate, L-glutamine, L-aspartate and L-asparagine equally. Instead, only growth on L-glutamate as the sole carbon source was abolished with the deletion of any one of these genes. Interestingly, growth of the aauR mutant on L-glutamate was readily restored via plasmid-based expression of the aatQMP genes, suggesting that it is the function of AatQMP (and not AatJ) that is limiting in the absence of the aauR gene. Subsequent analysis of beta-galactosidase reporters revealed that both aatJ and aatQ were induced in response to L-glutamate, L-glutamine, L-aspartate or L-asparagine in a manner dependent on the aauR and rpoN genes. In addition, both aatJ and aatQ were expressed at reduced levels in the absence of the inducing-amino acids and the regulatory aauR and rpoN genes. The expression of the aatJ-aatQMP genes is, therefore, multifaceted. Lastly, the expression levels of aatJ were significantly higher (> 5 fold) than that of aatQ under all tested conditions. Conclusions The primary function of AauR in P. aeruginosa PAO1 is to activate expression of the aatJ-aatQMP genes in response to exogenous acidic amino acids and their amide derivatives. Importantly, it is the AauR-RpoN mediated induction of the aatQMP genes that is the pivotal factor enabling P. aeruginosa PAO1 to effectively utilize or consume L-glutamate as a sole or preferred nutrient.
Collapse
Affiliation(s)
- Benjamin R Lundgren
- Department of Chemistry, State University of New York - College of Environmental Science and Forestry, Syracuse, 1 Forestry Drive, Syracuse, New York, 13210, USA.
| | - Joseph M Shoytush
- Department of Chemistry, State University of New York - College of Environmental Science and Forestry, Syracuse, 1 Forestry Drive, Syracuse, New York, 13210, USA
| | - Ryan A Scheel
- Department of Chemistry, State University of New York - College of Environmental Science and Forestry, Syracuse, 1 Forestry Drive, Syracuse, New York, 13210, USA
| | - Safreen Sain
- Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, NJ, 08628, USA
| | - Zaara Sarwar
- Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, NJ, 08628, USA
| | - Christopher T Nomura
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| |
Collapse
|
39
|
Sánchez-Ortiz VJ, Domenzain C, Poggio S, Dreyfus G, Camarena L. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2021; 167. [PMID: 33620307 DOI: 10.1099/mic.0.001037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rhodobacter sphaeroides can use C4-dicarboxylic acids to grow heterotrophically or photoheterotropically, and it was previously demonstrated in Rhodobacter capsulatus that the DctPQM transporter system is essential to support growth using these organic acids under heterotrophic but not under photoheterotrophic conditions. In this work we show that in R. sphaeroides this transporter system is essential for photoheterotrophic and heterotrophic growth, when C4-dicarboxylic acids are used as a carbon source. We also found that over-expression of dctPQM is detrimental for photoheterotrophic growth in the presence of succinic acid in the culture medium. In agreement with this, we observed a reduction of the dctPQM promoter activity in cells growing under these conditions, indicating that the amount of DctPQM needs to be reduced under photoheterotrophic growth. It has been reported that the two-component system DctS and DctR activates the expression of dctPQM. Our results demonstrate that in the absence of DctR, dctPQM is still expressed albeit at a low level. In this work, we have found that the periplasmic component of the transporter system, DctP, has a role in both transport and in signalling the DctS/DctR two-component system.
Collapse
Affiliation(s)
- Veronica Jazmín Sánchez-Ortiz
- Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Clelia Domenzain
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
40
|
Comparative genomics of a novel clade shed light on the evolution of the genus Erysipelothrix and characterise an emerging species. Sci Rep 2021; 11:3383. [PMID: 33564084 PMCID: PMC7873064 DOI: 10.1038/s41598-021-82959-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Erysipelothrix sp. isolates obtained from a deadly outbreak in farmed turkeys were sequenced and compared to representatives of the genus. Phylogenetic trees—supported by digital DNA:DNA hybridization and Average Nucleotide Identity—revealed a novel monophyletic clade comprising isolates from pigs, turkeys, and fish, including isolates previously described as E. sp. Strain 2. Genes coding for the SpaC protein, typically found in E. sp. Strain 2, were detected in all isolates of the clade. Therefore, we confirm E. sp. Strain 2 represents a unique species, that despite its official name “Erysipelothrix piscisicarius” (meaning a killer of fish), may be isolated from a broad host range. Core genome analysis showed that the pathogenic species of this genus, E. rhusiopathiae and the clade E. sp. Strain 2, are enriched in core functionalities related to nutrient uptake and transport, but not necessarily homologous pathways. For instance, whereas the aerobic DctA transporter may uptake C4-dicarboxylates in both species, the anaerobic DcuC transporter is exclusive of the E. sp. Strain 2. Remarkably, the pan-genome analysis uncovered that genes related to transport and metabolism, recombination and repair, translation and transcription in the fish isolate, within the novel clade, have undergone a genomic reduction through pseudogenization. This reflects distinct selective pressures shaping the genome of species and strains within the genus Erysipelothrix while adapting to their respective niches.
Collapse
|
41
|
Rosenberg G, Yehezkel D, Hoffman D, Mattioli CC, Fremder M, Ben-Arosh H, Vainman L, Nissani N, Hen-Avivi S, Brenner S, Itkin M, Malitsky S, Ohana E, Ben-Moshe NB, Avraham R. Host succinate is an activation signal for
Salmonella
virulence during intracellular infection. Science 2021; 371:400-405. [DOI: 10.1126/science.aba8026] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dror Yehezkel
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dotan Hoffman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Hadar Ben-Arosh
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Leia Vainman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noa Nissani
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shelly Hen-Avivi
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shirley Brenner
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Noa Bossel Ben-Moshe
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
42
|
Likhitrattanapisal S, Siriarchawatana P, Seesang M, Chunhametha S, Boonsin W, Phithakrotchanakoon C, Kitikhun S, Eurwilaichitr L, Ingsriswang S. Uncovering multi-faceted taxonomic and functional diversity of soil bacteriomes in tropical Southeast Asian countries. Sci Rep 2021; 11:582. [PMID: 33436774 PMCID: PMC7804445 DOI: 10.1038/s41598-020-79786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Environmental microbiomes encompass massive biodiversity and genetic information with a wide-ranging potential for industrial and agricultural applications. Knowledge of the relationship between microbiomes and environmental factors is crucial for translating that information into practical uses. In this study, the integrated data of Southeast Asian soil bacteriomes were used as models to assess the variation in taxonomic and functional diversity of bacterial communities. Our results demonstrated that there were differences in soil bacteriomes across different geographic locality with different soil characteristics: soil class and pH level. Such differences were observed in taxonomic diversity, interspecific association patterns, and functional diversity of soil bacteriomes. The bacterial-mediated biogeochemical cycles of nitrogen, sulfur, carbon, and phosphorus illustrated the functional relationship of soil bacteriome and soil characteristics, as well as an influence from bacterial interspecific interaction. The insights from this study reveal the importance of microbiome data integration for future microbiome research.
Collapse
Affiliation(s)
- Somsak Likhitrattanapisal
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Paopit Siriarchawatana
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Mintra Seesang
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Suwanee Chunhametha
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Worawongsin Boonsin
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Chitwadee Phithakrotchanakoon
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Supattra Kitikhun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Lily Eurwilaichitr
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand.
| | - Supawadee Ingsriswang
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand.
| |
Collapse
|
43
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|
44
|
Schubert C, Zedler S, Strecker A, Unden G. L-Aspartate as a high-quality nitrogen source in Escherichia coli: Regulation of L-aspartase by the nitrogen regulatory system and interaction of L-aspartase with GlnB. Mol Microbiol 2020; 115:526-538. [PMID: 33012071 DOI: 10.1111/mmi.14620] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen metabolism, GlnB. GlnB interacted with AspA and stimulated its L-aspartate deaminase activity (NH3 -forming), but not the reverse amination reaction. GlnB stimulation required 2-oxoglutarate and ATP, or uridylylated GlnB-UMP, consistent with the activation of nitrogen assimilation under nitrogen limitation. Binding to AspA was lost in the GlnB(Y51F) mutant of the uridylylation site. AspA, therefore, represents a new type of GlnB target that binds GlnB (with ATP and 2-oxoglutarate), or GlnB-UMP (with or without effectors), and both situations stimulate AspA deamination activity. Thus, AspA represents the central enzyme for nitrogen assimilation from L-aspartate, and AspA is integrated into the nitrogen assimilation network by the regulator GlnB.
Collapse
Affiliation(s)
- Christopher Schubert
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sandra Zedler
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Strecker
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
45
|
Pateraki C, Skliros D, Flemetakis E, Koutinas A. Succinic acid production from pulp and paper industry waste: A transcriptomic approach. J Biotechnol 2020; 325:250-260. [PMID: 33069778 DOI: 10.1016/j.jbiotec.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
The fermentative production of biobased chemicals and polymers using crude lignocellulose hydrolysates is challenging due to the presence of various inhibitory compounds and multiple sugars. This study evaluates the metabolic response of Actinobacillus succinogenes for the production of succinic acid using spent sulphite liquor (SSL) as feedstock derived from industrial acidic sulphite pulping of Eucalyptus globulus hardwood. A transcriptomic approach led to significant insights on gene regulation of the major metabolic pathways (glycolysis, pentose phosphate pathway, TCA cycle, pyruvate metabolism and oxidative phosphorylation) in batch cultures carried out on SSL and compared with glucose and xylose. Significantly overexpressed genes in SSL compared to glucose and xylose were fructose biphosphate aldolase (> 1.18-fold change) in the catabolism, phosphoenolpyruvate carboxykinase (> 1.59-fold change) and malate dehydrogenase (> 1.49-fold change) in the TCA cycle, citrate lyase (> 1.7-fold change), dihydrolipoamide dehydrogenase (> 0.88-fold change), pyruvate dehydrogenase E2 (> 1.63-fold change) and pyruvate formate lyase (> 0.61-fold change), involved in acetyl-CoA pathways. Finally, C4 tricarboxylic transporters were overexpressed (DCU (> 1.61-fold change) and 0079 (> 4.19-fold change). SSL was responsible for the upregulation of genes involved in the TCA cycle and oxidative phosphorylation, while xylose showed similar results with SSL in the oxidative phosphorylation.
Collapse
Affiliation(s)
- Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
46
|
Waters JK, Mawhinney TP, Emerich DW. Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate. Int J Mol Sci 2020; 21:E7542. [PMID: 33066093 PMCID: PMC7589128 DOI: 10.3390/ijms21207542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Symbiotic nitrogen fixation requires the transfer of fixed organic nitrogen compounds from the symbiotic bacteria to a host plant, yet the chemical nature of the compounds is in question. Bradyrhizobium diazoefficiens bacteroids were isolated anaerobically from soybean nodules and assayed at varying densities, varying partial pressures of oxygen, and varying levels of l-malate. Ammonium was released at low bacteroid densities and high partial pressures of oxygen, but was apparently taken up at high bacteroid densities and low partial pressures of oxygen in the presence of l-malate; these later conditions were optimal for amino acid excretion. The ratio of partial pressure of oxygen/bacteroid density of apparent ammonium uptake and of alanine excretion displayed an inverse relationship. Ammonium uptake, alanine and branch chain amino acid release were all dependent on the concentration of l-malate displaying similar K0.5 values of 0.5 mM demonstrating concerted regulation. The hyperbolic kinetics of ammonium uptake and amino acid excretion suggests transport via a membrane carrier and also suggested that transport was rate limiting. Glutamate uptake displayed exponential kinetics implying transport via a channel. The chemical nature of the compounds released were dependent upon bacteroid density, partial pressure of oxygen and concentration of l-malate demonstrating an integrated metabolism.
Collapse
Affiliation(s)
| | | | - David W. Emerich
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (J.K.W.); (T.P.M.)
| |
Collapse
|
47
|
Cao W, Yan L, Li M, Liu X, Xu Y, Xie Z, Liu H. Identification and engineering a C4-dicarboxylate transporter for improvement of malic acid production in Aspergillus niger. Appl Microbiol Biotechnol 2020; 104:9773-9783. [DOI: 10.1007/s00253-020-10932-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
48
|
Mikoyan G, Karapetyan L, Vassilian A, Trchounian A, Trchounian K. External succinate and potassium ions influence Dcu dependent FOF1-ATPase activity and H+ flux of Escherichia coli at different pHs. J Bioenerg Biomembr 2020; 52:377-382. [DOI: 10.1007/s10863-020-09847-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/19/2020] [Indexed: 01/12/2023]
|
49
|
Szczerba H, Dudziak K, Krawczyk M, Targoński Z. A Genomic Perspective on the Potential of Wild-Type Rumen Bacterium Enterobacter sp. LU1 as an Industrial Platform for Bio-Based Succinate Production. Int J Mol Sci 2020; 21:ijms21144835. [PMID: 32650546 PMCID: PMC7402333 DOI: 10.3390/ijms21144835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Enterobacter sp. LU1, a wild-type bacterium originating from goat rumen, proved to be a potential succinic acid producer in previous studies. Here, the first complete genome of this strain was obtained and analyzed from a biotechnological perspective. A hybrid sequencing approach combining short (Illumina MiSeq) and long (ONT MinION) reads allowed us to obtain a single continuous chromosome 4,636,526 bp in size, with an average 55.6% GC content that lacked plasmids. A total of 4425 genes, including 4283 protein-coding genes, 25 ribosomal RNA (rRNA)-, 84 transfer RNA (tRNA)-, and 5 non-coding RNA (ncRNA)-encoding genes and 49 pseudogenes, were predicted. It has been shown that genes involved in transport and metabolism of carbohydrates and amino acids and the transcription process constitute the major group of genes, according to the Clusters of Orthologous Groups of proteins (COGs) database. The genetic ability of the LU1 strain to metabolize a wide range of industrially relevant carbon sources has been confirmed. The genome exploration indicated that Enterobacter sp. LU1 possesses all genes that encode the enzymes involved in the glycerol metabolism pathway. It has also been shown that succinate can be produced as an end product of fermentation via the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. The transport system involved in succinate excretion into the growth medium and the genes involved in the response to osmotic and oxidative stress have also been recognized. Furthermore, three intact prophage regions ~70.3 kb, ~20.9 kb, and ~49.8 kb in length, 45 genomic islands (GIs), and two clustered regularly interspaced short palindromic repeats (CRISPR) were recognized in the genome. Sequencing and genome analysis of Enterobacter sp. LU1 confirms many earlier results based on physiological experiments and provides insight into their genetic background. All of these findings illustrate that the LU1 strain has great potential to be an efficient platform for bio-based succinate production.
Collapse
Affiliation(s)
- Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-462-3402
| | - Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | - Zdzisław Targoński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| |
Collapse
|
50
|
Nguyen BD, Cuenca V M, Hartl J, Gül E, Bauer R, Meile S, Rüthi J, Margot C, Heeb L, Besser F, Escriva PP, Fetz C, Furter M, Laganenka L, Keller P, Fuchs L, Christen M, Porwollik S, McClelland M, Vorholt JA, Sauer U, Sunagawa S, Christen B, Hardt WD. Import of Aspartate and Malate by DcuABC Drives H 2/Fumarate Respiration to Promote Initial Salmonella Gut-Lumen Colonization in Mice. Cell Host Microbe 2020; 27:922-936.e6. [PMID: 32416061 PMCID: PMC7292772 DOI: 10.1016/j.chom.2020.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Initial enteropathogen growth in the microbiota-colonized gut is poorly understood. Salmonella Typhimurium is metabolically adaptable and can harvest energy by anaerobic respiration using microbiota-derived hydrogen (H2) as an electron donor and fumarate as an electron acceptor. As fumarate is scarce in the gut, the source of this electron acceptor is unclear. Here, transposon sequencing analysis along the colonization trajectory of S. Typhimurium implicates the C4-dicarboxylate antiporter DcuABC in early murine gut colonization. In competitive colonization assays, DcuABC and enzymes that convert the C4-dicarboxylates aspartate and malate into fumarate (AspA, FumABC), are required for fumarate/H2-dependent initial growth. Thus, S. Typhimurium obtains fumarate by DcuABC-mediated import and conversion of L-malate and L-aspartate. Fumarate reduction yields succinate, which is exported by DcuABC in exchange for L-aspartate and L-malate. This cycle allows S. Typhimurium to harvest energy by H2/fumarate respiration in the microbiota-colonized gut. This strategy may also be relevant for commensal E. coli diminishing the S. Typhimurium infection.
Collapse
Affiliation(s)
- Bidong D Nguyen
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Johannes Hartl
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Rebekka Bauer
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Susanne Meile
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Joel Rüthi
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Céline Margot
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Laura Heeb
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Franziska Besser
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Pau Pérez Escriva
- Institute of Molecular Systems Biology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Céline Fetz
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus Furter
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Philipp Keller
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Lea Fuchs
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Julia A Vorholt
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland.
| | - Beat Christen
- Institute of Molecular Systems Biology, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland.
| | | |
Collapse
|