1
|
Krzistetzko J, Géraud C, Dormann C, Riedel A, Leibing T. Phenotypical and biochemical characterization of murine psoriasiform and fibrotic skin disease models in Stabilin-deficient mice. FEBS Open Bio 2024; 14:1455-1470. [PMID: 38946049 PMCID: PMC11492309 DOI: 10.1002/2211-5463.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024] Open
Abstract
Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are scavenger receptors expressed by liver sinusoidal endothelial cells (LSECs). The Stabilin-mediated scavenging function is responsible for regulating the molecular composition of circulating blood in mammals. Stab1 and Stab2 have been shown to influence fibrosis in liver and kidneys and to modulate inflammation in atherosclerosis. In this context, circulating and localized TGFBi and POSTN are differentially controlled by the Stabilins as their receptors. To assess Stab1 and Stab2 functions in inflammatory and fibrotic skin disease, topical Imiquimod (IMQ) was used to induce psoriasis-like skin lesions in mice and Bleomycin (BLM) was applied subcutaneously to induce scleroderma-like effects in the skin. The topical treatment with IMQ, as expected, led to psoriasis-like changes in the skin of mice, including increased epidermal thickness and significant weight loss. Clinical severity was reduced in Stab2-deficient compared to Stab1-deficient mice. We did not observe differential effects in the skin of Stabilin-deficient mice after bleomycin injection. Interestingly, treatment with IMQ led to a significant increase of Stabilin ligand TGFBi plasma levels in Stab2-/- mice, treatment with BLM resulted in a significant decrease in TGFBi levels in Stab1-/- mice. Overall, Stab1 and Stab2 deficiency resulted in minor alterations of the disease phenotypes accompanied by alterations of circulating ligands in the blood in response to the disease models. Stabilin-mediated clearance of TGFBi was altered in these disease processes. Taken together our results suggest that Stabilin deficiency-associated plasma alterations may interfere with preclinical disease severity and treatment responses in patients.
Collapse
Affiliation(s)
- Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Christof Dormann
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Anna Riedel
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
2
|
Zhou J, Lyu N, Wang Q, Yang M, Kimchi ET, Cheng K, Joshi T, Tukuli AR, Staveley-O'Carroll KF, Li G. A novel role of TGFBI in macrophage polarization and macrophage-induced pancreatic cancer growth and therapeutic resistance. Cancer Lett 2023; 578:216457. [PMID: 37865162 DOI: 10.1016/j.canlet.2023.216457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Tumor-associated macrophages (TAMs), as a major and essential component of tumor microenvironment (TME), play a critical role in orchestrating pancreatic cancer (PaC) tumorigenesis from initiation to angiogenesis, growth, and systemic dissemination, as well as immunosuppression and resistance to chemotherapy and immunotherapy; however, the critical intrinsic factors responsible for TAMs reprograming and function remain to be identified. By performing single-cell RNA sequencing, transforming growth factor-beta-induced protein (TGFBI) was identified as TAM-producing factor in murine PaC tumors. TAMs express TGFBI in human PaC and TGFBI expression is positively related with human PaC growth. By inducing TGFBI loss-of-function in macrophage (MΦs) in vitro with siRNA and in vivo with Cre-Lox strategy in our developed TGFBI-floxed mice, we demonstrated disruption of TGFBI not only inhibited MΦ polarization to M2 phenotype and MΦ-mediated stimulation on PaC growth, but also significantly improved anti-tumor immunity, sensitizing PaC to chemotherapy in association with regulation of fibronectin 1, Cxcl10, and Ccl5. Our studies suggest that targeting TGFBI in MΦ can develop an effective therapeutic intervention for highly lethal PaC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Nan Lyu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qiongling Wang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA; Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA; Department of Health Management and Informatics and MU Institute of Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Adama R Tukuli
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Kim N, Kim C, Ryu SH, Bae JS. Jujuboside B Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses in Human Endothelial Cells and Mice. J Med Food 2023; 26:40-48. [PMID: 36576404 DOI: 10.1089/jmf.2022.k.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High mobility group box protein 1 (HMGB1) is a biomolecule that acts as an alerting signal of late sepsis by accelerating the production of proinflammatory cytokines, and eventually leads to various inflammation-related symptoms. When released into plasma at high concentration, it disrupts precise diagnosis and prognosis and worsens the survival of patients with systemic inflammatory conditions. Jujuboside B (JB) is a natural compound pressed from the seed of Zizyphi Spinosi Semen, which is known for its medical efficacies in treating various conditions such as hyperlipidemia, hypoxia, and platelet aggregation. Nevertheless, the medicinal activity of JB on HMGB1-involved inflammatory response in vascular cells in the human body is still ambiguous. Therefore, we hypothesized that JB could regulate the lipopolysaccharide (LPS)-induced dynamics of HMGB1 and its mediated cascade in inflammatory responses in human umbilical vein endothelial cells (HUVECs). In this experiment, JB and HMGB1 were administered in that order. In vitro and in vivo permeability, and cell viability, adhesion, and excavation of leukocytes, development of cell adhesion molecules, and lastly production of proinflammatory substances were investigated on human endothelial cells and mouse disease models to investigate the efficacy of JB in inflammatory condition. JB substantially blocked the translocation of HMGB1 from HUVECs and controlled HMGB1-induced adhesion and extravasation of the neutrophils through LPS-treated HUVECs. Moreover, JB decreased the formation of HMGB1 receptors and continually prevented HMGB1-induced proinflammatory mechanisms by blocking transcription of nuclear factor-κB and synthesis of tumor necrosis factor-α. In conclusion, JB demonstrated preventive effects against inflammatory pathologies and showed the potential to be a candidate substance for various inflammatory diseases by regulating HMGB1-mediated cellular signaling.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Chaeyeong Kim
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Soo Ho Ryu
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
4
|
Sciriha GG, Sultana J, Borg J. Identifying and categorizing compounds that reduce corneal transforming growth factor beta induced protein levels: a scoping review. Expert Rev Clin Pharmacol 2022; 15:1423-1442. [PMID: 36308770 DOI: 10.1080/17512433.2022.2142560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transforming growth factor beta induced (TGFBI) gene mutations have been reported as the cause of a group of genetically inherited, visually debilitating, corneal dystrophies (CD). A scoping literature review to identify and categorize compounds that inhibit corneal TGFBI expression and/or promote TGFBIp degradation was performed. Emphasis was given to their potential to be used as a cost-effective approach via drug repurposing. AREAS COVERED We performed a thorough search of original peer-reviewed literature using electronic bibliographic databases and selected articles according to a set of criteria. The total number of articles retrieved from the search terms applied to the databases was 2344. The number of relevant full-text articles included added up to 19. We identified 16 compounds that can theoretically reduce the levels of mutant TGFBIp in human corneal cells. EXPERT OPINION Currently, the only temporary treatments available for this condition are lubricant drops and surgery. Here, we explored the crosstalk between cascades that regulate TGFBI expression and identified compounds that target these pathways. Compounds that inhibit DNA synthesis and function, increase elimination of TGFBIp or bind to mutant TGFBIp were also explored with the aim of highlighting promising compounds that can be used in future cost-effective drug-repurposing studies.
Collapse
Affiliation(s)
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter UK
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| |
Collapse
|
5
|
Li J, Ma J, Zhang Q, Gong H, Gao D, Wang Y, Li B, Li X, Zheng H, Wu Z, Zhu Y, Leng L. Spatially resolved proteomic map shows that extracellular matrix regulates epidermal growth. Nat Commun 2022; 13:4012. [PMID: 35817779 PMCID: PMC9273758 DOI: 10.1038/s41467-022-31659-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Human skin comprises stratified squamous epithelium and dermis with various stromal cells and the extracellular matrix (ECM). The basement membrane (BM), a thin layer at the top of the dermis, serves as a unique niche for determining the fate of epidermal stem cells (EpSCs) by transmitting physical and biochemical signals to establish epidermal cell polarity and maintain the hierarchical structure and function of skin tissue. However, how stem cell niches maintain tissue homeostasis and control wound healing by regulating the behavior of EpSCs is still not completely understood. In this study, a hierarchical skin proteome map is constructed using spatial quantitative proteomics combined with decellularization, laser capture microdissection, and mass spectrometry. The specific functions of different structures of normal native skin tissues or tissues with a dermatologic disease are analyzed in situ. Transforming growth factor-beta (TGFβ)-induced protein ig-h3 (TGFBI), an ECM glycoprotein, in the BM is identified that could enhance the growth and function of EpSCs and promote wound healing. Our results provide insights into the way in which ECM proteins facilitate the growth and function of EpSCs as part of an important niche. The results may benefit the clinical treatment of skin ulcers or diseases with refractory lesions that involve epidermal cell dysfunction and re-epithelialization block in the future. Ling Leng et al. construct a hierarchical skin proteome map and identify an extracellular matrix glycoprotein TGFBI, which is located in basement membrane and could enhance the growth and function of epidermal stem cells and promote wound healing.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Qiyu Zhang
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huizi Gong
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Wang
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biyou Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Basic Medical School, Anhui Medical University, Anhui, China
| | - Xiao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Heyi Zheng
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China. .,Basic Medical School, Anhui Medical University, Anhui, China.
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Human platelets release TGFBIp in acute myocardial infarction. Heart Vessels 2022; 37:1962-1970. [PMID: 35545686 DOI: 10.1007/s00380-022-02086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
Transforming growth factor-β-induced protein (TGFBIp) is released from activated platelets and promotes pro-thrombotic complications like pulmonary embolism. The role of TGFBIp in acute coronary syndrome, especially with a focus on platelets, has not been investigated so far. Using ELISA and immunoblotting, we demonstrate platelet TGFBIp release in patients with myocardial infarction (MI). We investigated TGFBIp-induced platelet adhesion and rolling by flow chamber and chemotactic effects of TGFBIp in transwell experiments. Immunochemistry staining of arterial vessels detected TGFBIp and the platelet-specific protein GPVI in the vessel wall.We demonstrate for the first time that platelet TGFBIp release is significantly increased in MI and correlates with the severity of acute coronary syndromes (STEMI, NSTEMI). After activation with TRAP, platelets release TGFBIp and TGFBIp itself activates platelets. Under flow, TGFBIp-mediated platelet rolling and adherence similarly to collagen. TGFBIp significantly increased platelet transmigration and we demonstrate TGFBIp deposits in the wall of human arteries. In this study, we add novel aspects to the role of TGFBIp in acute coronary syndrome by demonstrating that TGFBIp is partially released from platelets during MI and has activating, pro-adhesive and pro-migratory effects on platelets that could contribute to the disease development of coronary vascular inflammation and MI.
Collapse
|
7
|
Bachy S, Wu Z, Gamradt P, Thierry K, Milani P, Chlasta J, Hennino A. βig-h3-structured collagen alters macrophage phenotype and function in pancreatic cancer. iScience 2022; 25:103758. [PMID: 35146384 PMCID: PMC8816720 DOI: 10.1016/j.isci.2022.103758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/27/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
Macrophages play an important role in immune and matrix regulation during pancreatic adenocarcinoma (PDAC). Collagen deposition massively contributes to the physical and functional changes of the tissue during pathogenesis. We investigated the impact of thick collagen fibers on the phenotype and function of macrophages. We recently demonstrated that the extracellular protein βig-h3/TGFβi (Transforming growth factor-β-induced protein) plays an important role in modulating the stiffness of the pancreatic stroma. By using atomic force microscopy, we show that βig-h3 binds to type I collagen and establishes thicker fibers. Macrophages cultured on βig-h3-structured collagen layers display a different morphology and a pro-tumoral M2 phenotype and function compared to those cultured on non-structured collagen layers. In vivo injection of those instructed CD206+CD163+ macrophages was able to suppress T cell responses. These results reveal for the first time that the collagen structure impacts the phenotype and function of macrophages by potentiating their immunosuppressive features. Atomic force microscopy of βig-h3-structured collagen In vitro and in vivo macrophage education on structured collagen In vitro macrophage phenotype imprinting is stable in vivo
Collapse
Affiliation(s)
- Sophie Bachy
- Cancer Research Center of Lyon, UMR INSERM1052, CNRS5286, 69373 Lyon, France.,Université Lyon 1, 69000 Lyon, France.,Centre Léon Bérard, 69008 Lyon, France
| | - Zhichong Wu
- Cancer Research Center of Lyon, UMR INSERM1052, CNRS5286, 69373 Lyon, France.,Université Lyon 1, 69000 Lyon, France.,Centre Léon Bérard, 69008 Lyon, France
| | - Pia Gamradt
- Cancer Research Center of Lyon, UMR INSERM1052, CNRS5286, 69373 Lyon, France.,Université Lyon 1, 69000 Lyon, France.,Centre Léon Bérard, 69008 Lyon, France
| | - Kevin Thierry
- Cancer Research Center of Lyon, UMR INSERM1052, CNRS5286, 69373 Lyon, France.,Université Lyon 1, 69000 Lyon, France.,Centre Léon Bérard, 69008 Lyon, France
| | | | | | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM1052, CNRS5286, 69373 Lyon, France.,Université Lyon 1, 69000 Lyon, France.,Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
8
|
Ryu SH, Kim C, Kim N, Lee W, Bae JS. Inhibitory functions of cornuside on TGFBIp-mediated septic responses. J Nat Med 2022; 76:451-461. [PMID: 35025027 PMCID: PMC8757402 DOI: 10.1007/s11418-021-01601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β-induced protein (TGFBIp), as an extracellular matrix protein, is expressed TGF-β in some types of cells. Experimental sepsis is mediated by expressed and released TGFBIp in primary human umbilical vein endothelial cells (HUVECs). Cornuside (CNS) is a bisiridoid glucoside compound found in the fruit of Cornus officinalis SIEB. et ZUCC. Based on the known functions of CNS, such as the immunomodulatory and anti-inflammatory activities, we tested whether TGFBIp-mediated septic responses were suppressed by CNS in human endothelial cells and mice and investigated the underlying anti-septic mechanisms of CNS. Data showed that the secretion of TGFBIp by lipopolysaccharide (LPS) and severe septic responses by TGFBIp were effectively inhibited by CNS. And, TGFBIp-mediated sepsis lethality and pulmonary injury were reduced by CNS. Therefore, the suppression of TGFBIp-mediated septic responses by CNS suggested that CNS may be used as a potential therapeutic agent for several vascular inflammatory diseases, with the inhibition of the TGFBIp signaling pathway as the mechanism of action.
Collapse
Affiliation(s)
- Soo Ho Ryu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Chaeyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Platelet-Released Growth Factors Induce Genes Involved in Extracellular Matrix Formation in Human Fibroblasts. Int J Mol Sci 2021; 22:ijms221910536. [PMID: 34638874 PMCID: PMC8508971 DOI: 10.3390/ijms221910536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Platelet concentrate products are increasingly used in many medical disciplines due to their regenerative properties. As they contain a variety of chemokines, cytokines, and growth factors, they are used to support the healing of chronic or complicated wounds. To date, underlying cellular mechanisms have been insufficiently investigated. Therefore, we analyzed the influence of Platelet-Released Growth Factors (PRGF) on human dermal fibroblasts. Whole transcriptome sequencing and gene ontology (GO) enrichment analysis of PRGF-treated fibroblasts revealed an induction of several genes involved in the formation of the extracellular matrix (ECM). Real-time PCR analyses of PRGF-treated fibroblasts and skin explants confirmed the induction of ECM-related genes, in particular transforming growth factor beta-induced protein (TGFBI), fibronectin 1 (FN1), matrix metalloproteinase-9 (MMP-9), transglutaminase 2 (TGM2), fermitin family member 1 (FERMT1), collagen type I alpha 1 (COL1A1), a disintegrin and metalloproteinase 19 (ADAM19), serpin family E member 1 (SERPINE1) and lysyl oxidase-like 3 (LOXL3). The induction of these genes was time-dependent and in part influenced by the epidermal growth factor receptor (EGFR). Moreover, PRGF induced migration and proliferation of the fibroblasts. Taken together, the observed effects of PRGF on human fibroblasts may contribute to the underlying mechanisms that support the beneficial wound-healing effects of thrombocyte concentrate products.
Collapse
|
11
|
Liu M, Iosef C, Rao S, Domingo-Gonzalez R, Fu S, Snider P, Conway SJ, Umbach GS, Heilshorn SC, Dewi RE, Dahl MJ, Null DM, Albertine KH, Alvira CM. Transforming Growth Factor-induced Protein Promotes NF-κB-mediated Angiogenesis during Postnatal Lung Development. Am J Respir Cell Mol Biol 2021; 64:318-330. [PMID: 33264084 PMCID: PMC7909333 DOI: 10.1165/rcmb.2020-0153oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary angiogenesis is a key driver of alveolarization. Our prior studies showed that NF-κB promotes pulmonary angiogenesis during early alveolarization. However, the mechanisms regulating temporal-specific NF-κB activation in the pulmonary vasculature are unknown. To identify mechanisms that activate proangiogenic NF-κB signaling in the developing pulmonary vasculature, proteomic analysis of the lung secretome was performed using two-dimensional difference gel electrophoresis. NF-κB activation and angiogenic function was assessed in primary pulmonary endothelial cells (PECs) and TGFBI (transforming growth factor-β-induced protein)-regulated genes identified using RNA sequencing. Alveolarization and pulmonary angiogenesis was assessed in wild-type and Tgfbi null mice exposed to normoxia or hyperoxia. Lung TGFBI expression was determined in premature lambs supported by invasive and noninvasive respiratory support. Secreted factors from the early alveolar, but not the late alveolar or adult lung, promoted proliferation and migration in quiescent, adult PECs. Proteomic analysis identified TGFBI as one protein highly expressed by the early alveolar lung that promoted PEC migration by activating NF-κB via αvβ3 integrins. RNA sequencing identified Csf3 as a TGFBI-regulated gene that enhances nitric oxide production in PECs. Loss of TGFBI in mice exaggerated the impaired pulmonary angiogenesis induced by chronic hyperoxia, and TGFBI expression was disrupted in premature lambs with impaired alveolarization. Our studies identify TGFBI as a developmentally regulated protein that promotes NF-κB-mediated angiogenesis during early alveolarization by enhancing nitric oxide production. We speculate that dysregulation of TGFBI expression may contribute to diseases marked by impaired alveolar and vascular growth.
Collapse
Affiliation(s)
- Min Liu
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| | - Cristiana Iosef
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| | - Shailaja Rao
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| | | | - Sha Fu
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
- Liuyang People’s Hospital, Hunan, China
| | - Paige Snider
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simon J. Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gray S. Umbach
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
- University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Ruby E. Dewi
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Mar J. Dahl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Donald M. Null
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kurt H. Albertine
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Cristina M. Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, and
| |
Collapse
|
12
|
Lee IC, Bae JS. Inhibitory effects of aloin on TGFBIp-mediated septic responses. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:189-203. [PMID: 31979986 DOI: 10.1080/10286020.2019.1711066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Aloin is the major anthraquinone glycoside obtained from the Aloe species. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein and released by primary human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. We hypothesized that aloin could reduce TGFBIp-mediated severe inflammatory responses in HUVECs and mice. Aloin effectively inhibited lipopolysaccharide (LPS)-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. Aloin suppressed TGFBIp-induced sepsis lethality and pulmonary injury. Therefore, aloin is a potential therapeutic agent for various severe vascular inflammatory diseases, with inhibition of the TGFBIp signaling pathway as the mechanism of action. [Formula: see text].
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers (Basel) 2021; 13:cancers13010146. [PMID: 33466303 PMCID: PMC7795083 DOI: 10.3390/cancers13010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Solid cancers are surrounded by a network of non-cancerous cells comprising different cell types, including fibroblasts, and acellular protein structures. This entire network is called the tumor microenvironment (TME) and it provides a physical barrier to the tumor shielding it from infiltrating immune cells, such as lymphocytes, or therapeutic agents. In addition, the TME has been shown to dampen efficient immune responses of infiltrated immune cells, which are key in eliminating cancer cells from the organism. In this review, we will discuss how TME proteins in particular are involved in this dampening effect, known as immunosuppression. We will focus on three different types of digestive cancers: pancreatic cancer, colorectal cancer, and gastric cancer. Moreover, we will discuss current therapeutic approaches using TME proteins as targets to reverse their immunosuppressive effects. Abstract The stromal tumor microenvironment (TME) consists of immune cells, vascular and neural structures, cancer-associated fibroblasts (CAFs), as well as extracellular matrix (ECM), and favors immune escape mechanisms promoting the initiation and progression of digestive cancers. Numerous ECM proteins released by stromal and tumor cells are crucial in providing physical rigidity to the TME, though they are also key regulators of the immune response against cancer cells by interacting directly with immune cells or engaging with immune regulatory molecules. Here, we discuss current knowledge of stromal proteins in digestive cancers including pancreatic cancer, colorectal cancer, and gastric cancer, focusing on their functions in inhibiting tumor immunity and enabling drug resistance. Moreover, we will discuss the implication of stromal proteins as therapeutic targets to unleash efficient immunotherapy-based treatments.
Collapse
|
14
|
Lee IC, Bae JS. Suppressive effects of aloin on polyphosphate-mediated vascular inflammatory responses. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:89-99. [PMID: 32077313 DOI: 10.1080/10286020.2020.1724969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Human endothelial cells-derived polyphosphate (PolyP) is one of the pro-inflammatory mediators as suggested by the previous reports. Aloin is the major anthraquinone glycoside obtained from the Aloe species and exhibits anti-inflammatory and anti-oxidative activities. Aloin inhibits PolyP-mediated barrier disruption, the expressions of cell adhesion molecules, and adhesion/migration of leukocyte to HUVEC. PolyP-induced NF-κB activation and the productions of TNF-α and IL-6 were inhibited by aloin in HUVECs. These anti-inflammatory functions of aloin were confirmed in PolyP-injected mice. In conclusion, based on the anti-inflammatory effects of aloin in PolyP-mediated septic response, aloin has therapeutic potential for various systemic inflammatory diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Roly ZY, Godini R, Estermann MA, Major AT, Pocock R, Smith CA. Transcriptional landscape of the embryonic chicken Müllerian duct. BMC Genomics 2020; 21:688. [PMID: 33008304 PMCID: PMC7532620 DOI: 10.1186/s12864-020-07106-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Müllerian ducts are paired embryonic tubes that give rise to the female reproductive tract in vertebrates. Many disorders of female reproduction can be attributed to anomalies of Müllerian duct development. However, the molecular genetics of Müllerian duct formation is poorly understood and most disorders of duct development have unknown etiology. In this study, we describe for the first time the transcriptional landscape of the embryonic Müllerian duct, using the chicken embryo as a model system. RNA sequencing was conducted at 1 day intervals during duct formation to identify developmentally-regulated genes, validated by in situ hybridization. Results This analysis detected hundreds of genes specifically up-regulated during duct morphogenesis. Gene ontology and pathway analysis revealed enrichment for developmental pathways associated with cell adhesion, cell migration and proliferation, ERK and WNT signaling, and, interestingly, axonal guidance. The latter included factors linked to neuronal cell migration or axonal outgrowth, such as Ephrin B2, netrin receptor, SLIT1 and class A semaphorins. A number of transcriptional modules were identified that centred around key hub genes specifying matrix-associated signaling factors; SPOCK1, HTRA3 and ADGRD1. Several novel regulators of the WNT and TFG-β signaling pathway were identified in Müllerian ducts, including APCDD1 and DKK1, BMP3 and TGFBI. A number of novel transcription factors were also identified, including OSR1, FOXE1, PRICKLE1, TSHZ3 and SMARCA2. In addition, over 100 long non-coding RNAs (lncRNAs) were expressed during duct formation. Conclusions This study provides a rich resource of new candidate genes for Müllerian duct development and its disorders. It also sheds light on the molecular pathways engaged during tubulogenesis, a fundamental process in embryonic development.
Collapse
Affiliation(s)
- Zahida Yesmin Roly
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Rasoul Godini
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Roger Pocock
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.
| |
Collapse
|
16
|
Nikoloudaki G, Snider P, Simmons O, Conway SJ, Hamilton DW. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol 2020; 94:31-56. [PMID: 32777343 DOI: 10.1016/j.matbio.2020.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Although the matricellular protein periostin is prominently upregulated in skin and gingival healing, it plays contrasting roles in myofibroblast differentiation and matrix synthesis respectively. Palatal healing is associated with scarring that can alter or restrict maxilla growth, but the expression pattern and contribution of periostin in palatal healing is unknown. Using periostin-knockout (Postn-/-) and wild-type (WT) mice, the contribution of periostin to palatal healing was investigated through 1.5 mm full-thickness excisional wounds in the hard palate. In WT mice, periostin was upregulated 6 days post-wounding, with mRNA levels peaking at day 12. Genetic deletion of periostin significantly reduced wound closure rates compared to WT mice. Absence of periostin reduced mRNA levels of pivotal genes in wound repair, including α-SMA/acta2, fibronectin and βigh3. Recruitment of fibroblasts and inflammatory cells, as visualized by immunofluorescent staining for fibroblast specific factor-1, vimentin, and macrophages markers Arginase-1 and iNOS was also impaired in Postn-/-, but not WT mice. Palatal fibroblasts isolated from the hard palate of mice were cultured on collagen gels and prefabricated silicon substrates with varying stiffness. Postn-/- fibroblasts showed a significantly reduced ability to contract a collagen gel, which was rescued by the exogenous addition of recombinant periostin. As the stiffness increased, Postn-/- fibroblasts increasingly differentiated into myofibroblasts, but not to the same degree as the WT. Pharmacological inhibition of Rac rescued the deficient myofibroblastic phenotype of Postn-/- cells. Low stiffness substrates (0.2 kPa) resulted in upregulation of fibronectin in WT cells, an effect which was significantly reduced in Postn-/- cells. Quantification of immunostaining for vinculin and integrinβ1 adhesions revealed that Periostin is required for the formation of focal and fibrillar adhesions in mPFBs. Our results suggest that periostin modulates myofibroblast differentiation and contraction via integrinβ1/RhoA pathway, and fibronectin synthesis in an ECM stiffness dependent manner in palatal healing.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Paige Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Olga Simmons
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN, United States
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
17
|
Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TC, Otzen DE, Hjortdal J, Enghild JJ. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res 2020; 77:100843. [DOI: 10.1016/j.preteyeres.2020.100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
|
18
|
Platelet-Released Growth Factors and Platelet-Rich Fibrin Induce Expression of Factors Involved in Extracellular Matrix Organization in Human Keratinocytes. Int J Mol Sci 2020; 21:ijms21124404. [PMID: 32575800 PMCID: PMC7378768 DOI: 10.3390/ijms21124404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Platelet-released growth factor (PRGF) is a thrombocyte concentrate lysate which, like its clinically equivalent variations (e.g., Vivostat PRF® (platelet-rich fibrin)), is known to support the healing of chronic and hard-to-heal wounds. However, studies on the effect of PRGF on keratinocytes remain scarce. This study aims to identify genes in keratinocytes that are significantly influenced by PRGF. Therefore, we performed a whole transcriptome and gene ontology (GO) enrichment analysis of PRGF-stimulated human primary keratinocytes. This revealed an increased expression of genes involved in extracellular matrix (ECM) organization. Real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed the PRGF-mediated induction of selected ECM-related factors such as transforming growth factor beta-induced protein, fibronectin 1, matrix metalloproteinase-9, transglutaminase 2, fermitin family member 1, collagen type I alpha 1 and collagen type XXII alpha 1. PRGF-induced expression of the above factors was influenced by blockade of the epidermal growth factor receptor (EGFR), a receptor playing a crucial role in wound healing. A differential induction of the investigated factors was also detected in skin explants exposed to PRGF and in experimentally generated in vivo wounds treated with Vivostat PRF®. Together, our study indicates that the induction of ECM-related factors may contribute to the beneficial wound-healing effects of PRGF-based formulations.
Collapse
|
19
|
Lee W, Park EJ, Kwon OK, Kim H, Yoo Y, Kim SW, Seo YK, Kim IS, Na DH, Bae JS. Dual peptide-dendrimer conjugate inhibits acetylation of transforming growth factor β-induced protein and improves survival in sepsis. Biomaterials 2020; 246:120000. [PMID: 32247936 DOI: 10.1016/j.biomaterials.2020.120000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Sepsis is a potentially fatal complication of infections and there are currently no effective therapeutic options for severe sepsis. In this study, we revealed the secretion mechanism of transforming growth factor β-induced protein (TGFBIp) that was recently identified as a therapeutic target for sepsis, and designed TGFBIp acetylation inhibitory peptide (TAIP) that suppresses acetylation of lysine 676 in TGFBIp. To improve bioavailability and biodegradation of the peptide, TAIP was conjugated to polyamidoamine (PAMAM) dendrimers. Additionally, the cell-penetrating peptide (CPP) was conjugated to the TAIP-modified PAMAM dendrimers for the intracellular delivery of TGFBIp. The resulting nanostructures, decorated with TAIP and CPP via poly(ethylene glycol) linkage, improved the mortality and organ damage in the septic mouse model and suppressed lipopolysaccharide-activated severe vascular inflammatory responses in endothelial cells. Thus, the dendrimer-based nanostructures for delivery of TAIP using CPP show great promise in practical applications in sepsis therapy.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Eun Ji Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; D&D Pharmatech, Seongnam, Gyeonggi-do, 13486, Republic of Korea.
| | - Oh Kwang Kwon
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngbum Yoo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Shin-Woo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
20
|
Hu YT, Yi WJ, Jiang TT, Tu HH, Wei LL, Shi LY, Liu CM, Chen J, Han YS, Gan L, Li ZB, Huang H, Li JC. Serum proteins TGFBI, PCSK9, and CCL14 are potential biomarkers for different traditional Chinese medicine syndromes of multidrug-resistant tuberculosis. Anat Rec (Hoboken) 2020; 303:2131-2143. [PMID: 31909895 DOI: 10.1002/ar.24353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
Patients with multidrug-resistant tuberculosis (MDR-TB) tend to have a long course of anti-TB treatment and severe side effects. Traditional Chinese Medicine (TCM) has a synergistic effect in attenuation of MDR-TB. However, the lack of objective biological standards to classify and diagnose MDR-TB TCM syndromes could result in less effective TCM treatment. Therefore, in this study, we identified differentially expressed proteins (DEPs) in serum of individuals with MDR-TB TCM syndromes by applying isobaric tags for relative and absolute quantification coupled with two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) method and bioinformatics analysis. The functional analysis of DEPs was also performed. Additionally, DEPs among three different TCM syndromes of MDR-TB were validated by enzyme-linked immunosorbent assay (ELISA). Finally, a receiver operating characteristic (ROC) curve was performed to estimate the diagnostic ability of DEPs. A total of 71 DEPs were identified in the three different MDR-TB TCM syndrome groups such as the pulmonary Yin deficiency (PYD) syndrome group, the Hyperactivity of Fire due to Yin deficiency (HFYD) syndrome group, and the deficiency of Qi and Yin (DQY) syndrome group. The results showed that the expression level of transforming growth factor-beta-induced protein ig-h3 (TGFBI) was lower in the PYD syndrome group (p = .002), the proprotein convertase subtilisin/kexin type 9 (PCSK9) was overexpressed in the HFYD syndrome group (p < .0001), and the C-C motif chemokine ligand 14 (CCL14) expression level was reduced in the DQY syndrome group (p = .004). Our study demonstrated that serum TGFBI, PCSK9, and CCL14 may serve as potential novel biomarkers for PYD syndrome, HFYD syndrome and DQY syndrome of MDR-TB, respectively. The study provides a biological basis for MDR-TB TCM syndromes classification and can be of great significance for the treatment of different TCM syndromes.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Wen-Jing Yi
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Ting-Ting Jiang
- South China University of Technology School of Medicine, Guangzhou, China
| | - Hui-Hui Tu
- Department of Anatomy and Embryology, Zhejiang University, Hangzhou, China
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing Municipal Hospital, Shaoxing, China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Chang-Ming Liu
- Department of Anatomy and Embryology, Zhejiang University, Hangzhou, China
| | - Jing Chen
- Department of Anatomy and Embryology, Zhejiang University, Hangzhou, China
| | - Yu-Shuai Han
- Department of Anatomy and Embryology, Zhejiang University, Hangzhou, China
| | - Lin Gan
- South China University of Technology School of Medicine, Guangzhou, China
| | - Zhi-Bin Li
- Department of Anatomy and Embryology, Zhejiang University, Hangzhou, China
| | - Huai Huang
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Ji-Cheng Li
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China.,Department of Anatomy and Embryology, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Zhou X, Chen H, Wei F, Zhao Q, Su Q, Lei Y, Yin M, Tian X, Liu Z, Yu B, Bai C, He X, Huang Z. The Inhibitory Effects of Pentacyclic Triterpenes from Loquat Leaf against Th17 Differentiation. Immunol Invest 2019; 49:632-647. [PMID: 31795780 DOI: 10.1080/08820139.2019.1698599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Loquat leaf is an herb that is commonly used in traditional Chinese medicine (TCM) for its anti-inflammatory properties. Numerous studies have demonstrated that Th17 cells play a fundamental role in mediating SLE pathological deterioration. In our study, we investigated the inhibitory effect of pentacyclic triterpenes from loquat leaf on T helper 17 (Th17) cells and the therapeutic efficacy of OA in Lupus nephritis (LN) development. METHODS We isolated three pentacyclic triterpene compounds rom loquat leaf by bioassay-directed fractionation and separation method. There were methyl corosolate (MC), uvaol (UL), and oleanolic acid (OA) Firstly, we elucidated Retinoic acid receptor-related orphan receptor gamma t (RORγt) inhibitory activity of these three compounds in the cell-based assay and Th17 differentiation in vitro assay. Then, we used OA-treated pristine-induced LN mice to evaluate the therapeutic effects of OA in LN development. Anti-dsDNA level in serum was detected by enzyme-linked immunosorbent assay (ELISA), interleukin 17A (IL-17A) and interferon-γ (IFN-γ) expression in spleen cells by Flow cytometry (FCM), histomorphologic examination of kidneys were performed by periodic acid schiff (PAS) staining and immunofluorescence analysis. RESULTS Pentacyclic triterpene compounds (MC, UL, OA) displayed inhibition of RORγt activity in cell-based assay and Th17 differentiation in vitro. Furthermore, our results also showed that OA could significantly decrease serum anti-dsDNA antibody levels, IL-17A and IFN-γ expression and alleviate renal pathological damage in OA-treated group mice than in the model group mice. CONCLUSION These results demonstrated that OA can improve the clinical manifestation of LN, indicating potential application in SLE therapy.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China.,Department of Biochemistry and molecular biology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China
| | - Huanpeng Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China.,Department of Biochemistry and molecular biology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China
| | - Fengjiao Wei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China.,Department of Biochemistry and molecular biology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China
| | - Qingyu Zhao
- ICU Center, Department of Infection Control, Sun Yat-sen University Cancer Center , Guangzhou, China
| | - Qiao Su
- Animal Experiment Center, Sun Yat-sen University First Affiliated Hospital , Guangzhou, China
| | - Yu Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Meng Yin
- ICU Center, Department of Infection Control, Sun Yat-sen University Cancer Center , Guangzhou, China
| | - Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China.,Department of Biochemistry and molecular biology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University , Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical College , Guangzhou, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China.,Department of Biochemistry and molecular biology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine , Guangzhou, China
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China.,Department of Biochemistry and molecular biology, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
22
|
Suppressive functions of collismycin C in TGFBIp-mediated septic responses. J Nat Med 2019; 74:387-398. [PMID: 31760555 DOI: 10.1007/s11418-019-01374-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein; its expression by several cell types is greatly increased by TGF-β. TGFBIp is released by primary human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. 2,2'-Bipyridine-containing natural products are generally accepted to have antimicrobial, cytotoxic and anti-inflammatory properties. We hypothesized that a 2,2'-bipyridine containing natural product, collismycin C, could reduce TGFBIp-mediated severe inflammatory responses in human endothelial cells and mice. Here we investigated the effects and underlying mechanisms of collismycin C against TGFBIp-mediated septic responses. Collismycin C effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. In addition, collismycin C suppressed TGFBIp-induced sepsis lethality and pulmonary injury. This suppression of TGFBIp-mediated and CLP-induced septic responses indicates that collismycin C is a potential therapeutic agent for various severe vascular inflammatory diseases, with inhibition of the TGFBIp signaling pathway as the mechanism of action.
Collapse
|
23
|
Lang K, Kahveci S, Bonberg N, Wichert K, Behrens T, Hovanec J, Roghmann F, Noldus J, Tam YC, Tannapfel A, Käfferlein HU, Brüning T. TGFBI Protein Is Increased in the Urine of Patients with High-Grade Urothelial Carcinomas, and Promotes Cell Proliferation and Migration. Int J Mol Sci 2019; 20:ijms20184483. [PMID: 31514337 PMCID: PMC6770034 DOI: 10.3390/ijms20184483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023] Open
Abstract
Here, we discovered TGFBI as a new urinary biomarker for muscle invasive and high-grade urothelial carcinoma (UC). After biomarker identification using antibody arrays, results were verified in urine samples from a study population consisting of 303 patients with UC, and 128 urological and 58 population controls. The analyses of possible modifying factors (age, sex, smoking status, urinary leukocytes and erythrocytes, and history of UC) were calculated by multiple logistic regression. Additionally, we performed knockdown experiments with TGFBI siRNA in bladder cancer cells and investigated the effects on proliferation and migration by wound closure assays and BrdU cell cycle analysis. TGFBI concentrations in urine are generally increased in patients with UC when compared to urological and population controls (1321.0 versus 701.3 and 475.6 pg/mg creatinine, respectively). However, significantly increased TGFBI was predominantly found in muscle invasive (14,411.7 pg/mg creatinine), high-grade (8190.7 pg/mg) and de novo UC (1856.7 pg/mg; all p < 0.0001). Knockdown experiments in vitro led to a significant decline of cell proliferation and migration. In summary, our results suggest a critical role of TGFBI in UC tumorigenesis and particularly in high-risk UC patients with poor prognosis and an elevated risk of progression on the molecular level.
Collapse
Affiliation(s)
- Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Selcan Kahveci
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Nadine Bonberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Jan Hovanec
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany.
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany.
| | - Yu Chun Tam
- Institute of Pathology, Georgius Agricola Stiftung Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Andrea Tannapfel
- Institute of Pathology, Georgius Agricola Stiftung Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
24
|
Wang BJ, Chi KP, Shen RL, Zheng SW, Guo Y, Li JF, Fei J, He Y. TGFBI Promotes Tumor Growth and is Associated with Poor Prognosis in Oral Squamous Cell Carcinoma. J Cancer 2019; 10:4902-4912. [PMID: 31598162 PMCID: PMC6775518 DOI: 10.7150/jca.29958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: In a previous study, we found that transforming growth factor beta-induced (TGFBI) is a hub gene strongly associated with oral squamous cell carcinoma (OSCC), using gene chip meta-analysis and PPI network analysis. Thus, the present study was established to explore the role of TGFBI in the pathogenesis of OSCC and to define the underlying mechanisms. Methods: The correlations between TGFBI expression and the clinicopathological features and prognosis of OSCC were analyzed. Then, TGFBI-knockout HSC-3 cell lines were constructed using the CRISPR/Cas9 system. Cell proliferation, migration, and invasion in vitro were determined by cell counting, CCK-8, colony formation, and Transwell assays. Moreover, a xenograft animal study was implemented to determine the tumorigenicity and metastatic ability associated with TGFBI in vivo. The genes and pathways differentially expressed after TGFBI knockout were determined using transcriptional sequencing and bioinformatics. Results: TGFBI expression was significantly higher in OSCC than in normal tissue. Its high expression was also correlated with high stage and was predictive of poor prognosis, as we expected. Knockout of TGFBI inhibited cell proliferation and clone formation, and enhanced cell migration and invasion in vitro. Besides, the xenograft animal study showed that TGFBI knockout suppressed tumor growth and metastasis in vivo. Furthermore, transcriptome sequencing revealed that genes associated with cell proliferation, metastasis, and inflammatory responses exhibited a change of expression upon TGFBI knockout. GO and KEGG analyses indicated that the function of TGFBI is related to responses to bacteria and inflammatory responses. Conclusions: TGFBI overexpression can promote OSCC and is associated with poor prognosis in OSCC patients. TGFBI knockout can inhibit cell proliferation and metastasis in vivo. TGFBI may alter cell responses to bacteria, which causes an imbalance in the immune inflammatory response and promotes the development of OSCC.
Collapse
Affiliation(s)
- Bing-Jie Wang
- Department of Oral Medicine, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.,Department of Stomatology, Ningbo Yinzhou People's Hospital, Zhejiang 315040, China
| | - Kun-Ping Chi
- Department of Pathology, First people's Hospital of Yunnan Province, Yunnan, 650032, China
| | - Ru-Ling Shen
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Sai-Wei Zheng
- Department of Oral Medicine, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai 200082, China
| | - Jian-Feng Li
- School of Life Science and Technology, Tongji University, Shanghai 200082, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200082, China
| | - Yuan He
- Department of Oral Medicine, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| |
Collapse
|
25
|
Poulsen ET, Nielsen NS, Scavenius C, Mogensen EH, Risør MW, Runager K, Lukassen MV, Rasmussen CB, Christiansen G, Richner M, Vorum H, Enghild JJ. The serine protease HtrA1 cleaves misfolded transforming growth factor β-induced protein (TGFBIp) and induces amyloid formation. J Biol Chem 2019; 294:11817-11828. [PMID: 31197037 PMCID: PMC6682723 DOI: 10.1074/jbc.ra119.009050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
The serine protease high-temperature requirement protein A1 (HtrA1) is associated with protein-misfolding disorders such as Alzheimer's disease and transforming growth factor β-induced protein (TGFBIp)-linked corneal dystrophy. In this study, using several biochemical and biophysical approaches, including recombinant protein expression, LC-MS/MS and 2DE analyses, and thioflavin T (ThT) fluorescence assays for amyloid fibril detection, and FTIR assays, we investigated the role of HtrA1 both in normal TGFBIp turnover and in corneal amyloid formation. We show that HtrA1 can cleave WT TGFBIp but prefers amyloidogenic variants. Corneal TGFBIp is extensively processed in healthy people, resulting in C-terminal degradation products spanning the FAS1-4 domain of TGFBIp. We show here that HtrA1 cleaves the WT FAS1-4 domain only inefficiently, whereas the amyloidogenic FAS1-4 mutations transform this domain into a considerably better HTRA1 substrate. Moreover, HtrA1 cleavage of the mutant FAS1-4 domains generated peptides capable of forming in vitro amyloid aggregates. Significantly, these peptides have been previously identified in amyloid deposits in vivo, supporting the idea that HtrA1 is a causative agent for TGFBIp-associated amyloidosis in corneal dystrophy. In summary, our results indicate that TGFBIp is an HtrA1 substrate and that some mutations in the gene encoding TGFBIp cause aberrant HtrA1-mediated processing that results in amyloidogenesis in corneal dystrophies.
Collapse
Affiliation(s)
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Emilie Hage Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Michael W Risør
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Kasper Runager
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | - Casper B Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Mette Richner
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
26
|
Marine Alga Ecklonia cava Extract and Dieckol Attenuate Prostaglandin E 2 Production in HaCaT Keratinocytes Exposed to Airborne Particulate Matter. Antioxidants (Basel) 2019; 8:antiox8060190. [PMID: 31234405 PMCID: PMC6617419 DOI: 10.3390/antiox8060190] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Atmospheric particulate matter (PM) is an important cause of skin damage, and an increasing number of studies have been conducted to discover safe, natural materials that can alleviate the oxidative stress and inflammation caused by PM. It has been previously shown that the extract of Ecklonia cava Kjellman, a perennial brown macroalga, can alleviate oxidative stress in epidermal keratinocytes exposed to PM less than 10 microns in diameter (PM10). The present study was undertaken to further examine the anti-inflammatory effects of E. cava extract and its major polyphenolic constituent, dieckol. HaCaT keratinocytes were exposed to PM10 in the presence or absence of E. cava extract or dieckol and analyzed for their viability, prostaglandin E2 (PGE2) release, and gene expression of cyclooxygenase (COX)-1, COX-2, microsomal prostaglandin E2 synthase (mPGES)-1, mPGES-2, and cytosolic prostaglandin E2 synthase (cPGES). PM10 treatment decreased cell viability and increased the production of PGE2, and these changes were partially abrogated by E. cava extract. E. cava extract also attenuated the expression of COX-1, COX-2, and mPGES-2 stimulated by PM10. Dieckol attenuated PGE2 production and the gene expression of COX-1, COX-2, and mPGES-1 stimulated by PM10. This study demonstrates that E. cava extract and dieckol alleviate airborne PM10-induced PGE2 production in keratinocytes through the inhibition of gene expression of COX-1, COX-2, mPGES-1, and/or mPGES-2. Thus, E. cava extract and dieckol are potentially useful natural cosmetic ingredients for counteracting the pro-inflammatory effects of airborne PM.
Collapse
|
27
|
Lin HC, Ren Y, Lysaght AC, Kao SY, Stankovic KM. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS One 2019; 14:e0218292. [PMID: 31185063 PMCID: PMC6559673 DOI: 10.1371/journal.pone.0218292] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
The vast majority of hearing loss, the most common sensory impairment, and vertigo, which commonly causes falls, both reflect underlying dysfunction of inner ear cells. Perilymph sampling can thus provide molecular cues to hearing and balance disorders. While such "liquid biopsy" of the inner ear is not yet in routine clinical practice, previous studies have uncovered alterations in perilymph in patients with certain types of hearing loss. However, the proteome of perilymph from patients with intact hearing has been unknown. Furthermore, no complete characterization of perilymph from patients with vestibular dysfunction has been reported. Here, using liquid-chromatography with tandem mass spectrometry, we analyzed samples of normal perilymph collected from three patients with skull base meningiomas and intact hearing. We identified 228 proteins that were common across the samples, establishing a greatly expanded proteome of the previously inferred normal human perilymph. Further comparison to perilymph obtained from three patients with vestibular dysfunction with drop attacks due to Meniere's disease showed 38 proteins with significantly differential abundance. The abundance of four protein candidates with previously unknown roles in inner ear biology was validated in murine cochleae by immunohistochemistry and in situ hybridization: AACT, HGFAC, EFEMP1, and TGFBI. Together, these results motivate future work in characterizing the normal human perilymph and identifying biomarkers of inner ear disease.
Collapse
Affiliation(s)
- Hsiao-Chun Lin
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Yin Ren
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Andrew C. Lysaght
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States of America
| | - Shyan-Yuan Kao
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Konstantina M. Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States of America
- Harvard Program in Therapeutic Science, Harvard University, Boston, United States of America
| |
Collapse
|
28
|
Goehrig D, Nigri J, Samain R, Wu Z, Cappello P, Gabiane G, Zhang X, Zhao Y, Kim IS, Chanal M, Curto R, Hervieu V, de La Fouchardière C, Novelli F, Milani P, Tomasini R, Bousquet C, Bertolino P, Hennino A. Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer. Gut 2019; 68:693-707. [PMID: 30415234 PMCID: PMC6580775 DOI: 10.1136/gutjnl-2018-317570] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Pancreatic cancer is associated with an abundant stromal reaction leading to immune escape and tumour growth. This massive stroma drives the immune escape in the tumour. We aimed to study the impact of βig-h3 stromal protein in the modulation of the antitumoural immune response in pancreatic cancer. DESIGN We performed studies with p48-Cre;KrasG12D, pdx1-Cre;KrasG12D;Ink4a/Arffl/fl, pdx1-Cre;KrasG12D; p53R172H mice and tumour tissues from patients with pancreatic ductal adenocarcinoma (PDA). Some transgenic mice were given injections of anti-βig-h3, anti-CD8, anti-PD1 depleting antibodies. Tumour growth as well as modifications in the activation of local immune cells were analysed by flow cytometry, immunohistochemistry and immunofluorescence. Tissue stiffness was measured by atomic force microscopy. RESULTS We identified βig-h3 stromal-derived protein as a key actor of the immune paracrine interaction mechanism that drives pancreatic cancer. We found that βig-h3 is highly produced by cancer-associated fibroblasts in the stroma of human and mouse. This protein acts directly on tumour-specific CD8+ T cells and F4/80 macrophages. Depleting βig-h3 in vivo reduced tumour growth by enhancing the number of activated CD8+ T cell within the tumour and subsequent apoptotic tumour cells. Furthermore, we found that targeting βig-h3 in established lesions released the tissue tension and functionally reprogrammed F4/80 macrophages in the tumour microenvironment. CONCLUSIONS Our data indicate that targeting stromal extracellular matrix protein βig-h3 improves the antitumoural response and consequently reduces tumour weight. Our findings present βig-h3 as a novel immunological target in pancreatic cancer.
Collapse
Affiliation(s)
- Delphine Goehrig
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | | | | | - Zhichong Wu
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaëlle Gabiane
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Xinyi Zhang
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Yajie Zhao
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - In-San Kim
- KU-KIST School, Korea University, Seongbuk-gu, Korea
| | - Marie Chanal
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Roberta Curto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Pascale Milani
- Ecole Normale Supérieure de Lyon, Lyon, France
- Biomeca, Lyon
| | | | | | - Philippe Bertolino
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| |
Collapse
|
29
|
Costanza B, Rademaker G, Tiamiou A, De Tullio P, Leenders J, Blomme A, Bellier J, Bianchi E, Turtoi A, Delvenne P, Bellahcène A, Peulen O, Castronovo V. Transforming growth factor beta-induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration. Int J Cancer 2019; 145:1570-1584. [PMID: 30834519 DOI: 10.1002/ijc.32247] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a deadly malignancy with no efficient therapy available up-to-date. Glycolysis is the main provider of energetic substrates to sustain cancer dissemination of PDAC. Accordingly, altering the glycolytic pathway is foreseen as a sound approach to trigger pancreatic cancer regression. Here, we show for the first time that high transforming growth factor beta-induced (TGFBI) expression in PDAC patients is associated with a poor outcome. We demonstrate that, although usually secreted by stromal cells, PDAC cells synthesize and secrete TGFBI in quantity correlated with their migratory capacity. Mechanistically, we show that TGFBI activates focal adhesion kinase signaling pathway through its binding to integrin αVβ5, leading to a significant enhancement of glycolysis and to the acquisition of an invasive phenotype. Finally, we show that TGFBI silencing significantly inhibits PDAC tumor development in a chick chorioallantoic membrane assay model. Our study highlights TGFBI as an oncogenic extracellular matrix interacting protein that bears the potential to serve as a target for new anti-PDAC therapeutic strategies.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Gilles Rademaker
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Pascal De Tullio
- Center for Interdisciplinary Research on Medicines, Metabolomics Group, University of Liège, Liège, Belgium
| | - Justine Leenders
- Center for Interdisciplinary Research on Medicines, Metabolomics Group, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Elettra Bianchi
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium.,Laboratory of Experimental Pathology, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Kheir V, Cortés-González V, Zenteno JC, Schorderet DF. Mutation update: TGFBI pathogenic and likely pathogenic variants in corneal dystrophies. Hum Mutat 2019; 40:675-693. [PMID: 30830990 DOI: 10.1002/humu.23737] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023]
Abstract
Human transforming growth factor β-induced (TGFBI), is a gene responsible for various corneal dystrophies. TGFBI produces a protein called TGFBI, which is involved in cell adhesion and serves as a recognition sequence for integrins. An alteration in cell surface interactions could be the underlying cause for the progressive accumulation of extracellular deposits in different layers of the cornea with the resulting changes of refractive index and transparency. To this date, 69 different pathogenic or likely pathogenic variants in TGFBI have been identified in a heterozygous or homozygous state in various corneal dystrophies, including a novel variant reported here. All disease-associated variants were inherited as autosomal-dominant traits but one; this latter was inherited as an autosomal recessive trait. Most corneal dystrophy-associated variants are located at amino acids Arg124 and Arg555. To keep the list of corneal dystrophy-associated variant current, we generated a locus-specific database for TGFBI (http://databases.lovd.nl/shared/variants/TGFBI) containing all pathogenic and likely pathogenic variants reported so far. Non-disease-associated variants are described in specific databases, like gnomAD and ExAC but are not listed here. This article presents the most recent up-to-date list of disease-associated variants.
Collapse
Affiliation(s)
- Valeria Kheir
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vianney Cortés-González
- Department of Genetics, Hospital "Dr. Luis Sanchez Bulnes", Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Abstract
In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation. Quality control and teratoma formation assays are important procedures in assessing the properties of the stem cells tested. Derivation methods and the utilization of culturing media are crucial to set proper environmental conditions for controlled differentiation. Among many types of stem tissue applications, the use of graphene scaffolds and the potential of extracellular vesicle-based therapies require attention due to their versatility. The review is summarized by challenges that stem cell therapy must overcome to be accepted worldwide. A wide variety of possibilities makes this cutting edge therapy a turning point in modern medicine, providing hope for untreatable diseases.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Krakowska 26, Wrocław, 50-425 Poland
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| |
Collapse
|
32
|
Seifert GJ. Fascinating Fasciclins: A Surprisingly Widespread Family of Proteins that Mediate Interactions between the Cell Exterior and the Cell Surface. Int J Mol Sci 2018; 19:E1628. [PMID: 29857505 PMCID: PMC6032426 DOI: 10.3390/ijms19061628] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
The Fasciclin 1 (FAS1) domain is an ancient structural motif in extracellular proteins present in all kingdoms of life and particularly abundant in plants. The FAS1 domain accommodates multiple interaction surfaces, enabling it to bind different ligands. The frequently observed tandem FAS1 arrangement might both positively and negatively regulate ligand binding. Additional protein domains and post-translational modifications are partially conserved between different evolutionary clades. Human FAS1 family members are associated with multiple aspects of health and disease. At the cellular level, mammalian FAS1 proteins are implicated in extracellular matrix structure, cell to extracellular matrix and cell to cell adhesion, paracrine signaling, intracellular trafficking and endocytosis. Mammalian FAS1 proteins bind to the integrin family of receptors and to protein and carbohydrate components of the extracellular matrix. FAS1 protein encoding plant genes exert effects on cellulosic and non-cellulosic cell wall structure and cellular signaling but to establish the modes of action for any plant FAS1 protein still requires biochemical experimentation. In fungi, eubacteria and archaea, the differential presence of FAS1 proteins in closely related organisms and isolated biochemical data suggest functions in pathogenicity and symbiosis. The inter-kingdom comparison of FAS1 proteins suggests that molecular mechanisms mediating interactions between cells and their environment may have evolved at the earliest known stages of evolution.
Collapse
Affiliation(s)
- Georg J Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
33
|
Taniguchi H, Baba Y, Sagiya Y, Gotou M, Nakamura K, Sawada H, Yamanaka K, Sakakibara Y, Mori I, Hikichi Y, Soeda J, Baba H. Biologic Response of Colorectal Cancer Xenograft Tumors to Sequential Treatment with Panitumumab and Bevacizumab. Neoplasia 2018; 20:668-677. [PMID: 29802988 PMCID: PMC6030230 DOI: 10.1016/j.neo.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies in RAS wild-type (WT) metastatic colorectal cancer (mCRC) suggest that the survival benefits of therapy using anti-epidermal growth factor receptor (anti-EGFR) and anti-vascular endothelial growth factor (anti-VEGF) antibodies combined with chemotherapy are maximized when the anti-EGFR antibody is given as first-line, followed by subsequent anti-VEGF antibody therapy. We report reverse-translational research using LIM1215 xenografts of RAS WT mCRC to elucidate the biologic mechanisms underlying this clinical observation. Sequential administration of panitumumab then bevacizumab (PB) demonstrated a stronger tendency to inhibit tumor growth than bevacizumab then panitumumab (BP). Cell proliferation was reduced significantly with PB (P < .01) but not with BP based on Ki-67 index. Phosphoproteomic analysis demonstrated reduced phosphorylation of EGFR and EPHA2 with PB and BP compared with control. Western blotting showed reduced EPHA2 expression and S897-phosphorylation with PB; RSK phosphorylation was largely unaffected by PB but increased significantly with BP. In quantitative real-time PCR analyses, PB significantly reduced the expression of both lipogenic (FASN, MVD) and hypoxia-related (CA9, TGFBI) genes versus control. These results suggest that numerous mechanisms at the levels of gene expression, protein expression, and protein phosphorylation may explain the improved clinical activity of PB over BP in patients with RAS WT mCRC.
Collapse
Affiliation(s)
- Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Yuji Baba
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoji Sagiya
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Masamitsu Gotou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuhide Nakamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Sawada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunori Yamanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Sakakibara
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Ikuo Mori
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Yukiko Hikichi
- Product Information Group, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Junpei Soeda
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan.
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
34
|
Lee IC, Bae JS. Antiseptic effects of dabrafenib on TGFBIp-induced septic responses. Chem Biol Interact 2017; 278:92-100. [PMID: 29042256 DOI: 10.1016/j.cbi.2017.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-β-induced protein (TGFBIp), an extracellular protein, is expressed on several cell types in response to TGF-β stimulation. Human umbilical vein endothelial cell (HUVEC)-derived TGFBIp functions as a mediator of sepsis. Screening of bioactive compound libraries is an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Dabrafenib (DAB), a B-Raf inhibitor, was initially used for treating metastatic melanoma. The present study determined whether DAB modulated TGFBIp-mediated septic responses in HUVECs and in mice. Antiseptic functions of DAB were examined by measuring permeability, leukocyte adhesion and migration, and proinflammatory protein activation in TGFBIp-stimulated HUVECs and mice. In addition, beneficial effects of DAB on survival rate were examined using a mouse model of sepsis. We found that DAB inhibited TGFBIp-induced vascular barrier disruption, cell adhesion molecule (CAM) expression, and neutrophil adhesion/transendothelial migration toward human endothelial cells. DAB also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that DAB exerts anti-inflammatory effects by inhibiting hyperpermeability, CAM expression, and leukocyte adhesion and migration, indicating its utility for treating vascular inflammatory diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
35
|
Poulsen ET, Runager K, Nielsen NS, Lukassen MV, Thomsen K, Snider P, Simmons O, Vorum H, Conway SJ, Enghild JJ. Proteomic profiling of TGFBI-null mouse corneas reveals only minor changes in matrix composition supportive of TGFBI knockdown as therapy against TGFBI-linked corneal dystrophies. FEBS J 2017; 285:101-114. [PMID: 29117645 DOI: 10.1111/febs.14321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/25/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
TGFBIp is a constituent of the extracellular matrix in many human tissues including the cornea, where it is one of the most abundant proteins expressed. TGFBIp interacts with Type I, II, IV, VI, and XII collagens as well as several members of the integrin family, suggesting it plays an important role in maintaining structural integrity and possibly corneal transparency as well. Significantly, more than 60 point mutations within the TGFBI gene have been reported to result in aberrant TGFBIp folding and aggregation in the cornea, resulting in severe visual impairment and blindness. Several studies have focused on targeting TGFBIp in the cornea as a therapeutic approach to treat TGFBI-linked corneal dystrophies, but the effect of this approach on corneal homeostasis and matrix integrity remained unknown. In the current study, we evaluated the histological and proteomic profiles of corneas from TGFBI-deficient mice as well as potential redundant functions of the paralogous protein POSTN. The absence of TGFBIp in mouse corneas did not grossly affect the collagen scaffold, and POSTN is unable to compensate for loss of TGFBIp. Proteomic comparison of wild-type and TGFBI-/- mice revealed 11 proteins were differentially regulated, including Type VI and XII collagens. However, as these alterations did not manifest at the macroscopic and behavioral levels, these data support partial or complete TGFBI knockdown as a potential therapy against TGFBI-linked corneal dystrophies. Lastly, in situ hybridization verified TGFBI mRNA in the epithelial cells but not in other cell types, supportive of a therapy directed specifically at this lineage.
Collapse
Affiliation(s)
| | - Kasper Runager
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Karen Thomsen
- Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Paige Snider
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olga Simmons
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Simon J Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| |
Collapse
|
36
|
Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0221-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Warrick E, Duval C, Nouveau S, Bastien P, Piffaut V, Chalmond B, Ortonne JP, de Lacharrière O, Bernerd F. Morphological and molecular characterization of actinic lentigos reveals alterations of the dermal extracellular matrix. Br J Dermatol 2017; 177:1619-1632. [DOI: 10.1111/bjd.15697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Affiliation(s)
- E. Warrick
- L'Oréal Research and Innovation; 1 avenue Eugène Schueller; Aulnay sous Bois 93600 France
| | - C. Duval
- L'Oréal Research and Innovation; 1 avenue Eugène Schueller; Aulnay sous Bois 93600 France
| | - S. Nouveau
- L'Oréal Research and Innovation; 1 avenue Eugène Schueller; Aulnay sous Bois 93600 France
| | - P. Bastien
- L'Oréal Research and Innovation; 1 avenue Eugène Schueller; Aulnay sous Bois 93600 France
| | - V. Piffaut
- L'Oréal Research and Innovation; 1 avenue Eugène Schueller; Aulnay sous Bois 93600 France
| | - B. Chalmond
- Center for Mathematical Studies and their Applications; Ecole Normale Supérieure; Cachan France
| | - J-P. Ortonne
- Department of Dermatology; CHU Archet-2; Nice France
| | - O. de Lacharrière
- L'Oréal Research and Innovation; 1 avenue Eugène Schueller; Aulnay sous Bois 93600 France
| | - F. Bernerd
- L'Oréal Research and Innovation; 1 avenue Eugène Schueller; Aulnay sous Bois 93600 France
| |
Collapse
|
38
|
Abstract
Sulforaphane (SFN) is produced when the enzyme myrosinase transforms glucoraphanin upon damage to the plant such as from chewing and effective in preventing carcinogenesis, diabetes, and inflammatory responses. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. We hypothesized that SFN could reduce TGFBIp-mediated severe inflammatory responses in human endothelial cells and mice. Here, we investigated the anti-septic effects and underlying mechanisms of SFN against TGFBIp-mediated septic responses. SFN effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. In addition, SFN suppressed cecal ligation and puncture (CLP)-induced sepsis lethality and pulmonary injury. In conclusion, SFN suppressed TGFBIp-mediated and CLP-induced septic responses. Therefore, SFN could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
39
|
Bigh3 silencing increases retinoblastoma tumor growth in the murine SV40-TAg-Rb model. Oncotarget 2017; 8:15490-15506. [PMID: 28099942 PMCID: PMC5362501 DOI: 10.18632/oncotarget.14659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/24/2016] [Indexed: 11/25/2022] Open
Abstract
BIGH3, a secreted protein of the extracellular matrix interacts with collagen and integrins on the cell surface. BIGH3 can have opposing functions in cancer, acting either as tumor suppressor or promoter by enhancing tumor progression and angiogenesis. In the eye, BIGH3 is expressed in the cornea and the retinal pigment epithelium and could impact on the development of retinoblastoma, the most common paediatric intraocular neoplasm. Retinoblastoma initiation requires the inactivation of both alleles of the RB1 tumor suppressor gene in the developing retina and tumor progression involves additional genomic changes. To determine whether BIGH3 affects retinoblastoma development, we generated a retinoblastoma mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing in these mice resulted in enhanced tumor development in the retina. A decrease in apoptosis is involved in the initial events of tumorigenesis, followed by an increased activity of the pro-survival ERK pathway as well as an upregulation of cyclin-dependent kinases (CDKs). Taken together, these data suggest that BIGH3 acts as a tumor suppressor in the retina.
Collapse
|
40
|
Suppressive effects of zingerone on TGFBIp-mediated septic responses. Arch Pharm Res 2017; 41:276-287. [DOI: 10.1007/s12272-017-0919-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
|
41
|
Effect of position-specific single-point mutations and biophysical characterization of amyloidogenic peptide fragments identified from lattice corneal dystrophy patients. Biochem J 2017; 474:1705-1725. [PMID: 28381645 PMCID: PMC5632800 DOI: 10.1042/bcj20170125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022]
Abstract
Corneal stromal dystrophies are a group of genetic disorders that may be caused by mutations in the transforming growth factor β-induced (TGFBI) gene which results in the aggregation and deposition of mutant proteins in various layers of the cornea. The type of amino acid substitution dictates the age of onset, anatomical location of the deposits, morphological features of deposits (amyloid, amorphous powder or a mixture of both forms) and the severity of disease presentation. It has been suggested that abnormal turnover and aberrant proteolytic processing of the mutant proteins result in the accumulation of insoluble protein deposits. Using mass spectrometry, we identified increased abundance of a 32 amino acid-long peptide in the 4th fasciclin-like domain-1 (FAS-1) domain of transforming growth factor β-induced protein (amino acid 611-642) in the amyloid deposits of the patients with lattice corneal dystrophies (LCD). In vitro studies demonstrated that the peptide readily formed amyloid fibrils under physiological conditions. Clinically relevant substitution (M619K, N622K, N622H, G623R and H626R) of the truncated peptide resulted in profound changes in the kinetics of amyloid formation, thermal stability of the amyloid fibrils and cytotoxicity of fibrillar aggregates, depending on the position and the type of the amino acid substitution. The results suggest that reduction in the overall net charge, nature and position of cationic residue substitution determines the amyloid aggregation propensity and thermal stability of amyloid fibrils.
Collapse
|
42
|
Jeong S, Ku SK, Bae JS. Anti-inflammatory effects of pelargonidin on TGFBIp-induced responses. Can J Physiol Pharmacol 2017; 95:372-381. [DOI: 10.1139/cjpp-2016-0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transforming growth factor β induced protein (TGFBIp) is an extracellular matrix protein expressed in several cell types in response to TGF-β. TGFBIp is released by human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. Pelargonidin (PEL) is a well-known red pigment found in plants, and has been reported as having important biological activities that are potentially beneficial for human health. This study was undertaken to investigate whether PEL can modulate TGFBIp-mediated inflammatory responses in HUVECs and in mice. The anti-inflammatory activities of PEL were determined by measuring permeability, leukocyte adhesion and migration, and activation of proinflammatory proteins in TGFBIp-activated HUVECs and mice. In addition, the beneficial effects of PEL on survival rate in a mouse sepsis model were tested. We found that PEL inhibited TGFBIp-induced barrier disruption, expression of cell adhesion molecules and adhesion/transendothelial migration of neutrophils to human endothelial cells. PEL also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that PEL possesses anti-inflammatory properties that result in inhibition of hyperpermeability, expression of cell adhesion molecules, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Seongdo Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
43
|
Maeng YS, Lee GH, Lee B, Choi SI, Kim TI, Kim EK. Role of TGFBIp in Wound Healing and Mucin Expression in Corneal Epithelial Cells. Yonsei Med J 2017; 58:423-431. [PMID: 28120575 PMCID: PMC5290024 DOI: 10.3349/ymj.2017.58.2.423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Transforming growth factor-β-induced protein (TGFBIp) is highly expressed in the cornea, and mutant TGFBIp induces corneal diseases. However, the function of TGFBIp in cornea epithelium is not fully investigated. Here, we tested the importance of TGFBIp in regulation of gene expression and corneal epithelial cell (CEC) activity. MATERIALS AND METHODS The effect of TGFBIp on CEC activity was analyzed by cell migration, adhesion, proliferation and wound healing assay. Analysis of gene expression was examined by western blot and quantitative reverse transcription PCR. RESULTS The results demonstrated that TGFBIp increased adhesion, migration, proliferation, and wound healing of CECs. Analysis of gene expression presented that TGFBIp-stimulated CECs exhibited increased expression of mucin family genes, such as MUC1, -4, -5AC, and -16. Furthermore, TGFBIp treatment increased the expression of MUC1, -4, -5AC, -7, and -16 in conjunctival epithelial cells. TGFBIp also increased the activity of intracellular signaling molecules ERK and AKT in CECs. Using pharmacologic inhibitors of ERK and AKT, we showed that the expression of mucin genes by TGFBIp is mediated by the activation of ERK and AKT signaling. CONCLUSION Our findings demonstrate that the locally generated TGFBIp in the cornea may contribute to wound healing of CECs by enhancing the migration, adhesion, and proliferation of CECs. In addition, our results suggest that TGFBIp has a protective effect on ocular surfaces by inducing the expression of mucin genes in corneal and conjunctival epithelial cells. These data suggest that TGFBIp is a useful therapeutic target for patients with corneal wounds.
Collapse
Affiliation(s)
- Yong Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ga Hyun Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Boram Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
44
|
Kang H, Ku SK, Kim J, Chung J, Kim SC, Zhou W, Na M, Bae JS. Anti-vascular inflammatory effects of pentacyclic triterpenoids from Astilbe rivularis in vitro and in vivo. Chem Biol Interact 2017; 261:127-138. [DOI: 10.1016/j.cbi.2016.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
|
45
|
Ricciardelli C, Lokman NA, Ween MP, Oehler MK. WOMEN IN CANCER THEMATIC REVIEW: Ovarian cancer-peritoneal cell interactions promote extracellular matrix processing. Endocr Relat Cancer 2016; 23:T155-T168. [PMID: 27578826 DOI: 10.1530/erc-16-0320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Ovarian cancer has a distinct tendency for metastasising via shedding of cancerous cells into the peritoneal cavity and implanting onto the peritoneum that lines the pelvic organs. Once ovarian cancer cells adhere to the peritoneal cells, they migrate through the peritoneal layer and invade the local organs. Alterations in the extracellular environment are critical for tumour initiation, progression and intra-peritoneal dissemination. To increase our understanding of the molecular mechanisms involved in ovarian cancer metastasis and to identify novel therapeutic targets, we recently studied the interaction of ovarian cancer and peritoneal cells using a proteomic approach. We identified several extracellular matrix (ECM) proteins including, fibronectin, TGFBI, periostin, annexin A2 and PAI-1 that were processed as a result of the ovarian cancer-peritoneal cell interaction. This review focuses on the functional role of these proteins in ovarian cancer metastasis. Our findings together with published literature support the notion that ECM processing via the plasminogen-plasmin pathway promotes the colonisation and attachment of ovarian cancer cells to the peritoneum and actively contributes to the early steps of ovarian cancer metastasis.
Collapse
Affiliation(s)
- C Ricciardelli
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - N A Lokman
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - M P Ween
- Lung Research LaboratoryHanson Institute, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - M K Oehler
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gynaecological OncologyRoyal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Lukassen MV, Scavenius C, Thøgersen IB, Enghild JJ. Disulfide Bond Pattern of Transforming Growth Factor β-Induced Protein. Biochemistry 2016; 55:5610-5621. [PMID: 27609313 DOI: 10.1021/acs.biochem.6b00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein composed of an NH2-terminal cysteine-rich domain (CRD) annotated as an emilin (EMI) domain and four fasciclin-1 (FAS1-1-FAS1-4) domains. Mutations in the gene cause corneal dystrophies, a group of debilitating protein misfolding diseases that lead to severe visual impairment. Previous studies have shown that TGFBIp in the cornea is cross-linked to type XII collagen through a reducible bond. TGFBIp contains 11 cysteine residues and is thus able to form five intramolecule disulfide bonds, leaving a single cysteine residue available for the collagen cross-link. The structures of TGFBIp and its homologues are unknown. We here present the disulfide bridge pattern of TGFBIp, which was determined by generating specific peptides. These were separated by ion exchange followed by reversed-phase high-performance liquid chromatography and analyzed by mass spectrometry and Edman degradation. The NH2-terminal CRD contains six cysteine residues, and one of these (Cys65) was identified as the candidate for the reducible cross-link between TGFBIp and type XII collagen. In addition, the CRD contained two intradomain disulfide bridges (Cys49-Cys85 and Cys84-Cys97) and one interdomain disulfide bridge to FAS1-2 (Cys74-Cys339). Significantly, this arrangement violates the predicted disulfide bridge pattern of an EMI domain. The cysteine residues in FAS1-3 (Cys473 and Cys478) were shown to form an intradomain disulfide bridge. Finally, an interdomain disulfide bridge between FAS1-1 and FAS1-2 (Cys214-Cys317) was identified. The interdomain disulfide bonds indicate that the NH2 terminus of TGFBIp (CRD, FAS1-1, and FAS1-2) adopts a compact globular fold, leaving FAS1-3 and FAS1-4 exposed.
Collapse
Affiliation(s)
- Marie V Lukassen
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Ida B Thøgersen
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
47
|
Tumbarello DA, Andrews MR, Brenton JD. SPARC Regulates Transforming Growth Factor Beta Induced (TGFBI) Extracellular Matrix Deposition and Paclitaxel Response in Ovarian Cancer Cells. PLoS One 2016; 11:e0162698. [PMID: 27622658 PMCID: PMC5021370 DOI: 10.1371/journal.pone.0162698] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022] Open
Abstract
TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1-256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior.
Collapse
Affiliation(s)
- David A. Tumbarello
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Melissa R. Andrews
- University of St Andrews, School of Medicine, MBSB, North Haugh, St Andrews, United Kingdom
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
48
|
Abstract
Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by the human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. Cyclopia subternata is a medicinal plant commonly used in traditional medicine to relieve pain in biological processes. In this study, we investigated the antiseptic effects and underlying mechanisms of vicenin-2 and scolymoside, two active compounds in C. subternata against TGFBIp-mediated septic responses in HUVECs and mice. The anti-inflammatory activities of vicenin-2 or scolymoside were determined by measuring permeability, human neutrophils adhesion and migration, and activation of pro-inflammatory proteins in TGFBIp-activated HUVECs and mice. According to the results, vicenin-2 or scolymoside effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses, such as hyperpermeability, adhesion and migration of leukocytes, and expression of cell adhesion molecules. In addition, vicenin-2 or scolymoside suppressed the production of tumor necrosis factor-α and interleukin 6 and activation of nuclear factor-κB and extracellular regulated kinases 1/2 by TGFBIp. Vicenin-2 or scolymoside reduced cecal ligation and puncture (CLP)-induced septic mortality and pulmonary injury. Collectively, these results indicate that vicenin-2 and scolymoside could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.
Collapse
|
49
|
Oliver VF, Vincent AL. The Genetics and Pathophysiology of IC3D Category 1 Corneal Dystrophies: A Review. Asia Pac J Ophthalmol (Phila) 2016; 5:272-81. [PMID: 27213768 DOI: 10.1097/apo.0000000000000205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Corneal dystrophies are a group of inherited disorders affecting the cornea, many of which lead to visual impairment. The International Committee for Classification of Corneal Dystrophies has established criteria to clarify the status of the various corneal dystrophies, which include the knowledge of the underlying genetics. In this review, we discuss the International Committee for Classification of Corneal Dystrophies category 1 (second edition) corneal dystrophies, for which a clear genetic link has been established. We highlight the various mechanisms underlying corneal dystrophy pathology, including structural disorganization, instability or maladhesion, aberrant protein stability and deposition, abnormal cellular proliferation or apoptosis, and dysfunction of normal enzymatic processes. Understanding these genetic mechanisms is essential for designing targets for therapeutic intervention, especially in the age of gene therapy and gene editing.
Collapse
Affiliation(s)
- Verity Frances Oliver
- From the *Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; and †Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | | |
Collapse
|
50
|
Jung B, Chung J, Zhou W, Lee T, Na M, Bae JS. Inhibitory effects of pentacyclic triterpenoids from Astilbe rivularis on TGFBIp-induced inflammatory responses in vitro and in vivo. Chem Biol Interact 2016; 254:179-90. [DOI: 10.1016/j.cbi.2016.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/29/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
|