1
|
Uga M, Kaneko I, Shiozaki Y, Koike M, Tsugawa N, Jurutka PW, Miyamoto KI, Segawa H. The Role of Intestinal Cytochrome P450s in Vitamin D Metabolism. Biomolecules 2024; 14:717. [PMID: 38927120 PMCID: PMC11201832 DOI: 10.3390/biom14060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.
Collapse
Affiliation(s)
- Minori Uga
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Naoko Tsugawa
- Faculty of Nutrition, Kobe Gakuin University, Hyogo 651-2180, Japan
| | - Peter W. Jurutka
- Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
- College of Medicine, The University of Arizona, Phoenix, AZ 85004, USA
| | - Ken-Ichi Miyamoto
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
- Graduate School of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| |
Collapse
|
2
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Tuey SM, Prebehalla L, Roque AA, Roda G, Chonchol MB, Shah N, Wempe MF, Hu Y, Hogan SL, Nolin TD, Joy MS. The Impact of Suboptimal 25-Hydroxyvitamin D Levels and Cholecalciferol Replacement on the Pharmacokinetics of Oral Midazolam in Control Subjects and Patients With Chronic Kidney Disease. J Clin Pharmacol 2022; 62:1528-1538. [PMID: 35678297 DOI: 10.1002/jcph.2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the impact of suboptimal 25-hydroxyvitamin D (25-VitD) and cholecalciferol (VitD3 ) supplementation on the pharmacokinetics of oral midazolam (MDZ) in control subjects and subjects with chronic kidney disease (CKD). Subjects with CKD (n = 14) and controls (n = 5) with suboptimal 25-VitD levels (<30 ng/mL) were enrolled in a 2-phase study. In phase 1 (suboptimal), subjects were administered a single oral dose of VitD3 (5000 IU) and MDZ (2 mg). In phase 2 (replete) subjects who achieved 25-VitD repletion after receiving up to 16 weeks of daily cholecalciferol were given the identical single oral doses of VitD3 and MDZ as in phase 1. Concentrations of MDZ and metabolites, 1'-hydroxymidazolam (1'-OHMDZ), and 1'-OHMDZ glucuronide (1'-OHMDZ-G) were measured by liquid chromatography-tandem mass spectrometry and pharmacokinetic analysis was performed. Under suboptimal 25-VitD, reductions in MDZ clearance and renal clearance of 47% and 87%, respectively, and a 72% reduction in renal clearance of 1'-OHMDZ-G were observed in CKD vs controls. In phase 1 versus phase 2, MDZ clearance increased in all control subjects, with a median (interquartile range) increase of 10.5 (0.62-16.7) L/h. No changes in MDZ pharmacokinetics were observed in subjects with CKD between phases 1 and 2. The effects of 25-VitD repletion on MDZ disposition was largely observed in subjects without kidney disease. Impaired MDZ metabolism and/or excretion alterations due to CKD in a suboptimal 25-VitD state may not be reversed by cholecalciferol therapy. Suboptimal 25-VitD may augment the reductions in MDZ and 1'-OHMDZ-G clearance values observed in patients with CKD.
Collapse
Affiliation(s)
- Stacey M Tuey
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Linda Prebehalla
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amandla-Atilano Roque
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Gavriel Roda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Michel B Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado, USA
| | - Nirav Shah
- Department of Medicine Renal Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael F Wempe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Yichun Hu
- Kidney Center and Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan L Hogan
- Kidney Center and Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie S Joy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Moreno-Torres M, Guzmán C, Petrov PD, Jover R. Valproate and Short-Chain Fatty Acids Activate Transcription of the Human Vitamin D Receptor Gene through a Proximal GC-Rich DNA Region Containing Two Putative Sp1 Binding Sites. Nutrients 2022; 14:2673. [PMID: 35807853 PMCID: PMC9268083 DOI: 10.3390/nu14132673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
The vitamin D receptor (VDR) mediates 1,25-dihydroxyvitamin D3 pleiotropic biological actions through transcription regulation of target genes. The expression levels of this ligand-activated nuclear receptor are regulated by multiple mechanisms both at transcriptional and post-transcriptional levels. Vitamin D3 is the natural VDR activator, but other molecules and signaling pathways have also been reported to regulate VDR expression and activity. In this study, we identify valproic acid (VPA) and natural short-chain fatty acids (SCFAs) as novel transcriptional activators of the human VDR (hVDR) gene. We further report a comprehensive characterization of VPA/SCFA-responsive elements in the 5' regulatory region of the hVDR gene. Two alternative promoter DNA regions (of 2.4 and 3.8 kb), as well as subsequent deletion fragments, were cloned in pGL4-LUC reporter vector. Transfection of these constructs in HepG2 and human Upcyte hepatocytes followed by reporter assays demonstrated that a region of 107 bp (from -107 to -1) upstream of the transcription start site in exon 1a is responsible for most of the increase in transcriptional activity in response to VPA/SCFAs. This short DNA region is GC-rich, does not contain an apparent TATA box, and includes two bona fide binding sites for the transcription factor Sp1. Our results substantiate the hypothesis that VPA and SCFAs facilitate the activity of Sp1 on novel Sp1 responsive elements in the hVDR gene, thus promoting VDR upregulation and signaling. Elevated hepatic VDR levels have been associated with liver steatosis and, therefore, our results may have clinical relevance in epileptic pediatric patients on VPA therapy. Our results could also be suggestive of VDR upregulation by SCFAs produced by gut microbiota.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carla Guzmán
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
| | - Petar D. Petrov
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
| | - Ramiro Jover
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain; (C.G.); (P.D.P.)
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
Noh K, Chow ECY, Quach HP, Groothuis GMM, Tirona RG, Pang KS. Significance of the Vitamin D Receptor on Crosstalk with Nuclear Receptors and Regulation of Enzymes and Transporters. AAPS J 2022; 24:71. [PMID: 35650371 DOI: 10.1208/s12248-022-00719-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
The vitamin D receptor (VDR), in addition to other nuclear receptors, the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), is involved in the regulation of enzymes, transporters and receptors, and therefore intimately affects drug disposition, tissue health, and the handling of endogenous and exogenous compounds. This review examines the role of 1α,25-dihydroxyvitamin D3 or calcitriol, the natural VDR ligand, on activation of the VDR and its crosstalk with other nuclear receptors towards the regulation of enzymes and transporters, notably many of the cytochrome P450s including CYP3A4 and sulfotransferase 2A1 (SULT2A1) as well as cholesterol 7α-hydroxylase (CYP7A1). Moreover, the VDR upregulates the intestinal channel, TRPV6, for calcium absorption, LDL receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) in brain for β-amyloid peptide efflux and influx, the sodium phosphate transporters (NaPi), the apical sodium-dependent bile acid transporter (ASBT) and organic solute transporters (OSTα-OSTβ) for bile acid absorption and efflux, respectively, the renal organic anion transporter 3 (OAT3) and several of the ATP-binding cassette protein transporters-the multidrug resistance protein 1 (MDR1) and the multidrug resistance-associated proteins (MRPs). Hence, the role of the VDR is increasingly being recognized for its therapeutic potential and pharmacologic activity, giving rise to drug-drug interactions (DDI). Therapeutically, ligand-activated VDR shows anti-inflammatory effects towards the suppression of inflammatory mediators, improves cognition by upregulating amyloid-beta (Aβ) peptide clearance in brain, and maintains phosphate, calcium, and parathyroid hormone (PTH) balance and kidney function and bone health, demonstrating the crucial roles of the VDR in disease progression and treatment of diseases.
Collapse
Affiliation(s)
- Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.,Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts, 02142, USA
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.,Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Geny M M Groothuis
- Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
6
|
Albergamo A, Apprato G, Silvagno F. The Role of Vitamin D in Supporting Health in the COVID-19 Era. Int J Mol Sci 2022; 23:3621. [PMID: 35408981 PMCID: PMC8998275 DOI: 10.3390/ijms23073621] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The genomic activity of vitamin D is associated with metabolic effects, and the hormone has a strong impact on several physiological functions and, therefore, on health. Among its renowned functions, vitamin D is an immunomodulator and a molecule with an anti-inflammatory effect, and, recently, it has been much studied in relation to its response against viral infections, especially against COVID-19. This review aims to take stock of the correlation studies between vitamin D deficiency and increased risks of severe COVID-19 disease and, similarly, between vitamin D deficiency and acute respiratory distress syndrome. Based on this evidence, supplementation with vitamin D has been tested in clinical trials, and the results are discussed. Finally, this study includes a biochemical analysis on the effects of vitamin D in the body's defense mechanisms against viral infection. In particular, the antioxidant and anti-inflammatory functions are considered in relation to energy metabolism, and the potential, beneficial effect of vitamin D in COVID-19 is described, with discussion of its influence on different biochemical pathways. The proposed, broader view of vitamin D activity could support a better-integrated approach in supplementation strategies against severe COVID-19, which could be valuable in a near future of living with an infection becoming endemic.
Collapse
Affiliation(s)
- Alice Albergamo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Giulia Apprato
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | |
Collapse
|
7
|
Pavek P, Dusek J, Smutny T, Lochman L, Kucera R, Skoda J, Smutna L, Kamaraj R, Soucek P, Vrzal R, Dvorak Z. Gene expression profiling of 1α,25(OH)
2
D
3
treatment in 2D/3D human hepatocyte models reveals CYP3A4 induction but minor changes in other xenobiotic‐metabolizing genes. Mol Nutr Food Res 2022; 66:e2200070. [DOI: 10.1002/mnfr.202200070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Lukas Lochman
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Lucie Smutna
- Department of Pharmacology and Toxicology Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology Faculty of Pharmacy in Hradec Kralove Charles University Hradec Kralove Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit National Institute of Public Health Prague Czech Republic
- Laboratory of Pharmacogenomics Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics Faculty of Science Palacky University Olomouc Czech Republic
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics Faculty of Science Palacky University Olomouc Czech Republic
| |
Collapse
|
8
|
Jaffey JA. Canine extrahepatic biliary disease: what have we learned? J Small Anim Pract 2021; 63:247-264. [PMID: 34935155 DOI: 10.1111/jsap.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/07/2022]
Abstract
Extrahepatic biliary disease in dogs is commonly encountered in clinical practice worldwide. Diseases in this segment of the biliary tract are diverse and can manifest with mild clinical signs or can be life-threatening. In the last decade there have been advances in diagnostic tests, imaging modalities and therapeutic interventions as well as the identification of novel prognostic variables that could improve outcomes in dogs with extrahepatic biliary disease. Therefore, the objective of this review was to summarise clinically relevant updates of extrahepatic biliary disease in dogs.
Collapse
Affiliation(s)
- J A Jaffey
- Department of Specialty Medicine, Midwestern University, College of Veterinary Medicine, Glendale, AZ, 85308, USA
| |
Collapse
|
9
|
Chen Y, Tang Y, Nie JZ, Zhang Y, Nie D. Megestrol acetate is a specific inducer of CYP3A4 mediated by human pregnane X receptor. Cancer Chemother Pharmacol 2021; 88:985-996. [PMID: 34524495 DOI: 10.1007/s00280-021-04352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Megestrol acetate is a synthetic progestogen used to treat some cancers and cancer-associated cachexia, but its potential interactions with other drugs are not well known. This study aims to determine the regulation of drug metabolizing enzymes by megestrol acetate. METHODS Primary human hepatocytes were treated and analyzed by PCR array to identify genes involved in drug metabolism that are impacted by megestrol acetate. P450 3A4 (CYP3A4) reporter gene assay and HPLC analyses of nifedipine metabolites were used to determine CYP3A4 gene expression and activities. Competitive ligand binding assay was used to determine the affinity of megestrol acetate toward human pregnane x receptor (hPXR). Electrophoretic mobility shift assay and mammalian two hybrid assay were used to determine the mechanism of megestrol to activate hPXR. RESULTS The levels and activities of CYP3A4 were significantly induced (> 4-folds) by megestrol acetate in human hepatocytes and HepG2 cells. Megestrol treatment induced CYP3A4 through the activation of hPXR, a ligand-activated transcription factor that plays a role in drug metabolism and transport. Other tested nuclear receptors showed no response. The mechanism studies showed that megestrol activated hPXR by binding to the ligand binding domain (LBD) of hPXR and increasing the recruitment of the cofactors such as steroid receptor cofactor (SRC-1). CONCLUSION The results suggest that megestrol acetate is a specific inducer of CYP3A4 mediated by hPXR and therefore has the potential to cause drug interactions, especially in the co-administration with drugs that are substrates of CYP3A4.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Yong Tang
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Jeffrey Z Nie
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Yuanqin Zhang
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Daotai Nie
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA.
| |
Collapse
|
10
|
Yiming Z, Hang Y, Bing S, Hua X, Bo H, Honggui L, Shu L. Antagonistic effect of VDR/CREB1 pathway on cadmium-induced apoptosis in porcine spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111819. [PMID: 33360786 DOI: 10.1016/j.ecoenv.2020.111819] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a toxic trace element that can enter the environment with industrial waste and accumulate in the body but the health effects of Cd on ternary pigs are still lacking in research. In order to explore the effect of Cd on the apoptosis of pig spleen and its mechanism, this study chose ternary pig as the research object to detect relevant indicators in pig spleen under Cd exposure. The results of this study showed that Cd exposure can induce apoptosis by promoting the absorption of various toxic trace elements in the spleen and inducing oxidative stress. We also found that the mechanism of Cd-induced apoptosis is closely related to the VDR/CREB1 pathway. On the one hand, Cd exposure can activate VDR, and indirectly regulate the CYP family, affecting the normal function of the spleen. On the other hand, VDR and its downstream genes antagonize the toxicity of Cd by maintaining the stability of the mitochondrial-related endoplasmic reticulum membrane structure. Our research will help researchers to further understand the physiological toxicity of Cd.
Collapse
Affiliation(s)
- Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yin Hang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shao Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xue Hua
- Natl Selenium Rich Prod Qual Supervis & Inspect C, Enshi 445000, China
| | - Huang Bo
- Natl Selenium Rich Prod Qual Supervis & Inspect C, Enshi 445000, China
| | - Liu Honggui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Jaffey JA, Matheson J, Shumway K, Pacholec C, Ullal T, Van den Bossche L, Fieten H, Ringold R, Lee KJ, DeClue AE. Serum 25-hydroxyvitamin D concentrations in dogs with gallbladder mucocele. PLoS One 2020; 15:e0244102. [PMID: 33326487 PMCID: PMC7743984 DOI: 10.1371/journal.pone.0244102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022] Open
Abstract
Gallbladder mucocele (GBM) is a common biliary disorder in dogs. Gallbladder hypokinesia has been proposed to contribute to its formation and progression. The specific cause of gallbladder stasis in dogs with GBM as well as viable treatment options to resolve dysmotility remains unknown. Vitamin D deficiency is one of the many potential causes of gallbladder hypokinesia in humans and repletion results in complete resolution of stasis. Improving our understanding of the relationship between serum vitamin D and GBM could help identify dogs as a model for humans with gallbladder hypokinesia. Furthermore, this relationship could provide insight into the pathogenesis of GBM and support the need for future studies to investigate vitamin D as a novel treatment target. Therefore, goals of this study were i) to determine if serum 25-hydroxyvitamin(OH)D concentrations were decreased in dogs with GBM, ii) if serum 25(OH)D concentrations were different in clinical versus dogs subclinical for GBM, and iii) to determine if serum 25(OH)D concentrations could predict the ultrasonographic type of GBM. Sixty-two dogs (clinical, n = 26; subclinical, n = 36) with GBM and 20 healthy control dogs were included in this prospective observational study. Serum 25(OH)D concentrations were measured with a competitive chemiluminescence immunoassay. Overall, dogs with GBM had lower serum 25(OH)D concentrations than control dogs (P = 0.004). Subsequent subgroup analysis indicated that this difference was only significant in the subclinical group compared to the control dogs (P = 0.008), and serum 25(OH)D concentrations did not significantly differ between dogs clinical for GBM versus subclinical or control dogs, indicating that inflammatory state in clinical dogs was not the major constituent of the observed findings. Decreasing serum 25(OH)D concentrations, but not clinical status, was associated with a more advanced developmental stage of GBM type determined by ultrasonography. Our results indicate that vitamin D has a role in dogs with GBM. Additional studies are needed to assess if reduced vitamin D in dogs with GBM is a cause or effect of their biliary disease and to investigate if vitamin D supplementation could be beneficial for dogs with GBM.
Collapse
Affiliation(s)
- Jared A. Jaffey
- Department of Specialty Medicine, Midwestern University College of Veterinary Medicine, Glendale, Arizona, United States of America
- * E-mail:
| | - Jodi Matheson
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, Columbia, Missouri, United States of America
| | - Kate Shumway
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, Columbia, Missouri, United States of America
| | - Christina Pacholec
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, Columbia, Missouri, United States of America
| | - Tarini Ullal
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lindsay Van den Bossche
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan, Utrecht, The Netherlands
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan, Utrecht, The Netherlands
| | - Randy Ringold
- VDI Laboratory, LLC, Simi Valley, California, United States of America
| | - Keun Jung Lee
- Department of Pathology and Population Medicine, Midwestern University College of Veterinary Medicine, Glendale, Arizona, United States of America
| | - Amy E. DeClue
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
12
|
Livingston S, Mallick S, Lucas DA, Sabir MS, Sabir ZL, Purdin H, Nidamanuri S, Haussler CA, Haussler MR, Jurutka PW. Pomegranate derivative urolithin A enhances vitamin D receptor signaling to amplify serotonin-related gene induction by 1,25-dihydroxyvitamin D. Biochem Biophys Rep 2020; 24:100825. [PMID: 33088927 PMCID: PMC7566096 DOI: 10.1016/j.bbrep.2020.100825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 02/01/2023] Open
Abstract
Mediated by the nuclear vitamin D receptor (VDR), the hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D), is known to regulate expression of genes impacting calcium and phosphorus metabolism, the immune system, and behavior. Urolithin A, a nutrient metabolite derived from pomegranate, possibly acting through AMP kinase (AMPK) signaling, supports respiratory muscle health in rodents and longevity in C. elegans by inducing oxidative damage-reversing genes and mitophagy. We show herein that urolithin A enhances transcriptional actions of 1,25D driven by co-transfected vitamin D responsive elements (VDREs), and dissection of this genomic effect in cell culture reveals: 1) urolithin A concentration-dependency, 2) occurrence with isolated natural VDREs, 3) nuclear receptor selectivity for VDR over ER, LXR and RXR, and 4) significant 3- to 13-fold urolithin A-augmentation of 1,25D-dependent mRNA encoding the widely expressed 1,25D-detoxification enzyme, CYP24A1, a benchmark vitamin D target gene. Relevant to potential behavioral effects of vitamin D, urolithin A elicits enhancement of 1,25D-dependent mRNA encoding tryptophan hydroxylase-2 (TPH2), the serotonergic neuron-expressed initial enzyme in tryptophan metabolism to serotonin. Employing quantitative real time-PCR, we demonstrate that TPH2 mRNA is induced 1.9-fold by 10 nM 1,25D treatment in culture of differentiated rat serotonergic raphe (RN46A-B14) cells, an effect magnified 2.5-fold via supplementation with 10 μM urolithin A. This potentiation of 1,25D-induced TPH2 mRNA by urolithin A is followed by a 3.1- to 3.7-fold increase in serotonin concentration in culture medium from the pertinent neuronal cell line, RN46A-B14. These results are consistent with the concept that two natural nutrient metabolites, urolithin A from pomegranate and 1,25D from sunlight/vitamin D, likely acting via AMPK and VDR, respectively, cooperate mechanistically to effect VDRE-mediated regulation of gene expression in neuroendocrine cells. Finally, gedunin, a neuroprotective natural product from Indian neem tree that impacts the brain derived neurotropic factor pathway, similarly potentiates 1,25D/VDR-action. Hormonal 1,25-dihydroxyvitamin D acts in brain to induce tryptophan hydroxylase-2. Urolithin A derived from ellagitannins in pomegranates curbs neuroinflammation. Urolithin A enhances the transcriptional actions of 1,25-dihydroxyvitamin D. Urolithin A raises 1,25-dihydroxyvitamin D-induced tryptophan hydroxylase-2 mRNA. Serotonin rises in raphe cells exposed to urolithin A and 1,25-dihydroxyvitamin D.
Collapse
Affiliation(s)
- Sarah Livingston
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Daniel A Lucas
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Hespera Purdin
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Sree Nidamanuri
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA.,Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
13
|
Li AP. In Vitro Human Cell–Based Experimental Models for the Evaluation of Enteric Metabolism and Drug Interaction Potential of Drugs and Natural Products. Drug Metab Dispos 2020; 48:980-992. [DOI: 10.1124/dmd.120.000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
|
14
|
Yuan X, Lu H, Zhao A, Ding Y, Min Q, Wang R. Transcriptional regulation of CYP3A4 by nuclear receptors in human hepatocytes under hypoxia. Drug Metab Rev 2020; 52:225-234. [PMID: 32270716 DOI: 10.1080/03602532.2020.1733004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human hepatic cytochrome P-450 3A4 (CYP3A4), recognized as a multifunctional enzyme, has a wide range of substrates including commonly used drugs. Previous investigations demonstrated that the expression of CYP3A4 in human hepatocytes could be regulated by some nuclear receptors (NRs) at transcriptional level under diverse situations. The significance of oxygen on CYP3A4-mediated metabolism seems notable while the regulatory mode of CYP3A4 in the particular case still remains elusive. Recently, striking evidence has emerged that both CYP3A4 and its regulator NR could be inhibited by exposure to hypoxia. Therefore, it is of great importance to elucidate whether and how these NRs act in the transcriptional regulation of CYP3A4 in human hepatocytes under hypoxic conditions. In this review, we mainly summarized transcriptional regulation of the pivotal enzyme CYP3A4 by NRs and explored the possible regulatory pathways of CYP3A4 via these major NRs under hypoxia, expecting to provide favorable evidence for further clinical guidance under such pathological situations.
Collapse
Affiliation(s)
- Xuechun Yuan
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Yidan Ding
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qiong Min
- Pharmacy department, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Effects of vitamin D on drugs: Response and disposal. Nutrition 2020; 74:110734. [PMID: 32179384 DOI: 10.1016/j.nut.2020.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D supplementation and vitamin D deficiency are common in clinical experience and in daily life. Vitamin D not only promotes calcium absorption and immune regulation, but also changes drug effects (pharmacodynamics and adverse reactions) and drug disposal in vivo when combined with various commonly used clinical drugs. The extensive physiological effects of vitamin D may cause synergism effects or alleviation of adverse reactions, and vitamin D's affect on drugs in vivo disposal through drug transporters or metabolic enzymes may also lead to changes in drug effects. Herein, the effects of vitamin D combined with commonly used drugs were reviewed from the perspective of drug efficacy and adverse reactions. The effects of vitamin D on drug transport and metabolism were summarized and analyzed. Hopefully, more attention will be paid to vitamin D supplementation and deficiency in clinical treatment and drug research and development.
Collapse
|
16
|
García-Quiroz J, García-Becerra R, Santos-Cuevas C, Ramírez-Nava GJ, Morales-Guadarrama G, Cárdenas-Ochoa N, Segovia-Mendoza M, Prado-Garcia H, Ordaz-Rosado D, Avila E, Olmos-Ortiz A, López-Cisneros S, Larrea F, Díaz L. Synergistic Antitumorigenic Activity of Calcitriol with Curcumin or Resveratrol is Mediated by Angiogenesis Inhibition in Triple Negative Breast Cancer Xenografts. Cancers (Basel) 2019; 11:cancers11111739. [PMID: 31698751 PMCID: PMC6896056 DOI: 10.3390/cancers11111739] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Calcitriol is a multitarget anticancer hormone; however, its effects on angiogenesis remain contradictory. Herein, we tested whether the antiangiogenic phytochemicals curcumin or resveratrol improved calcitriol antitumorigenic effects in vivo. Triple-negative breast cancer tumoral cells (MBCDF-T) were xenografted in nude mice, maintaining treatments for 3 weeks. Tumor onset, volume and microvessel density were significantly reduced in mice coadministered with calcitriol and curcumin (Cal+Cur). Vessel count was also reduced in mice simultaneously treated with calcitriol and resveratrol (Cal+Rsv). Cal+Cur and Cal+Rsv treatments resulted in less tumor activated endothelium, as demonstrated by decreased tumor uptake of integrin-targeted biosensors in vivo. The renal gene expression of Cyp24a1 and Cyp27b1 suggested increased calcitriol bioactivity in the combined regimens. In vitro, the phytochemicals inhibited both MBCDF-T and endothelial cells proliferation, while potentiated calcitriol’s ability to reduce MBCDF-T cell-growth and endothelial cells migration. Resveratrol induced endothelial cell death, as deduced by increased sub-G1 cells accumulation, explaining the reduced tumor vessel number in resveratrol-treated mice, which further diminished when combined with calcitriol. In conclusion, the concomitant administration of calcitriol with curcumin or resveratrol synergistically promoted anticancer effects in vitro and in vivo in human mammary tumor cells. Whereas the results suggest different mechanisms of action of the phytochemicals when coadministered with calcitriol, the converging biological effect was inhibition of tumor neoangiogenesis.
Collapse
Affiliation(s)
- Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Ciudad de México, Mexico
| | - Clara Santos-Cuevas
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico; (C.S.-C.); (G.J.R.-N.)
| | - Gerardo J. Ramírez-Nava
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico; (C.S.-C.); (G.J.R.-N.)
| | - Gabriela Morales-Guadarrama
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Nohemí Cárdenas-Ochoa
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Mariana Segovia-Mendoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Ciudad de México, Mexico;
| | - Heriberto Prado-Garcia
- Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico;
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas-Virreyes, Lomas de Chapultepec IV Sección, Miguel Hidalgo 11000, Ciudad de México, Mexico;
| | - Sofía López-Cisneros
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
- Correspondence:
| |
Collapse
|
17
|
Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharm Sin B 2019; 9:1087-1098. [PMID: 31867158 PMCID: PMC6900549 DOI: 10.1016/j.apsb.2019.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Vitamin D3 (VD3) is a multifunctional nutrient which can be either synthesized or absorbed from the diet. It plays a pivotal role in systemic calcium and phosphate homeostasis, as well as in various physiological and pathological processes. VD3 is converted to the active form, 1α,25-dihydroxyvitamin D3 (1,25-D3), by cytochrome P450 2R1 (CYP2R1)/CYP27A1 and CYP27B1 sequentially, and deactivated by multiple enzymes including CYP3A4. On the other hand, 1,25-D3 is capable of activating the transcription of CYP3A genes in humans, mice and rats. The vitamin D receptor (VDR)-mediated transactivation of human CYP3A4 and CYP3A5 resembles that known for pregnane X receptor (PXR). Activated VDR forms a heterodimer with retinoid X receptor α (RXRα), recruits co-activators, translocates to the cell nucleus, binds to the specific vitamin D responsive elements (VDRE), and activates the gene transcription. In mice, intestinal Cyp3a11 mRNA levels, but not those of hepatic CYP3As, were induced by in vivo administration of VDR and PXR agonists. In rats, intestinal Cyp3a1 and Cyp3a2 mRNAs were induced by 1,25-D3 or lithocholic acid (LCA), whereas hepatic Cyp3a2, but not Cyp3a1 and Cyp3a9, was modulated to 1,25-D3 treatment. In general, the VDR-mediated regulation of CYP3A presents species and organ specificity.
Collapse
|
18
|
Administration of Vitamin D Metabolites Affects RNA Expression of Xenobiotic Metabolising Enzymes and Function of ABC Transporters in Rats. J CHEM-NY 2019. [DOI: 10.1155/2019/1279036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
From studies on different species and in cell culture systems, it has been suggested that vitamin D metabolites might affect the metabolism and elimination of xenobiotics. Although most studies performed on rodents and cell cultures report an upregulation of respective enzymes and transporters, data from the literature are inconsistent. Especially results obtained with sheep differ from these observations. As vitamin D metabolites are widely used as feed additives or therapeutics in livestock animals, we aimed to assess whether these differences indicate species-specific responses or occurred due to the very high dosages used in the rodent studies. Therefore, we applied treatment protocols to rats that had been used previously in sheep or cattle. Forty-eight female rats were divided into three treatment and corresponding placebo groups: (1) a single intraperitoneal injection of 1,25-(OH)2D3 or placebo 12 h before sacrifice; (2) daily supplementation with 25-OHD3 by oral gavage or placebo for 10 days; and (3) a single intramuscular injection of vitamin D3 10 days before sacrifice. In contrast to a previous study using sheep, treatment of rats with 1,25-dihydroxyvitamin D3 did not result in an upregulation of cytochrome P450 3A isoenzymes (CYP3A), but a decrease was found in hepatic and intestinal expressions. In addition, a downregulation of P-glycoprotein (P-gp) and breast cancer resistance protein was found in the brain. Taken together, the stimulating effects of vitamin D metabolites on the expression of genes involved in the metabolism and elimination of xenobiotics reported previously for rodents and sheep could not be reproduced. In contrast, we even observed a negative impact on the expression of CYP3A enzymes and their most important regulator, the pregnane X receptor. Most interestingly, we could demonstrate an effect of treatment with 25-hydroxyvitamin D3 and vitamin D3 on the functional activity of ileal P-glycoprotein (P-gp) using the Ussing chamber technique.
Collapse
|
19
|
Therapeutic targets of vitamin D receptor ligands and their pharmacokinetic effects by modulation of transporters and metabolic enzymes. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00429-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Quesada-Gomez JM, Bouillon R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos Int 2018; 29:1697-1711. [PMID: 29713796 DOI: 10.1007/s00198-018-4520-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Modest and even severe vitamin D deficiency is widely prevalent around the world. There is consensus that a good vitamin D status is necessary for bone and general health. Similarly, a better vitamin D status is essential for optimal efficacy of antiresorptive treatments. Supplementation of food with vitamin D or using vitamin D supplements is the most widely used strategy to improve the vitamin status. Cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) are the most widely used compounds and the relative use of both products depends on historical or practical reasons. Oral intake of calcifediol (25OHD3) rather than vitamin D itself should also be considered for oral supplementation. We reviewed all publications dealing with a comparison of oral cholecalciferol with oral calcifediol as to define the relative efficacy of both compounds for improving the vitamin D status. First, oral calcifediol results in a more rapid increase in serum 25OHD compared to oral cholecalciferol. Second, oral calcifediol is more potent than cholecalciferol, so that lower dosages are needed. Based on the results of nine RCTs comparing physiologic doses of oral cholecalciferol with oral calcifediol, calcifediol was 3.2-fold more potent than oral cholecalciferol. Indeed, when using dosages ≤ 25 μg/day, serum 25OHD increased by 1.5 ± 0.9 nmol/l for each 1 μg cholecalciferol, whereas this was 4.8 ± 1.2 nmol/l for oral calcifediol. Third, oral calcifediol has a higher rate of intestinal absorption and this may have important advantages in case of decreased intestinal absorption capacity due to a variety of diseases. A potential additional advantage of oral calcifediol is a linear dose-response curve, irrespective of baseline serum 25OHD, whereas the rise in serum 25OHD is lower after oral cholecalciferol, when baseline serum 25OHD is higher. Finally, intermittent intake of calcifediol results in fairly stable serum 25OHD compared with greater fluctuations after intermittent oral cholecalciferol.
Collapse
Affiliation(s)
- J M Quesada-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) & Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - R Bouillon
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat, ON 1/902, 3000, Leuven, Belgium.
| |
Collapse
|
21
|
Li AP, Alam N, Amaral K, Ho MCD, Loretz C, Mitchell W, Yang Q. Cryopreserved Human Intestinal Mucosal Epithelium: A Novel In Vitro Experimental System for the Evaluation of Enteric Drug Metabolism, Cytochrome P450 Induction, and Enterotoxicity. Drug Metab Dispos 2018; 46:1562-1571. [PMID: 30006371 DOI: 10.1124/dmd.118.082875] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
We report here a novel in vitro enteric experimental system, cryopreserved human intestinal mucosa (CHIM), for the evaluation of enteric drug metabolism, drug-drug interaction, drug toxicity, and pharmacology. CHIM was isolated from the small intestines of four human donors. The small intestines were first dissected into the duodenum, jejunum, and ileum, followed by collagenase digestion of the intestinal lumen. The isolated mucosa was gently homogenized to yield multiple cellular fragments, which were then cryopreserved in a programmable liquid cell freezer and stored in liquid nitrogen. After thawing and recovery, CHIM retained robust cytochrome P450 (P450) and non-P450 drug-metabolizing enzyme activities and demonstrated dose-dependent induction of transcription of CYP24A1 (approximately 300-fold) and CYP3A4 (approximately 3-fold) by vitamin D3 as well as induction of CYP3A4 (approximately 3-fold) by rifampin after 24 hours of treatment. Dose-dependent decreases in cell viability quantified by cellular ATP content were observed for naproxen and acetaminophen, with higher enterotoxicity observed for naproxen, consistent with that observed in humans in vivo. These results suggest that CHIM may be a useful in vitro experimental model for the evaluation of enteric drug properties, including drug metabolism, drug-drug interactions, and drug toxicity.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Novera Alam
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Kirsten Amaral
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Ming-Chih David Ho
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Carol Loretz
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Walter Mitchell
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Qian Yang
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| |
Collapse
|
22
|
Ricca C, Aillon A, Bergandi L, Alotto D, Castagnoli C, Silvagno F. Vitamin D Receptor Is Necessary for Mitochondrial Function and Cell Health. Int J Mol Sci 2018; 19:ijms19061672. [PMID: 29874855 PMCID: PMC6032156 DOI: 10.3390/ijms19061672] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 01/09/2023] Open
Abstract
Vitamin D receptor (VDR) mediates many genomic and non-genomic effects of vitamin D. Recently, the mitochondrial effects of vitamin D have been characterized in many cell types. In this article, we investigated the importance of VDR not only in mitochondrial activity and integrity but also in cell health. The silencing of the receptor in different healthy, non-transformed, and cancer cells initially decreased cell growth and modulated the cell cycle. We demonstrated that, in silenced cells, the increased respiratory activity was associated with elevated reactive oxygen species (ROS) production. In the long run, the absence of the receptor caused impairment of mitochondrial integrity and, finally, cell death. Our data reveal that VDR plays a central role in protecting cells from excessive respiration and production of ROS that leads to cell damage. Because we confirmed our observations in different models of both normal and cancer cells, we conclude that VDR is essential for the health of human tissues.
Collapse
Affiliation(s)
- Chiara Ricca
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Alessia Aillon
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Daniela Alotto
- Department of Chirurgia Generale e Specialistiche, Banca della Cute, AOU Città della Salute e della Scienza Torino, Via Zuretti 29, 10126 Torino, Italy.
| | - Carlotta Castagnoli
- Department of Chirurgia Generale e Specialistiche, Banca della Cute, AOU Città della Salute e della Scienza Torino, Via Zuretti 29, 10126 Torino, Italy.
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| |
Collapse
|
23
|
El-Ansary A, Cannell JJ, Bjørklund G, Bhat RS, Al Dbass AM, Alfawaz HA, Chirumbolo S, Al-Ayadhi L. In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: the role of vitamin D. Metab Brain Dis 2018; 33:917-931. [PMID: 29497932 DOI: 10.1007/s11011-018-0199-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) affects about 1% of the world's population. Vitamin D is thought to be essential for normal brain development and modulation of the immune system. Worldwide about 1 billion people are affected by vitamin D deficiency. High-sensitivity C-reactive protein (hs-CRP), cytochrome P450 2E1 (CYP2E1) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) are biomarkers related to inflammation and oxidative stress. In the present study, these biomarkers were together with serum 25-hydroxyvitamin D (25(OH)D3) analyzed in 28 (mean age seven years) Saudi male patients with ASD. The study was conducted to determine if there is any relationship between vitamin D levels, the tested biomarkers and the presence and severity of ASD. The hope was to identify if these biomarkers may be useful for early ASD diagnosis. The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to measure autism severity. The results of the ASD children were compared with 27 age and gender-matched neurotypical controls. The data indicated that Saudi patients with ASD have significantly lower plasma levels of 25(OH)D3 than neurotypical controls (38 ng/ml compared to 56 ng/ml, respectively; [P = 0.001]). Surprisingly, the levels of CYP2E1 were lower in the children with ASD than the neurotypical controls (0.48 ± 0.08 vs. 69 ± 0.07 ng/ml, respectively; P = 0.001). The ASD children also had significantly higher levels of hs-CRP (0.79 ± 0.09 vs. 0.59 ± 0.09 ng/ml, respectively; P = 0.001) and 8-OH-dG (8.17 ± 1.04 vs. 4.13 ± 1.01 ng/ml, respectively; P = 0.001, compared to neurotypical age and gender-matched controls. The values for hs-CRP and 8-OH-dG did not correlate [P < 0.001] with autism severity. There was found a relationship between autism severity on the CARS scale and the levels of 25(OH)D3 and CYP1B1. But this was not found for SRS. All four biomarkers seemed to have good sensitivity and specificity, but the sample size of the present study was too small to determine clinical usefulness. The findings also indicate that inadequate levels of vitamin D play a role in the etiology and severity of autism. Furthermore, the results of the present study suggest the possibility of using 25(OH)D3, CYP1B1, hs-CRP and 8-OH-dG, preferably in combination, as biomarkers for the early diagnosis of ASD. However, further research is needed to evaluate this hypothesis.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
- Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M Al Dbass
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Human Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Quach HP, Noh K, Hoi SY, Bruinsma A, Groothuis GMM, Li AP, Chow ECY, Pang KS. Alterations in gene expression in vitamin D-deficiency: Down-regulation of liver Cyp7a1 and renal Oat3 in mice. Biopharm Drug Dispos 2018; 39:99-115. [PMID: 29243851 DOI: 10.1002/bdd.2118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/01/2017] [Accepted: 12/03/2017] [Indexed: 01/06/2023]
Abstract
The vitamin D-deficient model, established in the C57BL/6 mouse after 8 weeks of feeding vitamin D-deficient diets in the absence or presence of added calcium, was found associated with elevated levels of plasma parathyroid hormone (PTH) and plasma and liver cholesterol, and a reduction in cholesterol 7α-hydroxylase (Cyp7a1, rate-limiting enzyme for cholesterol metabolism) and renal Oat3 mRNA/protein expression levels. However, there was no change in plasma calcium and phosphate levels. Appraisal of the liver revealed an up-regulation of mRNA expressions of the small heterodimer partner (Shp) and attenuation of Cyp7a1, which contributed to hypercholesterolemia in vitamin D-deficiency. When vitamin D-sufficient or D-deficient mice were further rendered hypercholesterolemic with 3 weeks of feeding the respective, high fat/high cholesterol (HF/HC) diets, treatment with 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], active vitamin D receptor (VDR) ligand, or vitamin D (cholecalciferol) to HF/HC vitamin D-deficient mice lowered the cholesterol back to baseline levels. Cholecalciferol treatment partially restored renal Oat3 mRNA/protein expression back to that of vitamin D-sufficient mice. When the protein expression of protein kinase C (PKC), a known, negative regulator of Oat3, was examined in murine kidney, no difference in PKC expression was observed for any of the diets with/without 1,25(OH)2 D3 /cholecalciferol treatment, inferring that VDR regulation of renal Oat3 did not involve PKC in mice. As expected, plasma calcium levels were not elevated by cholecalciferol treatment of vitamin D-deficient mice, while 1,25(OH)2 D3 treatment led to hypercalcemia. In conclusion, vitamin D-deficiency resulted in down-regulation of liver Cyp7a1 and renal Oat3, conditions that are alleviated upon replenishment of cholecalciferol.
Collapse
Affiliation(s)
- Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - Stacie Y Hoi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - Adrie Bruinsma
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands, 9713, AV
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands, 9713, AV
| | - Albert P Li
- In Vitro ADMET Laboratories, Columbia, Maryland, USA, 21045
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| |
Collapse
|
25
|
Long MD, Campbell MJ. Integrative genomic approaches to dissect clinically-significant relationships between the VDR cistrome and gene expression in primary colon cancer. J Steroid Biochem Mol Biol 2017; 173:130-138. [PMID: 28027912 DOI: 10.1016/j.jsbmb.2016.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/01/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Recently, we undertook a pan-cancer analyses of the nuclear hormone receptor (NR) superfamily in The Cancer Genome Atlas (TCGA), and revealed that the vitamin D receptor (NR1I1/VDR) was commonly and significantly down-regulated specifically in colon adenocarcinoma cohort (COAD). To examine the consequence of down-regulated VDR expression we re-analyzed VDR chromatin immunoprecipitation sequencing (ChIP-Seq) data from LS180 colon cancer cells (GSE31939). This analysis identified 1809 loci that displayed significant (p.adj<0.01) differential binding of the VDR in response 1,25(OH)2D3 treatment; 947 peaks annotated to 672 genes. We examined expression patterns in the COAD cohort of 286 tumors compared to 41 normal samples and revealed that VDR bound genes were significantly positively correlated to VDR expression compared to the background transcriptome, suggesting direct regulation by VDR. Gene set enrichment analyses revealed significant enrichment for genes known to be regulated by a number of other transcription factors including SMADs and JUN. Filtering VDR associated genes for those that were commonly and significantly altered in COAD revealed a cohort of 27 differentially expressed genes. The expression patterns of these genes clustered tumors and significantly associated with disease free survival. For instance, males with low expression of Lectin, Galactoside Binding Soluble 4 (LGALS4, encodes the colon tumor suppressor, Galactin 4) had significantly shorted disease free survival. These analyses suggest that reduced expression of VDR in colon cancer (but neither loss nor mutation) changes the actions of the VDR by both dampening the expression of tumor suppressors (e.g. LGALS4) whilst either stabilizing or not down-regulating expression of oncogenes (e.g. Carbonic Anhydrase 9 (CA9)). These integrative genomic approaches are relatively generic and applicable to the study of any transcription factor.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Moray J Campbell
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, 536 Parks Hall, 500 West 12th Ave., The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Dimitrov V, White JH. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol Cell Endocrinol 2017; 453:68-78. [PMID: 28412519 DOI: 10.1016/j.mce.2017.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects on gut homeostasis, and provide a mechanistic basis for potential therapeutic benefit of vitamin D supplementation in IBD.
Collapse
Affiliation(s)
- Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Wilkens MR, Maté LM, Schnepel N, Klinger S, Muscher-Banse AS, Ballent M, Virkel G, Lifschitz AL. Influence of 25-hydroxyvitamin D 3 and 1,25-dihydroxyvitamin D 3 on expression of P-glycoprotein and cytochrome P450 3A in sheep. J Steroid Biochem Mol Biol 2016; 164:271-276. [PMID: 26319202 DOI: 10.1016/j.jsbmb.2015.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
Abstract
In order to improve calcium and phosphorus balance, beef cattle and dairy cows can be supplemented with vitamin D. However, different vitamin D metabolites have been shown to increase expression of P-glycoprotein (P-gp, MDR1, ABCB1) and cytochrome P450 3A (CYP3A) in rodents as well as in cell culture systems. As such interferences might have an impact on pharmacokinetics of some drugs widely-used in veterinary medicine, we investigated the expression of P-gp, CYP3A, vitamin D receptor (VDR), pregnane X receptor (PXR) and retinoid X receptor α (RXRα) in sheep either treated orally with 6μg/kg body weight (BW) 25-hydroxyvitamin D3 (OHD3) for ten days before sacrifice or 12h after intravenous injection of 0.5μg/kg BW 1,25-dihydroxyvitamin D3 (1,25- (OH)2D3). Down-regulation of ruminal, jejunal and hepatic, but not renal P-gp could be found with 25-OHD3 supplementation. Interestingly, this effect on P-gp was not observed in tissues from 1,25-(OH)2D3-treated sheep. In contrast, 1,25-(OH)2D3 induced a significant up-regulation of renal and jejunal CYP3A expression, while 25-OHD3 had no impact. Renal expression of VDR and PXR was also increased by treatment with 1,25-(OH)2D3, while jejunal PXR expression was only stimulated in sheep supplemented with 25-OHD3. Either treatments increased renal, but not ruminal, jejunal or hepatic expression of RXRα. These results demonstrate that the impact of large doses of vitamin D metabolites on different target organs and potential interactions with other medications should be further investigated in vitro and in vivo to understand the effects of vitamin D metabolites on metabolism and excretion pathways in livestock.
Collapse
Affiliation(s)
- M R Wilkens
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany.
| | - L M Maté
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - N Schnepel
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - S Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - A S Muscher-Banse
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - M Ballent
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - G Virkel
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - A L Lifschitz
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| |
Collapse
|
28
|
Jacobs ET, Haussler MR, Alberts DS, Kohler LN, Lance P, Martínez ME, Roe DJ, Jurutka PW. Association between Circulating Vitamin D Metabolites and Fecal Bile Acid Concentrations. Cancer Prev Res (Phila) 2016; 9:589-97. [PMID: 27138789 DOI: 10.1158/1940-6207.capr-16-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
Although hydrophobic bile acids have been demonstrated to exhibit cytotoxic and carcinogenic effects in the colorectum, ursodeoxycholic acid (UDCA) has been investigated as a potential chemopreventive agent. Vitamin D has been shown to play a role in both bile acid metabolism and in the development of colorectal neoplasia. Using a cross-sectional design, we sought to determine whether baseline circulating concentrations of the vitamin D metabolites 25(OH)D and 1,25(OH)2D were associated with baseline fecal bile acid concentrations in a trial of UDCA for the prevention of colorectal adenoma recurrence. We also prospectively evaluated whether vitamin D metabolite concentrations modified the effect of UDCA on adenoma recurrence. After adjustment for age, sex, BMI, physical activity, and calcium intake, adequate concentrations of 25(OH)D (≥30 ng/mL) were statistically significantly associated with reduced odds for high levels of total [OR, 0.61; 95% confidence interval (CI), 0.38-0.97], and primary (OR, 0.61; 95% CI, 0.38-0.96) bile acids, as well as individually with chenodeoxycholic acid (OR, 0.39; 95% CI, 0.24-0.63) and cholic acid (OR, 0.56; 95% CI, 0.36-0.90). No significant associations were observed for 1,25(OH)2D and high versus low fecal bile acid concentrations. In addition, neither 25(OH)D nor 1,25(OH)2D modified the effect of UDCA on colorectal adenoma recurrence. In conclusion, this is the first study to demonstrate an inverse relationship between circulating levels of 25(OH)D and primary fecal bile acid concentrations. These results support prior data demonstrating that vitamin D plays a key role in bile acid metabolism, and suggest a potential mechanism of action for 25(OH)D in colorectal cancer prevention. Cancer Prev Res; 9(7); 589-97. ©2016 AACR.
Collapse
Affiliation(s)
- Elizabeth T Jacobs
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona. University of Arizona Cancer Center, Tucson, Arizona.
| | - Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | | | - Lindsay N Kohler
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Peter Lance
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - María Elena Martínez
- Department of Family and Preventive Medicine, University of California San Diego, La Jolla, California
| | - Denise J Roe
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona. University of Arizona Cancer Center, Tucson, Arizona
| | - Peter W Jurutka
- University of Arizona Cancer Center, Tucson, Arizona. Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona. School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
| |
Collapse
|
29
|
Barrett KG, Fang H, Kocarek TA, Runge-Morris M. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Vitamin D Receptor in LS180 Human Colorectal Adenocarcinoma Cells. ACTA ACUST UNITED AC 2016; 44:1431-4. [PMID: 27130351 DOI: 10.1124/dmd.116.070300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/28/2016] [Indexed: 11/22/2022]
Abstract
The factors that regulate expression of genes in the 1C family of human cytosolic sulfotransferases (SULT1C) are not well understood. In a recent study evaluating the effects of a panel of transcription factor activators on SULT1C family member expression in LS180 human colorectal adenocarcinoma cells, we found that SULT1C2 expression was significantly increased by 1α,25-dihydroxyvitamin D3 (VitD3) treatment. The objective of our current study was to identify the mechanism responsible for VitD3-mediated activation of SULT1C2 transcription. VitD3 treatment of LS180 cells activated transcription of a transfected luciferase reporter plasmid that contained ∼5 kilobase pairs (kbp) of the SULT1C2 gene, which included 402 nucleotides (nt) of the noncoding exon 1, all of intron 1, and 21 nt of exon 2. Although computational analysis of the VitD3-responsive region of the SULT1C2 gene identified a pregnane X receptor (PXR)-binding site within exon 1, the transfected 5 kbp SULT1C2 reporter was not activated by treatment with rifampicin, a prototypical PXR agonist. However, deletion or mutation of the predicted PXR-binding site abolished VitD3-mediated SULT1C2 transcriptional activation, identifying the site as a functional vitamin D response element (VDRE). We further demonstrated that vitamin D receptor (VDR) can interact directly with the SULT1C2 VDRE sequence using an enzyme-linked immunosorbent assay-based transcription factor binding assay. In conclusion, VitD3-inducible SULT1C2 transcription is mediated through a VDRE in exon 1. These results suggest a role for SULT1C2 in VitD3-regulated physiologic processes in human intestine.
Collapse
Affiliation(s)
- Kathleen G Barrett
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Hailin Fang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
30
|
Goswami R, Kaplan MH. Essential vitamins for an effective T cell response. World J Immunol 2016; 6:39-59. [DOI: 10.5411/wji.v6.i1.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Effective adaptive immune responses rely upon appropriate activation of T cells by antigenic peptide-major histocompatibility complex on the surface of antigen presenting cells (APCs). Activation relies on additional signals including co-stimulatory molecules on the surface of the APCs that promote T cell expansion. The immune response is further sculpted by the cytokine environment. However, T cells also respond to other environmental signals including hormones, neurotransmitters, and vitamins. In this review, we summarize the mechanisms through which vitamins A and D impact immune responses, particularly in the context of T cell responses.
Collapse
|
31
|
Berge T, Leikfoss IS, Brorson IS, Bos SD, Page CM, Gustavsen MW, Bjølgerud A, Holmøy T, Celius EG, Damoiseaux J, Smolders J, Harbo HF, Spurkland A. The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells. Genes Immun 2016; 17:118-27. [PMID: 26765264 PMCID: PMC4783434 DOI: 10.1038/gene.2015.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system that develops in genetically susceptible individuals. The majority of the MS-associated gene variants are located in genetic regions with importance for T-cell differentiation. Vitamin D is a potent immunomodulator, and vitamin D deficiency has been suggested to be associated with increased MS disease susceptibility and activity. In CD4+ T cells, we have analyzed in vitro vitamin D responsiveness of genes that contain an MS-associated single-nucleotide polymorphism (SNP) and with one or more vitamin D response elements in their regulatory regions. We identify IL2RA and TAGAP as novel vitamin D target genes. The vitamin D response is observed in samples from both MS patients and controls, and is not dependent on the genotype of MS-associated SNPs in the respective genes.
Collapse
Affiliation(s)
- T Berge
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - I S Leikfoss
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - I S Brorson
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - S D Bos
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C M Page
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - M W Gustavsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A Bjølgerud
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - T Holmøy
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - E G Celius
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - J Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Smolders
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - H F Harbo
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Haussler MR, Whitfield GK, Haussler CA, Sabir MS, Khan Z, Sandoval R, Jurutka PW. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age. VITAMINS AND HORMONES 2016; 100:165-230. [PMID: 26827953 DOI: 10.1016/bs.vh.2015.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA.
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Ruby Sandoval
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Peter W Jurutka
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| |
Collapse
|
33
|
Kaneko I, Sabir MS, Dussik CM, Whitfield GK, Karrys A, Hsieh JC, Haussler MR, Meyer MB, Pike JW, Jurutka PW. 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB J 2015; 29:4023-35. [DOI: 10.1096/fj.14-269811] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
|
34
|
Hirota T, Ieiri I. Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 2015; 11:1435-47. [PMID: 26058399 DOI: 10.1517/17425255.2015.1056149] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lipid-lowering drugs, especially hydroxymethylglutaryl-CoA reductase inhibitors (statins), are widely used in the treatment and prevention of atherosclerotic diseases. The benefits of statins are well documented. However, myotoxic side effects, which can sometimes be severe, including myopathy or rhabdomyolysis, have been associated with the use of statins. In some cases, this toxicity is associated with pharmacokinetic alterations. Potent inhibitors of CYP 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin is metabolized by CYP2C9, while pravastatin, rosuvastatin and pitavastatin are not susceptible to inhibition by any CYP. AREAS COVERED This review discusses the pharmacokinetic aspects of the drug-drug interaction with statins and genetic polymorphisms in CYPs, which are involved in the metabolism of statins, and highlights the importance of establishing a system utilizing electronic medical information practically to avoid adverse drug reactions. EXPERT OPINION An understanding of the mechanisms underlying statin interactions will help to minimize drug interactions and develop statins that are less prone to adverse interactions. Quantitatively analyzed information for the low-density lipoprotein cholesterol lowering effects of statin based on electronic medical records may be useful for avoiding the adverse effect of statins.
Collapse
Affiliation(s)
- Takeshi Hirota
- a Kyushu University, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Department of Clinical Pharmacokinetics , Fukuoka 8128582, Japan +81 92 642 6657 ; +81 92 642 6660 ;
| | | |
Collapse
|
35
|
No impact of vitamin D on the CYP3A biomarker 4β-hydroxycholesterol in patients with abnormal glucose regulation. PLoS One 2015; 10:e0121984. [PMID: 25835492 PMCID: PMC4383380 DOI: 10.1371/journal.pone.0121984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/04/2015] [Indexed: 01/21/2023] Open
Abstract
Purpose To investigate the effect of vitamin D3 on hepatic Cytochrome P450 enzyme (CYP) 3A4 in patients with abnormal glucose regulation using the endogenous marker 4β-hydroxycholesterol (4β-OHC):cholesterol ratio. Methods The present study took advantage of a trial primarily aiming to investigate the effect of vitamin D3 on beta cell function and insulin sensitivity in patients with abnormal glucose regulation. 44 subjects were randomized to receive vitamin D3, 30000 IU given orally once weekly or placebo for 8 weeks. The two sample t-test was used to test the means of the intra-individual differences of 4β-OHC:cholesterol ratio between the two groups. Results Mean (SD) 4β-OHC in the whole group of patients before and after the intervention was 26 (11) ng/ml and 26 (12). Mean (SD) 4β-OHC:cholesterol ratio in the whole group of patients before and after the intervention was 0.12 (0.046) and 0.13 (0.047). In the Vitamin D group mean (SD) serum 25-OH-vitamin D3 increased from 46 (16) to 85nM (13) during the corresponding time period. To investigate the impact of vitamin D3 on hepatic CYP3A4 we calculated the mean intra-individual differences in 4β-OHC:cholesterol ratio (delta 4β-OHC:cholesterol ratio) before versus after the intervention in the two treatment groups. The difference (95% CI) between delta 4β-OHC:cholesterol ratio in the control group and intervention group was -0.0010 (-0.0093, 0.0072), a difference being not statistically significant (p = 0.80). Conclusions We provide further evidence that vitamin D3 may not substantially affect hepatic CYP3A4. This does not exclude the possibility of an impact of intestinal first-pass metabolism of orally administered drugs which should be investigated. Trial Registration ClinicalTrials.gov NCT01497132
Collapse
|
36
|
Inami K, Sasaki T, Kumagai T, Nagata K. Simultaneous evaluation of human CYP3A4 and ABCB1 induction by reporter assay in LS174T cells, stably expressing their reporter genes. Biopharm Drug Dispos 2015; 36:139-47. [PMID: 25410880 DOI: 10.1002/bdd.1927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/27/2014] [Accepted: 11/13/2014] [Indexed: 11/06/2022]
Abstract
The bioavailability of orally administered therapies are often significantly limited in the human intestine by the metabolic activities of cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp). Predicting whether candidate compounds induce CYP3A4 and P-gp is a crucial stage in the drug development process, as drug-drug interactions may result in the induction of intestinal CYP3A4 and P-gp. However, the assay systems needed to evaluate both CYP3A4 and P-gp induction in the intestine are yet to be established. To address this urgent requirement, LS174T cells were used to create two stable cell lines expressing the CYP3A4 or ATP-binding cassette subfamily B member 1 (ABCB1, encoding P-gp) reporter genes. First, these stable cells were tested by treatment with 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) that induce CYP3A4 and P-gp in the intestines. All these compounds significantly increased both CYP3A4 and ABCB1 reporter activities in the stable cell lines. To simultaneously assess the induction of CYP3A4 and ABCB1, both stable cells were co-cultivated to measure their reporter activities. The mixed cells showed a significant increase in the CYP3A4 and ABCB1 reporter activities following treatment with 1,25(OH)2 D3, ATRA, and 9-cis RA. These activity levels were maintained after passaging more than 20 times and following multiple freeze-thaw cycles. These results demonstrate that our established cell lines can be used to evaluate simultaneously CYP3A4 and ABCB1 induction in the intestines, providing a valuable in vitro model for the evaluation of future drug candidates.
Collapse
Affiliation(s)
- Keita Inami
- Department of Environmental and Health Science, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | |
Collapse
|
37
|
Olmos-Ortiz A, Avila E, Durand-Carbajal M, Díaz L. Regulation of calcitriol biosynthesis and activity: focus on gestational vitamin D deficiency and adverse pregnancy outcomes. Nutrients 2015; 7:443-80. [PMID: 25584965 PMCID: PMC4303849 DOI: 10.3390/nu7010443] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Vitamin D has garnered a great deal of attention in recent years due to a global prevalence of vitamin D deficiency associated with an increased risk of a variety of human diseases. Specifically, hypovitaminosis D in pregnant women is highly common and has important implications for the mother and lifelong health of the child, since it has been linked to maternal and child infections, small-for-gestational age, preterm delivery, preeclampsia, gestational diabetes, as well as imprinting on the infant for life chronic diseases. Therefore, factors that regulate vitamin D metabolism are of main importance, especially during pregnancy. The hormonal form and most active metabolite of vitamin D is calcitriol. This hormone mediates its biological effects through a specific nuclear receptor, which is found in many tissues including the placenta. Calcitriol synthesis and degradation depend on the expression and activity of CYP27B1 and CYP24A1 cytochromes, respectively, for which regulation is tissue specific. Among the factors that modify these cytochromes expression and/or activity are calcitriol itself, parathyroid hormone, fibroblast growth factor 23, cytokines, calcium and phosphate. This review provides a current overview on the regulation of vitamin D metabolism, focusing on vitamin D deficiency during gestation and its impact on pregnancy outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| | - Euclides Avila
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| | - Marta Durand-Carbajal
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| | - Lorenza Díaz
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan 14000, Mexico City, Mexico.
| |
Collapse
|
38
|
CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A 2013; 110:15650-5. [PMID: 24019477 DOI: 10.1073/pnas.1315006110] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioactivation of vitamin D consists of two sequential hydroxylation steps to produce 1α,25-dihydroxyvitamin D3. It is clear that the second or 1α-hydroxylation step is carried out by a single enzyme, 25-hydroxyvitamin D 1α-hydroxylase CYP27B1. However, it is not certain what enzyme or enzymes are responsible for the initial 25-hydroxylation. An excellent case has been made for vitamin D 25-hydroxylase CYP2R1, but this hypothesis has not yet been tested. We have now produced Cyp2r1 (-/-) mice. These mice had greater than 50% reduction in serum 25-hydroxyvitamin D3. Curiously, the 1α,25-dihydroxyvitamin D3 level in the serum remained unchanged. These mice presented no health issues. A double knockout of Cyp2r1 and Cyp27a1 maintained a similar circulating level of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Our results support the idea that the CYP2R1 is the major enzyme responsible for 25-hydroxylation of vitamin D, but clearly a second, as-yet unknown, enzyme is another contributor to this important step in vitamin D activation.
Collapse
|
39
|
Jones G. Extrarenal Vitamin D Activation and Interactions Between Vitamin D2, Vitamin D3, and Vitamin D Analogs. Annu Rev Nutr 2013; 33:23-44. [DOI: 10.1146/annurev-nutr-071812-161203] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Glenville Jones
- Department of Biomedical & Molecular Sciences, and Department of Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6;
| |
Collapse
|
40
|
Wang Z, Schuetz EG, Xu Y, Thummel KE. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol 2013; 136:54-8. [PMID: 22985909 PMCID: PMC3549031 DOI: 10.1016/j.jsbmb.2012.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is a multifunctional enzyme involved in both xenobiotic and endobiotic metabolism. This review focuses on two aspects: regulation of CYP3A4 expression by vitamin D and metabolism of vitamin D by CYP3A4. Enterohepatic circulation of vitamin D metabolites and their conjugates will be also discussed. The interplay between vitamin D and CYP3A4 provides new insights into our understanding of how enzyme induction can contribute to vitamin D deficiency. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Zhican Wang
- Departments of Pharmaceutics, University of Washington, Seattle, WA
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yang Xu
- Departments of Pharmaceutics, University of Washington, Seattle, WA
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, CA
| | | |
Collapse
|
41
|
Keith ME, LaPorta E, Welsh J. Stable expression of human VDR in murine VDR-null cells recapitulates vitamin D mediated anti-cancer signaling. Mol Carcinog 2013; 53:286-99. [PMID: 23681781 DOI: 10.1002/mc.21975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/14/2012] [Accepted: 10/01/2012] [Indexed: 11/08/2022]
Abstract
Mammary tumor cells derived from vitamin D receptor (VDR) knock-out (KO) mice were engineered to stably express wild-type (WT) or mutated VDR for characterization of the mechanisms by which 1,25-dihydroxyvitamin D (1,25D), the VDR ligand, mediates growth regulation. Although KO cells were completely resistant to 1,25D, introduction of WT human VDR restored gene expression and growth inhibition in response to 1,25D and a variety of structural analogs. Pdgfb, Vegfa, and Nfkbi were identified as genomic targets of both human and murine VDR signaling in this cell model. KO cells expressing hVDRs containing point mutations (W286R, R274L) that reduce or abolish ligand binding did not exhibit changes in gene expression or growth in response to physiological doses of 1,25D but did respond to higher doses and more potent analogs. KO cells expressing hVDR with the G46D point mutation, which abrogates VDR binding to DR3 response elements, exhibited partial growth inhibition in response to 1,25D and synthetic vitamin D analogs, providing proof of principle that VDR signaling through alternative genomic or non-genomic mechanisms contributes to vitamin D mediated growth effects in transformed cells. We conclude that the 1,25D-VDR signaling axis that triggers anti-cancer effects is highly conserved between the murine and human systems despite differences in VDR protein, cofactors, and target genes and that these actions are not solely mediated via canonical VDRE signaling.
Collapse
Affiliation(s)
- Meggan E Keith
- Cancer Research Center, University at Albany, Rensselaer, New York
| | | | | |
Collapse
|
42
|
Lindh JD, Björkhem-Bergman L, Eliasson E. Vitamin D and drug-metabolising enzymes. Photochem Photobiol Sci 2013; 11:1797-801. [PMID: 22903070 DOI: 10.1039/c2pp25194a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Experimental studies on the molecular regulation of human drug metabolism have revealed that vitamin D up-regulates transcription of several key enzymes, such as CYP3A4, through the vitamin D receptor pathway in intestinal and hepatic cells. Recent data suggest that this results in seasonal changes with higher clearance of orally administered drugs during periods with high UV-B radiation and vitamin D levels. Taken together, vitamin D status might contribute to inter- and intraindividual differences in drug metabolism, but the therapeutic impact of these findings remains to be established.
Collapse
Affiliation(s)
- Jonatan D Lindh
- Karolinska Institutet, Department of Laboratory Medicine, Clinical Pharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
43
|
Abstract
The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
44
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Saini RK, Kaneko I, Jurutka PW, Forster R, Hsieh A, Hsieh JC, Haussler MR, Whitfield GK. 1,25-dihydroxyvitamin D(3) regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif Tissue Int 2013; 92:339-53. [PMID: 23263654 PMCID: PMC3595337 DOI: 10.1007/s00223-012-9683-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/30/2012] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is a circulating hormone that acts to correct hyperphosphatemic states by inhibiting renal phosphate reabsorption and to prevent hypervitaminosis D by feedback repressing 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) biosynthesis. FGF23 gene expression in the osteoblast/osteocyte is induced by the nuclear vitamin D receptor (VDR) bound to 1,25(OH)2D3, but cycloheximide sensitivity of this induction suggests that it may occur largely via secondary mechanisms requiring cooperating transcription factors. We therefore sought to identify 1,25(OH)2D3-regulated transcription factors that might impact FGF23 expression. Although neither leptin nor interleukin-6 (IL-6) alone affects FGF23 expression, leptin treatment was found to potentiate 1,25(OH)2D3 upregulation of FGF23 in UMR-106 cells, whereas IL-6 treatment blunted this upregulation. Genomic analyses revealed conserved binding sites for STATs (signal transduction mediators of leptin and IL-6 action) along with transcription factor ETS1 in human and other mammalian FGF23 genes. Further, STAT3, STAT1, ETS1, and VDR mRNAs were induced in a dose-dependent manner by 1,25(OH)2D3 in UMR-106 cells. Bioinformatic analysis identified nine potential VDREs in a genomic interval containing human FGF23. Six of the putative VDREs were capable of mediating direct transcriptional activation of a heterologous reporter gene when bound by a 1,25(OH)2D3-liganded VDR complex. A model is proposed wherein 1,25(OH)2D3 upregulates FGF23 production directly via multiple VDREs and indirectly via induction of STAT3, ETS1, and VDR transcription factors that are then activated via cell surface and intracellular signaling to cooperate in the induction of FGF23 through DNA looping and generation of euchromatin architecture.
Collapse
Affiliation(s)
- Rimpi K. Saini
- School of Mathematical and Natural Sciences, Arizona State, University, Phoenix, AZ 85306, USA
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State, University, Phoenix, AZ 85306, USA
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State, University, Phoenix, AZ 85306, USA. Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Ryan Forster
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Antony Hsieh
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Jui-Cheng Hsieh
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mark R. Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - G. Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
46
|
Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW. Molecular mechanisms of vitamin D action. Calcif Tissue Int 2013; 92:77-98. [PMID: 22782502 DOI: 10.1007/s00223-012-9619-0] [Citation(s) in RCA: 479] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 12/14/2022]
Abstract
The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP(9k), and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 North 5th Street, Phoenix, AZ 85004-2157, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Batie S, Lee JH, Jama RA, Browder DO, Montano LA, Huynh CC, Marcus LM, Tsosie DG, Mohammed Z, Trang V, Marshall PA, Jurutka PW, Wagner CE. Synthesis and biological evaluation of halogenated curcumin analogs as potential nuclear receptor selective agonists. Bioorg Med Chem 2012; 21:693-702. [PMID: 23276449 DOI: 10.1016/j.bmc.2012.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 11/15/2022]
Abstract
This report describes the synthesis of analogs of curcumin, and their analysis in acting as nuclear receptor specific agonists. Curcumin (CM), a turmeric-derived bioactive polyphenol found in curry, has recently been identified as a ligand for the vitamin D receptor (VDR), and it is possible that CM exerts some of its bioeffects via direct binding to VDR and/or other proteins in the nuclear receptor superfamily. Using mammalian-two-hybrid (M2H) and vitamin D responsive element (VDRE) biological assay systems, we tested CM and 11 CM synthetic analogs for their ability to activate VDR signaling. The M2H assay revealed that RXR and VDR association was induced by CM and several of its analogs. VDRE-based assays demonstrated that pure curcumin and eight CM analogs activated transcription of a luciferase plasmid at levels approaching that of the endocrine 1,25 dihydroxyvitamin D(3) (1,25D) ligand in human colon cancer cells (HCT-116). Additional experiments were performed in HCT-116 utilizing various nuclear receptors and hormone responsive elements to determine the receptor specificity of curcumin binding. CM did not appear to activate transcription in a glucocorticoid responsive system. However, CM along with several analogs elicited transcriptional activation in retinoic acid and retinoid X receptor (RXR) responsive systems. M2H assays using RXR-RXR, VDR-SRC1 and VDR-DRIP revealed that CM and select analogs stimulate RXR homodimerization and VDR-coactivator interactions. These studies may lead to the discovery of novel curcumin analogs that activate nuclear receptors, including RXR, RAR and VDR, resulting in similar health benefits as those for vitamins A and D, such as lowering the risk of epithelial and colon cancers.
Collapse
Affiliation(s)
- Shane Batie
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Maguire O, Pollock C, Martin P, Owen A, Smyth T, Doherty D, Campbell MJ, McClean S, Thompson P. Regulation of CYP3A4 and CYP3A5 expression and modulation of "intracrine" metabolism of androgens in prostate cells by liganded vitamin D receptor. Mol Cell Endocrinol 2012; 364:54-64. [PMID: 22939842 DOI: 10.1016/j.mce.2012.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 07/22/2012] [Accepted: 08/13/2012] [Indexed: 01/22/2023]
Abstract
We investigated the capacity for vitamin D receptor (VDR) to modulate the expression of CYP3A4 and other genes that may facilitate the oxidative inactivation of androgens such as testosterone and androstanediol within prostate cells. We report that exposure to the active hormonal form of vitamin D markedly increased gene expression of CYP3A4 and CYP3A5 and ultimately achieved levels of intracellular CYP3A enzyme activity within LNCaP prostate cancer cells that were comparable to that observed for Caco2 cells, an established model of CYP3A induction, and resulted in the increased turnover of testosterone to its inactive 6β-OH metabolite. We demonstrate that VDR directs CYP3A4 and CYP3A5 expression through binding to distinct regulatory motifs located within the 5' promoter regions of both genes. The current data highlight the potential application of VDR-based treatment regimes as a means to limit the bioavailability of growth-promoting androgens within the tumor microenvironment.
Collapse
Affiliation(s)
- Orla Maguire
- School of Biomedical Sciences, University of Ulster, Coleraine, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
García-Quiroz J, García-Becerra R, Barrera D, Santos N, Avila E, Ordaz-Rosado D, Rivas-Suárez M, Halhali A, Rodríguez P, Gamboa-Domínguez A, Medina-Franco H, Camacho J, Larrea F, Díaz L. Astemizole synergizes calcitriol antiproliferative activity by inhibiting CYP24A1 and upregulating VDR: a novel approach for breast cancer therapy. PLoS One 2012; 7:e45063. [PMID: 22984610 PMCID: PMC3440370 DOI: 10.1371/journal.pone.0045063] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022] Open
Abstract
Background Calcitriol antiproliferative effects include inhibition of the oncogenic ether-à-go-go-1 potassium channel (Eag1) expression, which is necessary for cell cycle progression and tumorigenesis. Astemizole, a new promising antineoplastic drug, targets Eag1 by blocking ion currents. Herein, we characterized the interaction between calcitriol and astemizole as well as their conjoint antiproliferative action in SUM-229PE, T-47D and primary tumor-derived breast cancer cells. Methodology/Principal Findings Molecular markers were studied by immunocytochemistry, Western blot and real time PCR. Inhibitory concentrations were determined by dose-response curves and metabolic activity assays. At clinically achievable drug concentrations, synergistic antiproliferative interaction was observed between calcitriol and astemizole, as calculated by combination index analysis (CI <1). Astemizole significantly enhanced calcitriol’s growth-inhibitory effects (3–11 folds, P<0.01). Mean IC20 values were 1.82±2.41 nM and 1.62±0.75 µM; for calcitriol (in estrogen receptor negative cells) and astemizole, respectively. Real time PCR showed that both drugs alone downregulated, while simultaneous treatment further reduced Ki-67 and Eag1 gene expression (P<0.05). Astemizole inhibited basal and calcitriol-induced CYP24A1 and CYP3A4 mRNA expression (cytochromes involved in calcitriol and astemizole degradation) in breast and hepatoma cancer cells, respectively, while upregulated vitamin D receptor (VDR) expression. Conclusions/Significance Astemizole synergized calcitriol antiproliferative effects by downregulating CYP24A1, upregulating VDR and targeting Eag1. This study provides insight into the molecular mechanisms involved in astemizole-calcitriol combined antineoplastic effect, offering scientific support to test both compounds in combination in further preclinical and clinical studies of neoplasms expressing VDR and Eag1. VDR-negative tumors might also be sensitized to calcitriol antineoplastic effects by the use of astemizole. Herein we suggest a novel combined adjuvant therapy for the management of VDR/Eag1-expressing breast cancer tumors. Since astemizole improves calcitriol bioavailability and activity, decreased calcitriol dosing is advised for conjoint administration.
Collapse
Affiliation(s)
- Janice García-Quiroz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N., México, D.F., México
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - David Barrera
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Nancy Santos
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N., México, D.F., México
| | - Euclides Avila
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Mariana Rivas-Suárez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Ali Halhali
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Pamela Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Armando Gamboa-Domínguez
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Heriberto Medina-Franco
- Departamento de Cirugía, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N., México, D.F., México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
- * E-mail:
| |
Collapse
|
50
|
Zhu J, DeLuca HF. Vitamin D 25-hydroxylase – Four decades of searching, are we there yet? Arch Biochem Biophys 2012; 523:30-6. [DOI: 10.1016/j.abb.2012.01.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/21/2012] [Indexed: 11/16/2022]
|