1
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
2
|
Evans CJF, Glastras SJ, Tang O, Figtree GA. Therapeutic Potential for Beta-3 Adrenoreceptor Agonists in Peripheral Arterial Disease and Diabetic Foot Ulcers. Biomedicines 2023; 11:3187. [PMID: 38137408 PMCID: PMC10740412 DOI: 10.3390/biomedicines11123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Annually, peripheral arterial disease is estimated to cost over USD 21 billion and diabetic foot disease an estimated at USD 9-13 billion. Mirabegron is a TGA-approved beta-3 adrenoreceptor agonist, shown to be safe and effective in the treatment of overactive bladder syndrome by stimulating bladder smooth muscle relaxation. In this review, we discuss the potential use of beta-3 adrenoreceptor agonists as therapeutic agents repurposed for peripheral arterial disease and diabetic foot ulcers. The development of both conditions is underpinned by the upregulation of oxidative stress pathways and consequential inflammation and hypoxia. In oxidative stress, there is an imbalance of reactive oxygen species and nitric oxide. Endothelial nitric oxide synthase becomes uncoupled in disease states, producing superoxide and worsening oxidative stress. Agonist stimulation of the beta-3 adrenoreceptor recouples and activates endothelial nitric oxide synthase, increasing the production of nitric oxide. This reduces circulating reactive oxygen species, thus decreasing redox modification and dysregulation of cellular proteins, causing downstream smooth muscle relaxation, improved endothelial function and increased angiogenesis. These mechanisms lead to endothelial repair in peripheral arterial disease and an enhanced perfusion in hypoxic tissue, which will likely improve the healing of chronic ulcers.
Collapse
Affiliation(s)
- Cameron J. F. Evans
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah J. Glastras
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| | - Owen Tang
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
3
|
Jüttner AA, Danser AHJ, Roks AJM. Pharmacological developments in antihypertensive treatment through nitric oxide-cGMP modulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:57-94. [PMID: 35659377 DOI: 10.1016/bs.apha.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treatment of hypertension until now has been directed at inhibition of vasoconstriction, of cardiac contractility and of blood volume regulation. Despite the arsenal of drugs available for this purpose, the control of target blood pressure is still a difficult goal to reach in outpatients. The nitric oxide-cyclic guanosine monophosphate signaling is one of the most important mediators of vasodilation. It might therefore be a potential and most welcome drug target for optimization of the treatment of hypertension. In this chapter we review the problems that can occur in this signaling system, the attempts that have been made to correct these problems, and those that are still under investigation. Recently developed, clinically safe medicines that are currently approved for other applications, such as myocardial infarction, await to be tested for essential systemic hypertension. We conclude that despite many years of research without translation, stimulation of nitric oxide-cyclic guanosine monophosphate is still a viable strategy in the prevention of the health risk posed by chronic hypertension.
Collapse
Affiliation(s)
- Annika A Jüttner
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Rachubik P, Szrejder M, Audzeyenka I, Rogacka D, Rychłowski M, Angielski S, Piwkowska A. The PKGIα/VASP pathway is involved in insulin- and high glucose-dependent regulation of albumin permeability in cultured rat podocytes. J Biochem 2021; 168:575-588. [PMID: 32484874 PMCID: PMC7763511 DOI: 10.1093/jb/mvaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Podocytes, the principal component of the glomerular filtration barrier, regulate glomerular permeability to albumin via their contractile properties. Both insulin- and high glucose (HG)-dependent activation of protein kinase G type Iα (PKGIα) cause reorganization of the actin cytoskeleton and podocyte disruption. Vasodilator-stimulated phosphoprotein (VASP) is a substrate for PKGIα and involved in the regulation of actin cytoskeleton dynamics. We investigated the role of the PKGIα/VASP pathway in the regulation of podocyte permeability to albumin. We evaluated changes in high insulin- and/or HG-induced transepithelial albumin flux in cultured rat podocyte monolayers. Expression of PKGIα and downstream proteins was confirmed by western blot and immunofluorescence. We demonstrate that insulin and HG induce changes in the podocyte contractile apparatus via PKGIα-dependent regulation of the VASP phosphorylation state, increase VASP colocalization with PKGIα, and alter the subcellular localization of these proteins in podocytes. Moreover, VASP was implicated in the insulin- and HG-dependent dynamic remodelling of the actin cytoskeleton and, consequently, increased podocyte permeability to albumin under hyperinsulinaemic and hyperglycaemic conditions. These results indicate that insulin- and HG-dependent regulation of albumin permeability is mediated by the PKGIα/VASP pathway in cultured rat podocytes. This molecular mechanism may explain podocytopathy and albuminuria in diabetes.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Morone PJ, Yan W, Adcock J, Komalavilas P, Mocco J, Thompson RC, Brophy C, Cheung-Flynn J. Vasorelaxing cell permeant phosphopeptide mimetics for subarachnoid hemorrhage. Eur J Pharmacol 2021; 900:174038. [PMID: 33737008 DOI: 10.1016/j.ejphar.2021.174038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Subarachnoid hemorrhage (SAH) due to rupture of an intracranial aneurysm leads to vasospasm resulting in delayed cerebral ischemia. Therapeutic options are currently limited to hemodynamic optimization and nimodipine, which have marginal clinical efficacy. Nitric oxide (NO) modulates cerebral blood flow through activation of the cGMP-Protein Kinase G (PKG) pathway. Our hypothesis is that SAH results in downregulation of signaling components in the NO-PKG pathway which could explain why treatments for vasospasm targeting this pathway lack efficacy and that treatment with a cell permeant phosphopeptide mimetic of downstream effector prevents delayed vasospasm after SAH. Using a rat endovascular perforation model, reduced levels of NO-PKG pathway molecules were confirmed. Additionally, it was determined that expression and phosphorylation of a PKG substrate: Vasodilator-stimulated phosphoprotein (VASP) was downregulated. A family of cell permeant phosphomimetic of VASP (VP) was wasdesigned and shown to have vasorelaxing property that is synergistic with nimodipine in intact vascular tissuesex vivo. Hence, treatment targeting the downstream effector of the NO signaling pathway, VASP, may bypass receptors and signaling elements leading to vasorelaxation and that treatment with VP can be explored as a therapeutic strategy for SAH induced vasospasm and ameliorate neurological deficits.
Collapse
Affiliation(s)
- Peter J Morone
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Yan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, China
| | - Jamie Adcock
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Padmini Komalavilas
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Mocco
- Cerebrovascular Center, Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen Brophy
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Yu C, Chen S, Wang X, Wu G, Zhang Y, Fu C, Hu C, Liu Z, Luo X, Wang J, Chen L. Exposure to maternal diabetes induces endothelial dysfunction and hypertension in adult male rat offspring. Microvasc Res 2021; 133:104076. [PMID: 32956647 DOI: 10.1016/j.mvr.2020.104076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
The adverse environment in early life can modulate adult phenotype, including blood pressure. Our previous study shows, in a rat streptozotocin (STZ)-induced maternal diabetes model, fetal exposure to maternal diabetes is characterized by established hypertension in the offspring. However, the exact mechanisms are not known. Our present study found, as compared with male control mother offspring (CMO), male diabetic mother offspring (DMO) had higher blood pressure with arterial dysfunction, i.e., decreased acetylcholine (Ach)-induced vasodilation. But there is no difference in blood pressure between female CMO and DMO. The decreased Ach-induced vasodilation was related to decreased nitric oxide (NO) production in the endothelium, not NO sensitivity in vascular smooth muscle because sodium nitroprusside (SNP)-mediated vasodilation was preserved; there was decreased NO production and lower eNOS phosphorylation in male DMO. The reactive oxygen species (ROS) level was increased in male DMO than CMO; normalized ROS levels with tempol increased NO production, normalized Ach-mediated vasodilation, and lowered blood pressure in male DMO rats. It indicates that diabetic programming hypertension is related to arterial dysfunction; normalizing ROS might be a potential strategy for the prevention of hypertension in the offspring.
Collapse
MESH Headings
- Age Factors
- Animals
- Arterial Pressure
- Blood Glucose/metabolism
- Cyclic GMP/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes, Gestational/blood
- Diabetes, Gestational/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Nitric Oxide/metabolism
- Oxidative Stress
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Sex Factors
- Vasodilation
- Rats
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Shuo Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Ye Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Zhengbi Liu
- Center of Laboratory Animal, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020; 76:1055-1068. [PMID: 32829664 DOI: 10.1161/hypertensionaha.120.15856] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.
Collapse
Affiliation(s)
- Ehsan Ataei Ataabadi
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Keivan Golshiri
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Annika Jüttner
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Guido Krenning
- Sulfateq B.V., Groningen, the Netherlands (G.K.).,Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands (G.K.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| |
Collapse
|
8
|
Gao Q, Tang J, Li N, Zhou X, Zhu X, Li W, Liu B, Feng X, Tao J, Han B, Zhang H, Sun M, Xu Z. New conception for the development of hypertension in preeclampsia. Oncotarget 2018; 7:78387-78395. [PMID: 27861155 PMCID: PMC5346647 DOI: 10.18632/oncotarget.13410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022] Open
Abstract
Placental vascular dysfunction was suggested to be critical for placental ischemia-initiated hypertension in preeclampsia, although the contributions of endothelium involved are unclear. The present study found, unlike non-placental vessels, acetylcholine showed no vasodilatation effect on placental vessels, indicating that endothelial-derived nitric oxide (NO) was extremely weak in placental vessels. Placental vascular responses to exogenous NO from sodium nitroprusside (SNP) were significantly different from non-placental vessels. These results were further confirmed in sheep, and rat vessels. In preeclamptic placental vessels, acetylcholine also showed no vasodilatation effects, while vascular responses to SNP were suppressed, associated with impaired cGMP/sGC pathway in vascular smooth muscle cells (VSMCs). The current theory on placental ischemia-initiated hypertension in preeclampsia focused on changes in placental vascular functions, including endothelial dysfunction. This study found the placental endothelium contributed very poorly to vasodilatation, and altered vascular functions in preeclampsia mainly occurred in VSMCs instead of endothelial cells. The findings contribute importantly to understanding the special feature of placental vascular functions and its pathophysiological changes in the development of hypertension in preeclampsia.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolin Zhu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weisheng Li
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianying Tao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Obstetrics and Gynecology, First and Second Affiliated Hospital of Soochow University, Municipal Hospital, Suzhou, China
| | - Bing Han
- Department of Obstetrics and Gynecology, First and Second Affiliated Hospital of Soochow University, Municipal Hospital, Suzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, First and Second Affiliated Hospital of Soochow University, Municipal Hospital, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, California, USA
| |
Collapse
|
9
|
Seo K, Choi JW, Kim DW, Han D, Noh SJ, Jung HS. Aminophylline Effect on Renal Ischemia-Reperfusion Injury in Mice. Transplant Proc 2017; 49:358-365. [PMID: 28219599 DOI: 10.1016/j.transproceed.2016.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Aminophylline increases the intracellular concentration of cAMP and exerts an anti-inflammatory effect. The aim of this study was to investigate the effect of aminophylline on renal ischemia-reperfusion (I/R) injury in mice. METHODS Thirty C57BL/6 mice were divided into 3 groups. In the sham group (group S, n = 10), only right nephrectomy was performed. In the control group (group C, n = 10), after right nephrectomy, the mice were subjected to 30 minutes of left renal ischemia. In the aminophylline group (group A, n = 10), an intraperitoneal injection of aminophylline (5 mg/kg) was performed before renal ischemia. Twenty-four hours after reperfusion, the mice were euthanized, and plasma and kidney samples were obtained to analyze the serum creatinine, renal histology, and expression levels of nuclear factor-kappa B (NF-kB) and pro-inflammatory cytokines. RESULTS The serum creatinine concentration in group C was markedly elevated at 24 hours after reperfusion. Aminophylline treatment significantly reduced serum creatinine, compared with group C. Aminophylline also reduced the histological evidence of renal damage. The expression levels of NF-kB, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), and intercellular adhesion molecule-1 (ICAM-1) mRNA were significantly increased in group C (P < .001). Group A showed lower expression of NF-kB, TNF-α, MCP-1, MIP-2, and ICAM-1 mRNA than group C (P < .01). CONCLUSIONS Aminophylline treatment improved the renal function and indexes of renal inflammation, which suggests that it provided reno-protection against renal I/R injury.
Collapse
Affiliation(s)
- K Seo
- Department of Anesthesiology and Pain Medicine, St Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - J W Choi
- Department of Anesthesiology and Pain Medicine, St Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - D-W Kim
- Department of Anesthesiology and Pain Medicine, St Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - D Han
- Department of Anesthesiology and Pain Medicine, St Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - S J Noh
- The Research Institute of Medical Science, St Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - H S Jung
- Department of Anesthesiology and Pain Medicine, St Vincent's Hospital, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
10
|
Sangüesa G, Shaligram S, Akther F, Roglans N, Laguna JC, Rahimian R, Alegret M. Type of supplemented simple sugar, not merely calorie intake, determines adverse effects on metabolism and aortic function in female rats. Am J Physiol Heart Circ Physiol 2016; 312:H289-H304. [PMID: 27923787 DOI: 10.1152/ajpheart.00339.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/24/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
High consumption of simple sugars causes adverse cardiometabolic effects. We investigated the mechanisms underlying the metabolic and vascular effects of glucose or fructose intake and determined whether these effects are exclusively related to increased calorie consumption. Female Sprague-Dawley rats were supplemented with 20% wt/vol glucose or fructose for 2 mo, and plasma analytes and aortic response to vasodilator and vasoconstrictor agents were determined. Expression of molecules associated with lipid metabolism, insulin signaling, and vascular response were evaluated in hepatic and/or aortic tissues. Caloric intake was increased in both sugar-supplemented groups vs. control and in glucose- vs. fructose-supplemented rats. Hepatic lipogenesis was induced in both groups. Plasma triglycerides were increased only in the fructose group, together with decreased expression of carnitine palmitoyltransferase-1A and increased microsomal triglyceride transfer protein expression in the liver. Plasma adiponectin and peroxisome proliferator-activated receptor (PPAR)-α expression was increased only by glucose supplementation. Insulin signaling in liver and aorta was impaired in both sugar-supplemented groups, but the effect was more pronounced in the fructose group. Fructose supplementation attenuated aortic relaxation response to a nitric oxide (NO) donor, whereas glucose potentiated it. Phenylephrine-induced maximal contractions were reduced in the glucose group, which could be related to increased endothelial NO synthase (eNOS) phosphorylation and subsequent elevated basal NO in the glucose group. In conclusion, despite higher caloric intake in glucose-supplemented rats, fructose caused worse metabolic and vascular responses. This may be because of the elevated adiponectin level and the subsequent enhancement of PPARα and eNOS phosphorylation in glucose-supplemented rats. NEW & NOTEWORTHY This is the first study comparing the effects of glucose and fructose consumption on metabolic factors and aortic function in female rats. Our results show that, although total caloric consumption was higher in glucose-supplemented rats, fructose ingestion had a greater impact in inducing metabolic and aortic dysfunction.
Collapse
Affiliation(s)
- Gemma Sangüesa
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Sonali Shaligram
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California
| | - Farjana Akther
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California
| | - Núria Roglans
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain; and.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Juan C Laguna
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain; and.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Roshanak Rahimian
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California
| | - Marta Alegret
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; .,Institute of Biomedicine, University of Barcelona, Barcelona, Spain; and.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| |
Collapse
|
11
|
Steven S, Jurk K, Kopp M, Kröller-Schön S, Mikhed Y, Schwierczek K, Roohani S, Kashani F, Oelze M, Klein T, Tokalov S, Danckwardt S, Strand S, Wenzel P, Münzel T, Daiber A. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br J Pharmacol 2016; 174:1620-1632. [PMID: 27435156 DOI: 10.1111/bph.13549] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Excessive inflammation in sepsis causes microvascular thrombosis and thrombocytopenia associated with organ dysfunction and high mortality. The present studies aimed to investigate whether inhibition of dipeptidyl peptidase-4 (DPP-4) and supplementation with glucagon-like peptide-1 (GLP-1) receptor agonists improved endotoxaemia-associated microvascular thrombosis via immunomodulatory effects. EXPERIMENTAL APPROACH Endotoxaemia was induced in C57BL/6J mice by a single injection of LPS (17.5 mg kg-1 for survival and 10 mg kg-1 for all other studies). For survival studies, treatment was started 6 h after LPS injection. For all other studies, drugs were injected 48 h before LPS treatment. KEY RESULTS Mice treated with LPS alone showed severe thrombocytopenia, microvascular thrombosis in the pulmonary circulation (fluorescence imaging), increased LDH activity, endothelial dysfunction and increased markers of inflammation in aorta and whole blood (leukocyte-dependent oxidative burst, nitrosyl-iron haemoglobin, a marker of nitrosative stress, and expression of inducible NOS). Treatment with the DPP-4 inhibitor linagliptin or the GLP-1 receptor agonist liraglutide, as well as genetic deletion of DPP-4 (DPP4-/- mice) improved all these parameters. In GLP-1 receptor-deficient mice, both linagliptin and liraglutide lost their beneficial effects and improvement of prognosis. Incubation of platelets and cultured monocytes (containing GLP-1 receptor protein) with GLP-1 receptor agonists inhibited the monocytic oxidative burst and platelet activation, with a GLP-1 receptor-dependent elevation of cAMP levels and PKA activation. CONCLUSIONS AND IMPLICATIONS GLP-1 receptor activation in platelets by linagliptin and liraglutide strongly attenuated endotoxaemia-induced microvascular thrombosis and mortality by a cAMP/PKA-dependent mechanism, preventing systemic inflammation, vascular dysfunction and end organ damage. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Sebastian Steven
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Maximilian Kopp
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Yuliya Mikhed
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Kathrin Schwierczek
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Siyer Roohani
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Fatemeh Kashani
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sergey Tokalov
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- I. Department of Internal Medicine, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Philip Wenzel
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
Scutellarin's Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα. PLoS One 2015; 10:e0139570. [PMID: 26440524 PMCID: PMC4594915 DOI: 10.1371/journal.pone.0139570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/15/2015] [Indexed: 11/21/2022] Open
Abstract
Scutellarin (SCU), a flavonoid glycoside compound, has been successfully used in clinic for treatment of ischemic diseases in China. In this report, we checked the effects of SCU on endothelium dysfunction (ED) of coronary artery (CA) against myocardial ischemia reperfusion (MIR) injury in vivo. The involvement of PKG-Iα was further studied using cultured endothelial cells subjected to hypoxia reoxygenation (HR) injury in vitro. In rat MIR model, SCU (45 and 90 mg/kg, iv) significantly reduced ischemic size and restored the endothelium-dependent vasodilation of isolated CA rings. PKG inhibitor Rp-8-Br-cGMP (50 μg/kg, iv) could ameliorate the protective effects of SCU. Increase in phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a main substrate of PKG, at Ser 239 was observed in both heart tissue and serum of SCU-treated animals. In cultured human cardiac microvascular endothelial cells (HCMECs), SCU (1 and 10 μM) dose-dependently protected cell viability and increased the mRNA and protein level of PKG-Iα against HR injury. The activity of PKG was also increased by SCU treatment. The activation of PKG–1α was then studied using targeted proteomic analysis (MRM-MS) checking the phosphorylation state of the autophosphorylation domain (aa42-94). Significant decrease in phosphorylation of PKG-Iα at Ser50, Ser72, Ser89 was induced by HR injury while SCU treatment significantly increased the phosphorylation of PKG-Iα, not only at Ser50, Ser72 and Ser89, but also at Ser44 and Thr58 (two novel phosphorylation domains). Our results demonstrate PKG-Iα might play an important role in the protective effects of SCU on ED against MIR injury.
Collapse
|
13
|
de Miranda ML, Pereira SJ, Santos AOMT, Villela NR, Kraemer-Aguiar LG, Bouskela E. Milrinone attenuates arteriolar vasoconstriction and capillary perfusion deficits on endotoxemic hamsters. PLoS One 2015; 10:e0117004. [PMID: 25646813 PMCID: PMC4315607 DOI: 10.1371/journal.pone.0117004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
Abstract
Background and Objective Apart from its inotropic property, milrinone has vasodilator, anti-inflammatory and antithrombotic effects that could assist in the reversal of septic microcirculatory changes. This paper investigates the effects of milrinone on endotoxemia-related microcirculatory changes and compares them to those observed with the use of norepinephrine. Materials and Methods After skinfold chamber implantation procedures and endotoxemia induction by intravenous Escherichia coli lipopolysaccharide administration (2 mg.kg-1), male golden Syrian hamsters were treated with two regimens of intravenous milrinone (0.25 or 0.5 μg.kg-1.min-1). Intravital microscopy of skinfold chamber preparations allowed quantitative analysis of microvascular variables. Macro-hemodynamic, biochemical, and hematological parameters and survival rate were also analyzed. Endotoxemic non-treated animals, endotoxemic animals treated with norepinephrine (0.2 μg.kg-1.min-1), and non-endotoxemic hamsters served as controls. Results Milrinone (0.5 μg.kg-1.min-1) was effective in reducing lipopolysaccharide-induced arteriolar vasoconstriction, capillary perfusion deficits, and inflammatory response, and in increasing survival. Norepinephrine treated animals showed the best mean arterial pressure levels but the worst functional capillary density values among all endotoxemic groups. Conclusion Our data suggests that milrinone yielded protective effects on endotoxemic animals’ microcirculation, showed anti-inflammatory properties, and improved survival. Norepinephrine did not recruit the microcirculation nor demonstrated anti-inflammatory effects.
Collapse
Affiliation(s)
- Marcos Lopes de Miranda
- Department of Internal Medicine, Division of Critical Care, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- * E-mail:
| | - Sandra J. Pereira
- Pediatric Cardiac Intensive Care Unit, Perinatal Barra, Rio de Janeiro, RJ, Brazil
| | - Ana O. M. T. Santos
- Institute Fernandes Figueira, Oswaldo Cruz Foundation—FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Nivaldo R. Villela
- Department of Surgery, Division of Anesthesiology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Luiz Guilherme Kraemer-Aguiar
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Eliete Bouskela
- Laboratory for Clinical and Experimental Research in Vascular Biology—BioVasc, Biomedical Center, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Enhanced endothelium-dependent relaxation of rat pulmonary artery following β-adrenergic overstimulation: involvement of the NO/cGMP/VASP pathway. Life Sci 2015; 125:49-56. [PMID: 25640757 DOI: 10.1016/j.lfs.2015.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/21/2022]
Abstract
AIMS The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. MAIN METHODS Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). KEY FINDINGS ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. SIGNIFICANCE The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Collapse
|
15
|
Venugopal C, Holmes E, Beadle R, Kearney M, Eades S. Comparison of Insulin-Induced Digital Vessel Ring Responses of Laminitic and Clinically Healthy Horses. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
A short-term incubation with high glucose impairs VASP phosphorylation at serine 239 in response to the nitric oxide/cGMP pathway in vascular smooth muscle cells: role of oxidative stress. BIOMED RESEARCH INTERNATIONAL 2014; 2014:328959. [PMID: 24779009 PMCID: PMC3981118 DOI: 10.1155/2014/328959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/31/2014] [Accepted: 02/15/2014] [Indexed: 11/29/2022]
Abstract
A reduction of the nitric oxide (NO) action in vascular smooth muscle cells (VSMC) could play a role in the vascular damage induced by the glycaemic excursions occurring in diabetic patients; in this study, we aimed to clarify whether a short-term incubation of cultured VSMC with high glucose reduces the NO ability to increase cGMP and the cGMP ability to phosphorylate VASP at Ser-239. We observed that a 180 min incubation of rat VSMC with 25 mmol/L glucose does not impair the NO-induced cGMP increase but reduces VASP phosphorylation in response to both NO and cGMP with a mechanism blunted by antioxidants. We further demonstrated that high glucose increases radical oxygen species (ROS) production and that this phenomenon is prevented by the PKC inhibitor chelerythrine and the NADPH oxidase inhibitor apocynin. The following sequence of events is supported by these results: (i) in VSMC high glucose activates PKC; (ii) PKC activates NADPH oxidase; (iii) NADPH oxidase induces oxidative stress; (iv) ROS impair the signalling of cGMP, which is involved in the antiatherogenic actions of NO. Thus, high glucose, via oxidative stress, can reduce the cardiovascular protection conferred by the NO/cGMP pathway via phosphorylation of the cytoskeleton protein VASP in VSMC.
Collapse
|
17
|
Jung HS, Joo JD, Kim DW, In JH, Roh M, Jeong JT, Noh SJ, Choi JW. Effect of milrinone on the inflammatory response and NF-kB activation in renal ischemia-reperfusion injury in mice. Korean J Anesthesiol 2014; 66:136-42. [PMID: 24624272 PMCID: PMC3948441 DOI: 10.4097/kjae.2014.66.2.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Milrinone increases intracellular adenosine 3',5'-cyclic monophosphate concentration and enhances vascular relaxation. Nuclear factor-kappa B (NF-kB) plays a key role in inflammatory responses during ischemia-reperfusion (I/R) injury. We aimed to investigate the effect of milrinone on the inflammatory responses and NF-kB activation in renal I/R injury in mice. METHODS Thirty C57BL/6 mice were allocated into 3 groups. In group S (n = 10), only right nephrectomy was done. In group C (n = 10), the left kidney was subjected to 30 min of ischemia after right nephrectomy. In group M (n = 10), milrinone (5 µg/kg) was administered before ischemia. After 24 hours of reperfusion, the serum creatinine was measured, kidney samples were obtained for histology, and expressions of NF-kB and proinflammatory cytokines were analyzed. RESULTS In group C, the serum creatinine concentration was markedly elevated, compared with group S. Creatinine concentration in group M was also elevated, but it was significantly lower than that in group C. Histologic evidence of renal damage was severe in group C, but it was improved in group M. In groups C and M, expression of NF-kB, tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) mRNA increased significantly compared with group S (P < 0.05). But group M showed a lower expression of NF-kB, TNF-α, ICAM-1, MCP-1 and MIP-2 mRNA than group C (P < 0.05). CONCLUSIONS Milrinone treatment attenuates the renal inflammatory response and activation of NF-kB, resulting in improvement of renal function and tissue injury.
Collapse
Affiliation(s)
- Hong Soo Jung
- Department of Anesthesiology and Pain Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jin-Deok Joo
- Department of Anesthesiology and Pain Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Dae-Woo Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jang Hyeok In
- Department of Anesthesiology and Pain Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Misun Roh
- Department of Anesthesiology and Pain Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jong-Tae Jeong
- Department of Anesthesiology and Pain Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Seung June Noh
- The Research Institute of Medical Science, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jin Woo Choi
- Department of Anesthesiology and Pain Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
18
|
García-Morales V, Cuíñas A, Elíes J, Campos-Toimil M. PKA and Epac activation mediates cAMP-induced vasorelaxation by increasing endothelial NO production. Vascul Pharmacol 2014; 60:95-101. [PMID: 24469067 DOI: 10.1016/j.vph.2014.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
Vascular relaxation induced by 3',5'-cyclic adenosine monophosphate (cAMP) is both endothelium-dependent and endothelium-independent, although the underlying signaling pathways are not fully understood. Aiming to uncover potential mechanisms, we performed contraction-relaxation experiments on endothelium-denuded and intact rat aorta rings and measured NO levels in isolated human endothelial cells using single cell fluorescence imaging. The vasorelaxant effect of forskolin, an adenylyl cyclase activator, was decreased after selective inhibitor of protein kinase A (PKA), a cAMP-activated kinase, or L-NAME, an endothelial nitric oxide synthase (eNOS) inhibitor, only in intact aortic rings. Both selective activation of PKA with 6-Bnz-cAMP and exchange protein directly activated by cAMP (Epac) with 8-pCPT-2'-O-Me-cAMP significantly relaxed phenylephrine-induced contractions. The vasorelaxant effect of the Epac activator, but not that of the PKA activator, was reduced by endothelium removal. Forskolin, dibutyryl cAMP (a cAMP analogue), 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP increased NO levels in endothelial cells and the forskolin effect was significantly inhibited by inactivation of both Epac and PKA, and eNOS inhibition. Our results indicate that the endothelium-dependent component of forskolin/cAMP-induced vasorelaxation is partially mediated by an increase in endothelial NO release due to an enhanced eNOS activity through PKA and Epac activation in endothelial cells.
Collapse
Affiliation(s)
- Verónica García-Morales
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Andrea Cuíñas
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jacobo Elíes
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Farmacología Cardiovascular y Plaquetaria, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Hurst N, Nooney V, Raman B, Chirkov Y, De Caterina R, Horowitz J. Clopidogrel “resistance”: Pre- vs post-receptor determinants. Vascul Pharmacol 2013; 59:152-61. [DOI: 10.1016/j.vph.2013.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/01/2023]
|
20
|
Wang Y, Han Y, Yang J, Wang Z, Liu L, Wang W, Zhou L, Wang D, Tan X, Fu C, Jose PA, Zeng C. Relaxant effect of all-trans-retinoic acid via NO-sGC-cGMP pathway and calcium-activated potassium channels in rat mesenteric artery. Am J Physiol Heart Circ Physiol 2013; 304:H51-7. [PMID: 23125214 PMCID: PMC3543680 DOI: 10.1152/ajpheart.00240.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/26/2012] [Indexed: 02/05/2023]
Abstract
Intraperitoneal injection of all-trans-retinoic acid (ATRA) results in a reduction of blood pressure in spontaneously hypertensive rats. However, the mechanisms involved in this effect are not clear. We hypothesized that ATRA may relax resistance arteries. In this study, we found that ATRA relaxed phenylephrine-preconstricted mesenteric arterial rings, which were abrogated by the removal of the endothelium. Pretreatment of endothelium-intact arterial rings with an inhibitor of endothelial nitric oxide (NO) synthase, N(G)-nitro-l-arginine methyl ester (l-NAME), or soluble guanylyl cyclase, 1H-[1,2,4]-oxadiazole-[4,3-α]-quinoxaline-1-one, reduced the vasorelaxant effect of ATRA. Incubation of mesenteric arterial rings with ATRA increased the production of NO and cGMP, which were blocked by N(G)-nitro-l-arginine methyl ester. The vasorelaxant effect of ATRA was markedly attenuated in the presence of an inhibitor of big conductance calcium-activated potassium channels (charybdotoxin), but not with an inhibitor of voltage-dependent potassium channel (4-aminopyridine) or ATP-sensitive potassium channel (glibenclamide). Activation of retinoic acid receptors (RARs) with CH55 or retinoic X receptors (RXRs) with LGD1069 induced the vasorelaxation of phenylephrine-preconstricted mesenteric arterial rings. The RAR (BMS493) and RXR (UVI3003) antagonists blocked the ATRA-induced vasorelaxation. The vasorelaxant effect ATRA is physiologically relevant because the intravenous infusion of ATRA decreased blood pressure in normotensive rats. We conclude that ATRA relaxes resistance vessels via both RARs and RXRs receptors that are mediated by the endothelium-dependent NO-cGMP pathway, which may participate in the control of blood pressure.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Cyclic GMP/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Enzyme Inhibitors/pharmacology
- Guanylate Cyclase/metabolism
- Infusions, Intravenous
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/enzymology
- Myography
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Calcium-Activated/drug effects
- Potassium Channels, Calcium-Activated/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors/drug effects
- Retinoid X Receptors/metabolism
- Second Messenger Systems/drug effects
- Soluble Guanylyl Cyclase
- Time Factors
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/administration & dosage
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Yusheng Wang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Endothelial prostacyclin and nitric oxide potently inhibit platelet functions. Prostacyclin and nitric oxide actions are mediated by platelet adenylyl and guanylyl cyclases, which synthesize cyclic AMP (cAMP) and cyclic GMP (cGMP), respectively. Cyclic nucleotides stimulate cAMP-dependent protein kinase (protein kinase A [PKA]I and PKAII) and cGMP-dependent protein kinase (protein kinase G [PKG]I) to phosphorylate a broad panel of substrate proteins. Substrate phosphorylation results in the inactivation of small G-proteins of the Ras and Rho families, inhibition of the release of Ca(2+) from intracellular stores, and modulation of actin cytoskeleton dynamics. Thus, PKA/PKG substrates translate prostacyclin and nitric oxide signals into a block of platelet adhesion, granule release, and aggregation. cAMP and cGMP are degraded by phosphodiesterases, which might restrict signaling to specific subcellular compartments. An emerging principle of cyclic nucleotide signaling in platelets is the high degree of interconnection between activating and cAMP/cGMP-dependent inhibitory signaling pathways at all levels, including cAMP/cGMP synthesis and breakdown, and PKA/PKG-mediated substrate phosphorylation. Furthermore, defects in cAMP/cGMP pathways might contribute to platelet hyperreactivity in cardiovascular disease. This article focuses on recent insights into the regulation of the cAMP/cGMP signaling network and on new targets of PKA and PKG in platelets.
Collapse
Affiliation(s)
- A Smolenski
- UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
22
|
Thorsen LB, Eskildsen-Helmond Y, Zibrandtsen H, Stasch JP, Simonsen U, Laursen BE. BAY 41-2272 inhibits the development of chronic hypoxic pulmonary hypertension in rats. Eur J Pharmacol 2010; 647:147-54. [PMID: 20828552 DOI: 10.1016/j.ejphar.2010.08.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
Abstract
The present study investigated whether BAY 41-2272(5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine), a novel pyrazolopyridine that activates guanylyl cyclase and sensitizes the enzyme towards nitric oxide (NO), inhibits the development of pulmonary hypertension. BAY 41-2272 (1 or 10 mg/kg/day) was administered intraperitoneally, and sildenafil (25 mg/kg/day), an inhibitor phosphodiesterase type 5, was given in the drinking water to rats kept under chronic hypobaric hypoxia for two weeks. Right ventricular systolic pressure and hypertrophy, degree of muscularization and relaxation of pulmonary arteries were measured, and immunoblotting was performed. Chronic hypoxia increased right ventricular systolic pressure and expression of soluble guanylyl cyclase and phosphorylated vasodilator-stimulated phosphoprotein (VASP-P(ser239)). BAY 41-2272 prevented hypoxia-induced increase in right ventricular systolic pressure and right ventricular hypertrophy to the same extent as sildenafil. Only sildenafil significantly decreased hypoxia-induced muscularization of pulmonary arteries. Expressed relative to soluble guanylyl cyclase expression, VASP-P(ser239) was increased in lungs from rats treated with BAY 41-2272. Acutely BAY 41-2272 caused pulmonary as well as systemic vasodilatation. In the chronic setting systemic blood pressure was not different to baseline at trough after intraperitoneally administered BAY 41-2272. BAY 41-2272 vasorelaxation in isolated pulmonary resistance arteries was inhibited by an inhibitor of guanylyl cyclase, ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxaline-1-one), and of Na(+)-K(+)-ATPase, ouabain. In conclusion, in an adult rat model of chronic hypoxic pulmonary hypertension, BAY 41-2272 to a similar degree as sildenafil prevents pulmonary hypertension. Thus, BAY 41-2272 may provide a novel therapeutic compound for treating chronic hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Lise Bech Thorsen
- Department of Pharmacology, Faculty of Health Sciences, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
23
|
Defawe OD, Kim S, Chen L, Huang D, Kenagy RD, Renné T, Walter U, Daum G, Clowes AW. VASP phosphorylation at serine239 regulates the effects of NO on smooth muscle cell invasion and contraction of collagen. J Cell Physiol 2009; 222:230-7. [PMID: 19798690 DOI: 10.1002/jcp.21942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide triggers cGMP-dependent kinase-mediated phosphorylation of the actin regulator vasodilator-stimulated phosphoprotein (VASP) at residue serine239. The function of this phosphorylation for smooth muscle cell (SMC) adhesion, spreading, matrix contraction, and invasion is not well understood. We reconstituted VASP deficient SMC with wild-type VASP (wt-VASP) or VASP mutants that mimic "locked" serine239 phosphorylation (S239D-VASP) or "blocked" serine239 phosphorylation (S239A-VASP). Collagen gel contraction was reduced in S239D-VASP compared to S239A-VASP and wt-VASP expressing cells and nitric oxide (NO) stimulation decreased gel contraction of wt-VASP reconstituted SMC. Invasion of collagen was enhanced in S239D-VASP and NO-stimulated wild-type SMCs compared to S239A-VASP expressing cells. Expression of S239D-VASP impaired SMC attachment to collagen, reduced the number of membrane protrusions, and caused cell rounding compared to expression of S239A-VASP. Treatment of wt-VASP reconstituted SMCs with NO exerted similar effects as expression of S239D-VASP. As unstimulated cells were spreading on collagen S239A-VASP and wt-VASP localized to actin fibers whereas S239D-VASP was enriched in the cytosol. NO interferes with SMC invasion and contraction of collagen matrices. This requires phosphorylation of VASP on serine239, which reduces VASP binding to actin fibers. These findings support the conclusion that VASP phosphorylation at serine239 regulates cytoskeleton remodeling.
Collapse
Affiliation(s)
- Olivier D Defawe
- Department of Surgery, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hennenberg M, Trebicka J, Buecher D, Heller J, Sauerbruch T. Lack of effect of norfloxacin on hyperdynamic circulation in bile duct-ligated rats despite reduction of endothelial nitric oxide synthase function: result of unchanged vascular Rho-kinase? Liver Int 2009; 29:933-41. [PMID: 19490424 DOI: 10.1111/j.1478-3231.2009.02010.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS In cirrhosis, portal hypertension is maintained by splanchnic vasodilation owing to overproduction of the vasodilator nitric oxide (NO) and defective contractile signalling by Rho-kinase. NO overproduction is partially caused by bacterial translocation from the gut to mesenteric lymph nodes. However, the effects of intestinal bacterial decontamination on hyperdynamic circulation or vascular contractility are unknown. We investigated the haemodynamic and vascular effects of norfloxacin in rats with secondary biliary cirrhosis. METHODS Cirrhosis was induced by bile duct ligation (BDL). One group was treated with norfloxacin (20 mg/kg/day, 5 days, orally). Bacterial growth in the lymph nodes was determined on blood agar plates. Invasive haemodynamic measurements were combined with coloured microspheres. Aortic contractility was assessed myographically. Protein expression/phosphorylation was examined by Western blot analysis. RESULTS Norfloxacin treatment of BDL rats abolished bacterial translocation to mesenteric lymph nodes. BDL rats had hyperdynamic circulation, including portal hypertension and splanchnic vasodilation. None of these parameters was changed by norfloxacin, although norfloxacin reduced endothelial NO synthase expression and phosphorylation. The latter was associated with a diminished activity of protein kinase G (PKG), which mediates NO-induced vasodilation. However, norfloxacin had no effect on aortic contractility to methoxamine or Ca2+, or the aortic expression of RhoA, Rho-kinase and beta-arrestin 2, or the phosphorylation of the Rho-kinase substrate moesin. CONCLUSIONS Short-term treatment of BDL rats with norfloxacin does not change hyperdynamic circulation or vascular contractility, despite reduction of PKG activity.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
25
|
The eNOS enhancer AVE 9488: a novel cardioprotectant against ischemia reperfusion injury. Basic Res Cardiol 2009; 104:773-9. [PMID: 19548059 DOI: 10.1007/s00395-009-0041-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO) is an important regulator of vascular and myocardial function. Cardiac ischemia/reperfusion injury is reduced in mice overexpressing endothelial NO synthase (eNOS) suggesting cardioprotection by eNOS. Novel pharmacological substances, so called eNOS enhancers, upregulate eNOS expression and thereby increase NO production. We tested the effects of the eNOS enhancer AVE 9488 on cardiac ischemia/reperfusion injury in vivo in mice. After treatment with the eNOS enhancer AVE 9488 (30 mg/kg/day) or placebo for one week mice underwent 30 min of coronary artery ligation and 24 h of reperfusion in vivo. Ischemia-reperfusion damage was significantly reduced in mice treated with the eNOS enhancer when compared to placebo treated mice (infarct/area at risk 65.4 +/- 4.1 vs. 36.9 +/- 4.0%, placebo vs. eNOS enhancer, P = 0.0002). The protective effect was blunted in eNOS knockout mice treated with the eNOS enhancer (infarct/area at risk 64.1 +/- 6.2%, eNOS knockout + eNOS enhancer vs. WT + eNOS enhancer, P = ns). Reactive oxygen species were significantly reduced in mice treated with the eNOS enhancer as indicated by significantly lower malondialdehyde-thiobarbituric acid levels (placebo vs. eNOS enhancer, 3.2 +/- 0.5 vs. 0.8 +/- 0.07 micromol/l, P = 0.0003). Thus pharmacological interventions addressed to increase eNOS-derived NO production constitute a promising therapeutic approach to prevent myocardial ischemia/reperfusion injury.
Collapse
|
26
|
Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 2009; 122:216-38. [PMID: 19306895 PMCID: PMC2709600 DOI: 10.1016/j.pharmthera.2009.02.009] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 02/07/2023]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) mediates a wide spectrum of physiologic processes in multiple cell types within the cardiovascular system. Dysfunctional signaling at any step of the cascade - cGMP synthesis, effector activation, or catabolism - have been implicated in numerous cardiovascular diseases, ranging from hypertension to atherosclerosis to cardiac hypertrophy and heart failure. In this review, we outline each step of the cGMP signaling cascade and discuss its regulation and physiologic effects within the cardiovascular system. In addition, we illustrate how cGMP signaling becomes dysregulated in specific cardiovascular disease states. The ubiquitous role cGMP plays in cardiac physiology and pathophysiology presents great opportunities for pharmacologic modulation of the cGMP signal in the treatment of cardiovascular diseases. We detail the various therapeutic interventional strategies that have been developed or are in development, summarizing relevant preclinical and clinical studies.
Collapse
Affiliation(s)
- Emily J Tsai
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
27
|
Schäfer A, Fraccarollo D, Widder J, Eigenthaler M, Ertl G, Bauersachs J. Inhibition of platelet activation in rats with severe congestive heart failure by a novel endothelial nitric oxide synthase transcription enhancer. Eur J Heart Fail 2009; 11:336-41. [PMID: 19193626 DOI: 10.1093/eurjhf/hfp005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS Increased risk of thrombo-embolic events in congestive heart failure (CHF) has been attributed to a hypercoagulable state including vascular endothelial dysfunction and reduced bioavailability of nitric oxide (NO) as well as platelet activation. We investigated whether treatment with a novel endothelial NO synthase (eNOS)-transcription enhancer positively modulates systemic NO bioavailability and reduces platelet activation in rats with CHF. METHODS AND RESULTS After experimental myocardial infarction, male Wistar rats were treated with either placebo or the eNOS-transcription enhancer, AVE9488 (25 ppm/day) for 10 weeks. In rats with severe CHF (left ventricular end-diastolic pressure >15 mmHg), platelet vasodilator-stimulated phosphoprotein (VASP)-phosphorylation reflecting the integrity of the NO/cGMP pathway was significantly reduced (mean immunofluorescence at Ser(157): Sham, 61.4 +/- 9.1; CHF-Placebo, 37.4 +/- 4.9; P < 0.05; Ser(239): Sham, 18.1 +/- 2.5; CHF-Placebo, 13.2 +/- 0.6; P < 0.05). Platelet surface expression of P-selectin and glycoprotein 53 were increased in CHF rats compared with sham-operated animals. Chronic treatment with AVE9488 significantly enhanced platelet VASP-phosphorylation in CHF rats (Ser(157): 70.4 +/- 16.2; Ser(239): 19.3 +/- 1.8). In parallel, platelet surface expression of P-selectin and glycoprotein 53 was reduced in the treatment group. CONCLUSION Platelet activation was evident in CHF rats. Therapy with the eNOS-transcription enhancer, AVE9488, reduced platelet activation in parallel to normalization of platelet NO bioavailability.
Collapse
Affiliation(s)
- Andreas Schäfer
- Medizinische Klinik und Poliklinik I, Julius-Maximilians-Universität Würzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Zhao H, Guan Q, Smith CJ, Quilley J. Increased phosphodiesterase 3A/4B expression after angioplasty and the effect on VASP phosphorylation. Eur J Pharmacol 2008; 590:29-35. [DOI: 10.1016/j.ejphar.2008.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 04/15/2008] [Accepted: 05/19/2008] [Indexed: 11/27/2022]
|
29
|
Schäfer A, Pfrang J, Neumüller J, Fiedler S, Ertl G, Bauersachs J. The cannabinoid receptor-1 antagonist rimonabant inhibits platelet activation and reduces pro-inflammatory chemokines and leukocytes in Zucker rats. Br J Pharmacol 2008; 154:1047-54. [PMID: 18469848 DOI: 10.1038/bjp.2008.158] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effect of rimonabant on inflammation and enhanced platelet reactivity in type 2 diabetic Zucker rats, an experimental model of impaired glucose tolerance and the metabolic syndrome. EXPERIMENTAL APPROACH Rimonabant (10 mg kg(-1) by gavage) was fed for 2 weeks to 3-month-old male obese Zucker rats as an impaired glucose tolerance model and for 10 weeks to 6-month-old male obese Zucker rats as a model of the metabolic syndrome. RANTES (Regulated upon Activation, Normal T cell Expressed, and Secreted) and MCP-1 (monocyte chemotactic protein-1) serum levels were determined by ELISA. Leukocyte populations were quantitatively assessed using a veterinary differential blood cell counter. Platelet activation was assessed by flow-cytometry, platelet aggregation, and adhesion of isolated platelets to immobilized fibrinogen. KEY RESULTS RANTES and MCP-1 serum levels were increased in obese vs lean Zucker rats and significantly reduced by long-term treatment with rimonabant, which slowed weight gain in rats with the metabolic syndrome. Neutrophils and monocytes were significantly increased in young and old obese vs lean Zucker rats and lowered by rimonabant. Platelet-bound fibrinogen was significantly enhanced in obese vs lean Zucker rats of both age, and was reduced by rimonabant. Platelets from obese rats were more sensitive to thrombin-induced aggregation and adhesion to fibrinogen, which were both attenuated by rimonabant therapy. CONCLUSIONS AND IMPLICATIONS We demonstrate positive modulation of circulating neutrophil and monocyte numbers, reduced platelet activation and lower RANTES and MCP-1 levels by rimonabant in Zucker rats. This may potentially contribute to a reduction of cardiovascular risk.
Collapse
Affiliation(s)
- A Schäfer
- Department of Internal Medicine I-Cardiology, University Hospital Würzburg, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Russo I, Del Mese P, Doronzo G, Mattiello L, Viretto M, Bosia A, Anfossi G, Trovati M. Resistance to the nitric oxide/cyclic guanosine 5'-monophosphate/protein kinase G pathway in vascular smooth muscle cells from the obese Zucker rat, a classical animal model of insulin resistance: role of oxidative stress. Endocrinology 2008; 149:1480-9. [PMID: 18079207 DOI: 10.1210/en.2007-0920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Some in vivo and ex vivo studies demonstrated a resistance to the vasodilating effects of nitric oxide (NO) in insulin-resistant states and, in particular, obese Zucker rats (OZR). To evaluate the biochemical basis of this phenomenon, we aimed to identify defects of the NO/cGMP/cGMP-dependent protein kinase (PKG) pathway in cultured vascular smooth muscle cells (VSMCs) from OZR and lean Zucker rats (LZR) by measuring: 1) NO donor ability to increase cGMP in the absence and presence of inhibitors of soluble guanylate cyclase (sGC) and phosphodiesterases (PDEs); 2) NO and cGMP ability to induce, via PKG, vasodilator-stimulated phosphoprotein (VASP) phosphorylation at serine 239 and PDE5 activity; 3) protein expression of sGC, PKG, total VASP, and PDE5; 4) superoxide anion concentrations and ability of antioxidants (superoxide dismutase+catalase and amifostine) to influence the NO/cGMP/PKG pathway activation; and 5) hydrogen peroxide influence on PDE5 activity and VASP phosphorylation. VSMCs from OZR vs. LZR showed: 1) baseline cGMP concentrations higher, at least in part owing to reduced catabolism by PDEs; 2) impairment of NO donor ability to increase cGMP, even in the presence of PDE inhibitors, suggesting a defect in the NO-induced sGC activation; 3) reduction of NO and cGMP ability to activate PKG, indicated by the impaired ability to phosphorylate VASP at serine 239 and to increase PDE5 activity via PKG; 4) similar baseline protein expression of sGC, PKG, total VASP, and PDE5; and 5) higher levels of superoxide anion. Antioxidants partially prevented the defects of the NO/cGMP/PKG pathway observed in VSMCs from OZR, which were reproduced by hydrogen peroxide in VSMCs from LZR, suggesting the pivotal role of oxidative stress.
Collapse
Affiliation(s)
- I Russo
- Diabetes Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano (TO), Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
RGS5 is a potent GTPase-activating protein for G(ialpha) and G(qalpha) that is expressed strongly in pericytes and is present in vascular smooth muscle cells. To study the role of RGS5 in blood vessel physiology, we generated Rgs5-deficient mice. The Rgs5(-/-) mice developed normally, without obvious defects in cardiovascular development or function. Surprisingly, Rgs5(-/-) mice had persistently low blood pressure, lower in female mice than in male mice, without concomitant cardiac dysfunction, and a lean body habitus. The examination of the major blood vessels revealed that the aortas of Rgs5(-/-) mice were dilated compared to those of control mice, without altered wall thickness. Isolated aortic smooth muscle cells from the Rgs5(-/-) mice exhibited exaggerated levels of phosphorylation of vasodilator-stimulated phosphoprotein and extracellular signal-regulated kinase in response to stimulation with either sodium nitroprusside or sphingosine 1-phosphate. The results of this study, along with those of previous studies demonstrating that RGS5 stability is under the control of nitric oxide via the N-end rule pathway, suggest that RGS5 may balance vascular tone by attenuating vasodilatory signaling in vivo in opposition to RGS2, another RGS (regulator of G protein signaling) family member known to inhibit G protein-coupled receptor-mediated vasoconstrictor signaling. Blocking the function or the expression of RGS5 may provide an alternative approach to treat hypertension.
Collapse
|
32
|
Abstract
The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.
Collapse
Affiliation(s)
- G Pula
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | |
Collapse
|
33
|
Kume M, Banafsche R, Yamamoto Y, Yamaoka Y, Nobiling R, Gebhard MM, Klar E. Dynamic changes of post-ischemic hepatic microcirculation improved by a pre-treatment of phosphodiesterase-3 inhibitor, milrinone. J Surg Res 2006; 136:209-18. [PMID: 17045613 DOI: 10.1016/j.jss.2006.05.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 05/02/2006] [Accepted: 05/16/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Phosphodiesterase-3 inhibition has been shown to attenuate hepatic warm ischemia-reperfusion injury. The aim of this study was to investigate the effect of milrinone, phosphodiesterase-3 inhibitor, on post-ischemic microcirculation of rat livers by intravital microscopy. MATERIALS AND METHODS Male Wistar rats were randomly assigned to three groups; group A, milrinone pre-treatment; group B, ischemic pre-conditioning; and group C, no pre-treatment. All animals underwent a 60-min warm ischemia of the left lateral liver lobe. Microvascular perfusion and leukocyte-endothelial interaction were observed by intravital videomicroscopy. Hepatocellular viability and cellular damage were quantified by adenosine triphosphate tissue concentration as well as alanine aminotransferase and lactate dehydrogenase blood levels, respectively. RESULTS In groups A and B, cyclic AMP hepatic tissue concentration was elevated significantly. After reperfusion, microvascular perfusion in hepatic sinusoids was significantly better maintained, and the number of adherent leukocytes was reduced in sinusoids and in post-sinusoidal venules in these rats. Serum transaminase blood levels were suppressed significantly in these groups compared with controls. CONCLUSION The demonstrated improvement of hepatic microcirculation is certainly derived from milrinone induced cell protection in ischemia reperfusion of the liver. This effect is outlined by improved energy status and reduced liver enzyme liberation and mimics the effect of ischemic pre-conditioning.
Collapse
Affiliation(s)
- Makoto Kume
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Schäfer A, Flierl U, Kobsar A, Eigenthaler M, Ertl G, Bauersachs J. Soluble guanylyl cyclase activation with HMR1766 attenuates platelet activation in diabetic rats. Arterioscler Thromb Vasc Biol 2006; 26:2813-8. [PMID: 17023677 DOI: 10.1161/01.atv.0000249407.92147.12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Platelet activation significantly contributes to cardiovascular morbidity and mortality in diabetes. An association between impaired NO-mediated platelet inhibition and platelet activation has recently been demonstrated in experimental diabetes. Guanylyl cyclase activation enhances the reduced signaling via the NO/cGMP pathway. We investigated whether chronic guanylyl cyclase activation would beneficially modulate platelet activation in experimental diabetes mellitus. METHODS AND RESULTS Diabetes was induced by streptozotocin-injection in male Wistar rats. After 2 weeks, treatment with either placebo or the guanylyl cyclase activator HMR1766 (10 mg/kg twice daily by gavage) was initiated. Two weeks later, in vivo platelet activation and in vitro platelet reactivity were assessed. Chronic treatment with HMR1766 enhanced NO/cGMP-mediated signaling in platelets from diabetic rats determined by in vivo phosphorylation of platelet vasodilator-stimulated phosphoprotein (VASP) at Ser157 and Ser239. In parallel, platelet-binding of fibrinogen, surface-expression of P-selectin, appearance of platelet-derived microparticles, and platelet-aggregates with other blood cells were significantly reduced by chronic treatment with HMR1766. CONCLUSIONS Chronic activation of soluble guanylyl cyclase in diabetic rats improved markers of platelet activation and is a rationale approach for prevention of adverse cardiovascular events in diabetes.
Collapse
Affiliation(s)
- Andreas Schäfer
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Hezard N, Metz D, Garnotel R, Simon G, Mace C, Koebel P, Nguyen P. Platelet VASP phosphorylation assessment in clopidogrel-treated patients: lack of agreement between Western blot and flow cytometry. Platelets 2006; 16:474-81. [PMID: 16323337 DOI: 10.1080/09537100500212551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) 239 phosphorylation flow cytometric assessment has been reported as a tool to evaluate the responsiveness to clopidogrel in coronary heart disease (CHD) patients. We report for the first time the comparison between flow cytometry and two challenger assays, aggregometry and Western blot. We studied 21clopidogrel-treated CHD patients, and 28 healthy volunteers. Aggregometry showed platelet function inhibition inpatients. VASP 239 phosphorylation was assessed using flow cytometry and Western blot. ADP receptor response index (RI) were calculated using the formula (PGE1) - (PGE1 + ADP)/(PGE1) x 100. Flow cytometry was not able to detect clopidogrel intake, as RI were 99 +/- 10% [68-130] in healthy volunteers, and 91 +/- 17% [66-127] in treated patients (ns). On the contrary, RI mean in Western blot was 91 + 8% [76-127] in healthy volunteers, and 37 i 25% [4-80] in patients (p<0.05). The extreme values in Western blot revealed inter-individual variability in response to treatment. The comparison between both tests showed a total lack of agreement. Flow cytometric VASP 239 phosphorylation assay lacks sensitivity to detect clopidogrel intake, contrary to Western blot and aggregometry. Caution is required before classifying patients as 'low-responders' to thienopyridines using such method.
Collapse
|
36
|
Persson AA, Gunnarsson P, Lindström E, Grenegård M. Dual actions of dephostatin on the nitric oxide/cGMP-signalling pathway in porcine iliac arteries. Eur J Pharmacol 2005; 521:124-32. [PMID: 16182278 DOI: 10.1016/j.ejphar.2005.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 07/20/2005] [Accepted: 08/09/2005] [Indexed: 02/07/2023]
Abstract
We examined the effects of the nitrosoamine dephostatin on the nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP)-signalling in porcine iliac arteries. Dephostatin has been characterised as a tyrosine phosphatase inhibitor, but Western blot analyses showed that dephostatin did not augment tyrosine phosphorylation of arterial proteins. However, dephostatin relaxed pre-contracted arteries, and this effect was antagonised by the soluble guanylyl cyclase inhibitor 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Furthermore, dephostatin increased the cGMP content and the serine phosphorylation of vasodilator-stimulated phosphoprotein. Dephostatin also inhibited the relaxation induced by acetylcholine and the NO-donor S-nitroso-N-acetyl-penicillamine (SNAP). In contrast, dephostatin did not affect the NO-dependent actions of 1,2,3,4-Oxatriazolium, 3-(3-chloro-2-metylphenyl)-5-[[(4methylphenyl)sulfonyl]amino]-hydroxide inner salt (GEA 3175). Measurement of NO revealed that dephostatin accelerated the consumption of NO. In conclusion, dephostatin exerts dual effects on the NO/cGMP-signalling pathway in iliac arteries. The drug actions included scavenging of NO, but also stimulation of cGMP production. These effects were not related to inhibition of tyrosine phosphatases.
Collapse
Affiliation(s)
- Anna Asplund Persson
- Department of Medicine and Care, Division of Pharmacology, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | | | | | |
Collapse
|
37
|
Hamid SA, Baxter GF. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res Cardiol 2005; 100:387-96. [PMID: 16010601 DOI: 10.1007/s00395-005-0538-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 04/18/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Adrenomedullin (AM) is a vascular-derived polypeptide that exerts numerous actions in cardiovascular homeostasis. Recent studies have demonstrated a cytoprotective action of exogenously applied or genetically over-expressed AM in experimental myocardial infarction. The present studies were undertaken to test the hypothesis that AM exerts its effects through direct augmentation of NO generation in the myocardium during early reperfusion. Rat isolated hearts underwent 35 min left coronary artery occlusion followed by 120 min reperfusion. Infarct size (as percentage of ischaemic riskzone) was determined by Evans' blue and tetrazolium double staining. AM 1 nM administered 5 min prior to and during the first 15 min of ischaemia did not significantly influence infarct size. However, the same concentration of AM given during the last 5 min ischaemia and first 15 min of reperfusion significantly limited infarct size (AM reperfusion 15.9 +/- 3.5% vs control 31.4 +/- 2.1%, P < 0.01). AM at reperfusion improved coronary flow and LV contractility. The protective effects of adrenomedullin were abolished in the presence of the NO synthase inhibitor, L-NAME 100 microM (infarct size 24.6 +/- 5.7%, P > 0.05 vs control). AM treatment at reperfusion was associated with augmented phosphorylation of the pro-survival kinase, Akt, determined by immunoblotting of tissue sampled 30 min following reperfusion. These studies provide the first evidence that AM exerts its cytoprotective action specifically during early reperfusion through a NO-dependent mechanism.
Collapse
Affiliation(s)
- S A Hamid
- Department of Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK, United Kingdom.
| | | |
Collapse
|
38
|
Linder AE, McCluskey LP, Cole KR, Lanning KM, Webb RC. Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta. J Pharmacol Exp Ther 2005; 314:9-15. [PMID: 15778264 DOI: 10.1124/jpet.105.083634] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classically, nitric oxide (NO) formed by endothelial NO synthase (eNOS) freely diffuses from its generation site to smooth muscle cells where it activates soluble guanylyl cyclase (sGC), producing cGMP. Subsequently, cGMP activates both cGMP- and cAMP-dependent protein kinases [cGMP-dependent protein kinase (PKG) and cAMP-dependent protein kinase (PKA), respectively], leading to smooth muscle relaxation. In endothelial cells, eNOS has been localized to caveolae, small invaginations of the plasma membrane rich in cholesterol. Membrane cholesterol depletion impairs acetylcholine (ACh)-induced relaxation due to alteration in caveolar structure. Given the nature of NO to be more soluble in a hydrophobic environment than in water, and assuming that colocalization of components in a signal transduction cascade seems to be a critical determinant of signaling efficiency by eNOS activation, we hypothesize that sGC, PKA, and PKG activation may occur at the plasma membrane caveolae. In endothelium-intact rat aortic rings, the relaxation induced by ACh, by the sGC activator 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1), and by 8-bromo-cGMP was impaired in the presence of methyl-beta-cyclodextrin, a drug that disassembles caveolae by sequestering cholesterol from the membrane. sGC, PKG, and PKA were colocalized with caveolin-1 in aortic endothelium, and this colocalization was abolished by methyl-beta-cyclodextrin. Methyl-beta-cyclodextrin efficiently disassembled caveolae in endothelium. In summary, our results provide evidence of compartmentalization of sGC, PKG, and PKA in endothelial caveolae contributing to NO signaling cascade, giving new insights by which the endothelium mediates vascular smooth muscle relaxation.
Collapse
Affiliation(s)
- A Elizabeth Linder
- Medical College of Georgia, Department of Physiology (CA-3101), 1120 Fifteenth St., Augusta, GA 30912-3000, USA.
| | | | | | | | | |
Collapse
|
39
|
Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. ACTA ACUST UNITED AC 2005; 132:87-92. [PMID: 15548432 DOI: 10.1016/j.molbrainres.2004.08.025] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2004] [Indexed: 11/17/2022]
Abstract
The arachidonic acid derivative, 2-arachidonoyl-glycerol (2-AG), was initially isolated from gut and brain; it is also produced and released from blood and vascular cells. Many of the 2-AG-induced cellular responses (i.e., neuromodulation, cytoprotection and vasodilation) are mediated by cannabinoid receptors CB1 and CB2. The findings presented here demonstrate the expression of CB1, CB2 and TRPV1 receptors on cerebromicrovascular endothelial cells (HBEC). The expression of TRPV1, CB1 and CB2 receptor mRNA and proteins were demonstrated by RT-PCR and polyclonal antibodies, respectively. The endocannabinoid 2-AG, and other related compounds [anandamide (ANA), methanandamide (m-ANA), N-(4-hydroxyphenyl-arachidonyl-ethanolamide) (AM404) and capsaicin] dose-dependently stimulated Ca2+ influx in HBEC. The selective TRPV1 receptor antagonist (capsazepine), CB1 receptor antagonist (SR141716A) and CB2 receptor antagonist (SR144528) inhibited these responses. The effects of capsaicin, a specific agonist for TRPV1 receptors, were inhibited by capsazepine, but only weakly by CB1 or CB2 receptor antagonists. 2-AG also induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP); this response was mediated by VR1 receptors. These studies clearly indicate that 2-AG and other related compounds may function as agonists on VR1 receptors, as well as CB1 and CB2 receptors, and implicated these factors in various HBEC functions.
Collapse
MESH Headings
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiology
- Brain/blood supply
- Brain/metabolism
- Camphanes/pharmacology
- Cannabinoid Receptor Agonists
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoid Receptor Modulators/pharmacology
- Capsaicin/analogs & derivatives
- Capsaicin/metabolism
- Capsaicin/pharmacology
- Cell Adhesion Molecules/drug effects
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Cerebrovascular Circulation/drug effects
- Cerebrovascular Circulation/physiology
- Dose-Response Relationship, Drug
- Drug Interactions/physiology
- Endocannabinoids
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Glycerides/metabolism
- Glycerides/pharmacology
- Humans
- Ion Channels/agonists
- Ion Channels/genetics
- Ion Channels/metabolism
- Microcirculation/drug effects
- Microcirculation/metabolism
- Microfilament Proteins
- Phosphoproteins/drug effects
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Pyrazoles/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
- Receptors, Drug/agonists
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Rimonabant
- TRPV Cation Channels
Collapse
|
40
|
Schäfer A, Alp NJ, Cai S, Lygate CA, Neubauer S, Eigenthaler M, Bauersachs J, Channon KM. Reduced vascular NO bioavailability in diabetes increases platelet activation in vivo. Arterioscler Thromb Vasc Biol 2004; 24:1720-6. [PMID: 15242858 DOI: 10.1161/01.atv.0000138072.76902.dd] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Platelet activation is a feature of cardiovascular disease that is also characterized by endothelial dysfunction. The direct relationship between impaired endothelium-derived NO bioavailability and platelet activation remains unclear. We investigated whether acute inhibition of NO production modulates platelet activation in mice and whether specific rescue of endothelial function in diabetes modifies platelet activation. METHODS AND RESULTS Intravenous injection of the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester in wild-type (WT) mice significantly reduced platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation and increased platelet surface expression of P-selectin, CD40 ligand, and fibrinogen platelet binding, demonstrating that NO production exerts tonic inhibition of platelet activation in mice. Diabetes was induced by streptozotocin injection in WT or endothelial-targeted guanosine 5'-triphosphate cyclohydrolase I (GCH)-transgenic (GCH-Tg) mice protected from endothelial dysfunction in diabetes by sustained levels of tetrahydrobiopterin in vascular endothelium. Platelet VASP phosphorylation was significantly reduced in diabetic WT but not in diabetic GCH-Tg mice. P-selectin, CD40 ligand expression, and fibrinogen binding were increased in diabetic WT mice but remained unchanged compared with controls in endothelial-targeted GCH-Tg mice. CONCLUSIONS Platelet activation results from acute and chronic reduction in NO bioactivity. Rescue of platelet activation in diabetes by endothelial-specific restoration of NO production demonstrates that platelet function in vivo is principally regulated by endothelium-derived NO. Endothelial dysfunction caused by uncoupling of endothelial NO synthase is well described in diabetes mellitus and may lead to platelet activation. Acute loss of systemic NO bioavailability causes platelet activation. eNOS uncoupling prevention in diabetes preserved systemic NO bioavailability and maintained a physiological platelet state without activation in vivo.
Collapse
Affiliation(s)
- Andreas Schäfer
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schäfer A, Widder J, Eigenthaler M, Ertl G, Bauersachs J. Reduced basal nitric oxide bioavailability and platelet activation in young spontaneously hypertensive rats. Biochem Pharmacol 2004; 67:2273-9. [PMID: 15163558 DOI: 10.1016/j.bcp.2004.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the role of basal nitric oxide (NO) bioavailability for platelet activation in young spontaneously hypertensive rats before onset of hypertension. Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) in platelets was used as a sensitive monitor of in vivo NO bioavailability. METHODS AND RESULTS Whole blood samples were taken from 10-week-old Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). In vivo surface-expression of P-selectin and platelet-binding of fibrinogen were assessed by flow cytometry. Platelet VASP-phosphorylation at its serine 239 (Ser239) and serine 157 (Ser157) residues was assessed using specific antibodies to determine NO bioavailability in vivo, and compared with endothelial vasomotor function. The increment in vascular tone following inhibition of NO-synthase in slightly preconstricted aortic rings was reduced indicating less NO formation under physiological stimulation (WKY 71.1+/-4.1%; SHR 57.8+/-2.4%, P<0.05). In vivo platelet VASP-phosphorylation was significantly reduced at both phosphorylation sites in SHR (mean fluorescence for Ser239: WKY: 15.2+/-0.6; SHR: 11.7+/-0.5, P<0.01; Ser157: WKY: 53.0+/-3.0; SHR: 35.0+/-3.5, P<0.05). Surface-expression of P-selectin and membrane-bound fibrinogen were significantly enhanced in SHR compared with WKY (P-selectin: WKY: 23.2+/-3.4; SHR 58.3+/-7.9, P<0.001; platelet-bound fibrinogen: WKY: 8.6+/-0.5; SHR: 13.5+/-1.1, P<0.001). In vitro preincubation of platelets with the NO donor sodium nitroprusside normalized platelet surface-expression of P-selectin in SHR. CONCLUSION Using VASP-phosphorylation as a sensitive monitor of in vivo NO bioavailability, these data provide evidence that reduced vascular NO formation in vivo contributes to increased platelet activation in young SHR.
Collapse
Affiliation(s)
- Andreas Schäfer
- Medizinische Klinik der Julius-Maximilians-Universität, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
42
|
Zeng C, Wang D, Yang Z, Wang Z, Asico LD, Wilcox CS, Eisner GM, Welch WJ, Felder RA, Jose PA. Dopamine D
1
Receptor Augmentation of D
3
Receptor Action in Rat Aortic or Mesenteric Vascular Smooth Muscles. Hypertension 2004; 43:673-9. [PMID: 14769810 DOI: 10.1161/01.hyp.0000118958.27649.6f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine is an important modulator of blood pressure, in part, by regulating vascular resistance. To test the hypothesis that D
1
and D
3
receptors interact in vascular smooth muscle cells, we studied A10 cells, a rat aortic smooth muscle cell line, and rat mesenteric arteries that express both dopamine receptor subtypes. Fenoldopam, a D
1
-like receptor agonist, increased both D
1
and D
3
receptor protein in a time-dependent and a concentration-dependent manner in A10 cells. The effect of fenoldopam was specific because a D
1
-like receptor antagonist, SCH23390 (10
−7
M/24 h), completely blocked the stimulatory effect of fenoldopam (10
−7
M/24 h) (D
3
receptor: control=21±1 density units [DU]); SCH23390=23±2 DU; fenoldopam=33±2 DU; fenoldopam+SCH23390=23±2 DU; n=10). D
1
and D
3
receptors physically interacted with each other because fenoldopam (10
−7
M/24 h) increased D
1
/D
3
receptor coimmunoprecipitation (35±5 versus 65±5 DU; n=8). A D
3
receptor agonist, PD128907, relaxed mesenteric arterial rings independent of the endothelium, effects that were blocked by a D
3
receptor antagonist, U99194A. Costimulation of D
1
and D
3
receptors led to additive vasorelaxation. We conclude that the D
1
receptor regulates the D
3
receptor by physical interaction and receptor expression. D
1
receptor stimulation augments D
3
receptor vasorelaxant effects. An interaction of D
1
and D
3
receptors may be involved in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Aorta/cytology
- Cell Line
- Culture Techniques
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Fenoldopam/pharmacology
- Male
- Mesenteric Arteries/anatomy & histology
- Mesenteric Arteries/chemistry
- Mesenteric Arteries/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Inbred WKY
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/immunology
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, PHC-2 Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zeng C, Wang D, Asico LD, Welch WJ, Wilcox CS, Hopfer U, Eisner GM, Felder RA, Jose PA. Aberrant D1 and D3 dopamine receptor transregulation in hypertension. Hypertension 2004; 43:654-60. [PMID: 14732731 DOI: 10.1161/01.hyp.0000114601.30306.bf] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine plays a role in the regulation of blood pressure by inhibition of sodium transport in renal proximal tubules (RPTs) and relaxation of vascular smooth muscles. Because dopamine receptors can regulate and interact with each other, we studied the interaction of D(1) and D(3) receptors in immortalized RPT cells and mesenteric arteries from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs), and in human coronary artery smooth muscle cells (CASMCs). In WKY rats, the D(1)-like agonist, fenoldopam, increased D(3) receptor protein in a time-dependent and concentration-dependent manner (EC(50)=4.5x10(-9) M, t(1/2)=15.8 hours). In SHRs, fenoldopam (10(-5) M) actually decreased the expression of D(3) receptors. D(1) and D(3) receptor co-immunoprecipitation was increased by fenoldopam (10(-7) M/24 h) in WKY rats but not in SHRs. The effects of fenoldopam in CASMCs were similar as those in WKY RPT cells (ie, fenoldopam increased D(1) and D(3) receptor proteins). Both D(3) (PD128907, Emax=80%+/-6%, pED(50)=5+/-0.1) and D(1)-like receptor (fenoldopam, Emax=81%+/-8%, pED(50)=5+/-0.2, n=12) agonists relaxed mesenteric arterial rings. Co-stimulation of D(1) and D(3) receptors led to additive vasorelaxation in WKY rats, but not in SHRs. D(1) and D(3) receptors interact differently in WKY and SHRs. Altered interactions between D(1) and D(3) receptors may play a role in the pathogenesis of genetic hypertension, including human hypertension, because these receptors also interact in human vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Cell Line
- Coronary Vessels/cytology
- Dopamine Agonists/pharmacology
- Fenoldopam/pharmacology
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Mesenteric Arteries/physiopathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Precipitin Tests
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Vasodilation
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, PHC-2, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Widder J, Pelzer T, von Poser-Klein C, Hu K, Jazbutyte V, Fritzemeier KH, Hegele-Hartung C, Neyses L, Bauersachs J. Improvement of Endothelial Dysfunction by Selective Estrogen Receptor-α Stimulation in Ovariectomized SHR. Hypertension 2003; 42:991-6. [PMID: 14581292 DOI: 10.1161/01.hyp.0000098661.37637.89] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both known estrogen receptors, ERα and ERβ, are expressed in blood vessels. To gain further insight into the role of ERα in a functional setting, we investigated the effect of the novel highly selective ERα agonist Cpd1471 on vascular reactivity in ovariectomized spontaneously hypertensive rats (SHR). After ovariectomy or sham operation, 12-week-old female SHR received either 17β-estradiol (E2, 2 μg/kg body wt per day), the selective ERα agonist Cpd1471 (30 μg/kg body wt per day), or placebo. Acetylcholine-induced endothelium-dependent vasorelaxation was significantly blunted in aortas from ovariectomized rats (R
max
, 53%±3% versus sham, 79%±2%;
P
<0.001). Treatment with E2 or Cpd1471 significantly augmented acetylcholine-induced relaxation in ovariectomized rats (R
max
, 70%±2%; resp, 73%±2%). Endothelium-independent relaxation induced by sodium nitroprusside was not different among the four groups. The contractile response induced by the nitric oxide (NO) synthase inhibitor Nω-nitro-
l
-arginine, an index of basal NO formation, was significantly lower in ovariectomized rats compared with sham-operated animals (53±2% versus 77%±5%;
P
<0.01) and was normalized by both E2 (70%±2%) and Cpd1471 (70%±3%). Aortic endothelial NO synthase (eNOS) expression and phosphorylation of the vasodilator-stimulated phosphoprotein, an index of NO/cGMP-signaling, was reduced in ovariectomized SHR and normalized by E2 and Cpd1471. In SHR after ovariectomy, endothelium-dependent NO-mediated vasorelaxation and eNOS expression are attenuated. The novel selective ERα agonist Cpd1471 prevented these pathophysiological changes to a similar extent as E2. Thus, the pharmacological principle of selective ERα activation mediates positive vascular effects.
Collapse
Affiliation(s)
- Julian Widder
- Medizinische Klinik der Julius-Maximilians-Universität, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kleschyov AL, Oelze M, Daiber A, Huang Y, Mollnau H, Schulz E, Sydow K, Fichtlscherer B, Mülsch A, Münzel T. Does nitric oxide mediate the vasodilator activity of nitroglycerin? Circ Res 2003; 93:e104-12. [PMID: 14551241 DOI: 10.1161/01.res.0000100067.62876.50] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitroglycerin (glyceryl trinitrate, GTN) relaxes blood vessels primarily via activation of the soluble guanylyl cyclase (sGC)/cGMP/cGMP-dependent protein kinase (cGK-I) pathway. Although the precise mechanism of sGC activation by GTN in the vascular wall is unknown, the mediatory role of nitric oxide (NO) has been postulated. We tested the GTN/NO hypothesis in different types of isolated rat and rabbit blood vessels using two novel approaches: (1) EPR spin trapping using colloid Fe(DETC)2 and (2) analysis of cGK-I-dependent phosphorylation of the vasodilator-stimulated phosphoprotein at Ser239 (P-VASP). For comparison, another organic nitrate, isosorbide dinitrate (ISDN), and endothelium-dependent vasodilator, calcium ionophore A23187, were tested. We found a marked discrepancy between GTN's strong vasoactivity (vasodilation and augmentation of P-VASP) and its poor NO donor properties. In aortas precontracted with phenylephrine, GTN, ISDN, and A23187 induced nearly full relaxations (>80%) and doubling of vascular P-VASP content at concentrations of 100 nmol/L, 100 micromol/L, and 1 micromol/L, respectively. GTN applied in vasorelaxant concentrations (10 to 1000 nmol/L) did not significantly increase the basal vascular NO production, in contrast to ISDN and A23187. The absence of GTN-derived NO was confirmed in rabbit vena cava and renal artery. A significant increase in vascular NO formation was observed only at suprapharmacological GTN concentrations (>10 micromol/L). The concentration dependency of NO formation from GTN was comparable to that of ISDN, although the latter exhibits 100-folds lower vasorelaxant potency. We conclude that GTN activates the sGC/cGMP/cGK-I pathway and induces vasorelaxation without intermediacy of the free radical NO. The full text of this article is available online at http://www.circresaha.org.
Collapse
Affiliation(s)
- Andrei L Kleschyov
- Division of Cardiology, University Hospital Hamburg-Eppendorf, Martinistr 52, Hamburg 20246, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|