1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Dwivedi I, Haddad GG. Investigating the neurobiology of maternal opioid use disorder and prenatal opioid exposure using brain organoid technology. Front Cell Neurosci 2024; 18:1403326. [PMID: 38812788 PMCID: PMC11133580 DOI: 10.3389/fncel.2024.1403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Over the past two decades, Opioid Use Disorder (OUD) among pregnant women has become a major global public health concern. OUD has been characterized as a problematic pattern of opioid use despite adverse physical, psychological, behavioral, and or social consequences. Due to the relapsing-remitting nature of this disorder, pregnant mothers are chronically exposed to exogenous opioids, resulting in adverse neurological and neuropsychiatric outcomes. Collateral fetal exposure to opioids also precipitates severe neurodevelopmental and neurocognitive sequelae. At present, much of what is known regarding the neurobiological consequences of OUD and prenatal opioid exposure (POE) has been derived from preclinical studies in animal models and postnatal or postmortem investigations in humans. However, species-specific differences in brain development, variations in subject age/health/background, and disparities in sample collection or storage have complicated the interpretation of findings produced by these explorations. The ethical or logistical inaccessibility of human fetal brain tissue has also limited direct examinations of prenatal drug effects. To circumvent these confounding factors, recent groups have begun employing induced pluripotent stem cell (iPSC)-derived brain organoid technology, which provides access to key aspects of cellular and molecular brain development, structure, and function in vitro. In this review, we endeavor to encapsulate the advancements in brain organoid culture that have enabled scientists to model and dissect the neural underpinnings and effects of OUD and POE. We hope not only to emphasize the utility of brain organoids for investigating these conditions, but also to highlight opportunities for further technical and conceptual progress. Although the application of brain organoids to this critical field of research is still in its nascent stages, understanding the neurobiology of OUD and POE via this modality will provide critical insights for improving maternal and fetal outcomes.
Collapse
Affiliation(s)
- Ila Dwivedi
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
3
|
Katebi SN, Torkaman-Boutorabi A, Riahi E, Haghparast A. N-acetylcysteine attenuates accumbal core neuronal activity in response to morphine in the reinstatement of morphine CPP in morphine extinguished rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110942. [PMID: 38215930 DOI: 10.1016/j.pnpbp.2024.110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have suggested that N-acetylcysteine (NAC), has the potential to suppress drug craving in people with substance use disorder and reduce drug-seeking behaviors in animals. The nucleus accumbens (NAc) plays a crucial role in the brain's reward system, with the nucleus accumbens core (NAcore) specifically implicated in compulsive drug seeking and relapse. In this study, we aimed to explore the impact of subchronic NAC administration during the extinction period and acute NAC administration on the electrical activity of NAcore neurons in response to a priming dose of morphine in rats subjected to extinction from morphine-induced place preference (CPP).We conducted single-unit recordings in anesthetized rats on the reinstatement day, following the establishment of morphine-induced conditioned place preference (7 mg/kg, s.c., 3 days), and subsequent drug-free extinction. In the subchronically NAC-treated groups, rats received daily injections of either NAC (50 mg/kg; i.p.) or saline during the extinction period. On the reinstatement day, we recorded the spontaneous activity of NAcore neurons for 15 min, administered a priming dose of morphine, and continued recording for an additional 45 min. While morphine excited most recorded neurons in saline-treated rats, it failed to alter firing rates in NAC-treated rats that had received NAC during the extinction period. For acutely NAC-treated animals, we recorded the baseline activity of NAcore neurons for 10 min before administering a single injection of either NAC (50 mg/kg; i.p.) or saline in rats with no treatment during the extinction. Following 30 min of recording and a priming dose of morphine (1 mg/kg, s.c.), the recording continued for an additional 30 min. The firing activity of NAcore neurons did not show significant changes after morphine or NAC injection. In conclusion, our findings emphasize that daily NAC administration during the extinction period significantly attenuates the morphine-induced increase in firing rates of NAcore neurons during the reinstatement of morphine CPP. However, acute NAC injection does not produce the same effect. These results suggest that modulating glutamate transmission through daily NAC during extinction may effectively inhibit the morphine place preference following the excitatory effects of morphine on NAcore neurons.
Collapse
Affiliation(s)
- Seyedeh-Najmeh Katebi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Galaj E, Barrera ED, Persaud K, Nisanov R, Vashisht A, Goldberg H, Patel N, Lenhard H, You ZB, Gardner EL, Ranaldi R. The Impact of Heroin Self-Administration and Environmental Enrichment on Ventral Tegmental CRF1 Receptor Expression. Int J Neuropsychopharmacol 2023; 26:828-839. [PMID: 37864842 PMCID: PMC10726410 DOI: 10.1093/ijnp/pyad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Rudolf Nisanov
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Hindy Goldberg
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Nima Patel
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NYUSA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
5
|
Liu X, Wang F, Le Q, Ma L. Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Curr Opin Neurobiol 2023; 83:102813. [PMID: 37972536 DOI: 10.1016/j.conb.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Addiction has been conceptualized as a disease of learning and memory. Learned associations between environmental cues and unconditioned rewards induced by drug administration, which play a critical role in addiction, have been shown to be encoded in sparsely distributed populations of neurons called neuronal ensembles. This review aims to highlight how synaptic remodeling and alterations in signaling pathways that occur specifically in neuronal ensembles contribute to the pathogenesis of addiction. Furthermore, a causal link between transcriptional and epigenetic modifications in neuronal ensembles and the development of the addictive state is proposed. Translational studies of molecular and cellular changes in neuronal ensembles that contribute to drug-seeking behavior, will allow the identification of molecular and circuit targets and interventions for substance use disorders.
Collapse
Affiliation(s)
- Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
6
|
Levis SC, Birnie MT, Bolton JL, Perrone CR, Montesinos JS, Baram TZ, Mahler SV. Enduring disruption of reward and stress circuit activities by early-life adversity in male rats. Transl Psychiatry 2022; 12:251. [PMID: 35705547 PMCID: PMC9200783 DOI: 10.1038/s41398-022-01988-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
In humans, early-life adversity (ELA) such as trauma, poverty, and chaotic environment is linked to increased risk of later-life emotional disorders including depression and substance abuse. These disorders involve underlying disruption of reward circuits and likely vary by sex. Accordingly, we previously found that ELA leads to anhedonia for natural rewards and cocaine in male rodents, whereas in females ELA instead increases vulnerability to addiction-like use of opioid drugs and palatable food. While these findings suggest that ELA-induced disruption of reward circuitry may differ between the sexes, the specific circuit nodes that are influenced by ELA in either sex remain poorly understood. Here, in adult male Sprague-Dawley rats, we ask how ELA impacts opioid addiction-relevant behaviors that we previously tested after ELA in females. We probe potential circuit mechanisms in males by assessing opioid-associated neuronal activation in stress and reward circuit nodes including nucleus accumbens (NAc), amygdala, medial prefrontal cortex (mPFC), and paraventricular thalamus. We find that ELA diminishes opioid-seeking behaviors in males, and alters heroin-induced activation of NAc, PFC, and amygdala, suggesting a potential circuit-based mechanism. These studies demonstrate that ELA leads to behavioral and neurobiological disruptions consistent with anhedonia in male rodents, unlike the increased opioid seeking we previously saw in females. Our findings, taken together with our prior work, suggest that men and women could face qualitatively different mental health consequences of ELA, which may be essential for individually tailoring future intervention strategies.
Collapse
Affiliation(s)
- Sophia C Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA.
| | - Matthew T Birnie
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Jessica L Bolton
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Christina R Perrone
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Johanna S Montesinos
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Boutin ME, Strong CE, Van Hese B, Hu X, Itkin Z, Chen YC, LaCroix A, Gordon R, Guicherit O, Carromeu C, Kundu S, Lee E, Ferrer M. A multiparametric calcium signal screening platform using iPSC-derived cortical neural spheroids. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:209-218. [PMID: 35092840 PMCID: PMC9177534 DOI: 10.1016/j.slasd.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Discovery of therapeutics for neurological diseases is hampered by the lack of predictive in vitro and in vivo models. Traditionally, in vitro assays rely on engineered cell lines grown two-dimensionally (2D) outside a physiological tissue context, which makes them very amenable for large scale drug screening but reduces their relevance to in vivo neurophysiology. In recent years, three-dimensional (3D) neural cell culture models derived from human induced pluripotent stem cells (iPSCs) have been developed as an in vitro assay platform to investigate brain development, neurological diseases, and for drug screening. iPSC-derived neural spheroids or organoids can be developed to include complex neuronal and glial cell populations and display spontaneous, synchronous activity, which is a hallmark of in vivo neural communication. In this report we present a proof-of-concept study evaluating 3D iPSC-derived cortical neural spheroids as a physiologically- and pharmacologically-relevant high-throughput screening (HTS) platform and investigate their potential for use for therapeutic development. To this end, a library of 687 neuroactive compounds were tested in a phenotypic screening paradigm which measured calcium activity as a functional biomarker for neural modulation through fluctuations in calcium fluorescence. Pharmacological responses of cortical neural spheroids were analyzed using a multi-parametric approach, whereby seven peak characteristics from the calcium activity in each well were quantified and incorporated into principal component analysis and Sammon mapping to measure compound response. Here, we describe the implementation of the 687-compound library screen and data analysis demonstrating that iPSC-derived cortical spheroids are a robust and information-rich assay platform for HTS.
Collapse
Affiliation(s)
- Molly E Boutin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA; Ecovative Design, 70 Cohoes Avenue, Green Island, NY, USA
| | - Caroline E Strong
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | - Xin Hu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | | | | | | | - Srikanya Kundu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Emily Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
8
|
Gobin C, Sortman B, Rakela S, Quintana-Feliciano R, Warren BL. Fos-expressing neuronal ensembles in rat infralimbic cortex encode initial and maintained oxycodone seeking in rats. Addict Biol 2022; 27:e13148. [PMID: 35229934 PMCID: PMC10167745 DOI: 10.1111/adb.13148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022]
Abstract
Neuronal ensembles within the infralimbic cortex (IL) and their projections to the nucleus accumbens (NAc) mediate opiate seeking in well-trained rats. However, it is unclear how early this circuitry is recruited during oxycodone self-administration. Here, we used retrograde labelling (CTb) and immunohistochemistry to identify NAc-projecting neurons in the IL that were activated during initial oxycodone seeking. Next, we sought to determine the role of IL neuronal ensembles in initial oxycodone self-administration. We used the Daun02 procedure in male and female Fos-LacZ rats to chemogenetically inactivate IL Fos-expressing neurons at different time points in oxycodone self-administration training: immediately after meeting criteria for acquisition of behaviour and following nine daily sessions with increasing schedules of reinforcement (FR1, FR2 and FR3) in which rats demonstrated stable oxycodone intake under increasing effort to self-administer. We found that Daun02 infusions attenuated oxycodone seeking at both the initial learning and well-trained time points. These results suggest that IL neuronal ensembles are formed during initial learning of oxycodone self-administration and required for the maintenance and expression of oxycodone seeking.
Collapse
Affiliation(s)
- Christina Gobin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Bo Sortman
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Samantha Rakela
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | | | - Brandon L Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Zhang Y, Ou H, Yuan TF, Sun J. Electrophysiological indexes for impaired response inhibition and salience attribution in substance (stimulants and depressants) use disorders: A meta-analysis. Int J Psychophysiol 2021; 170:133-155. [PMID: 34687811 DOI: 10.1016/j.ijpsycho.2021.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
The impairment of inhibitory control and reward system is the core feature underlying substance use disorder (SUD). Previous studies suggested that it can be regarded as impaired response inhibition and salience attribution syndrome (iRISA). The neural substrates of the two deficit functions were widely investigated in neuroimaging studies, and the impaired prefrontal cortex, limbic-orbitofrontal network, and fronto-insular-parietal network were observed. Previous Event-related potential (ERP) studies were also conducted to explore EEG indexes related to abnormal brain function. In the current meta-analysis, we aimed to explore the consistency of ERP indexes that can reflect the two aberrant processes: P300/slow potential (SP) for salience attribution and Error-related negativity (ERN)/Nogo-N200/Nogo-P300 for inhibitory control and conflict monitoring. Subgroup analyses for drug type and drug use conditions were also conducted. According to the 60 research studies, we found significantly enhanced drug-cue-induced P300 amplitude and attenuated Nogo-N200 amplitude in SUD individuals relative to Healthy control (HC), which supports the dual model. Moreover, the drug-cue-induced P300 displayed time-dependence recovery, suggesting a potential index for treatment evaluation. In conclusion, drug-cue-induced P300 and Nogo-N200 demonstrated high consistency, and the drug-cue-induced P300 can be used to track the changes of functional recovery for SUD. The integration of the two ERP components could be regarded as a potential biomarker for SUD, which may provide a new insight for clinical treatment and investigation.
Collapse
Affiliation(s)
- Yi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Ou
- Research center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Junfeng Sun
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Vulnerability to addiction. Neuropharmacology 2021; 186:108466. [PMID: 33482225 DOI: 10.1016/j.neuropharm.2021.108466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Addiction is a chronic brain disease that has dramatic health and socioeconomic consequences worldwide. Multiple approaches have been used for decades to clarify the neurobiological basis of this disease and to identify novel potential treatments. This review summarizes the main brain networks involved in the vulnerability to addiction and specific innovative technological approaches to investigate these neural circuits. First, the evolution of the definition of addiction across the Diagnostic and Statistical Manual of Mental Disorders (DSM) is revised. We next discuss several innovative experimental techniques that, combined with behavioral approaches, have allowed recent critical advances in understanding the neural circuits involved in addiction, including DREADDs, calcium imaging, and electrophysiology. All these techniques have been used to investigate specific neural circuits involved in vulnerability to addiction and have been extremely useful to clarify the neurobiological basis of each specific component of the addictive process. These novel tools targeting specific brain regions are of great interest to further understand the different aspects of this complex disease. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- R Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - P Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
11
|
Kaminska B, Caballero JP, Moorman DE. Integration of value and action in medial prefrontal neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:57-82. [PMID: 33785156 DOI: 10.1016/bs.irn.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rodent medial prefrontal cortex (mPFC) plays a key role in regulating cognition, emotion, and behavior. mPFC neurons are activated in diverse experimental paradigms, raising the questions of whether there are specific task elements or dimensions encoded by mPFC neurons, and whether these encoded parameters are selective to neurons in particular mPFC subregions or networks. Here, we consider the role of mPFC neurons in processing appetitive and aversive cues, outcomes, and related behaviors. mPFC neurons are strongly activated in tasks probing value and outcome-associated actions, but these responses vary across experimental paradigms. Can we identify specific categories of responses (e.g., positive or negative value), or do mPFC neurons exhibit response properties that are too heterogeneous/complex to cluster into distinct conceptual groups? Based on a review of relevant studies, we consider what has been done and what needs to be further explored in order to address these questions.
Collapse
Affiliation(s)
- Beata Kaminska
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jessica P Caballero
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States; Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
12
|
Arezoomandan R, Riahi E, Haghparast A. Minocycline increases firing rates of accumbal neurons and modifies the effects of morphine on neuronal activity. Addict Biol 2018; 23:1055-1066. [PMID: 28961365 DOI: 10.1111/adb.12557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/02/2023]
Abstract
Accumulating evidence indicated that minocycline, a glial cell modulator, is able to modify a variety of morphine effects. Here, we investigated minocycline effects on electrical activity of nucleus accumbens (NAc) neurons using single unit recording in urethane-anesthetized rats. In addition, we investigated whether minocycline can modify the effects of morphine on NAc neural activity during reinstatement of morphine-seeking behavior. Minocycline increased the NAc firing activity in intact animals. Electrophysiological recording in morphine-treated animals was performed, following the acquisition of morphine-induced conditioned place preference (5 mg/kg, s.c., 3 days) and a drug-free extinction period. In acutely minocycline- treated animals, the neurons were recorded for 40 minutes following a single injection of either minocycline (50 μg/5 μl, i.c.v.) or saline. Then a priming dose of morphine (1 mg/kg, s.c.) was injected while the recording was continued for an additional 40 minutes. Minocycline significantly increased the firing rates of neurons and significantly modified morphine inhibitory effects on NAc neurons. In subchronically minocycline-treated groups, the rats were given daily injections of minocycline (50 μg/5 μl, i.c.v) during the extinction period. Then, on the reinstatement day, NAc neurons were recorded for 10 minutes, the priming dose of morphine was administered and the recording was continued for 45 minutes. Our results showed the failure of minocycline to significantly modify the inhibitory effects of morphine. In conclusion, our findings indicated that minocycline modifies morphine-induced decreases in the firing rates of NAc neurons in the reinstatement phase.
Collapse
Affiliation(s)
- Reza Arezoomandan
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry); Iran University of Medical Sciences; Tehran Iran
| | - Esmail Riahi
- Physiology Department, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
13
|
Laviolette SR. Cannabinoid regulation of opiate motivational processing in the mesolimbic system: the integrative roles of amygdala, prefrontal cortical and ventral hippocampal input pathways. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 2015; 1628:130-46. [PMID: 25529632 PMCID: PMC4472631 DOI: 10.1016/j.brainres.2014.12.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
The prefrontal cortex plays an important role in shaping cognition and behavior. Many studies have shown that medial prefrontal cortex (mPFC) plays a key role in seeking, extinction, and reinstatement of cocaine seeking in rodent models of relapse. Subregions of mPFC appear to play distinct roles in these behaviors, such that the prelimbic cortex (PL) is proposed to drive cocaine seeking and the infralimbic cortex (IL) is proposed to suppress cocaine seeking after extinction. This dichotomy of mPFC function may be a general attribute, as similar dorsal-ventral distinctions exist for expression vs. extinction of fear conditioning. However, other results indicate that the role of mPFC neurons in reward processing is more complex than a simple PL-seek vs. IL-extinguish dichotomy. Both PL and IL have been shown to drive and inhibit drug seeking (and other types of behaviors) depending on a range of factors including the behavioral context, the drug-history of the animal, and the type of drug investigated. This heterogeneity of findings may reflect multiple subcircuits within each of these PFC areas supporting unique functions. It may also reflect the fact that the mPFC plays a multifaceted role in shaping cognition and behavior, including those overlapping with cocaine seeking and extinction. Here we discuss research leading to the hypothesis that dorsal and ventral mPFC differentially control drug seeking and extinction. We also present recent results calling the absolute nature of a PL vs. IL dichotomy into question. Finally, we consider alternate functions for mPFC that correspond less to response execution and inhibition and instead incorporate the complex cognitive behavior for which the mPFC is broadly appreciated.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Morgan H James
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Ellen M McGlinchey
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; Program in Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
15
|
Rosen LG, Sun N, Rushlow W, Laviolette SR. Molecular and neuronal plasticity mechanisms in the amygdala-prefrontal cortical circuit: implications for opiate addiction memory formation. Front Neurosci 2015; 9:399. [PMID: 26594137 PMCID: PMC4633496 DOI: 10.3389/fnins.2015.00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/09/2015] [Indexed: 01/23/2023] Open
Abstract
The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related "trigger" memories that may persist for lengthy periods of time, even during abstinence, in both humans, and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall, and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC) and basolateral nucleus of the amygdala (BLA) share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway's ventral tegmental area (VTA) and nucleus accumbens (NAc) and can modulate dopamine (DA) transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modeling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK) and the Ca(2+)/calmodulin-dependent protein kinases (CaMK). Evidence will be reviewed that points to the importance of critical molecular memory switches within the mammalian brain that might mediate the neuropathological adaptations resulting from chronic opiate exposure, dependence, and withdrawal.
Collapse
Affiliation(s)
- Laura G Rosen
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Ninglei Sun
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada ; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| |
Collapse
|
16
|
Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 2015; 130:29-70. [PMID: 25857550 PMCID: PMC4687907 DOI: 10.1016/j.pneurobio.2015.03.005] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/19/2015] [Accepted: 03/29/2015] [Indexed: 12/17/2022]
Abstract
The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally relevant stimuli and coherent adaptive behaviors.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, New Brunswick, NJ 08854, United States.
| | - Roberto I Melendez
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, United States.
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, United States.
| | - T Celeste Napier
- Departments of Pharmacology and Psychiatry, Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
17
|
Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 2015; 9:90. [PMID: 26124708 PMCID: PMC4466441 DOI: 10.3389/fnsys.2015.00090] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 05/29/2015] [Indexed: 12/16/2022] Open
Abstract
The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH) and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc) and ventral pallidum (VP), in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (“liking”) and motivational incentive salience (“wanting”) of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating vs. intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including “liking” and “wanting” for food rewards.
Collapse
Affiliation(s)
- Daniel C Castro
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - Shannon L Cole
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - Kent C Berridge
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
18
|
Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res 2014; 1628:157-73. [PMID: 25446457 DOI: 10.1016/j.brainres.2014.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 01/02/2023]
Abstract
Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.
Collapse
Affiliation(s)
- Fabio C Cruz
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - F Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - Bruce T Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
19
|
Dopamine transporter availability in heroin-dependent subjects and controls: longitudinal changes during abstinence and the effects of Jitai tablets treatment. Psychopharmacology (Berl) 2013; 230:235-44. [PMID: 23715641 DOI: 10.1007/s00213-013-3148-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Previous imaging studies have indicated that the levels of the dopamine transporter (DAT) are reduced in the brains of heroin users. However, whether these changes can be reversed by abstinence and/or treatment remains unclear. OBJECTIVES This study aims to investigate DAT availability in heroin users and changes in DAT availability after abstinence and treatment with the Jitai tablets, a traditional Chinese medicinal product that is approved for the treatment of opioid addiction. METHODS Single-photon emission computed tomography (SPECT) with [(99m)Tc] TRODAT-1 was performed on heroin-dependent patients (n = 64) and healthy controls (n = 15). The patients were randomly assigned to treatment with either placebo or the Jitai. All patients underwent SPECT imaging both at baseline and after 6 months of treatment. DAT availability was assessed in the caudate and putamen. Depression and anxiety were evaluated at baseline. RESULTS DAT availability remained at low levels during a 6-month period in the placebo-treated group but was increased (14-17 %) in the Jitai-treated group. The ratio of DAT availability at month 6 to that at baseline in the Jitai-treated group was significantly higher than that in the placebo-treated group in both the bilateral caudate and putamen. DAT uptake in the striatum was significantly correlated with daily heroin dose, years of heroin use, and depression. CONCLUSIONS These findings suggest that chronic heroin use induces long-lasting striatal DAT reductions. DAT availability remained unchanged during a 6-month period of abstinence. Treatment with Jitai appears to be effective at increasing striatal DAT availability.
Collapse
|
20
|
Cruz FC, Koya E, Guez-Barber DH, Bossert JM, Lupica CR, Shaham Y, Hope BT. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat Rev Neurosci 2013; 14:743-54. [PMID: 24088811 DOI: 10.1038/nrn3597] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.
Collapse
Affiliation(s)
- Fabio C Cruz
- Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Pendyam S, Mohan A, Kalivas PW, Nair SS. Role of perisynaptic parameters in neurotransmitter homeostasis--computational study of a general synapse. Synapse 2012; 66:608-21. [PMID: 22460547 DOI: 10.1002/syn.21547] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/05/2012] [Accepted: 02/01/2012] [Indexed: 01/17/2023]
Abstract
Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, nonsynaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed, based on a cortico-accumbens synapse example case, to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require nonsynaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, nonsynaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient.
Collapse
Affiliation(s)
- Sandeep Pendyam
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
22
|
Abstract
We investigated the role of histone H3 phosphoacetylation in the nucleus accumbens (NAc) in heroin-conditioned place preference paradigm. Heroin could dose-dependently increase histone H3 phosphoacetylation specifically in the NAc and could enhance heroin place preference. Injection of trichostatin A into the NAc significantly augmented heroin-induced histone H3 phosphoacetylation and enhanced heroin place preference. Conversely, injection of MK-801 into the NAc attenuated histone H3 phosphoacetylation and reduced heroin place preference. These data suggest that histone H3 phosphoacetylation in the NAc may play a critical role in heroin addiction.
Collapse
|
23
|
Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 2011; 12:685-700. [PMID: 21971065 DOI: 10.1038/nrn3104] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The publication of the psychomotor stimulant theory of addiction in 1987 and the finding that addictive drugs increase dopamine concentrations in the rat mesolimbic system in 1988 have led to a predominance of psychobiological theories that consider addiction to opiates and addiction to psychostimulants as essentially identical phenomena. Indeed, current theories of addiction - hedonic allostasis, incentive sensitization, aberrant learning and frontostriatal dysfunction - all argue for a unitary account of drug addiction. This view is challenged by behavioural, cognitive and neurobiological findings in laboratory animals and humans. Here, we argue that opiate addiction and psychostimulant addiction are behaviourally and neurobiologically distinct and that the differences have important implications for addiction treatment, addiction theories and future research.
Collapse
Affiliation(s)
- Aldo Badiani
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
24
|
Sun N, Chi N, Lauzon N, Bishop S, Tan H, Laviolette SR. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb Cortex 2011; 21:2665-80. [PMID: 21531781 DOI: 10.1093/cercor/bhr031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The medial prefrontal cortex (mPFC) comprises an important component in the neural circuitry underlying drug-related associative learning and memory processing. Neuronal activation within mPFC circuits is correlated with the recall of opiate-related drug-taking experiences in both humans and other animals. Using an unbiased associative place conditioning procedure, we recorded mPFC neuronal populations during the acquisition, recall, and extinction phases of morphine-related associative learning and memory. Our analyses revealed that mPFC neurons show increased activity both in terms of tonic and phasic activity patterns during the acquisition phase of opiate reward-related memory and demonstrate stimulus-locked associative activity changes in real time, during the recall of opiate reward memories. Interestingly, mPFC neuronal populations demonstrated divergent patterns of bursting activity during the acquisition versus recall phases of newly acquired opiate reward memory, versus the extinction of these memories, with strongly increased bursting during the recall of an extinction memory and no associative bursting during the recall of a newly acquired opiate reward memory. Our results demonstrate that neurons within the mPFC are involved in both the acquisition, recall, and extinction of opiate-related reward memories, showing unique patterns of tonic and phasic activity patterns during these separate components of the opiate-related reward learning and memory recall.
Collapse
Affiliation(s)
- Ninglei Sun
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
25
|
Mohan A, Pendyam S, Kalivas PW, Nair SS. Molecular diffusion model of neurotransmitter homeostasis around synapses supporting gradients. Neural Comput 2011; 23:984-1014. [PMID: 21222526 PMCID: PMC4357590 DOI: 10.1162/neco_a_00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neurotransmitter homeostasis in and around a synapse involves complex random processes such as diffusion, molecular binding, and uptake by glial transporters. A three-dimensional stochastic diffusion model of a synapse was developed to provide molecular-level details of neurotransmitter homeostasis not predicted by alternative models based on continuum approaches. The development was illustrated through an example case cortico-accumbens synapse that successfully integrated neuroadaptations observed after chronic cocaine. By incorporating cystine-glutamate exchanger as a nonsynaptic release site for glutamate, the stochastic model was used to quantify the relative contributions of synaptic and nonsynaptic sources to extracellular concentration and to estimate molecular influx rates into the perisynapse. A perturbation analysis showed that among the parameters considered, variation in surface density of glial transporters had the largest effect on glutamate concentrations. The stochastic diffusion model of the example synapse was further generalized to characterize glial morphology by studying the role of diffusion path length in supporting neurotransmitter gradients and isolating the synapse. For the same set of parameters, diffusion path length was found to be proportional to the gradient supported.
Collapse
Affiliation(s)
- Ashwin Mohan
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
26
|
Frohmader KS, Wiskerke J, Wise RA, Lehman MN, Coolen LM. Methamphetamine acts on subpopulations of neurons regulating sexual behavior in male rats. Neuroscience 2010; 166:771-84. [PMID: 20045448 PMCID: PMC2837118 DOI: 10.1016/j.neuroscience.2009.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 12/22/2009] [Accepted: 12/28/2009] [Indexed: 01/27/2023]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Meth abuse is commonly associated with the practice of sexual risk behavior and increased prevalence of Human Immunodeficiency Virus and Meth users report heightened sexual desire, arousal, and sexual pleasure. The biological basis for this drug-sex nexus is unknown. The current study demonstrates that Meth administration in male rats activates neurons in brain regions of the mesolimbic system that are involved in the regulation of sexual behavior. Specifically, Meth and mating co-activate cells in the nucleus accumbens core and shell, basolateral amygdala, and anterior cingulate cortex. These findings illustrate that in contrast to current belief drugs of abuse can activate the same cells as a natural reinforcer, that is sexual behavior, and in turn may influence compulsive seeking of this natural reward.
Collapse
Affiliation(s)
- K S Frohmader
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | | | | | |
Collapse
|
27
|
Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res 2009; 1314:74-90. [PMID: 19815001 DOI: 10.1016/j.brainres.2009.09.106] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 12/30/2022]
Abstract
Orexins (synonymous with hypocretins) are recently discovered neuropeptides made exclusively in hypothalamus. Behavioral, anatomical, and neurophysiological studies show that a subset of these cells, specifically those in lateral hypothalamus (LH), are involved in reward processing and addictive behaviors. Fos expression in LH orexin neurons varied in proportion to conditioned place preference (CPP) for morphine, cocaine, or food. This relationship occurred both in drug-naïve rats and in animals during protracted morphine withdrawal, when drug preference was elevated but food preference was decreased. Inputs to the LH orexin cell field from lateral septum and bed nucleus of the stria terminalis were Fos-activated during cocaine CPP in proportion to the preference expressed in each animal. This implies that these inputs may be involved in driving the conditioned responses in LH orexin neurons. Related studies showed that LH orexin neurons that project to ventral tegmental area (VTA) had greater Fos induction in association with elevated morphine preference during protracted withdrawal than non-VTA-projecting orexin neurons, indicating that the VTA is an important site of action for orexin's role in reward processing. In addition, stimulation of LH orexin neurons, or microinjection of orexin into VTA, reinstated an extinguished morphine preference. In self-administration studies, the orexin 1 receptor antagonist SB-334867 (SB) blocked cocaine-seeking induced by discrete or contextual cues previously associated with cocaine, but not by a priming injection of cocaine. There was no effect of SB on cocaine self-administration itself, indicating that it did not interfere with the drug's reinforcing properties. Neurophysiological studies revealed that locally applied orexin often augmented responses of VTA dopamine (DA) neurons to activation of the medial prefrontal cortex (mPFC), consistent with the view that orexin facilitates activation of VTA DA neurons by stimulus-reward associations. This LH-to-VTA orexin pathway was found to be necessary for learning a morphine place preference. These findings are consistent with results showing that orexin facilitates glutamate-mediated responses, and is necessary for glutamate-dependent long-term potentiation in VTA DA neurons. We surmise from these studies that LH orexin neurons play an important role in reward processing and addiction and that LH orexin cells are an important input to VTA for behavioral effects associated with reward-paired stimuli.
Collapse
|
28
|
Guo Y, Wang HL, Xiang XH, Zhao Y. The role of glutamate and its receptors in mesocorticolimbic dopaminergic regions in opioid addiction. Neurosci Biobehav Rev 2009; 33:864-73. [DOI: 10.1016/j.neubiorev.2009.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/10/2009] [Accepted: 02/19/2009] [Indexed: 11/28/2022]
|
29
|
PENDYAM S, MOHAN A, KALIVAS PW, NAIR SS. Computational model of extracellular glutamate in the nucleus accumbens incorporates neuroadaptations by chronic cocaine. Neuroscience 2009; 158:1266-76. [PMID: 19084053 PMCID: PMC11458260 DOI: 10.1016/j.neuroscience.2008.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/13/2008] [Accepted: 11/09/2008] [Indexed: 11/16/2022]
Abstract
Chronic cocaine administration causes instability in extracellular glutamate in the nucleus accumbens that is thought to contribute to the vulnerability to relapse. A computational framework was developed to model glutamate in the extracellular space, including synaptic and nonsynaptic glutamate release, glutamate elimination by glutamate transporters and diffusion, and negative feedback on synaptic release via metabotropic glutamate receptors (mGluR2/3). This framework was used to optimize the geometry of the glial sheath surrounding excitatory synapses, and by inserting physiological values, accounted for known stable extracellular, extrasynaptic concentrations of glutamate measured by microdialysis and glutamatergic tone on mGluR2/3. By using experimental values for cocaine-induced reductions in cystine-glutamate exchange and mGluR2/3 signaling, and by predicting the down-regulation of glutamate transporters, the computational model successfully represented the experimentally observed increase in glutamate that is seen in rats during cocaine-seeking. This model provides a mathematical framework for describing how pharmacological or pathological conditions influence glutamate transmission measured by microdialysis.
Collapse
Affiliation(s)
- S. PENDYAM
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA
| | - A. MOHAN
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA
| | - P. W. KALIVAS
- Department of Neurosciences, Medical University of South Carolina, 167 Ashley Avenue, Suite 607, Charleston, SC 29425, USA
| | - S. S. NAIR
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
30
|
From operant learning to cognitive enrichment in farm animal housing: bases and applicability. Anim Welf 2009. [DOI: 10.1017/s0962728600000105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractThis study has its basis in recent findings by our own and other laboratories and proposes a type of rewarded operant learning that seeks the detection of discriminatory cues as a cognitive enrichment in intensive husbandry systems. This type of cognitive enrichment has the ability to activate the intrinsically-rewarding mesolimbic brain axis when an animal acquires successful strategies to cope with environmental demands. It provides animals with the opportunity to develop positive affects through control of their environment and the anticipation of consummatory reward. If true animal welfare is considered more than simply the absence of stress and harm, provoking better affective conditions may be a suitable way of increasing the well-being of intensively-housed animals. Recent research with elaborated operant learning equipment, under experimental and quasi-commercial conditions, revealed better health, reduced boredom and less maladaptive behaviour as potentially practical advantages. A number of the issues regarding the transfer of this suggested form of cognitive enrichment to large scale, commercial farming are discussed.
Collapse
|
31
|
Carlezon WA, Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 2008; 56 Suppl 1:122-32. [PMID: 18675281 DOI: 10.1016/j.neuropharm.2008.06.075] [Citation(s) in RCA: 389] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/25/2008] [Accepted: 06/29/2008] [Indexed: 11/29/2022]
Abstract
The nucleus accumbens (NAc) is a critical element of the mesocorticolimbic system, a brain circuit implicated in reward and motivation. This basal forebrain structure receives dopamine (DA) input from the ventral tegmental area (VTA) and glutamate (GLU) input from regions including the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP). As such, it integrates inputs from limbic and cortical regions, linking motivation with action. The NAc has a well-established role in mediating the rewarding effects of drugs of abuse and natural rewards such as food and sexual behavior. However, accumulating pharmacological, molecular, and electrophysiological evidence has raised the possibility that it also plays an important (and sometimes underappreciated) role in mediating aversive states. Here we review evidence that rewarding and aversive states are encoded in the activity of NAc medium spiny GABAergic neurons, which account for the vast majority of the neurons in this region. While admittedly simple, this working hypothesis is testable using combinations of available and emerging technologies, including electrophysiology, genetic engineering, and functional brain imaging. A deeper understanding of the basic neurobiology of mood states will facilitate the development of well-tolerated medications that treat and prevent addiction and other conditions (e.g., mood disorders) associated with dysregulation of brain motivation systems.
Collapse
Affiliation(s)
- William A Carlezon
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, MRC 217, 115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|
32
|
Carelli RM. The nucleus accumbens and reward: neurophysiological investigations in behaving animals. ACTA ACUST UNITED AC 2007; 1:281-96. [PMID: 17712985 DOI: 10.1177/1534582302238338] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nucleus accumbens (Acb) is a crucial component of the brain reward system. This report reviews electrophysiological studies that examined Acb cell firing during goal-directed behaviors for natural reinforcers (food, water, sucrose) and drugs of abuse (cocaine, heroin, ethanol). Studies that examined the role of environmental stimuli and operant contingencies on Acb activity during behavior are also explored. Given the extensive literature that links dopamine in the Acb with drug reinforcement, experiments are considered that examined the influence of dopamine in modulating Acb cell firing during drug-seeking behaviors. Finally, because the Acb is one neural substrate of a larger brain reward circuit, the influence of afferent input (hippocampus and prefrontal cortex) on Acb cell firing during behavior is also discussed. These findings provide a unique insight into the cellular mechanisms underlying reward-related processing and goal-directed behaviors and reveal a level of functional organization in the Acb not identified by other experimental approaches.
Collapse
|
33
|
Fishbein DH, Krupitsky E, Flannery BA, Langevin DJ, Bobashev G, Verbitskaya E, Augustine CB, Bolla KI, Zvartau E, Schech B, Egorova V, Bushara N, Tsoy M. Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug Alcohol Depend 2007; 90:25-38. [PMID: 17382488 PMCID: PMC1991277 DOI: 10.1016/j.drugalcdep.2007.02.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 02/06/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Research on the neurocognitive characteristics of heroin addiction is sparse and studies that do exist include polydrug abusers; thus, they are unable to distinguish neurocognitive effects of heroin from those of other drugs. To identify neurocognitive correlates specific to heroin addiction, the present study was conducted in St. Petersburg, Russia where individuals typically abuse and/or become addicted to only one substance, generally alcohol or heroin. Heroin addicts were recruited from an inpatient treatment facility in St. Petersburg. Three comparison groups included alcoholics, addicts who used both alcohol and heroin, and non-abusers. Psychiatric, background, and drug history evaluations were administered after detoxification to screen for exclusion criteria and characterize the sample. Executive Cognitive Functions (ECF) that largely activate areas of the prefrontal cortex and its circuitry measured include complex visual pattern recognition (Paired Associates Learning), working memory (Delayed Matching to Sample), problem solving (Stockings of Cambridge), executive decision making (Cambridge Decision Making Task), cognitive flexibility (Stroop Color-Word Task) and response shifting (Stop Change Task). In many respects, the heroin addicts were similar to alcohol and alcohol+heroin dependent groups in neurocognitive deficits relative to controls. The primary finding was that heroin addicts exhibited significantly more disadvantageous decision making and longer deliberation times while making risky decisions than the other groups. Because the nature and degree of recovery from drug abuse are likely a function of the type or pattern of neurocognitive impairment, differential drug effects must be considered.
Collapse
Affiliation(s)
- Diana H Fishbein
- Transdisciplinary Behavioral Science Program, RTI International, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zuo YF, Wang JY, Chen JH, Qiao ZM, Han JS, Cui CL, Luo F. A comparison between spontaneous electroencephalographic activities induced by morphine and morphine-related environment in rats. Brain Res 2006; 1136:88-101. [PMID: 17234161 DOI: 10.1016/j.brainres.2006.11.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/01/2006] [Accepted: 11/21/2006] [Indexed: 12/21/2022]
Abstract
Previous studies demonstrated that drug cues could elicit drug-like or withdrawal-like effect, both subjectively and physiologically. However, few studies have compared the central activities induced by a drug-related environment and the drug itself. The aim of this study was to observe and compare electroencephalographic (EEG) changes induced by acute morphine administration and by the morphine-related environment. EEG activities were recorded via twelve skull electrodes scattered on the left and right cortex in conscious, freely moving rats, either after acute morphine administration or after successful training of conditioned place preference. Acute administration of morphine (0.1, 0.5, 1, 5, 10, 20 mg/kg, i.p.) produced an increase in absolute EEG power in the delta, theta, alpha1, alpha2, beta1, and beta2 bands, as well as a decrease in the gamma band. Topographic mapping revealed a maximal increase in the lateral leads in the theta band and a maximal change in the centro-frontal region in the remaining bands. After place conditioning training, the morphine-related environment induced a diffuse decrease in absolute power in the delta, theta, alpha1, alpha2, beta1, and beta2 bands, which was opposite to the changes induced by acute morphine administration. In addition, the changes in relative power induced by the two situations also diverged. These results indicate that the central mechanisms underlying the motivation of morphine-induced place preference may be somehow different from those underlying the reward effects produced by acute morphine administration.
Collapse
Affiliation(s)
- Yan-Fang Zuo
- Neuroscience Research Institute, Peking University, Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 10083, P.R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Day JJ, Wheeler RA, Roitman MF, Carelli RM. Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur J Neurosci 2006; 23:1341-51. [PMID: 16553795 DOI: 10.1111/j.1460-9568.2006.04654.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Environmental stimuli predictive of appetitive events can elicit Pavlovian approach responses that enhance an organism's ability to track and secure natural rewards, but may also contribute to the compulsive nature of drug addiction. Here, we examined the activity of individual nucleus accumbens (NAc) neurons during an autoshaping paradigm. One conditioned stimulus (CS+, a retractable lever presented for 10 s) was immediately followed by the delivery of a 45-mg sucrose pellet to a food receptacle, while another stimulus (CS-, a separate retractable lever presented for 10 s) was never followed by sucrose. Approach responses directed at the CS+ and CS- were recorded as lever presses and had no experimental consequence. Rats (n = 9) selectively approached the CS+ on more than 80% of trials and were surgically prepared for electrophysiological recording. Of 76 NAc neurons, 57 cells (75%) exhibited increases and/or decreases in firing rate (i.e. termed 'phasically active') during the CS+ presentation and corresponding approach response. Forty-seven percent of phasically active cells (27 out of 57) were characterized by time-locked but transient increases in cell firing, while 53% (30 out of 57) showed a significant reduction in firing for the duration of the CS+. In contrast, the same excitatory subpopulation exhibited smaller increases in activity relative to CS- onset, while the inhibitory subpopulation showed no change in firing during the CS- period. The magnitude and prevalence of cue-related neural responses reported here indicates that the NAc encodes biologically significant, repetitive approach responses that may model the compulsive nature of drug addiction in humans.
Collapse
Affiliation(s)
- Jeremy J Day
- Department of Psychology, The University of North Carolina at Chapel Hill, 27599-3270, USA
| | | | | | | |
Collapse
|
36
|
Peters YM, O'Donnell P, Carelli RM. Prefrontal cortical cell firing during maintenance, extinction, and reinstatement of goal-directed behavior for natural reward. Synapse 2005; 56:74-83. [PMID: 15729742 DOI: 10.1002/syn.20129] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prefrontal cortex (PFC) is important for higher cognitive functioning and the processing of reward-related information. Here, electrophysiological recording procedures were used to examine cell firing in the PFC in rats (n = 12) during water reinforcement sessions consisting of three phases. In phase one (maintenance), animals pressed a lever (fixed ratio 1) for water reinforcement (0.05 ml/press) paired with an auditory stimulus. Of 62 neurons recorded during maintenance, 39 (63%) exhibited one of three types of patterned discharges relative to the reinforced response for water. Specifically, PFC neurons exhibited increases in firing rate within seconds preceding the response (type PR; n = 9 cells) or increases (type RFe; n = 16 cells) or decreases (type RFi; n = 14 cells) in firing rate immediately following response completion. The remaining neurons did not alter their firing profiles relative to the reinforced response (type nonphasic cells; n = 23 cells). In phase two (extinction), lever press responses had no programmed consequences (i.e., water reinforcement and the auditory stimulus were not presented). After 30 min of no responding, phase three (reinstatement) began, during which each lever press response was again associated with water reinforcement paired with the stimulus. Results indicate differential effects of extinction/reinstatement on cell firing rates and patterns dependent on cell type. These findings are discussed with respect to the adaptive nature of PFC activity during goal-directed behaviors for "natural" rewards, and are considered relative to prior studies that examined nucleus accumbens cell firing during a similar behavioral task.
Collapse
Affiliation(s)
- Yvette M Peters
- Department of Psychology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
37
|
Greenwald MK, Roehrs TA. Mu-opioid self-administration vs passive administration in heroin abusers produces differential EEG activation. Neuropsychopharmacology 2005; 30:212-21. [PMID: 15508021 DOI: 10.1038/sj.npp.1300596] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Psychoactive drug self-administration (SA) produces different neurobiological effects than passive administration (PA) in non-human animals; however, such consequences have never been examined in human drug abusers. The present study compared electroencephalographic (EEG) activation produced by intravenous PA and SA of the mu-opioid fentanyl in eight heroin-dependent, methadone-stabilized male participants. In phase 1, participants received cumulative PA of fentanyl (up to 1.5 mg/70 kg; session 1), then bolus PA of placebo and fentanyl 1.5 mg/70 kg (session 2). High-dose fentanyl significantly increased the amplitude of slow-frequency (delta- and theta-band) EEG activity. In phase 2, bolus fentanyl 1.5 mg/70 kg was available for SA, requiring the participant to complete 1500 responses, in each of two sessions after saline or naloxone pretreatment. Delta EEG peak amplitude increases were greater following fentanyl SA than fentanyl PA, primarily over the central midline region, and were attenuated by naloxone pretreatment. The EEG increase and its attenuation by naloxone agree with preclinical evidence and suggest that SA-related EEG responses were mediated by opioid receptors.
Collapse
Affiliation(s)
- Mark K Greenwald
- Substance Abuse Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48207, USA.
| | | |
Collapse
|
38
|
Janak PH, Chen MT, Caulder T. Dynamics of neural coding in the accumbens during extinction and reinstatement of rewarded behavior. Behav Brain Res 2004; 154:125-35. [PMID: 15302118 DOI: 10.1016/j.bbr.2004.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 11/25/2022]
Abstract
Neural correlates of reward-seeking behavior are observed in the nucleus accumbens (NAC). The dependence of these correlates upon the presence of a reward was studied by comparing the behavioral correlates observed when the presence of the reward was manipulated within a single behavioral session. Rats were well-trained on a continuous reinforcement instrumental task reinforced by 0.1 ml drops of 5% sucrose. Extracellular single-unit neural activity was recorded from electrode arrays implanted into the NAC when instrumental behavior was and then was not reinforced with sucrose (within-session extinction). A variable delay between the instrumental response and the sucrose delivery allowed for separation of neural activity related to these task events. A spike activity increase around the time of the instrumental response was the most common behavioral correlate, while a decrease in spike activity upon sucrose delivery was the second most common behavioral correlate. Following removal of the reinforcer, subjects continued to perform the instrumental response, allowing for the examination of response-related spike activity under extinction conditions in which the response was no longer reinforced by sucrose. A majority of the response-related neural activity patterns were lost when sucrose was no longer available. New neural responses also were detected during this period. For some subjects, the reinforcer was again made available during the same session. Encoding of the primary behavioral events during this period of reinstated reinforcer was similar, but not identical, to that observed during the first period of reinforced responding. These findings reveal that instrumental task-associated spike activity within the NAC is partially dependent upon the presence of the reinforcer, and that encoding across the population is distinct under reinforced and extinction conditions.
Collapse
Affiliation(s)
- Patricia H Janak
- Department of Neurology, Ernest Gallo Clinic & Research Center, University of California at San Francisco, 5858 Horton St., Suite 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
39
|
Abstract
The prelimbic area of rat medial frontal cortex may be functionally analogous to human/primate dorsolateral prefrontal cortex. This area may be involved in selective attention to the external stimuli and the coupling of the attention to a repertory of actions. It was suggested that this function may rely on a form of long-term memory [Biol. Rev. 77 (2002) 563]. Indeed, during learning of this type of behavior, a portion of prelimbic neurons persistently change their firing characteristics [Prog. Brain Res. 126 (2000) 287]. It is therefore important to study long-term potentiation (LTP) and depression (LTD) in rat prelimbic neurons. In this article, the author first briefly reviews recent findings on the prefrontal cortex function and discusses that the prefrontal cortex may be involved in long-term memory. Second, the author will show some new results which indicate that quasi-physiological patterns of stimuli mimicking prelimbic neuronal activity during behavior can induce LTP in prelimbic pyramidal neuron synapses. These results suggest that prelimbic neuronal activity during behavior may lastingly modify prelimbic synaptic efficacy.
Collapse
Affiliation(s)
- Satoru Otani
- Neurobiologie des Processus Adaptatifs UMR7102, Université Paris VI Pierre et Marie Curie, Case 8, Building B, 6th floor, 7 quai St Bernard, 75005 Paris, France.
| |
Collapse
|
40
|
Nicola SM, Yun IA, Wakabayashi KT, Fields HL. Cue-Evoked Firing of Nucleus Accumbens Neurons Encodes Motivational Significance During a Discriminative Stimulus Task. J Neurophysiol 2004; 91:1840-65. [PMID: 14645377 DOI: 10.1152/jn.00657.2003] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc) has long been thought of as a limbic-motor interface. Despite behavioral and anatomical evidence in favor of this idea, little is known about how NAc neurons encode information about motivationally relevant environmental cues and use this information to affect motor action. We therefore investigated the firing of these neurons during the performance of a discriminative stimulus (DS) task using simultaneous multiple single-unit recordings in rats. In this task, two stimuli are randomly presented to the animal: a DS, which signals the availability of a sucrose reward contingent on an operant response, and a similar but nonrewarded stimulus (NS). Subpopulations of NAc neurons increased or decreased their firing in association with several distinct components of the task. In this paper, we investigate cue- and operant-responsive neurons. Neurons excited and inhibited by cues showed larger firing changes in response to the DS than the NS and larger changes when the animal made an operant response to the cue than when the animal failed to respond. Excitations during operant responding were not modulated by the information contained by the cue, whereas inhibitions during operant responding were somewhat larger if the operant response occurred during the DS and somewhat smaller if they occurred in the absence of a cue. These results are consistent with the hypothesis that the firing of subpopulations of NAc neurons encode both the predictive value of environmental stimuli and the specific motor behaviors required to respond to them.
Collapse
Affiliation(s)
- Saleem M Nicola
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville 94608, USA.
| | | | | | | |
Collapse
|
41
|
Xi ZX, Wu G, Stein EA, Li SJ. Opiate tolerance by heroin self-administration: An fMRI study in rat. Magn Reson Med 2004; 52:108-14. [PMID: 15236373 DOI: 10.1002/mrm.20119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Functional MRI (fMRI) was employed to determine whether repeated heroin self-administration (SA) produces tolerance or sensitization in the brain of heroin-SA rats. Twelve rats were evenly divided into saline and heroin (0.06 mg/kg, 4 hr/day) SA groups. There was a progressive increase in drug-SA behavior and daily heroin intake during the 8-9 days of heroin-SA training. Within 24 hr after the last session of daily SA, acute heroin (0.1 mg/kg) administration induced regional blood oxygen level-dependent (BOLD) signals in both groups of rats. The positive BOLD signals appeared mainly in the cortical regions, including the prefrontal cortex, cingulate, and olfactory cortex, while the negative BOLD signals were predominantly located in subcortical regions such as caudate and putamen, nucleus accumbens, thalamus, and hypothalamus. However, the number of activated voxels or BOLD-signal intensity was significantly less in heroin-SA rat in regions of prefrontal cortex, nucleus accumbens, and thalamus, etc., compared to the changes in the saline control rats. Application of gamma-vinyl GABA (100 mg/kg), an irreversible GABA-transaminase inhibitor, failed to block opiate actions in the heroin-SA rats. Together, these data suggest that repeated heroin-SA produces tolerance or desensitization of opiate actions in the rat brain, which may in turn potentiate drug SA behavior and drug intake.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Electrophysiological recording procedures were used to examine basolateral amygdala (BLA) cell firing during cocaine self-administration and relative to response-independent presentations of cocaine-associated stimuli. Of 72 neurons (n = 10 rats), 31 cells (43%) were classified as phasically active, exhibiting one of three types of patterned discharges relative to the drug-reinforced response, similar to that previously described for nucleus accumbens (Acb) neurons (Carelli, 2002). Briefly, neurons exhibited increased firing rates within seconds preceding the response [termed preresponse (PR)], increased activity within seconds after the response [termed reinforcement excitation (RFe)] or an inhibition in cell firing before and/or after the response for intravenous cocaine [termed reinforcement inhibition (RFi)]. To examine the responsiveness of these same neurons to cocaine-associated stimuli, the stimulus "probe" procedure was used. Specifically, probe trials (18-20) were presented in which the audiovisual (tone-house light) stimulus associated with intravenous cocaine delivery during self-administration was randomly presented by the computer, interspersed between reinforced lever press responses. Neurons classified as type PR or type RFi were not activated by the stimulus. In contrast, neurons that exhibited increased firing immediately after the response (type RFe neurons) were significantly activated by the audiovisual cue. These findings are discussed with respect to the role of the BLA in cocaine addiction as well as previous studies characterizing Acb cell firing during cocaine self-administration.
Collapse
|
43
|
Golmayo L, Nuñez A, Zaborszky L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 2003; 119:597-609. [PMID: 12770572 DOI: 10.1016/s0306-4522(03)00031-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) receives input from sensory neocortical regions and sends projections to the basal forebrain (BF). The present study tested the possibility that pathways from sensory cortical regions via the PFC-BF and from the BF back to specific sensory cortical areas could modulate sensory responses. Two prefrontal areas that responded to stimulation of the primary somatosensory and visual cortices were delineated: an area encompassing the rostral part of the cingulate cortex that responded to visual cortex stimulation, and a region dorso-lateral to the first in the precentral-motor association area that reacted to somatosensory cortex stimulation. Moreover, BF neurons responded to PFC electrical stimulation. They were located in the ventral pallidum, substantia innominata and the horizontal limb of the diagonal-band areas. Of the responsive BF neurons 42% reacted only to stimulation of 'visually-responsive,' 33% responded only to the 'somatosensory-responsive' prefrontal sites and the remaining neurons reacted to both prefrontal cortical areas. The effect of BF and PFC stimulations on somatosensory and visual-evoked potentials was tested. BF stimulation increased the amplitude of both sensory-evoked potentials. However, stimulation of the 'somatosensory-responsive' prefrontal area increased only somatosensory-evoked potentials while 'visually-responsive' prefrontal-area stimulation increased only visual-evoked potentials. Atropine blocked both facilitatory effects. The proposed cortico-prefronto-basalo-cortical circuitry may have an important role in cortical plasticity and selective attention.
Collapse
Affiliation(s)
- L Golmayo
- Department of Morphology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
44
|
Abstract
The dorsolateral prefrontal cortex in human and non-human primates functions as the highest-order executor for the perception-action cycle. According to this view, when perceptual stimuli from the environment are novel or complex, the dorsolateral prefrontal cortex serves to set consciously a goal-directed scheme which broadly determines an action repertory to meet the particular demand from the environment. In this respect, the dorsolateral prefrontal cortex is a short-term activation device with the properties of a cognitive switch', because it couples a particular set of perceptual stimuli to a particular set of actions. Here, I suggest that, in order for the organism to react systematically to the environment, neural traces for the switch function must be stored in the brain. Thus, the highest-order, perception-action interface function of the dorsolateral prefrontal cortex per se depends on permanently stored neural traces in the dorsolateral prefrontal cortex and related structures. Such a memory system may be located functionally between two of the well-documented memory systems in the brain: the declarative memory system and the procedural memory system. Finally, based on available neurophysiological data, the possible mechanisms underlying the formation of cognitive switch traces are proposed.
Collapse
Affiliation(s)
- Satoru Otani
- Neurobiologie des Processus Adaptatifs UMR7102, Université de Paris VI, Paris, France.
| |
Collapse
|
45
|
Xi ZX, Wu G, Stein EA, Li SJ. GABAergic mechanisms of heroin-induced brain activation assessed with functional MRI. Magn Reson Med 2002; 48:838-43. [PMID: 12417998 DOI: 10.1002/mrm.10282] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heroin has been hypothesized to activate opiate receptors and inhibit gamma-aminobutyric acid (GABA) release from inhibitory GABAergic interneurons which, in turn, activates dopamine projection cells. Since the distal sites and consequences of this disinhibition are not well understood on a systems level, heroin-induced brain activity was measured using functional MRI (fMRI) in rats. A significant blood oxygen level-dependent (BOLD) signal increase was seen in cortical regions, including prefrontal cortex, cingulate, and olfactory cortex following acute heroin administration. In contrast, a significant signal decrease was seen in several subcortical areas, including the caudate and putamen, nucleus accumbens, thalamus, and hypothalamus. Pretreatment of gamma-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, significantly attenuated the heroin-induced BOLD signal changes. Pretreatment of naloxone, an opiate mu receptor antagonist, eliminated the heroin-induced BOLD signal changes and posttreatment of naloxone reversed the heroin-induced BOLD signal changes. It is suggested that the heroin-induced negative and positive BOLD changes are due to direct inhibitory and indirect disinhibitory mechanisms of GABAergic activities. Administration of GVG altered these mechanisms and further suggested that involvement of the opiate's pharmacological actions can, at least in part, be mediated by inhibiting brain GABA release.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
46
|
Woodward DJ, Chang JY, Janak P, Azarov A, Anstrom K. Activity patterns in mesolimbic regions in rats during operant tasks for reward. PROGRESS IN BRAIN RESEARCH 2001; 126:303-22. [PMID: 11105654 DOI: 10.1016/s0079-6123(00)26021-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- D J Woodward
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
48
|
Abstract
There is evidence to suggest that medium spiny neurons (MSNs) in the nucleus accumbens (NAS) should be sensitive to opiate compounds. However, neuronal responses in the NAS evoked by fimbria stimulation (F-D) are insensitive to systemically or iontophoretically administered morphine. The hypothesis of this study was that fimbria-evoked NAS responses may fail to demonstrate sensitivity to morphine because they are under tonic opioid inhibition and can't be further inhibited by opiates. If correct, then pharmacological inhibition of opioid actions on these NAS neuronal responses should result in an increase of response to fimbria stimulation. The effects of systemic and iontophoretic administrations of naloxone on NAS responses evoked by fimbria stimulation were observed. Systemically and locally administered naloxone selectively increased the excitability of accumbens single-unit responses to fimbria stimulation. Conversely, systemic or iontophoretic administration of morphine was without effect on the same types of NAS responses. These observations are consistent with the hypothesis that a tonic opioid inhibition may regulate this pathway. In contrast, naloxone and morphine effect other NAS circuit responses differently than F-D NAS responses. In some cases naloxone and morphine tests have been conducted on different evoked responses from the same neuron. Those results have shown that different responses from the same cell may be differentially affected. Consequently, opioid modulation of activity in the NAS is probably pathway-specific rather than neuron-specific.
Collapse
Affiliation(s)
- R L Hakan
- Department of Psychology, University of North Carolina at Wilmington, USA.
| |
Collapse
|
49
|
Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J Neurosci 2000. [PMID: 10844044 DOI: 10.1523/jneurosci.20-12-04745.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical cholinergic inputs are hypothesized to mediate attentional functions. The present experiment was designed to determine the single unit activity of neurons within the medial prefrontal cortex (mPFC) of rats performing a sustained visual attention task. Demands on attentional performance were varied by the presentation of a visual distractor. The contribution of cholinergic afferents of the mPFC to performance-associated unit activity within this area was determined by recording neuronal activity before and after unilateral cholinergic deafferentation using intracortical infusion of the immunotoxin 192 IgG-saporin. Presentation of the visual distractor resulted in a decrease in the detection of brief, unpredictable visual signals. As predicted, the unilateral loss of cholinergic inputs within the recording area of the mPFC did not affect sustained attentional performance. Cholinergic deafferentation, however, resulted in a decrease in the overall firing rate of medial prefrontal neurons and a substantial reduction in the proportion of neurons whose firing patterns correlated with specific aspects of behavioral performance. Furthermore, cholinergic deafferentation attenuated the frequency and amplitude of increased mPFC neuronal firing rates that were associated with the presentation of the visual distractor. The main findings from this experiment suggest that cholinergic inputs to the mPFC strongly influence spontaneous and behaviorally correlated single unit activity and mediate increases in neuronal activity associated with enhanced demands for attentional processing, all of which may be fundamental aspects in the maintenance of attentional performance.
Collapse
|
50
|
Jodo E, Suzuki Y, Kayama Y. Selective responsiveness of medial prefrontal cortex neurons to the meaningful stimulus with a low probability of occurrence in rats. Brain Res 2000; 856:68-74. [PMID: 10677612 DOI: 10.1016/s0006-8993(99)02386-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multi-unit neuronal activity was recorded in the medial prefrontal cortex (mPFC) of 13 chronically prepared male rats while they performed a two-tone discrimination task. Tones at 1000 and 2000 Hz were sequentially presented at intervals of 3-6 s. The duration of each tone was 0.8 s. Rats were trained to press a bar within 1.2 s after the cessation of the 1000 Hz tone (target), and not to press the bar when the other tone (non-target) was presented. Intracranial electrical stimulation (ICS) of the medial forebrain bundle was given as a reward immediately after the rats had correctly responded to the target tone. Probability of the target occurrence was either 30% or 70% in different sessions. When the target tone was presented on only 30% of the trials, the mPFC neurons in the majority of rats tested (10/13) exhibited phasic excitation about 100 ms after the onset of the target tone. However, when the target tone occurred on 70% of the trials, mPFC neurons in most of rats (11/13) did not show excitatory responses, and in some of them (5/13) were inhibited. No mPFC neurons exhibited significant responses to the non-target tone, regardless of its probability. These results suggest that the mPFC neurons selectively respond to meaningful events with a low probability of occurrence.
Collapse
Affiliation(s)
- E Jodo
- Department of Physiology, Fukushima Medical University, School of Medicine, 1 Hikari-ga-oka, Fukushima, Japan.
| | | | | |
Collapse
|