1
|
The effect of self-administered methamphetamine on GABAergic interneuron populations and functional connectivity of the nucleus accumbens and prefrontal cortex. Psychopharmacology (Berl) 2022; 239:2903-2919. [PMID: 35920922 PMCID: PMC9385811 DOI: 10.1007/s00213-022-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Methamphetamine (METH, "ice") is a potent and addictive psychostimulant. Abuse of METH perturbs neurotransmitter systems and induces neurotoxicity; however, the neurobiological mechanisms which underlie addiction to METH are not fully understood, limiting the efficacy of available treatments. Here we investigate METH-induced changes to neuronal nitric oxide synthase (nNOS), parvalbumin and calretinin-expressing GABAergic interneuron populations within the nucleus accumbens (NAc), prefrontal cortex (PFC) and orbitofrontal cortex (OFC). We hypothesise that dysfunction or loss of these GABAergic interneuron populations may disrupt the excitatory/inhibitory balance within the brain. METHODS Male Long Evans rats (N = 32) were trained to lever press for intravenous METH or received yoked saline infusions. Following 14 days of behavioural extinction, animals were given a non-contingent injection of saline or METH (1 mg/kg, IP) to examine drug-primed reinstatement to METH-seeking behaviours. Ninety minutes post-IP injection, animals were culled and brain sections were analysed for Fos, nNOS, parvalbumin and calretinin immunoreactivity in eight distinct subregions of the NAc, PFC and OFC. RESULTS METH exposure differentially affected GABAergic populations, with METH self-administration increasing nNOS immunoreactivity at distinct locations in the prelimbic cortex and decreasing parvalbumin immunoreactivity in the NAc. METH self-administration triggered reduced calretinin immunoreactivity, whilst acute METH administration produced a significant increase in calretinin immunoreactivity. As expected, non-contingent METH-priming treatment increased Fos immunoreactivity in subregions of the NAc and PFC. CONCLUSION Here we report that METH exposure in this model may alter the function of GABAergic interneurons in more subtle ways, such as alterations in neuronal firing or synaptic connectivity.
Collapse
|
2
|
Adán Areán JS, Vico TA, Marchini T, Calabró V, Evelson PA, Vanasco V, Alvarez S. Energy management and mitochondrial dynamics in cerebral cortex during endotoxemia. Arch Biochem Biophys 2021; 705:108900. [PMID: 33964247 DOI: 10.1016/j.abb.2021.108900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022]
Abstract
Mitochondria play an essential role in inflammatory processes such as sepsis or endotoxemia, contributing to organ-cellular redox metabolism, emerging as the energy hub of the cell, and as an important center of action of second messengers. In this work, we aimed to elucidate the energy state, redox balance, and mitochondrial remodeling status in cerebral cortex in an experimental model of endotoxemia. Female Sprague-Dawley rats were subjected to a single dose of LPS (ip 8 mg kg-1 body weight) for 6 h. State 3 O2 consumption was observed increased, ATP production and P/O ratio were observed decreased, probably indicating an inefficient oxidative phosphorylation process. O2- production and both systemic and tissue NO markers were observed increased in treated animals. The existence of nitrated proteins suggests an alteration in the local redox balance and possible harmful effects over energetic processes. Increases in PGC-1α and mtTFA expression, and in OPA-1 expression, suggest an increase in de novo formation of mitochondria and fusion of pre-existing mitochondria. The observed elongation of mitochondria correlates with the occurrence of mild mitochondrial dysfunction and increased levels of systemic NO. Our work presents novel results that contribute to unravel the mechanism by which the triad endotoxemia-redox homeostasis-energy management interact in the cerebral cortex, leading to propose a relevant mechanism for future developing therapeutics with the aim of preserving this organ from inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Juan Santiago Adán Areán
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Junín 946, C1113AAD, CABA, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Junín 946, C1113AAD, CABA, Argentina.
| | - Tamara Antonela Vico
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Junín 946, C1113AAD, CABA, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Junín 946, C1113AAD, CABA, Argentina.
| | - Timoteo Marchini
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Junín 946, C1113AAD, CABA, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Junín 946, C1113AAD, CABA, Argentina.
| | - Valeria Calabró
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Junín 946, C1113AAD, CABA, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Junín 946, C1113AAD, CABA, Argentina.
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Junín 946, C1113AAD, CABA, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Junín 946, C1113AAD, CABA, Argentina.
| | - Virginia Vanasco
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Junín 946, C1113AAD, CABA, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Junín 946, C1113AAD, CABA, Argentina.
| | - Silvia Alvarez
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Junín 946, C1113AAD, CABA, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Junín 946, C1113AAD, CABA, Argentina.
| |
Collapse
|
3
|
Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J Affect Disord 2020; 268:188-200. [PMID: 32174477 DOI: 10.1016/j.jad.2020.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/16/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Depressed patients present increased plasma levels of lipopolysaccharide (LPS) and neuroinflammatory alterations. Here, we determined the neuroimmune effects of different classes of ADs by using the LPS inflammatory model of depression. METHODS Male rats received amitriptyline (AMI) a tricyclic, S-citalopram (ESC) a selective serotonin reuptake inhibitor, tranylcypromine (TCP) a monoamine oxidase inhibitor, vortioxetine (VORT) a multimodal AD or saline for ten days. One-hour after the last AD administration, rats were exposed to LPS 0.83 mg/kg or saline and 24 h later were tested for depressive-like behavior. Plasma corticosterone, brain levels of nitrite, pro- and anti-inflammatory cytokines, phospho-cAMP Response Element-Binding Protein (CREB) and nuclear factor (NF)-kB p 65 were determined. RESULTS LPS induced despair-like, impaired motivation/self-care behavior and caused anhedonia. All ADs prevented LPS-induced despair-like behavior, but only VORT rescued impaired self-care behavior. All ADs prevented LPS-induced increase in brain pro-inflammatory cytokines [interleukin (IL)-1β and IL-6] and T-helper 1 cytokines [tumor necrosis factor (TNF)-α and interferon-γ]. VORT increased striatal and hypothalamic IL-4 levels. All ADs prevented LPS-induced neuroendocrine alterations represented by increased levels of hypothalamic nitrite and plasma corticosterone response. VORT and ESC prevented LPS-induced increase in NF-kBp65 hippocampal expression, while ESC, TCP and VORT, but not IMI, prevented the alterations in phospho-CREB expression. LIMITATIONS LPS model helps to understand depression in a subset of depressed patients with immune activation. The levels of neurotransmitters were not determined. CONCLUSION This study provides new evidence for the immunomodulatory effects of ADs, and shows a possible superior anti-inflammatory profile of TCP and VORT.
Collapse
|
4
|
Fais RS, Rodrigues FL, Pereira CA, Mendes AC, Mestriner F, Tostes RC, Carneiro FS. The inflammasome NLRP3 plays a dual role on mouse corpora cavernosa relaxation. Sci Rep 2019; 9:16224. [PMID: 31700106 PMCID: PMC6838322 DOI: 10.1038/s41598-019-52831-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
NLRP3 plays a role in vascular diseases. Corpora cavernosa (CC) is an extension of the vasculature. We hypothesize that NLRP3 plays a deleterious role in CC relaxation. Male C57BL/6 (WT) and NLRP3 deficient (NLRP3−/−) mice were used. Intracavernosal pressure (ICP/MAP) measurement was performed. Functional responses were obtained from CC strips of WT and NLRP3−/− mice before and after MCC950 (NLRP3 inhibitor) or LPS + ATP (NLRP3 stimulation). NLRP3, caspase-1, IL-1β, eNOS, nNOS, guanylyl cyclase-β1 (GCβ1) and PKG1 protein expressions were determined. ICP/MAP and sodium nitroprusside (SNP)-induced relaxation in CC were decreased in NLRP3−/− mice. Caspase-1, IL-1β and eNOS activity were increased, but PKG1 was reduced in CC of NLRP3−/−. MCC950 decreased non-adrenergic non-cholinergic (NANC), acetylcholine (ACh), and SNP-induced relaxation in WT mice. MCC950 did not alter NLRP3, caspase-1 and IL-1β, but reduced GCβ1 expression. Although LPS + ATP decreased ACh- and SNP-, it increased NANC-induced relaxation in CC from WT, but not from NLRP3−/− mice. LPS + ATP increased NLRP3, caspase-1 and interleukin-1β (IL-1β). Conversely, it reduced eNOS activity and GCβ1 expression. NLRP3 plays a dual role in CC relaxation, with its inhibition leading to impairment of nitric oxide-mediated relaxation, while its activation by LPS + ATP causes decreased CC sensitivity to NO and endothelium-dependent relaxation.
Collapse
Affiliation(s)
- Rafael S Fais
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda L Rodrigues
- Departments of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila A Pereira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Allan C Mendes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Mestriner
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C Tostes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
6
|
Navolotskaya EV, Sadovnikov VB, Lipkin VM. Synthetic Peptide TPLVTLFK, a Selective Agonist of Nonopioid β-Endorphin Receptor, Reduces the Corticotropin and Corticosterone Response. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Poon DCH, Ho YS, You R, Tse HL, Chiu K, Chang RCC. PKR deficiency alters E. coli-induced sickness behaviors but does not exacerbate neuroimmune responses or bacterial load. J Neuroinflammation 2015; 12:212. [PMID: 26585788 PMCID: PMC4653925 DOI: 10.1186/s12974-015-0433-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/14/2015] [Indexed: 11/15/2022] Open
Abstract
Background Systemic inflammation induces neuroimmune activation, ultimately leading to sickness (e.g., fever, anorexia, motor impairments, exploratory deficits, and social withdrawal). In this study, we evaluated the role of protein kinase R (PKR), a serine-threonine kinase that can control systemic inflammation, on neuroimmune responses and sickness. Methods Wild-type (WT) PKR+/+ mice and PKR−/− mice were subcutaneously injected with live Escherichia coli (E. coli) or vehicle. Food consumption, rotarod test performance, burrowing, open field activity, object investigation, and social interaction were monitored. Plasma TNF-α and corticosterone were measured by ELISA. The percentage of neutrophils in blood was deduced from blood smears. Inflammatory gene expression (IL-1β, TNF-α, IL-6, cyclooxygenase (COX)-2, iNOS) in the liver and the brain (hypothalamus and hippocampus) were quantified by real-time PCR. Blood and lavage fluid (injection site) were collected for microbiological plate count and for real-time PCR of bacterial 16S ribosomal DNA (rDNA). Corticotrophin-releasing hormone (CRH) expression in the hypothalamus was also determined by real-time PCR. Results Deficiency of PKR diminished peripheral inflammatory responses following E. coli challenge. However, while the core components of sickness (anorexia and motor impairments) were similar between both strains of mice, the behavioral components of sickness (reduced burrowing, exploratory activity deficits, and social withdrawal) were only observable in PKR−/− mice but not in WT mice. Such alteration of behavioral components was unlikely to be caused by exaggerated neuroimmune activation, by an impaired host defense to the infection, or due to a dysregulated corticosterone response, because both strains of mice displayed similar neuroimmune responses, bacterial titers, and plasma corticosterone profiles throughout the course of infection. Nevertheless, the induction of hypothalamic corticotrophin-releasing hormone (CRH) by E. coli was delayed in PKR−/− mice relative to WT mice, suggesting that PKR deficiency may postpone the CRH response during systemic inflammation. Conclusions Taken together, our findings show that (1) loss of PKR could alter E. coli-induced sickness behaviors and (2) this was unlikely to be due to exacerbated neuroimmune activation, (3) elevated bacterial load, or (4) dysregulation in the corticosterone response. Further studies can address the role of PKR in the CRH response together with its consequence on sickness.
Collapse
Affiliation(s)
- David Chun-Hei Poon
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Long Tse
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China. .,Rm. L1-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
8
|
Lacchini R, Muniz JJ, Nobre YTDA, Cologna AJ, Martins ACP, Tanus-Santos JE. nNOS polymorphisms are associated with responsiveness to sildenafil in clinical and postoperative erectile dysfunction. Pharmacogenomics 2015; 15:775-84. [PMID: 24897285 DOI: 10.2217/pgs.14.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Sildenafil potentiates the nitric oxide (NO) signaling pathway. Since neuronal NOS is very important in the penis, we assessed whether NOS1 polymorphisms are associated with altered responsiveness to sildenafil in erectile dysfunction (ED). MATERIALS & METHODS Patients (n = 137) were divided as clinical ED or postoperative ED. They were subdivided as good responders or poor responders to sildenafil, and genotypes for rs41279104 and rs2682826 NOS1 polymorphisms were determined. RESULTS We found that the rs41279104 CT genotype was associated with good responders in postoperative ED patients, while rs2682826 CT genotype was associated with good responders in postoperative ED, and the TT genotype associated with good responders in both groups. Finally, the CT haplotype was associated with good responders in postoperative ED. CONCLUSION NOS1 polymorphisms are associated with responsiveness to sildenafil in ED. Original submitted 20 November 2013; Revision submitted 31 January 2014.
Collapse
Affiliation(s)
- Riccardo Lacchini
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
9
|
Towiwat P, Phattanarudee S, Maher TJ, Ally A. Modulation of inducible nitric oxide synthase (iNOS) expression and cardiovascular responses during static exercise following iNOS antagonism within the ventrolateral medulla. Mol Cell Biochem 2014; 398:185-94. [PMID: 25234194 DOI: 10.1007/s11010-014-2218-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Previous reports indicate that inducible nitric oxide synthase (iNOS) blockade within the rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM) differentially modulated cardiovascular responses, medullary glutamate, and GABA concentrations during static skeletal muscle contraction. In the current study, we determined the role of iNOS antagonism within the RVLM and CVLM on cardiovascular responses and iNOS protein expression during the exercise pressor reflex in anesthetized rats. Following 120 min of bilateral microdialysis of a selective iNOS antagonist, aminoguanidine (AGN; 10 µM), into the RVLM, the pressor responses were attenuated by 72 % and changes in heart rate were reduced by 38 % during a static muscle contraction. Furthermore, western blot analysis of iNOS protein abundance within the RVLM revealed a significant attenuation when compared to control animals. In contrast, bilateral administration of AGN (10 µM) into the CVLM augmented the increases in mean arterial pressure by 60 % and potentiated changes in heart rate by 61 % during muscle contractions, but did not alter expression of the iNOS protein within the CVLM. These results demonstrate that iNOS protein expression within the ventrolateral medulla is differentially regulated by iNOS blockade that may, in part, contribute to the modulation of cardiovascular responses during static exercise.
Collapse
Affiliation(s)
- Pasarapa Towiwat
- Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
10
|
De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis. Expert Rev Respir Med 2014; 3:511-21. [DOI: 10.1586/ers.09.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Sharawy N. Vasoplegia in septic shock: do we really fight the right enemy? J Crit Care 2013; 29:83-7. [PMID: 24095623 DOI: 10.1016/j.jcrc.2013.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 12/13/2022]
Abstract
Vasoplegia is a key factor for the death of patients with septic shock in intensive care unit owing to persistent and irreversible hypotension. Impairment of vascular reactivity has been attributed to a combination of endothelial injury, arginine-vasopressin system dysfunction, release of other vasodilatory inflammatory mediators, and muscle hyperpolarizaton. Nitric oxide induced by a Ca(+2) independent isoform of nitric oxide synthase has been suggested to play an important role in sepsis-induced vasoplegia. However, inhibition of nitric oxide synthase only partially restores the endotoxin-induced vascular hyporeactivity. The aim of this review is to discuss in detail the recent suggested alternative mechanisms of vasoplegia and to briefly outline the current therapeutic strategies and the novel therapeutic options based on those mechanisms.
Collapse
Affiliation(s)
- Nivin Sharawy
- Department of Anaesthesia, Dalhousie University, Halifax, Nova Scotia, Canada B3H 2Y9.
| |
Collapse
|
12
|
Inhibition of nitric oxide synthase accentuates endotoxin-induced sickness behavior in mice. Pharmacol Biochem Behav 2013; 103:535-40. [DOI: 10.1016/j.pbb.2012.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/18/2012] [Accepted: 09/29/2012] [Indexed: 12/27/2022]
|
13
|
Effects of lipopolysaccharide on the neuronal control of mesenteric vascular tone in rats: mechanisms involved. Shock 2012; 38:328-34. [PMID: 22744306 DOI: 10.1097/shk.0b013e31826240ba] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to investigate the effects of lipopolysaccharide (LPS) on the contractile response induced by electrical field stimulation (EFS) in rat mesenteric segments, as well as the mechanisms involved. Effects of LPS incubation for 2 or 5 h were studied in mesenteric segments from male Wistar rats. Vasomotor responses to EFS, nitric oxide (NO) donor DEA-NO, and noradrenaline (NA) were studied. Phosphorylated neuronal NO synthase protein expression was analyzed, and NO, superoxide anion (O2·), and peroxynitrite releases were also determined. Lipopolysaccharide increased EFS-induced vasoconstriction at 2 h. This increase was lower after 5-h preincubation. N-nitro-L-arginine methyl ester increased vasoconstrictor response only in control segments. Vasodilator response to DEA-NO was increased by LPS after 5-h preincubation and was decreased by O2· scavenger tempol. Basal NO release was increased by LPS. Electrical field stimulation-induced NO release was reduced by LPS compared with control conditions. Lipopolysaccharide exposure increased both O2· and peroxynitrite release. Vasoconstriction to exogenous NA was markedly increased by LPS compared with control conditions after 2-h incubation and remained unchanged after 5-h incubation. Short-term exposure of rat mesenteric arteries to LPS produced a time-dependent enhanced contractile response to EFS. The early phase (2 h) was associated to a reduction in NO from neuronal NO synthase and an enhanced response to NA. After 5 h of LPS exposure, this enhancement was reduced, because of restoration of the adrenergic component and maintenance of the nitrergic reduction.
Collapse
|
14
|
Kubota N, Amemiya S, Motoki C, Otsuka T, Nishijima T, Kita I. Corticotropin-releasing factor antagonist reduces activation of noradrenalin and serotonin neurons in the locus coeruleus and dorsal raphe in the arousal response accompanied by yawning behavior in rats. Neurosci Res 2012; 72:316-23. [PMID: 22285921 DOI: 10.1016/j.neures.2012.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 12/11/2022]
Abstract
We previously reported that intracerebroventricular (icv) administration of corticotropin-releasing factor (CRF) antagonist attenuates the arousal response during yawning behavior in rats. However, the CRF-related pathway involved in the arousal response during yawning is still unclear. In the present study, we assessed the involvement of the CRF-containing pathway from the hypothalamic paraventricular nucleus (PVN) to the locus coeruleus (LC) and the dorsal raphe nucleus (DRN) in the arousal response during frequent spontaneous yawning, which was induced by several microinjections of l-glutamate into the PVN in anesthetized rats, using c-Fos immunohistochemistry. The PVN stimulation showed significant increases in activation of PVN CRF neurons, LC noradrenalin (NA) neurons and DRN serotonin (5-HT) neurons as well as arousal response during yawning. But icv administration of a CRF receptor antagonist, α-helical CRF (9-41), significantly inhibited the activation of both LC NA neurons and DRN 5-HT neurons except the activation of CRF neurons in the PVN, and significantly suppressed the arousal response during yawning. These results suggest that the CRF-containing pathway from PVN CRF neurons to LC NA neurons and DRN 5-HT neurons can be involved in the arousal response during yawning behavior.
Collapse
Affiliation(s)
- Natsuko Kubota
- Department of Human Health Science, Tokyo Metropolitan University, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding brain parenchyma, due to failure of the local antioxidant systems. ROS/RNS cause structural membrane damage, induce inflammation, and scavenge nitric oxide (NO) to yield peroxynitrite (ONOO(-)). This activates the inducible NO synthase, which further compounds ONOO(-) formation. ROS/RNS cause mitochondrial dysfunction by inhibiting the mitochondrial electron transport chain and uncoupling oxidative phosphorylation, which ultimately leads to neuronal bioenergetic failure. Furthermore, in certain 'at risk' areas of the brain, free radicals may induce neuronal apoptosis. In the present review, we define a role for ROS/RNS-mediated neuronal bioenergetic failure and apoptosis as a primary mechanism underlying sepsis-associated encephalopathy and, in sepsis survivors, permanent cognitive deficits.
Collapse
|
16
|
Lange M, Connelly R, Traber DL, Hamahata A, Nakano Y, Esechie A, Jonkam C, von Borzyskowski S, Traber LD, Schmalstieg FC, Herndon DN, Enkhbaatar P. Time course of nitric oxide synthases, nitrosative stress, and poly(ADP ribosylation) in an ovine sepsis model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R129. [PMID: 20602787 PMCID: PMC2945093 DOI: 10.1186/cc9097] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/22/2010] [Accepted: 07/05/2010] [Indexed: 02/03/2023]
Abstract
Introduction Different isoforms of nitric oxide synthases (NOS) and determinants of oxidative/nitrosative stress play important roles in the pathophysiology of pulmonary dysfunction induced by acute lung injury (ALI) and sepsis. However, the time changes of these pathogenic factors are largely undetermined. Methods Twenty-four chronically instrumented sheep were subjected to inhalation of 48 breaths of cotton smoke and instillation of live Pseudomonas aeruginosa into both lungs and were euthanized at 4, 8, 12, 18, and 24 hours post-injury. Additional sheep received sham injury and were euthanized after 24 hrs (control). All animals were mechanically ventilated and fluid resuscitated. Lung tissue was obtained at the respective time points for the measurement of neuronal, endothelial, and inducible NOS (nNOS, eNOS, iNOS) mRNA and their protein expression, calcium-dependent and -independent NOS activity, 3-nitrotyrosine (3-NT), and poly(ADP-ribose) (PAR) protein expression. Results The injury induced severe pulmonary dysfunction as indicated by a progressive decline in oxygenation index and concomitant increase in pulmonary shunt fraction. These changes were associated with an early and transient increase in eNOS and an early and profound increase in iNOS expression, while expression of nNOS remained unchanged. Both 3-NT, a marker of protein nitration, and PAR, an indicator of DNA damage, increased early but only transiently. Conclusions Identification of the time course of the described pathogenetic factors provides important additional information on the pulmonary response to ALI and sepsis in the ovine model. This information may be crucial for future studies, especially when considering the timing of novel treatment strategies including selective inhibition of NOS isoforms, modulation of peroxynitrite, and PARP.
Collapse
Affiliation(s)
- Matthias Lange
- Department of Anesthesiology, Investigational Intensive Care Unit, The University of Texas Medical Branch and Shriners Burns Hospital for Children, 301 University Boulevard, Galveston, Texas 77550, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stabile AM, Moreto V, Antunes-Rodrigues J, Carnio EC. Central but not systemic inhibition of inducible nitric oxide synthase modulates oxytocin release during endotoxemic shock. Peptides 2010; 31:706-11. [PMID: 19932725 DOI: 10.1016/j.peptides.2009.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 11/05/2009] [Accepted: 11/08/2009] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by i.v. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6h post-injection. LPS significantly increased plasma OT concentration at 2 and 4h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock.
Collapse
Affiliation(s)
- Angelita Maria Stabile
- Department of General and Specialized Nursing, University of São Paulo, College of Nursing, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
18
|
Abstract
Smoke inhalation injury is often complicated with pneumonia, which frequently leads to subsequent development of sepsis. Excessive NO has been shown to mediate many sepsis-related pathological responses. In the present study, we used our well-established ovine smoke inhalation and pneumonia/sepsis model to examine the hypothesis that neuronal NO synthase (NOS) may be primarily responsible for these pathological alterations. We report the beneficial effects of the specific neuronal NOS (nNOS) inhibitor ZK234238. Adult female sheep were surgically prepared for the study. After 5 to 7 days' recovery, sheep were anesthetized and given double injury: insufflation of 48 breaths of cotton smoke (<40 degrees C) into the airway of each animal and subsequent instillation of live Pseudomonas aeruginosa (5 x 10(11) colony-forming units) into each sheep's lung via tracheostomy tube. All sheep were mechanically ventilated and fluid resuscitated by lactated Ringer's solution. Sheep were randomly allocated into groups: control (injured not treated, n = 6) and treated (injured, but treated with ZK234238, n = 4). Continuous infusion of ZK234238 (100 microg x kg(-1) x h(-1)) was started 1 h after insult. ZK234238 attenuated the hypotension (at 18 and 24 h) and fall in systemic vascular resistance (at 24 h) seen in control animals. ZK234238 significantly inhibited increased fluid accumulation as well as increased plasma nitrate/nitrite 24 h after injury. Neuronal NOS inhibition significantly reduced lung water content and attenuated inflammatory indices such as lung tissue myeloperoxidase activity, IL-6 mRNA, and reactive nitrogen species. The above results suggest that the nNOS-derived NO may be involved in the pathophysiology of sepsis-related multiorgan dysfunction.
Collapse
|
19
|
Igarashi K, Akira S, Imaki J, Takeshita T. Systemic endotoxin induces gene expression of inducible nitric oxide synthase in fetal rat brain. J NIPPON MED SCH 2009; 76:232-9. [PMID: 19915306 DOI: 10.1272/jnms.76.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Few studies have examined the response of the fetus under stress, such as with maternal infection. Recent work has indicated that nitric oxide (NO) modulates corticotropin-releasing hormone (CRH) secretion by the hypothalamus, but details of the action of NO on the fetus remain unclear. Therefore, we investigated the expression of inducible nitric oxide synthase (iNOS) mRNA and the response pattern following lipopolysaccharide (LPS) loading using a rat model of fetal infection. METHODS Fetuses were delivered by cesarean section on day 20 of gestation and immediately placed in a chamber maintained at 37 degrees C and 100% relative humidity. The LPS group (n=12) was given 400 microg of LPS/100 g body weight, and the physiologic saline group (n=12) was given physiologic saline. Fetuses were then incubated for a further 3 hours. Fetuses were decapitated, the trunk blood was collected immediately after cesarean section or after 3 hours of incubation, and the fetal brains were fixed in formaldehyde and cryopreserved. Coronal cryosections of the brains were prepared, and a (35)S-uridine triphosphate-labeled antisense RNA probe for iNOS was then prepared. In situ hybridization was performed, and iNOS expression was evaluated semiquantitatively on the basis of optical density. In both groups, plasma corticosterone levels were determined with radioimmunoassay. RESULTS Expression of iNOS mRNA was not noted in the physiologic saline group (3 hours postpartum). In the LPS group, iNOS mRNA expression was observed in the subfornical organ, but not in the paraventricular nucleus. Plasma corticosterone levels were significantly elevated in the LPS group. CONCLUSIONS In 20-day-old rat fetuses, the hypothalamic-pituitary-adrenal axis was already mobilized in response to LPS-induced stress. These results suggest that iNOS is not involved in the acute response of the hypothalamic-pituitary-adrenal axis to LPS challenge in 20-day-old rat fetuses.
Collapse
Affiliation(s)
- Kenji Igarashi
- Division of Reproductive Medicine, Perinatology and Gynecologic Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
20
|
Dal-Pizzol F, Ritter C, Cassol-Jr OJ, Rezin GT, Petronilho F, Zugno AI, Quevedo J, Streck EL. Oxidative Mechanisms of Brain Dysfunction During Sepsis. Neurochem Res 2009; 35:1-12. [DOI: 10.1007/s11064-009-0043-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 07/31/2009] [Indexed: 12/16/2022]
|
21
|
Devi Ramnath R, Weing S, He M, Sun J, Zhang H, Singh Bawa M, Bhatia M. Inflammatory mediators in sepsis: Cytokines, chemokines, adhesion molecules and gases. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060500435662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Nitric oxide synthase isozymes in spinally projecting PVN neurons are involved in CRF-induced sympathetic activation. Auton Neurosci 2009; 148:83-9. [DOI: 10.1016/j.autneu.2009.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 02/23/2009] [Accepted: 02/23/2009] [Indexed: 02/03/2023]
|
23
|
Kita I, Kubota N, Yanagita S, Motoki C. Intracerebroventricular administration of corticotropin-releasing factor antagonist attenuates arousal response accompanied by yawning behavior in rats. Neurosci Lett 2008; 433:205-8. [PMID: 18243550 DOI: 10.1016/j.neulet.2008.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/19/2007] [Accepted: 01/04/2008] [Indexed: 12/28/2022]
Abstract
We have reported that an arousal response accompanied by yawning behavior can be evoked by electrical and chemical stimulation of the hypothalamic paraventricular nucleus (PVN) in rats, although the mechanism responsible for the arousal response accompanied by yawning evoked by PVN stimulation is still unknown. In the present study, we examined the involvement of corticotropin-releasing factor (CRF) in the arousal response during yawning induced by electrical stimulation of the PVN in anesthetized, spontaneous breathing rats using intracerebroventricular (icv) injection of alpha-helical CRF, a CRF antagonist (4.2 microg, lateral ventricle). The electrocorticogram (ECoG) was recorded to evaluate arousal responses during yawning. Fast Fourier transform was used to obtain the power spectrum in delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-20 Hz) bands. We also recorded the intercostal electromyogram as an index of inspiratory activity and blood pressure (BP) as an index of autonomic function to evaluate yawning response. PVN stimulation induced significant increases in relative powers of theta, alpha, and beta bands, but not delta band, concurrent with yawning events regardless of icv injection, though the relative powers after icv injection of alpha-helical CRF were significantly lower than those after saline injection. These findings suggest that CRF neurons in the PVN are primarily responsible for the arousal response accompanied by yawning behavior.
Collapse
Affiliation(s)
- Ichiro Kita
- Department of Human Health Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | |
Collapse
|
24
|
Saia RS, Anselmo-Franci JA, Carnio EC. HYPOTHERMIA DURING ENDOTOXEMIC SHOCK IN FEMALE MICE LACKING INDUCIBLE NITRIC OXIDE SYNTHASE. Shock 2008; 29:119-26. [PMID: 17621253 DOI: 10.1097/shk.0b013e31805cdc96] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was undertaken to evaluate: (1) whether lipopolysaccharide LPS-induced hypothermic responses may be altered during two estrous cycle phases, proestrus and diestrus, and after ovariectomy, followed by hormonal supplementation and (2) whether nitric oxide (NO) plays a role on LPS-induced hypothermia responses in female mice. Experiments were performed on adult female wild-type (WT) C57BL and inducible NO synthase knockout (KO) mice weighing 18 to 30 g. Endotoxemia was induced by intraperitoneal LPS administration from Escherichia coli at a nonlethal dose of 10 mg/kg, and body temperature was measured by biotelemetry. Hormonal replacement was performed in ovariectomized mice through 17beta-estradiol Silastic capsules (100 mug) and s.c. injection of progesterone (0.5 mg per animal). We observed that during the diestrus phase, mice presented more intensive hypothermia than during proestrus phase, and hormonal supplementation with 17beta-estradiol and progesterone attenuated hypothermia in ovariectomized mice. During diestrus and ovariectomy, KO mice had higher hypothermic response when compared with the WT group. During proestrus, the lack of statistical difference between KO and WT mice could be consequent of lower ovarian hormones plasma levels. After hormonal replacement, hypothermia was reverted in KO groups probably because of higher ovarian hormonal levels. In summary, the results demonstrated that NO release by inducible NO synthase has an important thermoregulatory role in LPS-induced hypothermia in female mice. Besides, this involvement is directly dependent on the presence of ovarian hormones and their respective levels.
Collapse
Affiliation(s)
- Rafael S Saia
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
25
|
Kadoi Y, Goto F. Effects of selective iNOS inhibition on systemic hemodynamics and mortality rate on endotoxic shock in streptozotocin-induced diabetic rats. Shock 2007; 28:602-9. [PMID: 17607161 DOI: 10.1097/shk.0b013e31804d452d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to examine whether selective iNOS inhibition can restore the hemodynamic changes and reduce the nitrotyrosine levels in the cerebral cortex of rats with streptozotocin-induced diabetes during endotoxin-induced shock. The study was designed to include three sets of experiments: (1) measurement of changes in systemic hemodynamics, (2) measurement of biochemical variables, including iNOS activity and nitrotyrosine formation in the brain, and (3) assessment of mortality rate. Rats were randomly divided into four groups: group 1, control; group 2, LPS: Escherichia coli endotoxin, 10.0 mg/kg (i.v.) bolus; group 3 (i.v.) LPS and L-N6-(1-iminoethyl)-lysine (L-NIL), 4mg/kg (i.p.); and group 4, LPS and NG-nitro-L-arginine methyl ester (L-NAME), 5 mg/kg (i.p.). In nondiabetic rats, administration of L-NIL prevented the hemodynamic and biochemical changes, and increases in plasma nitrite and cerebral nitrotyrosine levels induced by LPS. Administration of L-NAME partially prevented these LPS-induced changes. On the other hand, in diabetic rats, administration of L-NIL only partially prevented the hemodynamic and biochemical changes, and increases in plasma nitrite and cerebral nitrotyrosine levels associated with LPS. Administration of L-NAME, however, had no effects on these LPS-induced changes in diabetic rats. There was a significant difference in nitrotyrosine levels between nondiabetic and diabetic rats in groups 2, 3, and 4 at 2 and 3 h after the treatment (at 3 h; nondiabetic--control, 4.6 +/- 0.4; LPS (i.v.), 8.9 +/- 1.0, LPS (i.v.) + L-NIL, 4.7 +/- 0.5; LPS (i.v.) + L-NAME, 7.1 +/- 0.9; diabetic--control, 5.5 +/- 0.4; LPS (i.v.), 13.6 +/- 1.2; LPS (i.v.) + L-NIL, 9.0 +/- 0.9; LPS (i.v.) + L-NAME, 13.0 +/- 1.0; densitometric units). Insulin therapy resulted in a decrease in iNOS activity (at 3 h: 1.0 +/- 0.5 fmol mg min), nitrotyrosine formation (at 3 h; 5.0 +/- 0.5, densitometric units), and mortality rates (30% at 6 h, 50% at 12 h) in the LPS (i.v.) + L-NIL group of diabetic rats. Selective iNOS inhibition in diabetic rats could not improve hemodynamic instability, chemical changes, iNOS activity, and nitrotyrosine formation during septic shock compared with the improvements observed in nondiabetic rats. Tight glucose control along with administration of L-NIL can result in more effective restoration of the biochemical changes of septicemia in diabetic rats. Thus, hyperglycemia may be one of the mechanisms related to the aggravation of endotoxin-induced shock.
Collapse
Affiliation(s)
- Yuji Kadoi
- Department of Anesthesiology, Gunma University Hospital, Japan.
| | | |
Collapse
|
26
|
Sarkar S, Zaretskaia MV, Zaretsky DV, Moreno M, DiMicco JA. Stress- and lipopolysaccharide-induced c-fos expression and nNOS in hypothalamic neurons projecting to medullary raphe in rats: a triple immunofluorescent labeling study. Eur J Neurosci 2007; 26:2228-38. [PMID: 17927775 DOI: 10.1111/j.1460-9568.2007.05843.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurons in the rostral raphe pallidus (rRP) have been proposed to mediate experimental stress-induced tachycardia and fever in rats, and projections from the dorsomedial hypothalamus (DMH) may signal their activation in these settings. Thus, we examined c-fos expression evoked by air jet/restraint stress and restraint stress or by systemic administration of lipopolysaccharide (10 microg/kg and 100 microg/kg) as well as the distribution of the neuronal nitric oxide synthase (nNOS) in neurons retrogradely labeled from the raphe with cholera toxin B in key hypothalamic regions. Many neurons in the medial preoptic area and the dorsal area of the DMH were retrogradely labeled, and approximately half of those in the medial preoptic area and moderate numbers in the dorsal DMH were also positive for nNOS. Either stress paradigm or dose of lipopolysaccharide increased the number of c-fos-positive neurons and nNOS/c-fos double-labeled neurons in all regions examined. However, retrogradely labeled neurons positive for c-fos were increased only in the dorsal DMH and adjoining region in both stressed and lipopolysaccharide-treated groups, and triple-labeled neurons were found only in this area in rats subjected to either stress paradigm. Thus, hypothalamic neurons that project to the rRP and express c-fos in response to either experimental stress or systemic inflammation are found only in the dorsal DMH, and many of those activated by stress contain nNOS, suggesting that nitric oxide may play a role in signaling in this pathway.
Collapse
Affiliation(s)
- Sumit Sarkar
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
27
|
Feleder C, Perlik V, Blatteis CM. Preoptic nitric oxide attenuates endotoxic fever in guinea pigs by inhibiting the POA release of norepinephrine. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1144-51. [PMID: 17584955 DOI: 10.1152/ajpregu.00068.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lipopolysaccharide (LPS) administration induces hypothalamic nitric oxide (NO); NO is antipyretic in the preoptic area (POA), but its mechanism of action is uncertain. LPS also stimulates the release of preoptic norepinephrine (NE), which mediates fever onset. Because NE upregulates NO synthases and NO induces cyclooxygenase (COX)-2-dependent PGE2, we investigated whether NO mediates the production of this central fever mediator. Conscious guinea pigs with intra-POA microdialysis probes received LPS intravenously (2 μg/kg) and, thereafter, an NO donor (SIN-1) or scavenger (carboxy-PTIO) intra-POA (20 μg/μl each, 2 μl/min, 6 h). Core temperature (Tc) was monitored constantly; dialysate NE and PGE2 were analyzed in 30-min collections. To verify the reported involvement of α2-adrenoceptors (AR) in PGE2 production, clonidine (α2-AR agonist, 2 μg/μl) was microdialyzed with and without SIN-1 or carboxy-PTIO. To assess the possible involvement of oxidative NE and/or NO products in the demonstrated initially COX-2-independent POA PGE2 increase, (+)-catechin (an antioxidant, 3 μg/μl) was microdialyzed, and POA PGE2, and Tc were determined. SIN-1 and carboxy-PTIO reduced and enhanced, respectively, the rises in NE, PGE2, and Tc produced by intravenous LPS. Similarly, they prevented and increased, respectively, the delayed elevations of PGE2 and Tc induced by intra-POA clonidine. (+)-Catechin prevented the LPS-induced elevation of PGE2, but not of Tc. We conclude that the antipyretic activity of NO derives from its inhibitory modulation of the LPS-induced release of POA NE. These data also implicate free radicals in POA PGE2 production and raise questions about its role as a central LPS fever mediator.
Collapse
Affiliation(s)
- Carlos Feleder
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
28
|
Tenorio-López FA, Valle-Mondragón L, Martínez-Lazcano JC, Sánchez-Mendoza A, Ríos C, Pastelín-Hernández G, Pérez-Severiano F. CZE Determination of Quinolinic Acid in Rat Brain Tissue and Plasma. Chromatographia 2007. [DOI: 10.1365/s10337-007-0241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Summy-Long JY, Hu S, Pruss A, Chen X, Phillips TM. Response of interleukin-1beta in the magnocellular system to salt-loading. J Neuroendocrinol 2006; 18:926-37. [PMID: 17076768 DOI: 10.1111/j.1365-2826.2006.01490.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drinking 2% NaCl decreases interleukin (IL)-1beta in the neural lobe and enhances IL-1 Type 1 receptor expression in magnocellular neurones and pituicytes. To quantify cytokine depletion from the neural lobe during progressive salt loading and determine whether the changes are reversible and correspond with stores of vasopressin (VP) or oxytocin (OT), rats were given water on day 0 and then 2% NaCl to drink for 2, 5, 8 or 5 days followed by 5 days of water (rehydration). Control rats drinking only water were pair-fed amounts eaten by 5-day salt-loaded animals. Animals were decapitated on day 8, the neural lobe frozen and plasma hormones analysed by radioimmunoassay (OT, VP) or enzyme-linked immunosorbent assay (IL-1beta). IL-1beta, VP and OT in homogenates of the neural lobe were quantified by immunocapillary electrophoresis with laser-induced fluorescence detection. Differences were determined by ANOVA, Tukey's t-test, Dunnett's procedure, Fisher's least significant difference and linear regression analysis. In response to salt-loading, rats lost body weight similar to pair-fed controls, drank progressively more 2% NaCl and excreted greater urine volumes. Plasma VP increased at days 2 and 8 of salt-loading, whereas osmolality, OT and cytokine were enhanced after 8 days with IL-1beta remaining elevated after rehydration. In the neural lobe, all three peptides decreased progressively with increasing duration of salt-loading (IL-1beta, r2 = 0.98; OT, r2 = 0.94; VP, r2 = 0.93), beginning on day 2 (IL-1beta; VP) or 5 (OT), with only VP replenished by rehydration. IL-1beta declined more closely (P < 0.0001; ANOVA interaction analysis) with OT (r2 = 0.96) than VP (r2 = 0.86), indicative of corelease from the neural lobe during chronic dehydration. Local effects of IL-1beta on magnocellular terminals, pituicytes and microglia in the neural lobe with activation of forebrain osmoregulatory structures by circulating cytokine may sustain neurosecretion of OT and VP during prolonged salt-loading.
Collapse
Affiliation(s)
- J Y Summy-Long
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
30
|
Kalinchuk AV, Stenberg D, Rosenberg PA, Porkka-Heiskanen T. Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur J Neurosci 2006; 24:1443-56. [PMID: 16987226 DOI: 10.1111/j.1460-9568.2006.05019.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. We have previously shown that nitric oxide (NO) generation increases in the basal forebrain (BF) during sleep deprivation (SD). Moreover, both NO synthase (NOS) inhibition and a NO scavenger prevented recovery sleep induction, while administration of a NO donor during the spontaneous sleep-wake cycle increased sleep, indicating that NO is necessary and sufficient for the induction of recovery sleep. Next we wanted to know which NOS isoform is involved in the production of recovery sleep. Using in vivo microdialysis we infused specific inhibitors of NOS into the BF of rats during SD, and found that an inhibitor of inducible NOS (iNOS), 1400W, prevented non-rapid eye movement (NREM) recovery, while an inhibitor of neuronal NOS (nNOS), L-N-propyl-arginine, decreased REM recovery but did not affect NREM recovery. Using immunoblot analysis we found that iNOS was not expressed during the spontaneous sleep-wake cycle, but was induced by prolonged wakefulness (increased by 278%). A known iNOS inducer, lipopolysaccharide, evoked an increase in sleep that closely resembled recovery sleep, and its effects were abolished by 1400W. These results suggest that the elevation of NO produced by induction of iNOS in the BF during prolonged wakefulness is a specific mechanism for producing NREM recovery sleep and that the two NOS isoforms have a complementary role in NREM and REM recovery induction.
Collapse
Affiliation(s)
- A V Kalinchuk
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki 00014, Finland
| | | | | | | |
Collapse
|
31
|
Jhaveri KA, Toth LA, Sekino Y, Ramkumar V. Nitric oxide serves as an endogenous regulator of neuronal adenosine A1receptor expression. J Neurochem 2006; 99:42-53. [PMID: 16987234 DOI: 10.1111/j.1471-4159.2006.04095.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) radicals are produced during normal cellular function, after tissue injury, and in response to immune system activation during infection. The transformation of NO to peroxynitrite is essential for mediating some of its physiological and/or cytotoxic actions. As the expression of the adenosine A1 receptor (A1AR) is regulated by oxidative stress, we evaluated the role of NO in the regulation of A1AR expression, a G protein-coupled receptor involved in cytoprotection in the central nervous system. Administration of the NO donor, S-nitrosylpenicillamine (SNAP), to pheochromocytoma 12 (PC12) cells increased A1AR protein in a time- and dose-dependent manner, with maximal induction observed with 20 microm SNAP at 24 h. The response to SNAP was attenuated by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide (C-PTIO), and by the inhibition of nuclear factor-kappaB (NF-kappaB), implicating this transcription factor in the regulatory process. In addition SNAP also increased the degradation of Inhibitory kappaB-alpha (IkappaB-alpha), a marker of NF-kappaB activation. Furthermore, the induction of inducible nitric oxide synthase (iNOS) by lipopolysaccharide increased A1AR in PC12 cells and in mice, whereas the inhibition of NOS activity suppressed this response. We conclude that NO, via the activation of NF-kappaB, serves as an endogenous regulator of A1AR, and speculate that the induction of the A1AR could counteract the cytotoxicity of NO.
Collapse
Affiliation(s)
- Krishna A Jhaveri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | | | | | |
Collapse
|
32
|
Saia RS, Carnio EC. Thermoregulatory role of inducible nitric oxide synthase in lipopolysaccharide-induced hypothermia. Life Sci 2006; 79:1473-8. [PMID: 16714035 DOI: 10.1016/j.lfs.2006.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/12/2006] [Accepted: 04/15/2006] [Indexed: 11/20/2022]
Abstract
We have tested the hypothesis that nitric oxide (NO) arising from inducible nitric oxide synthase (iNOS) plays a role in hypothermia during endotoxemia by regulating vasopressin (AVP) release. Wild-type (WT) and iNOS knockout mice (KO) were intraperitoneally injected with either saline or Escherichia coli lipopolysaccharide (LPS) 10.0 mg/kg in a final volume of 0.02 mL. Body temperature was measured continuously by biotelemetry during 24 h after injection. Three hours after LPS administration, we observed a significant drop in body temperature (hypothermic response) in WT mice, which remained until the seventh hour, returning then close to the basal level. In iNOS KO mice, we found a significant fall in body temperature after the fourth hour of LPS administration; however, the hypothermic response persisted until the end of the 24 h of the experiment. The pre-treatment with beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Et-Tyr2, Val4, Arg8-Vasopressin, an AVP V1 receptor antagonist (10 microg/kg) administered intraperitoneally, abolished the persistent hypothermia induced by LPS in iNOS KO mice, suggesting the regulation of iNOS under the vasopressin release in this experimental model. In conclusion, our data suggest that the iNOS isoform plays a role in LPS-induced hypothermia, apparently through the regulation of AVP release.
Collapse
Affiliation(s)
- Rafael S Saia
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto/USP, 14040-902- Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
33
|
Akasaka S, Nomura M, Nishii H, Fujimoto N, Ueta Y, Tsutsui M, Shimokawa H, Yanagihara N, Matsumoto T. The hypothalamo-pituitary axis responses to lipopolysaccharide-induced endotoxemia in mice lacking inducible nitric oxide synthase. Brain Res 2006; 1089:1-9. [PMID: 16631135 DOI: 10.1016/j.brainres.2006.02.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 01/18/2006] [Accepted: 02/26/2006] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) generated by inducible NO synthase (iNOS) may be implicated in the biological responses of the central nervous system to immune stimuli. To elucidate the role of iNOS in the hypothalamo-pituitary axis in responses to endotoxemia, using iNOS knockout (KO) mice, we examined the levels of c-fos, a neural activational marker, and corticotropin-releasing hormone (CRH) gene transcription in the paraventricular nucleus (PVN) and central amygdala (CeAMY) during lipopolysaccharide (LPS)-induced endotoxemia. In addition, the serum adrenocorticotropic hormone (ACTH) levels were also examined during endotoxemia. Following the intraperitoneal administration of LPS (1 mg/kg), the levels of the c-fos gene expression significantly increased in the PVN and the CeAMY regardless of the genotype. However, the disruption of the iNOS gene resulted in a significant decrease in the c-fos gene induction in the PVN in comparison to that observed in control mice. LPS administration caused a significant increase in CRH mRNA levels in the PVN and CeAMY regardless of genotype. However, the LPS-induced upregulation of CRH mRNA was significantly attenuated in the PVN of iNOS KO mice in comparison to that in the control mice. In contrast, no such genotype differences in the neural activity or CRH gene transcription were observed in the CeAMY. The serum ACTH responses to LPS were also significantly blunted in the iNOS KO mice in comparison to the control mice. These results suggest that iNOS-derived NO may therefore play a stimulatory role in the activity of the hypothalamo-pituitary axis during endotoxemia.
Collapse
Affiliation(s)
- Soichiro Akasaka
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Herber DL, Maloney JL, Roth LM, Freeman MJ, Morgan D, Gordon MN. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia 2006; 53:382-91. [PMID: 16288481 DOI: 10.1002/glia.20272] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammation has been argued to play a primary role in the pathogenesis of Alzheimer's disease by contributing to the development of neuropathology and clinical symptoms. However, the mechanisms underlying these effects remain obscure. Lipopolysaccharide (LPS) activates the innate immune response and triggers gliosis when injected into the central nervous system. In the studies described in the present work, we evaluated the time course of microgliosis after a single intrahippocampal injection of LPS. Mice were injected bilaterally with 4 mug of LPS. Post-injection survival times were 1, 6, and 24 h, as well as 3, 7, 14, and 28 days. Protein and RNA analyses were performed for inflammatory markers. Significant elevations of cluster differentiation marker CD45, glial fibrillary acidic protein (GFAP), scavenger receptor A (SRA), and Fcgamma receptor mRNA were seen after 24 h. Immunohistochemistry revealed a complex pattern of protein expression by microglia, as well as changes in cell morphologies. RNA and protein for Fcgamma receptor and SRA were transiently elevated, peaked at 3 days, and returned to basal levels after 1 week. In contrast, microglia remained significantly activated through the 28-day time point, as determined by CD45 and complement receptor 3 levels. These findings indicate a multivariate response to LPS, and evaluation of microglial phenotypes may lead to a better understanding of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Donna L Herber
- Department of Pharmacology and Therapeutics, Alzheimer Research Laboratory, University of South Florida, Tampa, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cavas M, Navarro JF. Effects of selective neuronal nitric oxide synthase inhibition on sleep and wakefulness in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:56-67. [PMID: 16023276 DOI: 10.1016/j.pnpbp.2005.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2005] [Indexed: 11/19/2022]
Abstract
The role played by the unconventional messenger Nitric Oxide (NO) upon the sleep-wake cycle remains controversial. Evidence suggests a positive role of NO on Slow Wave Sleep (SWS) and Paradoxical Sleep (PS) regulation, favoring sleep. However, other studies have found a role of NO upon wakefulness and alertness, inhibiting sleep. Divergences have been explained in part because of the use of different inhibitors of nitric oxide synthases (NOS). The aim of this study is to analyse the effects of a highly selective neuronal NOS inhibitor (3-Bromo7-Nitroindazole) on sleep-wake states in rats. Male Wistar rats were stereotaxically prepared for polysomnography. 3-Bromo-7-Nitroindazole (10, 20, 40 mg/kg, i.p.) dissolved in DMSO 10% filled with saline, or vehicle (DMSO 10% in saline) was administered at the beginning of the light period. Three hours of polygraphic recordings were evaluated for stages of vigilance. Results show dose-dependent effects of 3-Bromo7-Nitroindazole upon sleep: 10 mg/kg decreases duration and number of episodes of deep SWS, increasing duration of light SWS. 20 mg/kg decreased duration of light and deep SWS, while active and quiet wake increased. Deep SWS and PS latency increased. Number of episodes of PS decreased, as well as number of cycles of sleep and time spent asleep. 40 mg/kg reduced duration of deep SWS and increased mean episode duration of light SWS. Therefore, sleep states are affected by selective inhibition of nNOS, reducing in all cases deep SWS. These results support the hypothesis that nitric oxide, produced by nNOS, is involved in sleep processes, favoring sleep.
Collapse
Affiliation(s)
- María Cavas
- Area de Psicobiología, Facultad de Psicología, Universidad de Málaga, Spain.
| | | |
Collapse
|
36
|
Wilson JX, Dragan M. Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes. Free Radic Biol Med 2005; 39:990-8. [PMID: 16198226 DOI: 10.1016/j.freeradbiomed.2005.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 05/04/2005] [Accepted: 05/12/2005] [Indexed: 11/29/2022]
Abstract
Sepsis causes brain dysfunction. Because neurotransmission requires high ascorbate and low dehydroascorbic acid (DHAA) concentrations in brain extracellular fluid, the effect of septic insult on ascorbate recycling (i.e., uptake and reduction of DHAA) and export was investigated in primary rat and mouse astrocytes. DHAA raised intracellular ascorbate to physiological levels but extracellular ascorbate only slightly. Septic insult by lipopolysaccharide and interferon-gamma increased ascorbate recycling in astrocytes permeabilized with saponin but decreased it in those with intact plasma membrane. The decrease was due to inhibition of the glucose transporter (GLUT1) that translocates DHAA because septic insult slowed uptake of the nonmetabolizable GLUT1 substrate 3-O-methylglucose. Septic insult also abolished stimulation by glutamate of ascorbate export. Specific nitric oxide synthase (NOS) inhibitors and nNOS and iNOS deficiency failed to alter the effects of septic insult. Inhibitors of NADPH oxidase generally did not protect against septic insult, because only one of those tested (diphenylene iodonium) increased GLUT1 activity and ascorbate recycling. We conclude that astrocytes take up DHAA and use it to synthesize ascorbate that is exported in response to glutamate. This mechanism may provide the antioxidant on demand to neurons under normal conditions, but it is attenuated after septic insult.
Collapse
Affiliation(s)
- John X Wilson
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada N6A 5C1.
| | | |
Collapse
|
37
|
Hampl V, Bíbová J, Banasová A, Uhlík J, Miková D, Hnilicková O, Lachmanová V, Herget J. Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2005; 290:L11-20. [PMID: 16113050 DOI: 10.1152/ajplung.00023.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenesis of hypoxic pulmonary hypertension is initiated by oxidative injury to the pulmonary vascular wall. Because nitric oxide (NO) can contribute to oxidative stress and because the inducible isoform of NO synthase (iNOS) is often upregulated in association with tissue injury, we hypothesized that iNOS-derived NO participates in the pulmonary vascular wall injury at the onset of hypoxic pulmonary hypertension. An effective and selective dose of an iNOS inhibitor, L-N6-(1-iminoethyl)lysine (L-NIL), for chronic peroral treatment was first determined (8 mg/l in drinking water) by measuring exhaled NO concentration and systemic arterial pressure after LPS injection under ketamine+xylazine anesthesia. A separate batch of rats was then exposed to hypoxia (10% O2) and given L-NIL or a nonselective inhibitor of all NO synthases, N(G)-nitro-L-arginine methyl ester (L-NAME, 500 mg/l), in drinking water. Both inhibitors, applied just before and during 1-wk hypoxia, equally reduced pulmonary arterial pressure (PAP) measured under ketamine+xylazine anesthesia. If hypoxia continued for 2 more wk after L-NIL treatment was discontinued, PAP was still lower than in untreated hypoxic controls. Immunostaining of lung vessels showed negligible iNOS presence in control rats, striking iNOS expression after 4 days of hypoxia, and return of iNOS immunostaining toward normally low levels after 20 days of hypoxia. Lung NO production, measured as NO concentration in exhaled air, was markedly elevated as early as on the first day of hypoxia. We conclude that transient iNOS induction in the pulmonary vascular wall at the beginning of chronic hypoxia participates in the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Václav Hampl
- Department of Physiology, Charles University Second Medical School, Plzenska 130/221, 150 00 Prague 5, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gautier-Sauvigné S, Colas D, Parmantier P, Clement P, Gharib A, Sarda N, Cespuglio R. Nitric oxide and sleep. Sleep Med Rev 2005; 9:101-13. [PMID: 15737789 DOI: 10.1016/j.smrv.2004.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) is a biological messenger synthesized by three main isoforms of NO synthase (NOS): neuronal (nNOS, constitutive calcium dependent), endothelial (eNOS, constitutive, calcium dependent) and inducible (iNOS, calcium independent). NOS is distributed in the brain either in circumscribed neuronal sets or in sparse interneurons. Within the laterodorsal tegmentum (LDT), pedunculopontine tegmentum and dorsal raphe nucleus, NOS-containing neurons overlap neurons grouped according to their contribution to sleep mechanisms. The main target for NO is the soluble guanylate cyclase that triggers an overproduction of cyclic guanosine monophosphate. NO in neurons of the pontine tegmentum facilitates sleep (particularly rapid-eye-movement sleep), and NO contained within the LDT intervenes in modulating the discharge of the neurons through an auto-inhibitory process involving the co-synthesized neurotransmitters. Moreover, NO synthesized within cholinergic neurons of the basal forebrain, while under control of the LDT, may modulate the spectral components of the EEG instead of the amounts of different sleep states. Finally, impairment of NO production (e.g. neurodegeneration, iNOS induction) has identifiable effects, including ageing, neuropathologies and parasitaemia.
Collapse
Affiliation(s)
- Sabine Gautier-Sauvigné
- Claude Bernard University Lyon1, INSERM U 480, EA 3734 and IFR 19, 8 avenue Rockefeller, F-69373 Lyon Cedex 08, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Diaz-Ruiz A, Vergara P, Perez-Severiano F, Segovia J, Guizar-Sahagún G, Ibarra A, Ríos C. Cyclosporin-A Inhibits Constitutive Nitric Oxide Synthase Activity and Neuronal and Endothelial Nitric Oxide Synthase Expressions after Spinal Cord Injury in Rats. Neurochem Res 2005; 30:245-51. [PMID: 15895828 DOI: 10.1007/s11064-005-2447-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) plays a role in the pathophysiology of spinal cord injury (SCI). NO is produced by three types of nitric oxide synthase (NOS) enzymes: The constitutive Ca2+/calmodulin-dependent neuronal NOS (nNOS) and endothelial NOS (eNOS) isoforms, and the inducible calcium-independent isoform (iNOS). During the early stages of SCI, nNOS and eNOS produce significant amounts of NO, therefore, the regulation of their activity and expression may participate in the damage after SCI. In the present study, we used Cyclosporin-A (CsA) to further substantiate the role of Ca-dependent NOS in neural responses associated to SCI. Female Wistar rats were subjected to SCI by contusion, and killed 4 h after lesion. Results showed an increase in the activity of constitutive NOS (cNOS) after lesion, inhibited by CsA (2.5 mg/kg i.p.). Western blot assays showed an increased expression of both nNOS and eNOS after trauma, also antagonized by CsA administration.
Collapse
Affiliation(s)
- Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, S.S.A., México
| | | | | | | | | | | | | |
Collapse
|
40
|
Ventura RR, Giusti-Paiva A, Gomes DA, Elias LLK, Antunes-Rodrigues J. Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats. Neurosci Lett 2005; 379:75-80. [PMID: 15823420 DOI: 10.1016/j.neulet.2004.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/06/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
Nitric oxide, an endogenous gas produced by nitric oxide synthase (NOS), has been described as a neuromodulator of hormone secretion, including the neurohypophysial peptides oxytocin (OT) and vasopressin (AVP), hormones involved in the sodium and water homeostasis. The presence of NOS in the hypothalamic nuclei as well as in the circumventricular organs suggests a nitrergic regulation of OT and AVP secretion. Thus, the aim of this study was to evaluate the effect of 7-nitroindazole (7-NI), a selective inhibitor of neuronal NOS, in the plasma OT and AVP levels in rats submitted to a short and long-term salt loading. We also evaluated the NOS activity in the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. Our data showed an increase of plasma OT and AVP levels in both short and long-term salt loading. The augment of plasma OT and AVP levels was accompanied by an increase of NOS activity in the SON and PVN. The injection of 7-NI potentiated the increase of plasma OT induced by salt loading, but inhibited the increase of plasma AVP in the same experimental conditions. These results indicate that, under short and prolonged osmotic stimulation, nitric oxide may differentially control the neurohypophysial secretion.
Collapse
Affiliation(s)
- Renato Rizo Ventura
- Department of Physiology, School of Medicine of Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
41
|
Srisawat R, Bishop VR, Bull PM, Douglas AJ, Russell JA, Ludwig M, Leng G. Regulation of neuronal nitric oxide synthase mRNA expression in the rat magnocellular neurosecretory system. Neurosci Lett 2004; 369:191-6. [PMID: 15464263 DOI: 10.1016/j.neulet.2004.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 06/25/2004] [Accepted: 07/16/2004] [Indexed: 11/30/2022]
Abstract
We examined the activation of nNOS mRNA expression within the supraoptic and paraventricular nuclei (SON and PVN) of the hypothalamus. In salt-loaded rats nNOS mRNA expression was significantly increased in both nuclei. In rats given i.p. injections of 1.5 M NaCl (4 ml/kg), a small but significant increase in nNOS mRNA expression in the SON and PVN was found 6 h after injection; no change was detected 2 or 4 h after injection. In rats in which hyponatraemia had been induced experimentally, nNOS mRNA was downregulated in the SON, and expression levels were not increased within 4 h after intense acute osmotic stimuli. Finally, neurons of the SON were antidromically-activated by neural stalk stimulation for 2 h. No increase of nNOS mRNA expression in the SON was observed 2 h after stimulation. Thus, increased electrical activity is not directly coupled to rapidly increased expression of nNOS mRNA, and hence acute increases in nNOS mRNA expression are unlikely to play a role in short-term adaptation of the magnocellular system to osmotic stimulation.
Collapse
Affiliation(s)
- Rungrudee Srisawat
- School of Biomedical and Clinical Laboratory Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Kadoi Y, Goto F. Selective inducible nitric oxide inhibition can restore hemodynamics, but does not improve neurological dysfunction in experimentally-induced septic shock in rats. Anesth Analg 2004; 99:212-220. [PMID: 15281532 DOI: 10.1213/01.ane.0000118111.94913.22] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we evaluated the time course of changes in inducible nitric oxide synthase (iNOS) in the brain by using the rat model of sepsis induced by cecal ligation and puncture (CLP) and examined whether selective iNOS inhibition can prevent the hemodynamic and neurological changes induced by sepsis. Male Wistar rats were randomly divided into four groups: control, sham, CLP, and CLP + the selective iNOS inhibitor L-N6-(1-iminoethyl)-lysine (L-NIL). Septic shock was induced in the rats by CLP under pentobarbital anesthesia, and then we measured hemodynamic variables, neurological indicators, blood gases, plasma levels of nitrate/nitrite (an indicator of the biosynthesis of NO), and brain iNOS activity and nitrotyrosine levels after 1, 6, 12, and 24 h. Plasma nitrite was increased at 12 and 24 h in the CLP group. The activity of iNOS in the brain was increased at 12 and 24 h after CLP (at 12 h: control, 0.3 +/- 0.05; sham, 0.3 +/- 0.1; CLP, 1.3 +/- 0.08*; CLP + L-NIL, 0.33 +/- 0.1 fmol x mg(-1) x min(-1); at 24 h: control, 0.27 +/- 0.08; sham, 0.31 +/- 0.1; CLP, 1.0 +/- 0.3*; CLP + L-NIL, 0.34 +/- 0.1 fmol x mg(-1) x min(-1); mean +/- SD; *P < 0.05). Brain nitrotyrosine was increased at 24 h after CLP (at 24 h: control, 6.7 +/- 0.4; sham, 6.7 +/- 0.5; CLP, 11.2 +/- 2.8*; CLP + L-NIL, 7.52 +/- 0.5 densitometric units; means +/- SD; *P < 0.01). In contrast, in both the CLP and CLP + L-NIL groups, the consciousness reflex was significantly decreased at 24 h after CLP. Selective iNOS inhibition restored the hemodynamic changes induced by sepsis but could not improve neurological dysfunction.
Collapse
Affiliation(s)
- Yuji Kadoi
- *Department of Intensive Care, Gunma University, School of Medicine, Gunma, Japan; and †Department of Anesthesiology, Gunma University, Graduate School of Medicine, Gunma, Japan
| | | |
Collapse
|
43
|
Peruzzi E, Fontana G, Sonetti D. Presence and role of nitric oxide in the central nervous system of the freshwater snail Planorbarius corneus: possible implication in neuron–microglia communication. Brain Res 2004; 1005:9-20. [PMID: 15044059 DOI: 10.1016/j.brainres.2003.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2003] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the involvement of nitric oxide (NO) as a messenger molecule in neuron-microglia communication in the central nervous system (CNS) of the freshwater snail Planorbarius corneus. The presence of both neuronal (nNOS) and inducible nitric oxide synthase (iNOS) was studied using NADPH-diaphorase (NADPH-d) histochemistry and NOS immunocytochemistry. The experiments were performed on whole ganglia and cultured microglial cells after different activation modalities, such as treatment with lipopolysaccharide and adenosine triphosphate and/or maintaining ganglia in culture medium till 7 days. In sections, nNOS immunoreactivity was found only in neurons and nNOS-positive elements were less numerous than NADPH-d-positive ones, with which they partially overlapped. The iNOS immunoreactivity was observed only after activation, in both nerve and microglial cells. We also found that the number of iNOS-immunoreactive neurons and microglia varied, depending on the activation modalities. In microglial cell cultures, iNOS was expressed in the first generation of cells only after activation, whereas a second generation, proliferated after ganglia activation, expressed iNOS even in the unstimulated condition.
Collapse
Affiliation(s)
- Elisa Peruzzi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, I-41100 Modena, Italy.
| | | | | |
Collapse
|
44
|
Mishima T, Hamada T, Ui-Tei K, Takahashi F, Miyata Y, Imaki J, Suzuki H, Yamashita K. Expression of DDAH1 in chick and rat embryos. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:223-32. [PMID: 14766200 DOI: 10.1016/j.devbrainres.2003.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/10/2003] [Indexed: 11/28/2022]
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is an enzyme that metabolizes methylated arginine to citrulline and methylamine, thus working to produce nitric oxide (NO). We isolated a gene encoding chick DDAH1. In situ hybridization analysis revealed characteristic DDAH1 mRNA expression in the embryonic spinal cord, which was especially strong in the ventral horn and dorsal root ganglion (DRG). DDAH1 was also detected in the brain, kidney, digestive tract, and in other tissues. We examined the expression pattern of DDAH1 in developing rats and compared this with the expression pattern in chicks. The expression pattern in the rats was very similar to that in the chicks, but there were some differences between the chicks and rats in the amount of DDAH1 detected in the heart, liver, lung, and DRG. We also investigated neural nitric oxide synthase (nNOS) mRNA expression patterns in rat embryos. The DDAH1 expression patterns were completely different from nNOS expression patterns. Our study suggests that DDAH1 plays an important role in development.
Collapse
Affiliation(s)
- Takuya Mishima
- Department of Anatomy, Nippon Medical School, Bunkyo, Tokyo 113-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stern JE. Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:197-215. [PMID: 14769436 DOI: 10.1016/j.pbiomolbio.2003.11.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulated evidence indicates that nitric oxide (NO) plays a pivotal role in the central control of bodily homeostasis, including cardiovascular and fluid balance regulation. Two major neuronal substrates mediating NO actions in the control of homeostasis are the paraventricular nucleus (PVN) of the hypothalamus, considered a key center for the integration of neuroendocrine and autonomic functions, and the supraoptic nucleus (SON). In this work, a comprehensive review of NO modulatory actions within the SON/PVN, including NO actions on neuroendocrine and autonomic outputs, as well as the cellular mechanisms underlying these effects is provided. Furthermore, this review comprises recent progress from our laboratory that adds to our current understanding of the cellular sources, targets and mechanisms underlying NO actions within neuroendocrine and autonomic hypothalamic neuronal circuits. By combining in vitro patch clamp recordings, tract-tracing neuroanatomy, immunohistochemistry and live imaging techniques, we started to shed light into the cellular sources and signals driving NO production within the SON and PVN, as well as NO actions and mechanisms targeting discrete neuronal populations within these circuits. Based on this new information, we have expanded one of the current working models in the field, highlighting a key role for NO as a signaling molecule that facilitates crosstalk among various cell types and systems. We propose that this dynamic NO signaling mechanisms may constitute a neuroanatomical and functional substrate underlying the ability of the SON and PVN to coordinate complex neuroendocrine and autonomic output patterns.
Collapse
Affiliation(s)
- Javier E Stern
- Department of Pharmacology and Toxicology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| |
Collapse
|
46
|
Seo DO, Lee S, Rivier CL. Comparison between the influence of shocks and endotoxemia on the activation of brain cells that contain nitric oxide. Brain Res 2004; 998:1-12. [PMID: 14725962 DOI: 10.1016/j.brainres.2003.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We sought to identify the brain circuitry that underlies the stimulatory role of nitric oxide (NO) role on the hypothalamic-pituitary-adrenal (HPA) axis. Specifically, we determined whether electrofootshocks (60 min) or the intravenous administration of lipopolysaccharide (LPS, 100 microg/kg)-activated neurocircuitries that express either neuronal NO synthase (nNOS), a constitutive enzyme responsible for NO formation, or L-citrulline, an amino acid that is produced in equimolar amounts with NO. Shocks significantly increased the number of cells showing Fos immunoreactivity (ir) in the paraventricular nucleus (PVN) of the hypothalamus, the lateral hypothalamus (LH), amygdaloid complex (AD) and thalamus (TH), and to a lesser extent, in the hippocampus (HP), caudate putamen (CP) and frontal cortex (FC). However, shocks did not alter the number of nNOS-positive cells nor increased citrulline signals in these brain regions. LPS significantly upregulated the number of cells with fos-like ir in the PVN, LH, AD, TH, HP, CP and FC, but only increased the number of cells positive for citrulline in the PVN, 87% of which co-expressed Fos. Thus, while shocks did not alter nNOS gene expression or citrulline levels in the brain regions studied, LPS significantly increased the number of PVN cells expressing citrulline without concomitant changes in other brain areas. Endotoxemia also upregulated significantly more PVN cells that co-expressed Fos and nNOS, compared to shocks. As NO stimulates the PVN circuitries that participate in shocks- and LPS-induced ACTH release, the lack of changes in nNOS or citrulline levels due to shocks suggests that, in this model, constitutively formed NO may modulate HPA axis activity in the absence of changes in its synthesis.
Collapse
Affiliation(s)
- Dong Ook Seo
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
47
|
Wei R, Sternberg EM. IL-1β-mediated neuropeptide and immediate early gene mRNA induction is defective in Lewis hypothalamic cell cultures. J Neuroimmunol 2004; 146:114-25. [PMID: 14698853 DOI: 10.1016/j.jneuroim.2003.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We previously found that Lewis (LEW/N) hypothalamic cells respond to interleukin-1beta (IL-1beta) with reduced corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) peptide synthesis and secretion compared to Fischer (F344/N) cells. To investigate whether this peptide hyporesponsiveness in LEW/N cells is secondary to their deficient mRNA expression, temporal mRNA expression patterns of CRH, AVP, and several hypothalamic neuropeptides induced by IL-1beta in LEW/N and F344/N hypothalamic dissociated cell cultures were delineated by quantitative real-time polymerase chain reaction (RT-PCR). To investigate the molecular mechanisms underlying neuropeptide mRNA induction in cells of both strains, temporal mRNA expression patterns of immediate early genes (IEGs) and several signal transduction-associated molecules were also examined. We found that LEW/N hypothalamic cells were hyporesponsive to IL-1beta induction of neuropeptide and IEG mRNA, while LEW/N cells transcribed more IL-1 receptor and inducible nitric oxide synthase (iNOS) compared to F344N/N cells, suggesting that LEW/N and F344/N hypothalamic cells are differentially activated by IL-1beta.
Collapse
Affiliation(s)
- Rongtai Wei
- Integrative Neural Immune Program, NIMH, NIH, 36 Convent Drive, Building 36, Room 1A23, Bethesda, MD 20892-4020, USA
| | | |
Collapse
|
48
|
Priego T, Ibáñez de Cáceres I, Martín AI, Villanúa MA, López-Calderón A. NO plays a role in LPS-induced decreases in circulating IGF-I and IGFBP-3 and their gene expression in the liver. Am J Physiol Endocrinol Metab 2004; 286:E50-6. [PMID: 13129855 DOI: 10.1152/ajpendo.00149.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we administered aminoguanidine, a relatively selective inducible nitric oxide synthase (iNOS) inhibitor, to study the role of nitric oxide (NO) in LPS-induced decrease in IGF-I and IGFBP-3. Adult male Wistar rats were injected intraperitoneally with LPS (100 microg/kg), aminoguanidine (100 mg/kg), LPS plus aminoguanidine, or saline. Rats were injected at 1730 and 0830 the next day and killed 4 h after the last injection. LPS administration induced an increase in serum concentrations of nitrite/nitrate (P < 0.01) and a decrease in serum concentrations of growth hormone (GH; P < 0.05) and IGF-I (P < 0.01) as well as in liver IGF-I mRNA levels (P < 0.05). The LPS-induced decrease in serum concentrations of IGF-I and liver IGF-I gene expression seems to be secondary to iNOS activation, since aminoguanidine administration prevented the effect of LPS on circulating IGF-I and its gene expression in the liver. In contrast, LPS-induced decrease in serum GH was not prevented by aminoguanidine administration. LPS injection decreased IGFBP-3 circulating levels (P < 0.05) and its hepatic gene expression (P < 0.01), but endotoxin did not modify the serum IGFBP-3 proteolysis rate. Aminoguanidine administration blocked the inhibitory effect of LPS on both IGFBP-3 serum levels and its hepatic mRNA levels. When aminoguanidine was administered alone, IGFBP-3 serum levels were increased (P < 0.05), whereas its hepatic mRNA levels were decreased. This contrast can be explained by the decrease (P < 0.05) in serum proteolysis of this binding protein caused by aminoguanidine. These data suggest that iNOS plays an important role in LPS-induced decrease in circulating IGF-I and IGFBP-3 by reducing IGF-I and IGFBP-3 gene expression in the liver.
Collapse
Affiliation(s)
- Teresa Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Giusti-Paiva A, Ruginsk SG, de Castro M, Elias LLK, Carnio EC, Antunes-Rodrigues J. Role of nitric oxide in lipopolysaccharide-induced release of vasopressin in rats. Neurosci Lett 2003; 346:21-4. [PMID: 12850538 DOI: 10.1016/s0304-3940(03)00543-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the role of nitric oxide (NO) in vasopressin (AVP) release induced by intravenous lipopolysaccharide (LPS) in rats previously treated with intracerebroventricular (i.c.v.) saline, L-NAME, L-arginine or sodium nitroprusside (SNP). In control rats given i.c.v. saline, L-NAME, L-arginine or SNP, AVP levels did not change from baseline. After LPS, plasma AVP increased, reaching a peak at 60 min, and returning to basal levels 4 h later in all i.c.v. pre-treated groups (P<0.05). The LPS administration in rats previously treated with L-NAME induced higher AVP levels (P<0.05) that remained elevated throughout the period of the experiment (P<0.05). These findings confirm the inhibitory role of NO in AVP secretion induced by LPS.
Collapse
Affiliation(s)
- Alexandre Giusti-Paiva
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
DiGirolamo G, Farina M, Riberio ML, Ogando D, Aisemberg J, de los Santos AR, Martí ML, Franchi AM. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum. Br J Pharmacol 2003; 139:1164-70. [PMID: 12871835 PMCID: PMC1573931 DOI: 10.1038/sj.bjp.0705315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury.
Collapse
Affiliation(s)
- G DiGirolamo
- Segunda Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - M Farina
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET, Argentina
| | - M L Riberio
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET, Argentina
| | - D Ogando
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET, Argentina
| | - J Aisemberg
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET, Argentina
| | - A R de los Santos
- Primera Cátedra de Medicina, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - M L Martí
- Primera Cátedra de Medicina, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - A M Franchi
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET, Argentina
- Author for correspondence:
| |
Collapse
|