1
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| | - Michael R Bruchas
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Benjamin B Land
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Schwerdtfeger J, Krause A, Kalbe C, Mazzuoli-Weber G, Eggert A, Puppe B, Kuhla B, Röttgen V. Endocannabinoid administration affects taste preference and the expression of cannabinoid and opioid receptors in the amygdala of early lactating cows. Sci Rep 2023; 13:4967. [PMID: 36973308 PMCID: PMC10042870 DOI: 10.1038/s41598-023-31724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of the study was to investigate the influence of intraperitoneal N-arachidonoylethanolamide (AEA) on taste preference for feed and water, tongue taste receptor signalling (TAS1R2, GNAT3), and endocannabinoid (CNR1, CNR2, GPR55) and opioid (OPRD1, OPRK1, OPRM1, OPRL1) receptors in the amygdala and nucleus accumbens in periparturient cows. We conducted taste preference tests using unaltered, umami-tasting, and sweet-tasting water and feed, before and after calving. After calving, eight cows received AEA injections (3 µg/(kg bodyweight × day), 25 days), whereas eight control (CON) cows received saline injections. Tissue was sampled 30 days after calving. Before calving, both cow groups preferred sweet-tasting feed and umami-tasting water. After calving, only the AEA-treated group preferred sweet-tasting feed, whereas the CON group showed no clear taste preference. In the amygdala, the mRNA expression of CNR1, OPRD1 (left hemisphere) and OPRK1 (right hemisphere) was lower in AEA animals than in CON animals, whereas no differences were found in the nucleus accumbens and tongue taste receptor expression. In conclusion, AEA administration enhanced existing taste preferences and reduced the expression of specific endocannabinoid and opioid receptors in the amygdala. The results support endocannabinoid-opioid interactions in the control of taste-dependent feed preference in early lactating cows.
Collapse
Affiliation(s)
- Jessica Schwerdtfeger
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Annika Krause
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Anja Eggert
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-Von-Liebig-Weg 6B, 18059, Rostock, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Volker Röttgen
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
3
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Huang W, Czuba LC, Manuzak JA, Martin JN, Hunt PW, Klatt NR, Isoherranen N. Objective Identification of Cannabis Use Levels in Clinical Populations Is Critical for Detecting Pharmacological Outcomes. Cannabis Cannabinoid Res 2022; 7:852-864. [PMID: 34793254 PMCID: PMC9784609 DOI: 10.1089/can.2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Introduction: Cannabis is widely used for recreational and medical purposes, but its therapeutic efficacy remains unresolved for many applications as data from retrospective studies show dramatic discrepancy. We hypothesized that false self-reporting of cannabis use and lack of differentiation of heavy users from light or occasional users contribute to the conflicting outcomes. Objective: The goal of this study was to develop an objective biomarker of cannabis use and test how application of such biomarker impacts clinical study outcomes and dose-response measures. Methods and Analysis: Population pharmacokinetic (PK) models of (-)-trans-Δ9-tetrahydrocannabinol (THC) and its metabolites 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC) were developed based on published studies reporting cannabinoid disposition in individual subjects following intravenous administration or smoking of cannabis. Plasma 11-COOH-THC concentration distributions in different cannabis user groups smoking cannabis were generated via Monte Carlo simulations, and plasma concentration cutoff values of 11-COOH-THC were developed to differentiate light and heavy daily cannabis users in clinical studies. The developed cutoff value was then applied to a retrospective study that assessed the impact of cannabis use on T cell activation in subjects with HIV who self-reported as either nonuser or daily user of cannabis. Results: The developed population PK models established plasma 11-COOH-THC concentration of 73.1 μg/L as a cutoff value to identify heavy daily users, with a positive predictive value of 80% in a mixed population of equal proportions of once daily and three times a day users. The stratification allowed detection of changes in T cell activation in heavy users which was not detected based on self-reporting or detectability of plasma cannabinoids. A proof-of-concept power analysis demonstrated that implementation of such cutoff value greatly increases study power and sensitivity to detect pharmacological effects of cannabis use. Conclusions: This study shows that the use of plasma 11-COOH-THC concentration cutoff value as an objective measure to classify cannabis use in target populations is critical for study sensitivity and specificity and provides much needed clarity for addressing dose-response relationships and therapeutic effects of cannabis.
Collapse
Affiliation(s)
- Weize Huang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jennifer A. Manuzak
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Jeffrey N. Martin
- Department of Medicine and University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Peter W. Hunt
- Department of Medicine and University of California San Francisco, San Francisco, California, USA
| | - Nichole R. Klatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Martin SC, Gay SM, Armstrong ML, Pazhayam NM, Reisdorph N, Diering GH. Tonic endocannabinoid signaling supports sleep through development in both sexes. Sleep 2022; 45:6565640. [PMID: 35395682 PMCID: PMC9366650 DOI: 10.1093/sleep/zsac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Sleep is an essential behavior that supports brain function and cognition throughout life, in part by acting on neuronal synapses. The synaptic signaling pathways that mediate the restorative benefits of sleep are not fully understood, particularly in the context of development. Endocannabinoids (eCBs) including 2-arachidonyl glycerol (2-AG) and anandamide (AEA), are bioactive lipids that activate cannabinoid receptor, CB1, to regulate synaptic transmission and mediate cognitive functions and many behaviors, including sleep. We used targeted mass spectrometry to measure changes in forebrain synaptic eCBs during the sleep/wake cycle in juvenile and adolescent mice of both sexes. We find that eCBs lack a daily rhythm in juvenile mice, while in adolescents AEA and related oleoyl ethanolamide are increased during the sleep phase in a circadian manner. Next, we manipulated the eCB system using selective pharmacology and measured the effects on sleep behavior in developing and adult mice of both sexes using a noninvasive piezoelectric home-cage recording apparatus. Enhancement of eCB signaling through inhibition of 2-AG or AEA degradation, increased dark-phase sleep amount and bout length in developing and adult males, but not in females. Inhibition of CB1 by injection of the antagonist AM251 reduced sleep time and caused sleep fragmentation in developing and adult males and females. Our data suggest that males are more sensitive to the sleep-promoting effects of enhanced eCBs but that tonic eCB signaling supports sleep behavior through multiple stages of development in both sexes. This work informs the further development of cannabinoid-based therapeutics for sleep disruption.
Collapse
Affiliation(s)
- Shenée C Martin
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Sean M Gay
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Nila M Pazhayam
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Graham H Diering
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
- Carolina Institute for Developmental Disabilities , Carrboro, NC , USA
| |
Collapse
|
6
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
7
|
Alsalem M, Altarifi A, Haddad M, Azab B, Kalbouneh H, Imraish A, Saleh T, El-Salem K. Analgesic Effects and Impairment in Locomotor Activity Induced by Cannabinoid/Opioid Combinations in Rat Models of Chronic Pain. Brain Sci 2020; 10:brainsci10080523. [PMID: 32781705 PMCID: PMC7547378 DOI: 10.3390/brainsci10080523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Both opioids and cannabinoids have well-known antinociceptive effects in different animal models of chronic pain. However, unwanted side effects limit their use. The aim of this study is to evaluate the antinociceptive effect of combining synthetic cannabinoids with subtherapeutic doses of opioids, and to evaluate the effects of these drugs/combinations on rat’s locomotor activity. Intra-plantar injection of Complete Freund’s Adjuvant (CFA) into the left hindpaw and intraperitoneal injection of streptozotocin (STZ) were used to induce inflammatory and diabetic neuropathic pain in adult male Sprague-Dawley rats, respectively. Von Frey filaments were used to assess the antinociceptive effects of opioids (morphine and tramadol) and the synthetic cannabinoids (HU210 and WIN55212) or their combinations on CFA and STZ-induced mechanical allodynia. Open field test was used to evaluate the effect of these drugs or their combinations on locomotion. HU210 and WIN55212 did not produce significant antinociceptive effect on inflammatory pain while only the maximal dose of HU210 (1 mg/kg) was effective in neuropathic pain. Only the maximal doses of morphine (3.2 mg/kg) and tramadol (10 mg/kg) had significant anti-allodynic effects in both models. Tramadol (1 mg/kg) enhanced the antinociceptive effects of WIN55212 but not HU210 in neuropathic pain with no effect on inflammatory pain. However, in open field test, the aforementioned combination did not change tramadol-induced depression of locomotion. Tramadol and WIN55212 combination produces antinociceptive effects in neuropathic but not inflammatory pain at low doses with no additional risk of locomotor impairment, which may be useful in clinical practice.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
- Correspondence:
| | - Ahmad Altarifi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (A.A.); (K.E.-S.)
| | - Mansour Haddad
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Belal Azab
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
| | - Heba Kalbouneh
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
| | - Amer Imraish
- Faculty of Science, The University of Jordan, Amman 11942, Jordan;
| | - Tareq Saleh
- Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Khalid El-Salem
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (A.A.); (K.E.-S.)
| |
Collapse
|
8
|
Skolnick P, Crystal R. Cannabinoid 1 (CB-1) receptor antagonists: a molecular approach to treating acute cannabinoid overdose. J Neural Transm (Vienna) 2019; 127:279-286. [PMID: 31893308 PMCID: PMC7035232 DOI: 10.1007/s00702-019-02132-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/21/2019] [Indexed: 01/19/2023]
Abstract
The legalization of cannabis for both recreational and medical use in the USA has resulted in a dramatic increase in the number of emergency department visits and hospital admissions for acute cannabinoid overdose (also referred to as cannabis intoxication and cannabis poisoning). Both “edibles” (often sold as brownies, cookies, and candies) containing large amounts of Δ9-tetrahydrocannabinol and synthetic cannabinoids (many possessing higher potencies and efficacies than Δ9-tetrahydrocannabinol) are responsible for a disproportionate number of emergency department visits relative to smoked cannabis. Symptoms of acute cannabinoid overdose range from extreme lethargy, ataxia, and generalized psychomotor impairment to feelings of panic and anxiety, agitation, hallucinations, and psychosis. Treatment of acute cannabinoid overdose is currently supportive and symptom driven. Converging lines of evidence indicating many of the symptoms which can precipitate an emergency department visit are mediated through activation of cannabinoid1 receptors. Here, we review the evidence that cannabinoid1 receptor antagonists, originally developed for indications ranging from obesity to smoking cessation and schizophrenia, provide a molecular approach to treating acute cannabinoid overdose.
Collapse
Affiliation(s)
- Phil Skolnick
- Opiant Pharmaceuticals, Inc., 233 Wilshire Boulevard, Suite 280, Santa Monica, CA, 90401, USA.
| | - Roger Crystal
- Opiant Pharmaceuticals, Inc., 233 Wilshire Boulevard, Suite 280, Santa Monica, CA, 90401, USA
| |
Collapse
|
9
|
Gustafsson SB, Jacobsson SOP. Effects of cannabinoids on the development of chick embryos in ovo. Sci Rep 2019; 9:13486. [PMID: 31530885 PMCID: PMC6748917 DOI: 10.1038/s41598-019-50004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
We have examined the effects of the synthetic cannabinoids HU 210 and HU 211, the plant-derived cannabidiol and the endogenous cannabinoid anandamide on the viability and development of chick embryos. Fertilized White Leghorn chicken eggs were injected with the test compounds or carrier vehicle, via a drilled small hole in the egg, directly into the egg yolk. After nine days of exposure, the embryonal viability, length and wet weight of embryos, and wet weight of brains were measured, and the development stages were assessed according to the Hamburger and Hamilton (HH) scale. The potent synthetic cannabinoid receptor agonist HU 210 and the non-psychotropic cannabidiol were embryotoxic at the highest concentrations examined (10 µM and 50 µM, respectively), with no viable embryos after the HU 210 injection, and 20% viability after the cannabidiol injections. The effects of HU 210 on the chick embryo were attenuated by α-tocopherol and the cannabinoid receptor antagonist AM251, whereas only α-tocopherol gave a statistically significant protection against the embryotoxic effects of cannabidiol. This study shows that exposure to plant-derived or synthetic cannabinoids during early embryonal development decreases embryonal viability. Extrapolation of data across species is of course difficult, but the data would argue against the use of cannabinoids, be it recreationally or therapeutically, during pregnancy.
Collapse
Affiliation(s)
- Sofia B Gustafsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden
| | - Stig O P Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
10
|
Hoffman AF, Lycas MD, Kaczmarzyk JR, Spivak CE, Baumann MH, Lupica CR. Disruption of hippocampal synaptic transmission and long-term potentiation by psychoactive synthetic cannabinoid 'Spice' compounds: comparison with Δ 9 -tetrahydrocannabinol. Addict Biol 2017; 22:390-399. [PMID: 26732435 PMCID: PMC4935655 DOI: 10.1111/adb.12334] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Abstract
There has been a marked increase in the availability of synthetic drugs designed to mimic the effects of marijuana. These cannabimimetic drugs, sold illicitly as 'Spice' and related products, are associated with serious medical complications in some users. In vitro studies suggest that synthetic cannabinoids in these preparations are potent agonists at central cannabinoid CB1 receptors (CB1Rs), but few investigations have delineated their cellular effects, particularly in comparison with the psychoactive component of marijuana, Δ9 -tetrahydrocannabinol (Δ9 -THC). We compared the ability of three widely abused synthetic cannabinoids and Δ9 -THC to alter glutamate release and long-term potentiation in the mouse hippocampus. JWH-018 was the most potent inhibitor of hippocampal synaptic transmission (EC50 ~15 nM), whereas its fluoropentyl derivative, AM2201, inhibited synaptic transmission with slightly lower potency (EC50 ~60 nM). The newer synthetic cannabinoid, XLR-11, displayed much lower potency (EC50 ~900 nM) that was similar to Δ9 -THC (EC50 ~700 nM). The effects of all compounds occurred via activation of CB1Rs, as demonstrated by reversal with the selective antagonist/inverse agonist AM251 or the neutral CB1R antagonist PIMSR1. Moreover, AM2201 was without effect in the hippocampus of transgenic mice lacking the CB1R. Hippocampal slices exposed to either synthetic cannabinoids or Δ9 -THC exhibited significantly impaired long-term potentiation (LTP). We find that, compared with Δ9 -THC, the first-generation cannabinoids found in Spice preparations display higher potency, whereas a recent synthetic cannabinoid is roughly equipotent with Δ9 -THC. The disruption of synaptic function by these synthetic cannabinoids is likely to lead to profound impairments in cognitive and behavioral function.
Collapse
Affiliation(s)
- Alexander F. Hoffman
- Electrophysiology Research Section, Cellular Neurobiology BranchNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMDUSA
| | - Matthew D. Lycas
- Electrophysiology Research Section, Cellular Neurobiology BranchNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMDUSA
| | - Jakub R. Kaczmarzyk
- Electrophysiology Research Section, Cellular Neurobiology BranchNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMDUSA
| | - Charles E. Spivak
- Electrophysiology Research Section, Cellular Neurobiology BranchNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMDUSA
| | - Michael H. Baumann
- Designer Drug Research UnitNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMDUSA
| | - Carl R. Lupica
- Electrophysiology Research Section, Cellular Neurobiology BranchNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMDUSA
| |
Collapse
|
11
|
Grim TW, Morales AJ, Gonek MM, Wiley JL, Thomas BF, Endres GW, Sim-Selley LJ, Selley DE, Negus SS, Lichtman AH. Stratification of Cannabinoid 1 Receptor (CB1R) Agonist Efficacy: Manipulation of CB1R Density through Use of Transgenic Mice Reveals Congruence between In Vivo and In Vitro Assays. J Pharmacol Exp Ther 2016; 359:329-339. [PMID: 27535976 DOI: 10.1124/jpet.116.233163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/21/2016] [Indexed: 01/16/2023] Open
Abstract
Synthetic cannabinoids (SCs) are an emerging class of abused drugs that differ from each other and the phytocannabinoid ∆9-tetrahydrocannabinol (THC) in their safety and cannabinoid-1 receptor (CB1R) pharmacology. As efficacy represents a critical parameter to understanding drug action, the present study investigated this metric by assessing in vivo and in vitro actions of THC, two well-characterized SCs (WIN55,212-2 and CP55,940), and three abused SCs (JWH-073, CP47,497, and A-834,735-D) in CB1 (+/+), (+/-), and (-/-) mice. All drugs produced maximal cannabimimetic in vivo effects (catalepsy, hypothermia, antinociception) in CB1 (+/+) mice, but these actions were essentially eliminated in CB1 (-/-) mice, indicating a CB1R mechanism of action. CB1R efficacy was inferred by comparing potencies between CB1 (+/+) and (+/-) mice [+/+ ED50 /+/- ED50], the latter of which has a 50% reduction of CB1Rs (i.e., decreased receptor reserve). Notably, CB1 (+/-) mice displayed profound rightward and downward shifts in the antinociception and hypothermia dose-response curves of low-efficacy compared with high-efficacy cannabinoids. In vitro efficacy, quantified using agonist-stimulated [35S]GTPγS binding in spinal cord tissue, significantly correlated with the relative efficacies of antinociception (r = 0.87) and hypothermia (r = 0.94) in CB1 (+/-) mice relative to CB1 (+/+) mice. Conversely, drug potencies for cataleptic effects did not differ between these genotypes and did not correlate with the in vitro efficacy measure. These results suggest that evaluation of antinociception and hypothermia in CB1 transgenic mice offers a useful in vivo approach to determine CB1R selectivity and efficacy of emerging SCs, which shows strong congruence with in vitro efficacy.
Collapse
Affiliation(s)
- T W Grim
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - A J Morales
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - M M Gonek
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - J L Wiley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - B F Thomas
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - G W Endres
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - L J Sim-Selley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - D E Selley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - S S Negus
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - A H Lichtman
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| |
Collapse
|
12
|
Endocannabinoid CB1 receptor-mediated rises in Ca(2+) and depolarization-induced suppression of inhibition within the laterodorsal tegmental nucleus. Brain Struct Funct 2015; 221:1255-77. [PMID: 25573246 DOI: 10.1007/s00429-014-0969-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
Cannabinoid type 1 receptors (CB1Rs) are functionally active within the laterodorsal tegmental nucleus (LDT), which is critically involved in control of rapid eye movement sleep, cortical arousal, and motivated states. To further characterize the cellular consequences of activation of CB1Rs in this nucleus, we examined whether CB1R activation led to rises in intracellular Ca(2+) ([Ca(2+)]i) and whether processes shown in other regions to involve endocannabinoid (eCB) transmission were present in the LDT. Using a combination of Ca(2+) imaging in multiple cells loaded with Ca(2+) imaging dye via 'bulk-loading' or in single cells loaded with dye via a patch-clamp electrode, we found that WIN 55212-2 (WIN-2), a potent CB1R agonist, induced increases in [Ca(2+)]i which were sensitive to AM251, a CB1R antagonist. A proportion of rises persisted in TTX and/or low-extracellular Ca(2+) conditions. Attenuation of these increases by a reversible inhibitor of sarcoplasmic reticulum Ca(2+)-ATPases, suggests these rises occurred following release of Ca(2+) from intracellular stores. Under voltage clamp conditions, brief, direct depolarization of LDT neurons resulted in a decrease in the frequency and amplitude of AM251-sensitive, inhibitory postsynaptic currents (IPSCs), which was an action sensitive to presence of a Ca(2+) chelator. Finally, actions of DHPG, a mGlu1R agonist, on IPSC activity were examined and found to result in an AM251- and BAPTA-sensitive inhibition of both the frequency and amplitude of sIPSCs. Taken together, our data further characterize CB1R and eCB actions in the LDT and indicate that eCB transmission could play a role in the processes governed by this nucleus.
Collapse
|
13
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
14
|
Malfitano AM, Basu S, Maresz K, Bifulco M, Dittel BN. What we know and do not know about the cannabinoid receptor 2 (CB2). Semin Immunol 2014; 26:369-79. [PMID: 24877594 DOI: 10.1016/j.smim.2014.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Abstract
It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Medicina e Chirurgia, Università di Salerno Facoltà di Medicina, Baronissi Campus, Baronissi 84081, (SA), Italy; Dipartimento di Farmacia, Università di Salerno, Fisciano 84084, (SA), Italy
| | - Sreemanti Basu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Katarzyna Maresz
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Maurizio Bifulco
- Dipartimento di Medicina e Chirurgia, Università di Salerno Facoltà di Medicina, Baronissi Campus, Baronissi 84081, (SA), Italy; Dipartimento di Farmacia, Università di Salerno, Fisciano 84084, (SA), Italy
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
16
|
Hruba L, McMahon LR. The cannabinoid agonist HU-210: pseudo-irreversible discriminative stimulus effects in rhesus monkeys. Eur J Pharmacol 2014; 727:35-42. [PMID: 24486701 DOI: 10.1016/j.ejphar.2014.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/02/2023]
Abstract
Synthetic cannabinoid abuse and case reports of adverse effects have raised concerns about the pharmacologic mechanisms underlying in vivo effects. Here, a synthetic cannabinoid identified in abused products (HU-210) was compared to the effects of Δ(9)-THC and two other synthetic cannabinoid agonists used extensively in pre-clinical studies (CP 55,940 and WIN 55,212-2). One group of monkeys discriminated ∆(9)-THC (0.1mg/kg i.v.); a separate group received chronic ∆(9)-THC (1mg/kg/12h s.c.) and discriminated rimonabant (1mg/kg i.v.). CP 55,940, HU-210, ∆(9)-THC, and WIN 55,212-2 produced ∆(9)-THC lever responding. HU-210 had a long duration (i.e., 1-2 days), whereas that of the other cannabinoids was 5h or less. Rimonabant (1mg/kg) produced surmountable antagonism; single dose-apparent affinity estimates determined in the presence of ∆(9)-THC, CP 55,940, and WIN 55,212-2 did not differ from each other. In contrast, rimonabant (1mg/kg) produced a smaller rightward shift in the HU-210 dose-effect function. In ∆(9)-THC treated monkeys, the relative potency of CP 55,940, ∆(9)-THC, and WIN 55,212-2 to attenuate the discriminative stimulus effects of rimonabant was the same as that evidenced in the ∆(9)-THC discrimination, whereas HU-210 was unexpectedly more potent in attenuating the effects of rimonabant. In conclusion, the same receptor subtype mediates the discriminative stimulus effects of ∆(9)-THC, CP 55,940 and WIN 55,212-2. The limited effectiveness of rimonabant to either prevent or reverse the effects of HU-210 appears to be due to very slow dissociation or pseudo-irreversible binding of HU-210 at cannabinoid receptors.
Collapse
Affiliation(s)
- Lenka Hruba
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, United States
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
17
|
Gustafsson SB, Wallenius A, Zackrisson H, Popova D, Plym Forshell L, Jacobsson SOP. Effects of cannabinoids and related fatty acids upon the viability of P19 embryonal carcinoma cells. Arch Toxicol 2013; 87:1939-1951. [PMID: 23552853 DOI: 10.1007/s00204-013-1051-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/26/2013] [Indexed: 01/18/2023]
Abstract
Compounds acting on the cannabinoid (CB) receptors are involved in the control of cell fate, and there is an emerging consensus that CBs have anticancer effects. However, the CB-mediated effects are contradictory since some studies suggest stimulatory effects on cancer cell proliferation, and CBs have been shown to stimulate both proliferation and differentiation of other mitotic cells such as stem and progenitor cells. In this study, the concentration-dependent effects of synthetic and endogenous CBs on the viability of mouse P19 embryonal carcinoma (EC) cells have been examined by using fluorescence assays of cell membrane integrity, cell proliferation, oxidative stress, and detection of apoptosis and necrosis. All compounds examined produced a concentration-dependent decrease in cell viability in the micromolar range, with the potent CB receptor agonist HU 210 and the enantiomer HU 211 (with no CB receptor activity) being the most potent compounds examined with apparent IC50 values of 1 and 0.6 μM, respectively. The endogenous CB anandamide showed similar potency and efficacy as structurally related polyunsaturated fatty acids with no reported activity at the CB receptors. The rapid (within hours) decrease in cell viability induced by the examined CBs suggests cytocidal rather than antiproliferative effects and is dependent on the plating cell population density with the highest toxicity around 100 cells/mm(2). The CB-induced cytotoxicity, which appears to involve CB receptors and the sphingomyelin-ceramide pathway, is a mixture of both apoptosis and necrosis that can be blocked by the antioxidants α-tocopherol and N-acetylcysteine. In conclusion, both synthetic and endogenous CBs produce seemingly unspecific cytotoxic effects in the P19 EC cells.
Collapse
Affiliation(s)
- Sofia B Gustafsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Anders Wallenius
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Hanna Zackrisson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Dina Popova
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Linus Plym Forshell
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Stig O P Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
18
|
Revisiting the complex influences of cannabinoids on motor functions unravels pharmacodynamic differences between cannabinoid agonists. Neuropharmacology 2010; 59:503-10. [DOI: 10.1016/j.neuropharm.2010.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/25/2010] [Accepted: 07/05/2010] [Indexed: 11/23/2022]
|
19
|
Smith TH, Sim-Selley LJ, Selley DE. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br J Pharmacol 2010; 160:454-66. [PMID: 20590557 DOI: 10.1111/j.1476-5381.2010.00777.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The main pharmacological effects of marijuana, as well as synthetic and endogenous cannabinoids, are mediated through G-protein-coupled receptors (GPCRs), including CB(1) and CB(2) receptors. The CB(1) receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain, spasticity, neurodegenerative diseases and mood and substance abuse disorders. Evidence has accumulated to suggest that CB(1) receptors, like other GPCRs, interact with and are regulated by several other proteins beyond the established role of heterotrimeric G-proteins. These proteins, which include the GPCR kinases, beta-arrestins, GPCR-associated sorting proteins, factor associated with neutral sphingomyelinase, other GPCRs (heterodimerization) and the novel cannabinoid receptor-interacting proteins: CRIP(1a/b), are thought to play important roles in the regulation of intracellular trafficking, desensitization, down-regulation, signal transduction and constitutive activity of CB(1) receptors. This review examines CB(1) receptor-interacting proteins, including heterotrimeric G-proteins, but with particular emphasis on non-G-protein entities, that might comprise the CB(1) receptosomal complex. The evidence for direct interaction with CB(1) receptors and potential functional roles of these interacting proteins is discussed, as are future directions and challenges in this field with an emphasis on the possibility of eventually targeting these proteins for drug discovery.
Collapse
Affiliation(s)
- Tricia H Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, MCV Campus, Richmond, VA 23298-0524, USA
| | | | | |
Collapse
|
20
|
Pope C, Mechoulam R, Parsons L. Endocannabinoid signaling in neurotoxicity and neuroprotection. Neurotoxicology 2010; 31:562-71. [PMID: 19969019 PMCID: PMC2891218 DOI: 10.1016/j.neuro.2009.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/02/2009] [Indexed: 01/23/2023]
Abstract
The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways.
Collapse
Affiliation(s)
- C Pope
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | |
Collapse
|
21
|
Murray JE, Bevins RA. Cannabinoid conditioned reward and aversion: behavioral and neural processes. ACS Chem Neurosci 2010; 1:265-278. [PMID: 20495676 PMCID: PMC2873219 DOI: 10.1021/cn100005p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/16/2010] [Indexed: 11/28/2022] Open
Abstract
The discovery that delta-9-tetrahydrocannabinol (Δ(9)-THC) is the primary psychoactive ingredient in marijuana prompted research that helped elucidate the endogenous cannabinoid system of the brain. Δ(9)-THC and other cannabinoid ligands with agonist action (CP 55,940, HU210, and WIN 55,212-2) increase firing of dopamine neurons and increase synaptic dopamine in brain regions associated with reward and drug addiction. Such changes in cellular processes have prompted investigators to examine the conditioned rewarding effects of the cannabinoid ligands using the place conditioning task with rats and mice. As reviewed here, these cannabinoid ligands can condition place preferences (evidence for rewarding effects) and place aversions (evidence for aversive qualities). Notably, the procedural details used in these place conditioning studies have varied across laboratories. Such variation includes differences in apparatus type, existence of procedural biases, dose, number of conditioning trials, injection-to-placement intervals, and pre-training drug exposure. Some differences in outcome across studies can be explained by these procedural variables. For example, low doses of Δ(9)-THC appear to have conditioned rewarding effects, whereas higher doses have aversive effects that either mask these rewarding effects or condition a place aversion. Throughout this review we highlight key areas that need further research.
Collapse
Affiliation(s)
- Jennifer E. Murray
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska
- Department of Experimental Psychology, University of Cambridge, Cambridge, U.K
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska
| |
Collapse
|
22
|
(Endo)cannabinoids mediate different Ca2+ entry mechanisms in human bronchial epithelial cells. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:67-77. [PMID: 19255745 DOI: 10.1007/s00210-009-0406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
In human bronchial epithelial (16HBE14o(-)) cells, CB(1) and CB(2) cannabinoid receptors are present, and their activation by the endocannabinoid virodhamine and the synthetic non-selective receptor agonist CP55,940 inhibits adenylyl cyclase and cellular interleukin-8 release. Here, we analyzed changes in intracellular calcium ([Ca2+](i)) evoked by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), CP55,940, and virodhamine in 16HBE14o(-) cells. Delta(9)-THC induced [Ca2+](i) increase and a large transient [Ca2+](i) mobilization, the latter probably reflecting store-depletion-driven capacitative Ca2+ entry (CCE). In contrast, CP55,940 induced a rather moderate Ca2+ influx and a sustained [Ca2+](i) mobilization. CP55,940-induced Ca2+ influx was inhibited by Ni2+, indicating CCE, possibly mediated by transient receptor potential channel TRPC1, the mRNA of which is expressed in 16HBE14o(-) cells. CP55,940-induced calcium alterations were mimicked by virodhamine concentrations below 30 microM. Interestingly, higher virodhamine induced an additional Ca2+ entry, insensitive to Ni2+, but sensitive to the TRPV1 antagonist capsazepine, the TRPV1-TRPV4 inhibitor ruthenium red, and the non-CCE (NCCE) inhibitors La3+ and Gd3+. Such pharmacological profile is supported by the presence of TRPV1, TRPV4, and TRPC6 mRNAs as well as TRPV1 and TRPC6 proteins in 16HBE14o(-) cells. Cannabinoid receptor antagonists increased virodhamine-induced Ca2+ entry. Virodhamine also enhanced arachidonic acid release, which was insensitive to cannabinoid receptor antagonism, but sensitive to the phospholipase A(2) inhibitor quinacrine, and to capsazepine. Arachidonic acid induced [Ca2+](i) increase similar to virodhamine. Collectively, these observations suggest that [Ca2+](i) alterations induced by Delta(9)-THC, CP55,940 and by low concentrations of virodhamine involve mobilization and subsequent CCE mechanisms, whereas such responses by high virodhamine concentrations involve NCCE pathways.
Collapse
|
23
|
|
24
|
Bosier B, Lambert DM, Hermans E. Reciprocal influences of CB1 cannabinoid receptor agonists on ERK and JNK signalling in N1E-115 cells. FEBS Lett 2008; 582:3861-7. [PMID: 18950629 DOI: 10.1016/j.febslet.2008.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/03/2008] [Accepted: 10/15/2008] [Indexed: 11/30/2022]
Abstract
Agonists acting at the CB1 cannabinoid receptor in N1E-115 neuroblastoma cells were found to activate MAPK family members with reciprocal efficacies. Thus, HU 210 robustly increased phosphorylation of ERK1/2 whereas CP 55,940 was more effective in activating JNK. The use of selected kinase inhibitors confirmed that distinct signalling cascades were involved in these responses. This reciprocal control of MAPK activity was correlated with the observation that HU 210- and CP 55,940-mediated regulations of tyrosine hydroxylase gene expression were respectively impaired by MEK and JNK inhibitors. These data indicate that complex interactions of the CB1 receptor with intracellular signalling partners controlling MAPK activities may explain the apparent disparities in cellular responses to functional selective agonists.
Collapse
Affiliation(s)
- Barbara Bosier
- Unité de Chimie Pharmaceutique et de Radiopharmacie (UCL 7340), Université catholique de Louvain, 73 40, Av E.Mounier, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
25
|
Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. Cancer Chemother Pharmacol 2008; 63:691-701. [PMID: 18629502 DOI: 10.1007/s00280-008-0788-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Cannabinoids (CBs) have been found to exert antiproliferative effects upon a variety of cancer cells, including colorectal carcinoma cells. However, little is known about the signalling mechanisms behind the antitumoural effect in these cells, whether the effects are shared by endogenous lipids related to endocannabinoids, or whether such effects are synergistic with treatment paradigms currently used in the clinic. The aim of this preclinical study was to investigate the effect of synthetic and endogenous CBs and their related fatty acids on the viability of human colorectal carcinoma Caco-2 cells, and to determine whether CB effects are synergistic with those seen with the pyrimidine antagonist 5-fluorouracil (5-FU). The synthetic CB HU 210, the endogenous CB anandamide, the endogenous structural analogue of anandamide, N-arachidonoyl glycine (NAGly), as well as the related polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid showed antiproliferative and cytotoxic effects in the Caco-2 cells, as measured by using [(3)H]-thymidine incorporation assay, the CyQUANT proliferation assay and calcein-AM fluorescence. HU 210 was the most potent compound examined, followed by anandamide, whereas NAGly showed equal potency and efficacy as the polyunsaturated fatty acids. Furthermore, HU 210 and 5-FU produced synergistic effects in the Caco-2 cells, but not in the human colorectal carcinoma cell lines HCT116 or HT29. The compounds examined produced cytotoxic, rather than antiproliferative effects, by a mechanism not involving CB receptors, since the CB receptor antagonists AM251 and AM630 did not attenuate the effects, nor did pertussis toxin. However, alpha-tocopherol and the nitric oxide synthase inhibitor L-NAME attenuated the CB toxicity, suggesting involvement of oxidative stress. It is concluded that the CB system may provide new targets for the development of drugs to treat colorectal cancer.
Collapse
|
26
|
Abstract
Modulation of neurotransmitter release by G-protein-coupled receptors (GPCRs) is a prominent presynaptic mechanism for regulation of synaptic transmission. Activation of GPCRs located at the presynaptic terminal can decrease the probability of neurotransmitter release. This presynaptic depression involves activation of Gi/o-type G-proteins that mediate different inhibitory mechanisms, including inhibition of voltage-gated calcium channels, activation of potassium channels, and direct inhibition of the vesicle fusion process. A variety of neurotransmitters and modulatory agents can activate GPCRs that produce presynaptic depression. Among these are lipid metabolites that serve as agonists for GPCRs. The discovery of endocannabinoids and their cognate receptors, including the CB1 receptor, has stimulated intense investigation into the neurophysiological roles of these lipid metabolites. It is now clear that presynaptic depression is the major physiological role for the CB1 receptor. Endocannabinoids activate this receptor mainly via a retrograde signaling process in which these compounds are synthesized in and released from postsynaptic neuronal elements, and travel back to the presynaptic terminal to act on the CB1 receptor. This retrograde endocannabinoid modulation has been implicated in short-term synaptic depression, including suppression of excitatory or inhibitory transmission induced by postsynaptic depolarization and transient synaptic depression induced by activation of postsynaptic GPCRs during agonist treatment or synaptic activation. Endocannabinoids and the CB1 receptor also play a key role in one form of long-term synaptic depression (LTD) that involves a longlasting decrease in neurotransmitter release.
Collapse
MESH Headings
- Animals
- Behavior/drug effects
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoid Receptor Modulators/physiology
- Cannabinoids/metabolism
- Cannabinoids/pharmacology
- Cannabinoids/toxicity
- Endocannabinoids
- Humans
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Neuronal Plasticity/drug effects
- Neurotransmitter Uptake Inhibitors/pharmacology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Cannabinoid/drug effects
- Receptors, Cannabinoid/metabolism
- Receptors, Cannabinoid/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/metabolism
- Receptors, Presynaptic/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892-9411, USA.
| |
Collapse
|
27
|
Abstract
Over the past 50 years, a considerable research in medicinal chemistry has been carried out around the natural constituents of Cannabis sativa L. Following the identification of Delta9-tetrahydrocannabinol (Delta9-THC) in 1964, critical chemical modifications, e.g., variation of the side chain at C3 and the opening of the tricyclic scaffold, have led to the characterization of potent and cannabinoid receptor subtype-selective ligands. Those ligands that demonstrate high affinity for the cannabinoid receptors and good biological efficacy are still used as powerful pharmacological tools. This review summarizes past as well as recent developments in the structure-activity relationships of phytocannabinoids.
Collapse
Affiliation(s)
- Eric Stern
- Drug Design and Discovery Center and Unité de Chimie pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Faculté de Médecine, Université catholique de Louvain, Avenue E. Mounier 73, U.C.L. 73.40, B-1200 Bruxelles
| | | |
Collapse
|
28
|
Gkoumassi E, Dekkers BGJ, Dröge MJ, Elzinga CRS, Schmidt M, Meurs H, Zaagsma J, Nelemans SA. Virodhamine and CP55,940 modulate cAMP production and IL-8 release in human bronchial epithelial cells. Br J Pharmacol 2007; 151:1041-8. [PMID: 17558435 PMCID: PMC2042924 DOI: 10.1038/sj.bjp.0707320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated expression of cannabinoid receptors and the effects of the endogenous cannabinoid virodhamine and the synthetic agonist CP55,940 on cAMP accumulation and interleukin-8 (IL-8) release in human bronchial epithelial cells. EXPERIMENTAL APPROACH Human bronchial epithelial (16HBE14o(-)) cells were used. Total mRNA was isolated and cannabinoid receptor mRNAs were detected by RT-PCR. Expression of CB(1) and CB(2) receptor proteins was detected with Western blotting using receptor-specific antibodies. cAMP accumulation was measured by competitive radioligand binding assay. IL-8 release was measured by ELISA. KEY RESULTS CB(1) and CB(2) receptor mRNAs and proteins were found. Both agonists concentration-dependently decreased forskolin-induced cAMP accumulation. This effect was inhibited by the CB(2) receptor antagonist SR144528, and was sensitive to Pertussis toxin (PTX), suggesting the involvement of CB(2) receptors and G(i/o)-proteins. Cell pretreatment with PTX unmasked a stimulatory component, which was blocked by the CB(1) receptor antagonist SR141716A. CB(2) receptor-mediated inhibition of cAMP production by virodhamine and CP55,940 was paralleled by inhibition of tumor necrosis factor-alpha (TNF-alpha) induced IL-8 release. This inhibition was insensitive to SR141716A. In the absence of agonist, SR144528 by itself reduced TNF-alpha induced IL-8 release. CONCLUSIONS AND IMPLICATIONS Our results show for the first time that 16HBE14o(-) cells respond to virodhamine and CP55,940. CB(1) and CB(2) receptor subtypes mediated activation and inhibition of adenylyl cyclase, respectively. Stimulation of the dominant CB(2) receptor signalling pathway diminished cAMP accumulation and TNF-alpha-induced IL-8 release. These observations may imply that cannabinoids exert anti-inflammatory properties in airways by modulating cytokine release.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Analgesics/pharmacology
- Arachidonic Acids/pharmacology
- Blotting, Western
- Bronchi/cytology
- Bronchi/drug effects
- Bronchi/metabolism
- Camphanes/pharmacology
- Cannabinoids/pharmacology
- Cell Line
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Cyclohexanols/pharmacology
- Dose-Response Relationship, Drug
- Drug Antagonism
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Interleukin-8/metabolism
- Pertussis Toxin/pharmacology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rimonabant
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- E Gkoumassi
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rodriguez-Martin I, Marron Fernandez de Velasco E, Rodriguez RE. Characterization of cannabinoid-binding sites in zebrafish brain. Neurosci Lett 2006; 413:249-54. [PMID: 17178193 DOI: 10.1016/j.neulet.2006.11.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/26/2006] [Accepted: 11/29/2006] [Indexed: 02/04/2023]
Abstract
We present here the pharmacological characterization of cannabinoid-binding sites in zebrafish brain homogenates using radiolabeled binding techniques. The nonselective agonist [3H]-CP55940 binds with high affinity (KD = 0.50+/-0.06 nM and a Bmax = 1047+/-36.01 fmol/mg protein), displaying one binding site. The slightly CB2 selective agonist [3H]-WIN55212-2 also binds with high affinity to zebrafish brain membranes displaying two different binding sites with affinities KD1 = 0.35+/-0.09 nM and KD2 = 105.81+/-66.36 nM. Competition binding assays using [3H]-WIN55212-2 and several unlabeled ligands were performed. WIN55212-2 significantly displaced the tritiated ligand binding showing the two binding sites observed with its tritiated homologous, while the slightly selective CB1 cannabinoid ligand HU-210, the nonselective cannabinoid ligand CP55940 and the endogenous cannabinoid ligand anandamide presented one binding site. Also, the functionality of these cannabinoid sites was analyzed using the known [35S]GTPgammaS assay. All the agonist used presented an agonist profile and the rank order for potency was HU-210 > WIN55212-2 > CP55940 >anandamide. Our results provide evidence that, although some of the typical cannabinoid ligands for mammalian receptors do not fully recognize the cannabinoid-binding sites in zebrafish brain, the activity of the endogenous zebrafish cannabinoid system might not significantly differ from that displayed by the cannabinoid system described in other species. Hence the study of zebrafish cannabinoid activity may contribute to an understanding of the endogenous cannabinoid system in higher vertebrates.
Collapse
Affiliation(s)
- Ivan Rodriguez-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain
| | | | | |
Collapse
|
30
|
Svensson AC, Johansson M, Persson E, Carchenilla MSC, Jacobsson SOP. Expression of functional CB1 cannabinoid receptors in retinoic acid-differentiated P19 embryonal carcinoma cells. J Neurosci Res 2006; 83:1128-40. [PMID: 16477621 DOI: 10.1002/jnr.20792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although primary neuronal cell cultures, usually obtained from embryonic or early postnatal rodents, have been used in vitro to study the neural cannabinoid signalling system, development of cell lines with neural properties exhibiting native expression of cannabinoid receptors is desirable. This study was undertaken to investigate the expression of CB1 and CB2 cannabinoid receptors in neurons that develop from retinoic acid (RA)-primed mouse P19 embryonal carcinoma cells. Both undifferentiated P19 cells and RA-treated P19 neurons were positive, by using reverse transcription-polymerase chain reaction (RT-PCR), for CB1 (but not CB2) mRNA. Neuronal differentiation increased the CB1 mRNA expression, and Western blotting with a CB1 receptor antibody showed a strong immunoreactive band at approximately 62 kDa in membranes from P19-derived neurons. The cannabinoid receptor agonists CP 55,940 and HU-210 produced concentration-dependent inhibition of forskolin-induced (3 microM) cyclic AMP production in the P19-derived neurons (29% at 1 microM CP 55,940 and 34% at 1 microM HU-210), which could be blocked by the CB1-selective receptor antagonist AM251, but not by the CB2-selective antagonist AM630. Furthermore, glutamate (100 microM) induced a sustained increase in [Ca2+]i in P19-derived neurons that could be concentration-dependently blocked by the cannabinoid receptor agonists WIN 55,212-2. Thus, the protocol used provides an in vitro model system expressing CB1 cannabinoid receptors at the level of mRNA, protein, and AM251-sensitive agonist-induced inhibition of intracellular cyclic AMP accumulation, which may be useful to investigate the developmental regulation, expression and function of neuronal cannabinoid receptors.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antineoplastic Agents/pharmacology
- Benzoxazines
- Blotting, Western/methods
- Calcium/metabolism
- Carcinoma/drug therapy
- Carcinoma/metabolism
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cyclic AMP/metabolism
- Cyclohexanols/pharmacology
- Dose-Response Relationship, Drug
- Dronabinol/analogs & derivatives
- Dronabinol/pharmacology
- Drug Interactions
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Mice
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Temperature
- Tretinoin/pharmacology
- Tritium/pharmacokinetics
- gamma-Aminobutyric Acid/pharmacokinetics
Collapse
Affiliation(s)
- Anna C Svensson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
31
|
Nakamura-Palacios EM, Moerschbaecher JM, Barker LA. The Pharmacology of SR 141716A: A Review. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.1999.tb00085.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Childers SR. Activation of G-proteins in brain by endogenous and exogenous cannabinoids. AAPS JOURNAL 2006; 8:E112-7. [PMID: 16584117 PMCID: PMC2751429 DOI: 10.1208/aapsj080113] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biological response to cannabinoid agonist begins when the agonist-bound receptor activates G-protein G(alpha) subunits, thus initiating a cascade of signal transduction pathways. For this reason, information about cannabinoid receptors/G-protein coupling is critical to understand both the acute and chronic actions of cannabinoids. This review focuses on these mechanisms, predominantly examining the ability of cannabinoid agonists to activate G-proteins in brain with agonist-stimulated [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) binding. Acute efficacies of cannabinoid agonists at the level of G-protein activation depend not only on the ability of the agonist to induce a high affinity state in G(alpha) for GTP, but also to induce a low affinity for GDP. When several agonists are compared, it is clear that cannabinoid agonists differ considerably in their efficacy. Both WIN 55212-2 and levonantradol are full agonists, while Delta(9)-tetrahydrocannabinol is a weak partial agonist. Of interest, anandamide and its stable analog methanandamide are partial agonists. Chronic treatment in vivo with cannabinoids produces significant tolerance to the physiological and behavioral effects of these drugs, and several studies have shown that this is accompanied by a significant loss in the ability of cannabinoid receptors to couple to G-proteins in brain. These effects vary across different brain regions and are usually (but not always) accompanied by loss of cannabinoid receptor binding. Although the relationship between cannabinoid receptor desensitization and tolerance has not yet been established, these mechanisms may represent events that lead to a loss of cannabinoid agonist response and development of tolerance.
Collapse
Affiliation(s)
- Steven R Childers
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
33
|
Beardsley PM, Thomas BF. Current evidence supporting a role of cannabinoid CB1 receptor (CB1R) antagonists as potential pharmacotherapies for drug abuse disorders. Behav Pharmacol 2006; 16:275-96. [PMID: 16148435 DOI: 10.1097/00008877-200509000-00003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to behavioral pharmacologists because of their selective presence within the central nervous system (CNS) and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable recent focus is the ability of CB1Rs to modulate the effects of drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to attenuate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, SR141716, in 1994, and its subsequent widespread availability, there has been a rapid expansion of research investigating its ability to modulate the effects of drugs of abuse. The preliminary clinical reports of its success in retarding relapse in tobacco users have accelerated this expansion. This report critically reviews preclinical and clinical studies involving the ability of CB1R antagonists to attenuate the effects of drugs of abuse, while providing an overview of the neuroanatomical and neurochemical points of contact between the endocannabinoid system and systems mediating abuse-related effects.
Collapse
Affiliation(s)
- P M Beardsley
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia 23298-0613, USA.
| | | |
Collapse
|
34
|
Lundberg DJ, Daniel AR, Thayer SA. Δ9-Tetrahydrocannabinol-induced desensitization of cannabinoid-mediated inhibition of synaptic transmission between hippocampal neurons in culture. Neuropharmacology 2005; 49:1170-7. [PMID: 16157354 DOI: 10.1016/j.neuropharm.2005.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 07/12/2005] [Indexed: 11/29/2022]
Abstract
Prolonged exposure to cannabinoids results in desensitization of cannabinoid receptors. Here, we compared the desensitization produced by the partial agonist, Delta(9)-tetrahydrocannabinol (THC) to that produced by the full agonist Win55,212-2 on cannabinoid-mediated inhibition of glutamatergic synaptic transmission. Synaptic activity between rat hippocampal neurons was determined from network-driven increases in the intracellular Ca(2+) concentration ([Ca(2+)](i) spikes). To assess the effects of prolonged treatment, cultures were incubated with cannabinoids, washed in 0.5% fatty-acid-free bovine serum albumin to ensure the removal of the lipophilic drug and then tested for inhibition of [Ca(2+)](i) spiking by Win55,212-2. In control experiments, 0.1 microM Win55,212-2 inhibited [Ca(2+)](i) spiking by 93 +/- 5%. Win55,212-2 produced significantly less inhibition of [Ca(2+)](i) spiking following 18-24h treatment with 1 microM THC (48 +/- 5%) or treatment with 1 microM Win55,212-2 (29 +/- 6%). Thus, THC produced significantly less functional desensitization than Win55,212-2. The desensitization produced by THC was maximal at 0.3 microM, remained stable between 1 and 7 days of preincubation and shifted the EC(50) of acute inhibition by Win55,212-2 from 27 to 251 nM. Differences in the long-term effects of cannabinoid receptor agonists on synaptic transmission may prove important for evaluating their therapeutic and abuse potential.
Collapse
Affiliation(s)
- Daniel J Lundberg
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street, Minneapolis, MN 55455-0217, USA
| | | | | |
Collapse
|
35
|
Oka S, Yanagimoto S, Ikeda S, Gokoh M, Kishimoto S, Waku K, Ishima Y, Sugiura T. Evidence for the Involvement of the Cannabinoid CB2 Receptor and Its Endogenous Ligand 2-Arachidonoylglycerol in 12-O-Tetradecanoylphorbol-13-acetate-induced Acute Inflammation in Mouse Ear. J Biol Chem 2005; 280:18488-97. [PMID: 15749716 DOI: 10.1074/jbc.m413260200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors. Two types of cannabinoid receptors have been identified to date. The CB1 receptor is abundantly expressed in the brain, and assumed to be involved in the attenuation of neurotransmission. On the other hand, the physiological roles of the CB2 receptor, mainly expressed in several types of inflammatory cells and immunocompetent cells, have not yet been fully elucidated. In this study, we investigated possible pathophysiological roles of the CB2 receptor and 2-arachidonoylglycerol in acute inflammation in mouse ear induced by the topical application of 12-O-tetradecanoylphorbol-13-acetate. We found that the amount of 2-arachidonoylglycerol was markedly augmented in inflamed mouse ear. In contrast, the amount of anandamide, another endogenous cannabinoid receptor ligand, did not change markedly. Importantly, 12-O-tetradecanoylphorbol-13-acetate-induced ear swelling was blocked by treatment with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the swelling. On the other hand, the application of AM251, a CB1 receptor antagonist, exerted only a weak suppressive effect. The application of SR144528 also reduced the 12-O-tetradecanoylphorbol-13-acetate-induced production of leukotriene B(4) and the infiltration of neutrophils in the mouse ear. Interestingly, the application of 2-arachidonoylglycerol to the mouse ear evoked swelling, which was abolished by treatment with SR144528. Nitric oxide was suggested to be involved in the ear swelling induced by 2-arachidonoylglycerol. These results suggest that the CB2 receptor and 2-arachidonoylglycerol play crucial stimulative roles during the course of inflammatory reactions.
Collapse
Affiliation(s)
- Saori Oka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gokoh M, Kishimoto S, Oka S, Mori M, Waku K, Ishima Y, Sugiura T. 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells. Biochem J 2005; 386:583-9. [PMID: 15456404 PMCID: PMC1134878 DOI: 10.1042/bj20041163] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/07/2004] [Accepted: 09/30/2004] [Indexed: 02/03/2023]
Abstract
Delta9-Tetrahydrocannabinol, a major psychoactive constituent of marijuana, interacts with specific receptors, i.e. the cannabinoid receptors, thereby eliciting a variety of pharmacological responses. To date, two types of cannabinoid receptors have been identified: the CB1 receptor, which is abundantly expressed in the nervous system, and the CB2 receptor, which is predominantly expressed in the immune system. Previously, we investigated in detail the structure-activity relationship of various cannabinoid receptor ligands and found that 2-AG (2-arachidonoylglycerol) is the most efficacious agonist. We have proposed that 2-AG is the true natural ligand for both the CB1 and CB2 receptors. Despite the potential physiological importance of 2-AG, not much information is available concerning its biological activities towards mammalian tissues and cells. In the present study, we examined the effect of 2-AG on morphology as well as the actin filament system in differentiated HL-60 cells, which express the CB2 receptor. We found that 2-AG induces rapid morphological changes such as the extension of pseudopods. We also found that it provokes a rapid actin polymerization in these cells. Actin polymerization induced by 2-AG was abolished when cells were treated with SR144528, a CB2 receptor antagonist, and pertussis toxin, suggesting that the response was mediated by the CB2 receptor and G(i/o). A phosphoinositide 3-kinase, Rho family small G-proteins and a tyrosine kinase were also suggested to be involved. Reorganization of the actin filament system is known to be indispensable for a variety of cellular events; it is possible that 2-AG plays physiologically essential roles in various inflammatory cells and immune-competent cells by inducing a rapid actin rearrangement.
Collapse
Key Words
- actin polymerization
- anandamide
- 2-arachidonoylglycerol
- cannabinoid
- macrophage
- morphological change
- 2-ag, 2-arachidonoylglycerol
- δ9-thc, δ9-tetrahydrocannabinol
- f-actin, filamentous actin
- il, interleukin
- mapk, mitogen-activated protein kinase
- nbd-phallacidin, 7-nitrobenz-2-oxa-1,3-phallacidin
- 1,25(oh)2d3, 1α, 25-dihydroxyvitamin d3
- pi3k, phosphoinositide 3-kinase
- ptx, pertussis toxin
Collapse
Affiliation(s)
- Maiko Gokoh
- *Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | - Seishi Kishimoto
- *Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | - Saori Oka
- *Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | - Masahiro Mori
- *Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | - Keizo Waku
- *Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | - Yoshio Ishima
- †Ishima Institute for Neurosciences, Kunitachi, Tokyo 186-0002, Japan
| | - Takayuki Sugiura
- *Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| |
Collapse
|
37
|
Abstract
CB(1) receptor cellular signal transduction is dependent on the expression of G proteins to which the receptor couples, the potential for precoupling of particular G proteins to the receptors either by scaffolding mechanisms or colocalization in lipid raft domains, and the effector mechanisms that these transducer molecules regulate. This discourse will evaluate studies of efficacy for CB(1) receptor-Gi/o activation at the molecular level. Evidence for brain regional differences in CB(1) receptor signal transduction efficacy and agonist selectivity for G proteins will be summarized. The possibility that CB(1) receptors interact with Gs or Gq will be evaluated, and questions with regard to the constitutive activity and G protein sequestration will be posed.
Collapse
Affiliation(s)
- Allyn C Howlett
- Neuroscience of Drug Abuse Research Program, Biomedical/Biotechnology Research Institute, 700 George Street, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
38
|
Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 2004; 47 Suppl 1:345-58. [PMID: 15464149 DOI: 10.1016/j.neuropharm.2004.07.030] [Citation(s) in RCA: 406] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/23/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Delta9-Tetrahydrocannabinol from Cannabis sativa is mimicked by cannabimimetic analogs such as CP55940 and WIN55212-2, and antagonized by rimonabant and SR144528, through G-protein-coupled receptors, CB1 in the brain, and CB2 in the immune system. Eicosanoids anandamide and 2-arachidonoylglycerol are the "endocannabinoid" agonists for these receptors. CB1 receptors are abundant in basal ganglia, hippocampus and cerebellum, and their functional activity can be mapped during behaviors using cerebral metabolism as the neuroimaging tool. CB1 receptors couple to G(i/o) to inhibit cAMP production, decrease Ca2+ conductance, increase K+ conductance, and increase mitogen-activated protein kinase activity. Functional activation of G-proteins can be imaged by [35S]GTPgammaS autoradiography. Post-synaptically generated endocannabinoids form the basis of a retrograde signaling mechanism referred to as depolarization-induced suppression of inhibition (DSI) or excitation (DSE). Under circumstances of sufficient intracellular Ca2+ (e.g., burst activity in seizures), synthesis of endocannabinoids releases a diffusible retrograde messenger to stimulate presynaptic CB1 receptors. This results in suppression of gamma-aminobutyric acid (GABA) release, thereby relieving the post-synaptic inhibition. Tolerance develops as neurons adjust both receptor number and cellular signal transduction to the chronic administration of cannabinoid drugs. Future therapeutic drug design can progress based upon our current understanding of the physiology and pharmacology of CB1, CB2 and related receptors. One very important role for CB1 antagonists will be in the treatment of craving in the disease of substance abuse.
Collapse
Affiliation(s)
- Allyn C Howlett
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Govaerts SJ, Hermans E, Lambert DM. Comparison of cannabinoid ligands affinities and efficacies in murine tissues and in transfected cells expressing human recombinant cannabinoid receptors. Eur J Pharm Sci 2004; 23:233-43. [PMID: 15489124 DOI: 10.1016/j.ejps.2004.07.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 07/08/2004] [Accepted: 07/26/2004] [Indexed: 11/19/2022]
Abstract
Affinities and efficacies of several reference cannabinoid ligands were investigated at central and peripheral cannabinoid receptors in three different species (rat, mouse, and human). The tested compounds belong to different chemical classes such as classical and non-classical terpene derivatives (Delta(8)-THC, Delta(9)-THC, HU 210, CP 55,940, CP 55,244, CP 55,243 and CP 47,947), aminoalkylindole (WIN 55,212-2, WIN 55,212-3) and diarylpyrazole cannabinoids (SR 141716A, SR 144528). As cannabinoid receptors have been shown to be mainly coupled to Gi/o type G- proteins, and by using the [(35)S]-GTPgammaS nucleotide binding modulation, we characterized the functional activity of these ligands which can act as agonists (positive intrinsic activity), partial agonists (partial positive intrinsic activity), antagonists (no intrinsic activity), or inverse agonists (negative intrinsic activity). To our knowledge, some derivatives (Delta(8)-THC, WIN 55,212-3, CP 55,243 and CP 47,947) have never been characterized in [(35)S]-GTPgammaS binding assays and up to now, this study represents the largest survey of reference cannabinoids performed in unique experimental conditions and in the same laboratory.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Brain/metabolism
- CHO Cells
- Cannabinoids/chemistry
- Cannabinoids/pharmacology
- Cells, Cultured
- Cricetinae
- Cricetulus
- Humans
- In Vitro Techniques
- Indoles/chemistry
- Indoles/pharmacology
- Ligands
- Male
- Mice
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Recombinant Proteins/agonists
- Recombinant Proteins/antagonists & inhibitors
- Species Specificity
- Spleen/metabolism
- Structure-Activity Relationship
- Terpenes/chemistry
- Terpenes/pharmacology
- Transfection
Collapse
Affiliation(s)
- Sophie J Govaerts
- Unité de Chimie Pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Université catholique de Louvain, 73 Avenue E. Mounier, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
40
|
Mendiguren A, Pineda J. Cannabinoids enhance N-methyl-D-aspartate-induced excitation of locus coeruleus neurons by CB1 receptors in rat brain slices. Neurosci Lett 2004; 363:1-5. [PMID: 15157983 DOI: 10.1016/j.neulet.2004.02.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 02/10/2004] [Accepted: 02/10/2004] [Indexed: 11/29/2022]
Abstract
We studied the effect of cannabinoids on the activity of N-methyl-d-aspartate (NMDA) receptors in the locus coeruleus from rat brain slices by single-unit extracellular recordings. As expected, NMDA (100 microM) strongly excited (by nine fold) the cell firing activity of the locus coeruleus. Perfusion with the endocannabinoid anandamide (1 and 10 microM) or the anandamide transport inhibitor AM 404 (30 microM) enhanced the NMDA-induced excitation of locus coeruleus neurons. Similarly, the synthetic agonists R(+)-WIN 55212-2 (10 microM) and CP 55940 (30 microM) enhanced the effect of NMDA. In the presence of the CB(1) receptor antagonists SR 141716A (1 microM) or AM 251 (1 microM), the enhancement induced by anandamide (10 microM) was blocked. Our results suggest that cannabinoids modulate the activity of NMDA receptors in the locus coeruleus through CB(1) receptors.
Collapse
Affiliation(s)
- Aitziber Mendiguren
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, E-48940 Leioa, Bizkaia, Spain
| | | |
Collapse
|
41
|
Darmani NA, Sim-Selley LJ, Martin BR, Janoyan JJ, Crim JL, Parekh B, Breivogel CS. Antiemetic and motor-depressive actions of CP55,940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation. Eur J Pharmacol 2003; 459:83-95. [PMID: 12505537 DOI: 10.1016/s0014-2999(02)02815-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dibenzopyran (Delta(9)-tetrahydrocannabinol) and aminoalkylindole [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl) methanone mesylate; (WIN55,212-2)] cannabinoids suppress vomiting produced by cisplatin via cannabinoid CB(1) receptors. This study investigates the antiemetic potential of the "nonclassical" cannabinoid CP55,940 [1alpha,2beta-(R)-5alpha]-(-)-5-(1,1-dimethyl)-2-[5-hydroxy-2-(3-hydroxypropyl) cyclohexyl-phenol] against cisplatin-induced vomiting and assesses the presence and functionality of cannabinoid CB(1) receptors in the least shrew (Cryptotis parva) brain. CP55,940 (0.025-0.3 mg/kg) reduced both the frequency of cisplatin-induced emesis (ID(50)=0.025 mg/kg) and the percentage of shrews vomiting (ID(50)=0.09 mg/kg). CP55,940 also suppressed shrew motor behaviors (ID(50)=0.06- 0.21 mg/kg) at such doses. The antiemetic and motor-suppressant actions of CP55,940 were countered by SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide], indicating both effects are cannabinoid CB(1) receptor-mediated. Autoradiographic studies with [3H]-SR141716A and [35S]-GTPgammaS binding revealed that the distribution of the cannabinoid CB(1) receptor and its activation pattern are similar to rodent brain and significant levels are present in brain loci (e.g., nucleus tractus solitarius (NTS)) that control emesis. The affinity rank order of structurally diverse cannabinoid ligands for cannabinoid CB(1) receptor in shrew brain is similar to rodent brain: HU-210=CP55,940=SR141716A>/=WIN55,212-2>/=delta-9-tetrahydrocannabinol>methanandamide=HU-211=cannabidiol=2-arachidonoylglycerol. This affinity order is also similar and is highly correlated to the cannabinoid EC(50) potency rank order for GTPgammaS stimulation except WIN55,212-2 and delta-9-tetrahydrocannabinol potency order were reversed. The affinity and the potency rank order of tested cannabinoids were significantly correlated with their antiemetic ID(50) potency order against cisplatin-induced vomiting (CP55,940>WIN55,212-2=delta-9-tetrahydrocannabinol) as well as emesis produced by 2-arachidonoylglycerol or SR141716A (CP55,940>WIN55,212-2>delta-9-tetrahydrocannabinol).
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, 800 W. Jefferson Street, Kirksville, MO 63501, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Walker JM, Krey JF, Chu CJ, Huang SM. Endocannabinoids and related fatty acid derivatives in pain modulation. Chem Phys Lipids 2002; 121:159-72. [PMID: 12505698 DOI: 10.1016/s0009-3084(02)00152-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The brain produces at least five compounds that possess sub-micromolar affinity for cannabinoid receptors: anandamide, 2-arachidonoylglycerol, noladin ether, virodhamine, and N-arachidonoyldopamine (NADA). One function of these and/or related compounds is to suppress pain sensitivity. Much evidence supports a role of endocannabinoids in pain modulation in general, and some evidence points to the role of particular endocannabinoids. Related endogenous fatty acid derivatives such as oleamide, palmitoylethanolamide, 2-lineoylglycerol, 2-palmitoylglycerol, and a family of arachidonoyl amino acids may interact with endocannabinoids in the modulation of pain sensitivity.
Collapse
Affiliation(s)
- J Michael Walker
- Departments of Psychology and Neuroscience, Brown University, 89 Waterman Street, PO Box 1853, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
43
|
Roberts LA, Christie MJ, Connor M. Anandamide is a partial agonist at native vanilloid receptors in acutely isolated mouse trigeminal sensory neurons. Br J Pharmacol 2002; 137:421-8. [PMID: 12359623 PMCID: PMC1573524 DOI: 10.1038/sj.bjp.0704904] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
1. The endogenous fatty acid anandamide (AEA) is a partial agonist at cannabinoid CB1 receptors and has been reported to be a full agonist at the recombinant vanilloid receptor, VR1. 2. Whole cell voltage clamp techniques were used to examine the efficacy of AEA and related analogues methanandamide and N-(4-hydroxyphenyl)-arachidonylamide (AM404) at native VR1 receptors in acutely isolated mouse trigeminal neurons. 3. Superfusion of the VR1 agonist capsaicin onto small trigeminal neurons voltage clamped at +40 mV produced outward currents in most cells, with a pEC(50) of 6.3+/-0.1 (maximum currents at 10-30 micro M). 4. AEA produced outward currents with a pEC(50) of 5.6+/-0.1. Maximal AEA currents (30-100 micro M) were 38+/-2% of the capsaicin maximum. AEA currents were blocked by the VR1 antagonist capsazepine (30 micro M), but unaffected by the CB1 antagonist SR141716A (1 micro M). 5. Methanandamide and AM404 were less potent than AEA at activating VR1. Methanandamide (100 micro M) produced currents 37+/-6% of the capsaicin maximum, the highest concentration of AM404 tested (100 micro M) produced currents that were 55+/-9% of the capsaicin maximum. 6. Capsazepine abolished the currents produced by AM404 (100 micro M) and strongly attenuated (>70%) those produced by methanandamide (100 micro M). 7. Co-superfusion of AEA (30 micro M, methanandamide (100 micro M) or AM404 (100 micro M) with capsaicin (3 micro M) resulted in a significant reduction of the capsaicin current. 8. These data indicate that AEA, methanandamide and AM404 activate native VR1 receptors, but that all three compounds are partial agonists when compared with capsaicin.
Collapse
Affiliation(s)
- Louise A Roberts
- Department of Pharmacology, University of Sydney, Camperdown, 2006, NSW Australia
| | | | - Mark Connor
- Department of Pharmacology, University of Sydney, Camperdown, 2006, NSW Australia
- Author for correspondence:
| |
Collapse
|
44
|
Abstract
Cannabinoid receptors were named because they have affinity for the agonist delta9-tetrahydrocannabinol (delta9-THC), a ligand found in organic extracts from Cannabis sativa. The two types of cannabinoid receptors, CB1 and CB2. are G protein coupled receptors that are coupled through the Gi/o family of proteins to signal transduction mechanisms that include inhibition of adenylyl cyclase, activation of mitogen-activated protein kinase, regulation of calcium and potassium channels (CB1 only), and other signal transduction pathways. A class of the eicosanoid ligands are relevant to lipid-mediated cellular signaling because they serve as endogenous agonists for cannabinoid receptors, and are thus referred to as endocannabinoids. Those compounds identified to date include the eicosanoids arachidonoylethanolamide (anandamide), 2-arachidonoylglycerol and 2-arachidonylglyceryl ether (noladin ether). Several excellent reviews on endocannabinoids and their synthesis, metabolism and function have appeared in recent years. This paper will describe the biological activities, pharmacology, and signal transduction mechanisms for the cannabinoid receptors, with particular emphasis on the responses to the eicosanoid ligands.
Collapse
Affiliation(s)
- Allyn C Howlett
- Julius L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham 27707, USA.
| |
Collapse
|
45
|
Mauler F, Mittendorf J, Horváth E, De Vry J. Characterization of the diarylether sulfonylester (-)-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-sulfonate (BAY 38-7271) as a potent cannabinoid receptor agonist with neuroprotective properties. J Pharmacol Exp Ther 2002; 302:359-68. [PMID: 12065738 DOI: 10.1124/jpet.302.1.359] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
(-)-(R)-3-(2-Hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-sulfonate (BAY 38-7271) is a new high-affinity cannabinoid receptor subtype 1 (CB1 receptor) ligand (K(i) = 0.46-1.85 nM; rat brain, human cortex, or recombinant human CB1 receptor), structurally unrelated to any cannabinoid receptor ligand known so far. BAY 38-7271 was characterized as a CB1 receptor agonist in 5-[gamma(35)S]-thiophosphate triethylammonium salt binding assays using rat or human CB1 receptors. In the rat hypothermia assay, BAY 38-7271 induced a dose-dependent reduction in body temperature (minimal effective dose = 6 microg/kg, i.v.); whereas in rats trained to discriminate the CB1/CB2 receptor agonist (-)-cis-3-[2-hydroxy-4(1,1-dimethyl-heptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940; 0.03 mg/kg, i.p.) from vehicle, BAY 38-7271 induced complete generalization (3 microg/kg, i.v.). In both in vivo models, a specific CB1 receptor-mediated mechanism was confirmed by demonstrating that the effects of CP 55,940 and BAY 38-7271 were blocked by pretreatment with the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride. In the rat traumatic brain injury model, BAY 38-7271 demonstrated highly potent and efficient neuroprotective properties when administered as a 4-h infusion immediately after induction of subdural hematoma (70% infarct volume reduction at 100 ng/kg/h). Even when applied with a 3-h delay, a significant neuroprotective efficacy could be observed (59% infarct volume reduction at 300 ng/kg/h). The neuroprotective potential of BAY 38-7271 was confirmed in a rat model of focal cerebral ischemia induced by permanent occlusion of the middle cerebral artery. It is concluded that the CB1/CB2 receptor agonist BAY 38-7271 shows pronounced neuroprotective properties that do not result from drug-induced hypothermia and that occur in a dose range devoid of typical cannabinoid-like side effects.
Collapse
Affiliation(s)
- Frank Mauler
- CNS Research, Bayer AG, Business Group Pharma, Aprather Weg 18a, 42096 Wuppertal, Germany.
| | | | | | | |
Collapse
|
46
|
McAllister SD, Glass M. CB(1) and CB(2) receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 2002; 66:161-71. [PMID: 12052033 DOI: 10.1054/plef.2001.0344] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery that the major psychoactive component of marijuana activated two G-protein coupled receptors prompted the search for the endogenous cannabinoid ligands now termed endocannabinoids. To date three putative ligands have been isolated, all consisting of arachidonic acid linked to a polar head group. Both synthetic and endogenous cannabinoids have been the focus of extensive study over the past few years. The signalling events produced by endocannabinoids as compared with Delta(9) -THC and synthetic cannabinoids contain many similarities. However, as research focuses more on endogenous ligands the divergence between these classes of compounds grows. This review focuses upon the developments in endocannabinoid signal transduction from receptor-mediated activation of common G-protein linked effector pathways through downstream regulation of gene transcription.
Collapse
Affiliation(s)
- Sean D McAllister
- Forbes Norris ALS Research Center, California Pacific Medical Centre, 2351 Clay Street, Suite 416, San Francisco, CA 94115, USA
| | | |
Collapse
|
47
|
Sugiura T, Kobayashi Y, Oka S, Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 2002; 66:173-92. [PMID: 12052034 DOI: 10.1054/plef.2001.0356] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N -arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N -arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N -arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors. In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan.
| | | | | | | |
Collapse
|
48
|
Hayase T, Yamamoto Y, Yamamoto K. Protective effects of cannabinoid receptor agonists against cocaine and other convulsant-induced toxic behavioural symptoms. J Pharm Pharmacol 2001; 53:1525-32. [PMID: 11732755 DOI: 10.1211/0022357011777891] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Based on the previously reported co-localization and relationship between cannabinoid and dopamine receptors, the effects of cannabinoid receptor agonists against cocaine-induced toxic behavioural symptoms, including convulsive seizures, were examined in mice. The anticonvulsant effect of several cannabimimetics against seizures induced by other convulsants was also compared. The cannabinoid receptor agonists CP 55940 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)-cyclohexanol) and WIN 55212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone), and the endogenous cannabinoid anandamide were co-administered intraperitoneally with cocaine (75 mg kg(-1)) or other convulsants such as bicuculline, methyl 6,7-dimethoxy-4-ethyl-beta-carboline-carboxylate (DMCM), L-glutamic acid and N-methyl-D-aspartate (NMDA). CP 55940 (2.5 mg kg(-1)) and anandamide (15 mg kg(-1)) significantly antagonized cocaine-induced lethality, and CP 55940 and WIN 55212-2 (2.5 mg kg(-1)) significantly attenuated the severity of cocaine-induced convulsive seizures. Furthermore, ataxic hyperactivity, which was observed only in the cocaine-treated group of mice and could be evaluated by their activity counts, was also depressed in the groups of mice co-treated with each of the three cannabinoid agonists. However, none of these agonists protected against bicuculline- or DMCM-induced lethality or convulsive seizures. In contrast, all of the cannabinoid agonists, most notably anandamide, antagonized both L-glutamic acid (2 g kg(-1))- and NMDA (200 mg kg(-1))-induced convulsive seizures. These data support the previously reported close correlation between dopamine and cannabinoid receptors, and between cannabinoid agonists, especially anandamide, and glutamate (NMDA) receptors. Furthermore, these results suggest a potential therapeutic role for cannabinoid agonists against cocaine- and other-convulsant-induced toxicities.
Collapse
Affiliation(s)
- T Hayase
- Department of Legal Medicine, Kyoto University Graduate School of Medicine, Faculty of Medicine, Japan.
| | | | | |
Collapse
|
49
|
Abstract
The synthetic compound HU 210 displays a multiplicity of biochemical, pharmacological, and behavioral effects, most of which have been demonstrated to be dependent on a selective agonistic activity at CB(1) and CB(2) cannabinoid receptors and to involve the main neurotransmitter systems. Results obtained in various studies suggest a potential clinical application of this highly potent drug (e.g., as antipyretic, antiinflammatory, analgesic, antiemetic, and antipsychotic agent) as well as its usefulness in research aimed to develop a better understanding of the involvement of the endogenous cannabinoid system in a number of physiopathological functions.
Collapse
Affiliation(s)
- A Ottani
- Department of Biomedical Sciences, Division of Pharmacology, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | | |
Collapse
|
50
|
Lichtman AH, Fisher J, Martin BR. Precipitated cannabinoid withdrawal is reversed by Delta(9)-tetrahydrocannabinol or clonidine. Pharmacol Biochem Behav 2001; 69:181-8. [PMID: 11420084 DOI: 10.1016/s0091-3057(01)00514-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The availability of the cannabinoid antagonist, SR 141716A, to precipitate withdrawal following repeated cannabinoid administration provides a model to investigate the mechanisms underlying cannabinoid dependence as well as potential treatments to alleviate withdrawal symptoms. The goal of the present study was to determine whether SR 141716A-precipitated withdrawal symptoms in Delta(9)-tetrahydrocannabinol (Delta(9)-THC)-tolerant mice could be alleviated by either readministration of Delta(9)-THC or clonidine, an alpha(2)-receptor agonist. SR 141716A elicited paw tremors in Delta(9)-THC-tolerant mice, but produced a significant increase in head shakes independently of repeated Delta(9)-THC treatment. Readministration of Delta(9)-THC, following SR 141716A-precipitated withdrawal, reversed paw tremors (ED(50)=9.9 mg/kg), but failed to reduce head shaking behavior. Clonidine reversed SR 141716A-precipitated paw tremors (ED(50)=0.18 mg/kg) and blocked head shakes at all doses tested. The reversal effects did not appear to be the result of motor impairment because neither decreases in spontaneous locomotor activity nor motor incoordination, as assessed in the inverted screen test, could account for the effects. These findings suggest that SR 141716A precipitates paw tremors in mice by competing with Delta(9)-THC at the CB(1) receptor, though it also produced head shaking in nondependent animals. Finally, the observation that clonidine alleviated SR 141716A-precipitated paw tremors suggests its potential as a treatment for cannabinoid dependence.
Collapse
Affiliation(s)
- A H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, P.O. Box 980613, 245 North 15th Street, Richmond, VA 23298-0613, USA.
| | | | | |
Collapse
|