1
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
2
|
Zheng M, Erhardt S, Ai D, Wang J. Bmp Signaling Regulates Hand1 in a Dose-Dependent Manner during Heart Development. Int J Mol Sci 2021; 22:ijms22189835. [PMID: 34576009 PMCID: PMC8465227 DOI: 10.3390/ijms22189835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The bone morphogenetic protein (Bmp) signaling pathway and the basic helix–loop–helix (bHLH) transcription factor Hand1 are known key regulators of cardiac development. In this study, we investigated the Bmp signaling regulation of Hand1 during cardiac outflow tract (OFT) development. In Bmp2 and Bmp4loss-of-function embryos with varying levels of Bmp in the heart, Hand1 is sensitively decreased in response to the dose of Bmp expression. In contrast, Hand1 in the heart is dramatically increased in Bmp4 gain-of-function embryos. We further identified and characterized the Bmp/Smad regulatory elements in Hand1. Combined transfection assays and chromatin immunoprecipitation (ChIP) experiments indicated that Hand1 is directly activated and bound by Smads. In addition, we found that upon the treatment of Bmp2 and Bmp4, P19 cells induced Hand1 expression and favored cardiac differentiation. Together, our data indicated that the Bmp signaling pathway directly regulates Hand1 expression in a dose-dependent manner during heart development.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Di Ai
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
3
|
Hoppler S, Conlon FL. Xenopus: Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037200. [PMID: 31767648 DOI: 10.1101/cshperspect.a037200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenopus has been used to study a wide array of developmental processes, benefiting from vast quantities of relatively large, externally developing eggs. Xenopus is particularly amenable to examining the cardiac system because many of the developmental processes and genes involved in cardiac specification, differentiation, and growth are conserved between Xenopus and human and have been characterized in detail. Furthermore, compared with other higher vertebrate models, Xenopus embryos can survive longer without a properly functioning heart or circulatory system, enabling investigation of later consequences of early embryological manipulations. This biology is complemented by experimental technology, such as embryonic explants to study the heart, microinjection of overexpression constructs, and, most recently, the generation of genetic mutations through gene-editing technologies. Recent investigations highlight Xenopus as a powerful experimental system for studying injury/repair and regeneration and for congenital heart disease (CHD) modeling, which reinforces why this model system remains ideal for studying heart development.
Collapse
Affiliation(s)
- Stefan Hoppler
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Frank L Conlon
- Department of Biology and Genetics, University of North Carolina McAllister Heart Institute, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
4
|
Gordeeva O. TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells 2019; 8:cells8121500. [PMID: 31771212 PMCID: PMC6953027 DOI: 10.3390/cells8121500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family factors induce pleiotropic effects and are involved in the regulation of most normal and pathological cellular processes. The activity of different branches of the TGFβ family signaling pathways and their interplay with other signaling pathways govern the fine regulation of the self-renewal, differentiation onset and specialization of pluripotent stem cells in various cell derivatives. TGFβ family signaling pathways play a pivotal role in balancing basic cellular processes in pluripotent stem cells and their derivatives, although disturbances in their genome integrity induce the rearrangements of signaling pathways and lead to functional impairments and malignant transformation into cancer stem cells. Therefore, the identification of critical nodes and targets in the regulatory cascades of TGFβ family factors and other signaling pathways, and analysis of the rearrangements of the signal regulatory network during stem cell state transitions and interconversions, are key issues for understanding the fundamental mechanisms of both stem cell biology and cancer initiation and progression, as well as for clinical applications. This review summarizes recent advances in our understanding of TGFβ family functions in naїve and primed pluripotent stem cells and discusses how these pathways are involved in perturbations in the signaling network of malignant teratocarcinoma stem cells with impaired differentiation potential.
Collapse
Affiliation(s)
- Olga Gordeeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
5
|
Kay M, Soltani BM, Aghdaei FH, Ansari H, Baharvand H. Hsa-miR-335 regulates cardiac mesoderm and progenitor cell differentiation. Stem Cell Res Ther 2019; 10:191. [PMID: 31248450 PMCID: PMC6595595 DOI: 10.1186/s13287-019-1249-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/06/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background WNT and TGFβ signaling pathways play critical regulatory roles in cardiomyocyte fate determination and differentiation. MiRNAs are also known to regulate different biological processes and signaling pathways. Here, we intended to find candidate miRNAs that are involved in cardiac differentiation through regulation of WNT and TGFβ signaling pathways. Methods Bioinformatics analysis suggested hsa-miR-335-3p and hsa-miR-335-5p as regulators of cardiac differentiation. Then, RT-qPCR, dual luciferase, TOP/FOP flash, and western blot analyses were done to confirm the hypothesis. Results Human embryonic stem cells (hESCs) were differentiated into beating cardiomyocytes, and these miRNAs showed significant expression during the differentiation process. Gain and loss of function of miR-335-3p and miR-335-5p resulted in BRACHYURY, GATA4, and NKX2-5 (cardiac differentiation markers) expression alteration during the course of hESC cardiac differentiation. The overexpression of miR-335-3p and miR-335-5p also led to upregulation of CNX43 and TNNT2 expression, respectively. Our results suggest that this might be mediated through enhancement of WNT and TGFβ signaling pathways. Conclusion Overall, we show that miR-335-3p/5p upregulates cardiac mesoderm (BRACHYURY) and cardiac progenitor cell (GATA4 and NKX2-5) markers, which are potentially mediated through activation of WNT and TGFβ signaling pathways. Our findings suggest miR-335-3p/5p to be considered as a regulator of the cardiac differentiation process. Electronic supplementary material The online version of this article (10.1186/s13287-019-1249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Kay
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran. .,Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran.
| | - Fahimeh Hosseini Aghdaei
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, University of Science and Culture, Tehran, Iran. .,Royan Institute, P.O. Box: 16635-148, Banihashem Sq., Banihashem St., Ressalat Highway, Tehran, 1665659911, Iran.
| |
Collapse
|
6
|
Jumabay M, Zhumabai J, Mansurov N, Niklason KC, Guihard PJ, Cubberly MR, Fogelman AM, Iruela-Arispe L, Yao Y, Saparov A, Boström KI. Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 2017; 233:1812-1822. [PMID: 28464239 DOI: 10.1002/jcp.25983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 05/01/2017] [Indexed: 11/09/2022]
Abstract
Bone morphogenetic protein (BMP) 10, a cardiac-restricted BMP family member, is essential in cardiomyogenesis, especially during trabeculation. Crossveinless-2 (CV2, also known as BMP endothelial cell precursor derived regulator [BMPER]) is a BMP-binding protein that modulates the activity of several BMPs. The objective of this study was to examine the combined effects of BMP10 and CV2 on cardiomyocyte differentiation using mouse dedifferentiated fat (mDFAT) cells, which spontaneously differentiate into cardiomyocyte-like cells, as a model. Our results revealed that CV2 binds directly to BMP10, as determined by co-immunoprecipitation, and inhibits BMP10 from initiating SMAD signaling, as determined by luciferase reporter gene assays. BMP10 treatment induced mDFAT cell proliferation, whereas CV2 modulated the BMP10-induced proliferation. Differentiation of cardiomyocyte-like cells proceeded in a reproducible fashion in mDFAT cells, starting with small round Nkx2.5-positive progenitor cells that progressively formed myotubes of increasing length that assembled into beating colonies and stained strongly for Troponin I and sarcomeric alpha-actinin. BMP10 enhanced proliferation of the small progenitor cells, thereby securing sufficient numbers to support formation of myotubes. CV2, on the other hand, enhanced formation and maturation of large myotubes and myotube-colonies and was expressed by endothelial-like cells in the mDFAT cultures. Thus BMP10 and CV2 have important roles in coordinating cardiomyogenesis in progenitor cells.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jiayinaguli Zhumabai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Nurlan Mansurov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Katharine C Niklason
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mark R Cubberly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alan M Fogelman
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Arman Saparov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Molecular Biology Institute, UCLA, Los Angeles, California
| |
Collapse
|
7
|
Choi SC, Choi JH, Cui LH, Seo HR, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Mixl1 and Flk1 Are Key Players of Wnt/TGF-β Signaling During DMSO-Induced Mesodermal Specification in P19 cells. J Cell Physiol 2015; 230:1807-21. [PMID: 25521758 DOI: 10.1002/jcp.24892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
Abstract
Dimethyl sulfoxide (DMSO) is widely used to induce multilineage differentiation of embryonic and adult progenitor cells. To date, little is known about the mechanisms underlying DMSO-induced mesodermal specification. In this study, we investigated the signaling pathways and lineage-determining genes involved in DMSO-induced mesodermal specification in P19 cells. Wnt/β-catenin and TGF-β superfamily signaling pathways such as BMP, TGF-β and GDF1 signaling were significantly activated during DMSO-induced mesodermal specification. In contrast, Nodal/Cripto signaling pathway molecules, required for endoderm specification, were severely downregulated. DMSO significantly upregulated the expression of cardiac mesoderm markers but inhibited the expression of endodermal and hematopoietic lineage markers. Among the DMSO-activated cell lineage markers, the expression of Mixl1 and Flk1 was dramatically upregulated at both the transcript and protein levels, and the populations of Mixl1+, Flk1+ and Mixl1+/Flk1+ cells also increased significantly. DMSO modulated cell cycle molecules and induced cell apoptosis, resulting in significant cell death during EB formation of P19 cells. An inhibitor of Flk1, SU5416 significantly blocked expressions of TGF-β superfamily members, mesodermal cell lineage markers and cell cycle molecules but it did not affect Wnt molecules. These results demonstrate that Mixl1 and Flk1 play roles as key downstream or interacting effectors of Wnt/TGF-β signaling pathway during DMSO-induced mesodermal specification in P19 cells.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The heart is a large organ containing many cell types, each of which is necessary for normal function. Because of this, cardiac regenerative medicine presents many unique challenges. Because each of the many types of cells within the heart has unique physiological and electrophysiological characteristics, donor cells must be well matched to the area of the heart into which they are grafted to avoid mechanical dysfunction or arrhythmia. In addition, grafted cells must be functionally integrated into host tissue to effectively repair cardiac function. Because of its size and physiological function, the metabolic needs of the heart are considerable. Therefore grafts must contain not only cardiomyocytes but also a functional vascular network to meet their needs for oxygen and nutrition. In this article we review progress in the use of pluripotent stem cells as a source of donor cardiomyocytes and highlight current unmet needs in the field. We also examine recent tissue engineering approaches integrating cells with various engineered materials that should address some of these unmet needs.
Collapse
Affiliation(s)
- Yunkai Dai
- Bioengineering Department, Clemson University, Clemson, South Carolina
| | - Ann C. Foley
- Bioengineering Department, Clemson University, Clemson, South Carolina
- Department of Cell and Regenerative Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
9
|
Norden J, Kispert A. Wnt/Ctnnb1 Signaling and the Mesenchymal Precursor Pools of the Heart. Trends Cardiovasc Med 2012; 22:118-22. [DOI: 10.1016/j.tcm.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 02/01/2023]
|
10
|
Gavrilov S, Nührenberg TG, Ashton AW, Peng CF, Moore JC, Konstantinidis K, Mummery CL, Kitsis RN. Tbx6 is a determinant of cardiac and neural cell fate decisions in multipotent P19CL6 cells. Differentiation 2012; 84:176-84. [PMID: 22721678 DOI: 10.1016/j.diff.2012.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/23/2012] [Accepted: 04/27/2012] [Indexed: 01/30/2023]
Abstract
Multipotent P19CL6 cells differentiate into cardiac myocytes or neural lineages when stimulated with dimethyl sulfoxide (DMSO) or retinoic acid (RA), respectively. Expression of the transcription factor Tbx6 was found to increase during cardiac myocyte differentiation and to decrease during neural differentiation. Overexpression of Tbx6 was not sufficient to drive P19CL6 cells to a cardiac myocyte fate or to accelerate DMSO-induced differentiation. In contrast, knockdown of Tbx6 dramatically inhibited DMSO-induced differentiation of P19CL6 cells to cardiac myocytes, as evidenced by the loss of striated muscle-specific markers and spontaneous beating. Tbx6 knockdown was also accompanied by almost complete loss of Nkx2.5, a transcription factor involved in the specification of the cardiac myocyte lineage, indicating that Nkx2.5 is downstream of Tbx6. In distinction to its positive role in cardiac myocyte differentiation, Tbx6 knockdown augmented RA-induced differentiation of P19CL6 cells to both neurons and glia, and accelerated the rate of neurite formation. Conversely, Tbx6 overexpression attenuated differentiation to neural lineages. Thus, in the P19CL6 model, Tbx6 is required for cardiac myocyte differentiation and represses neural differentiation. We propose a model in which Tbx6 is a part of a molecular switch that modulates divergent differentiation programs within a single progenitor cell.
Collapse
Affiliation(s)
- Svetlana Gavrilov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
12
|
Inoue M, Ebisawa K, Itaya T, Sugito T, Yamawaki-Ogata A, Sumita Y, Wadagaki R, Narita Y, Agata H, Kagami H, Ueda M. Effect of GDF-5 and BMP-2 on the expression of tendo/ligamentogenesis-related markers in human PDL-derived cells. Oral Dis 2011; 18:206-12. [PMID: 22093095 DOI: 10.1111/j.1601-0825.2011.01871.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The effect of growth differentiation factor 5 and bone morphogenetic protein 2 on human periodontal ligament-derived cells was investigated with special reference to tendo/ligamentogenesis-related markers. MATERIALS AND METHODS Effects of each factor were analyzed by quantitative PCR for scleraxis and tenomodulin and by western blotting for scleraxis. After exposure to those factors, STRO-1-positive and STRO-1-negative fractions of human periodontal ligament tissues were isolated with an immunomagnetic cell sorting system, and the expression of scleraxis in each fraction was analyzed by western blotting. Non-separated crude cells were used as a control. RESULTS Growth differentiation factor 5 and bone morphogenetic protein 2 did not increase alkaline phosphatase activity in crude periodontal ligament-derived cells. Growth differentiation factor 5, but not bone morphogenetic protein 2, increased the expression of scleraxis in crude, STRO-1-positive and STRO-1-negative periodontal ligament-derived cells. The expression of scleraxis in STRO-1-positive periodontal ligament-derived cells was significantly less compared to that in crude P2 and STRO-1-negative periodontal ligament-derived cells. CONCLUSION Growth differentiation factor 5 induced the expression of scleraxis and may enhance tendo/ligamentogenesis in human periodontal ligament-derived cells. The expression of scleraxis was higher in STRO-1-negative fraction, suggesting more differentiated state of the cells.
Collapse
Affiliation(s)
- M Inoue
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang Y, Sun A, Xue J, Jiang Y. Adenovirus-mediated expression of hypoxia-inducible factor 1α double mutant converts neonatal cardiac fibroblasts into (cardio)myocyte phenotype. Cell Biochem Funct 2011; 30:24-32. [PMID: 22006794 DOI: 10.1002/cbf.1813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/16/2011] [Accepted: 09/05/2011] [Indexed: 02/04/2023]
Abstract
Adenovirus-mediated expression of hypoxia-inducible factor 1α double mutant (pAd-HIF-1α-Ala564-Ala803) can be effectively transfected into bone marrow stem cells (MSCs) in the MSCs and cardiomyocytes co-culture system at normoxia to regulate the expression of downstream target genes of hypoxia-inducible factor 1α (HIF-1α), which in turn can promote MSC differentiation into cardiomyocytes. Fibroblasts share common characteristics with MSCs such as the morphology, phenotype and differentiation potential. Therefore, we further studied whether the pAd-HIF-1α-Ala564-Ala803 also can convert neonatal rat cardiac fibroblasts (NCFs) into (cardio)myocyte phenotype via regulating the downstream target genes of HIF-1α at normoxia. The immunostaining analysis showed that NCFs treated with pAd-HIF-1α-Ala564-Ala803 exhibited higher protein expression levels of smooth muscle α-actin (SMA, myocyte marker) and cardiac troponin T (cTnT, cardiomyocyte marker), compared with phosphate-buffered saline and pAd-LacZ treatments. The reverse transcription-polymerase chain reaction results showed that NCFs transfected with pAd-HIF-1α-Ala564-Ala803 augmented messenger RNA (mRNA) expression of transforming growth factor-β1 (TGF-β1), Smad4, NKx2.5, GATA4, myocardin, SMA and cTnT. The effects of HIF-1α-Ala564-Ala803 on NCFs were attenuated by pre-transfection of TGF-β1 or myocardin small interference RNAs. Adult CFs transfected with pAd-HIF-1α-Ala564-Ala803 showed a lower protein expression of SMA but not cTnT without any change in the mRNA expression level of NKx2.5, myocardin. Therefore, NCFs but not adult CFs possess a similar differentiation potential to MSCs as evidenced by the fact that pAd-HIF-1α-Ala564-Ala803 can convert NCFs into (cardio)myocyte phenotype via regulating its downstream target genes.
Collapse
Affiliation(s)
- Yesong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | |
Collapse
|
14
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
15
|
Ng KM, Lee YK, Lai WH, Chan YC, Fung ML, Tse HF, Siu CW. Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells. PLoS One 2011; 6:e19787. [PMID: 21589943 PMCID: PMC3092777 DOI: 10.1371/journal.pone.0019787] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/14/2011] [Indexed: 02/02/2023] Open
Abstract
The cardioprotective effects of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA-I) are well documented, but their effects in the direction of the cardiac differentiation of embryonic stem cells are unknown. We evaluated the effects of exogenous apoA-I expression on cardiac differentiation of ESCs and maturation of ESC-derived cardiomyocytes. We stably over-expressed full-length human apoA-I cDNA with lentivirus (LV)-mediated gene transfer in undifferentiated mouse ESCs and human induced pluripotent stem cells. Upon cardiac differentiation, we observed a significantly higher percentage of beating embryoid bodies, an increased number of cardiomyocytes as determined by flow cytometry, and expression of cardiac markers including α-myosin heavy chain, β-myosin heavy chain and myosin light chain 2 ventricular transcripts in LV-apoA-I transduced ESCs compared with control (LV-GFP). In the presence of noggin, a BMP4 antagonist, activation of BMP4-SMAD signaling cascade in apoA-I transduced ESCs completely abolished the apoA-I stimulated cardiac differentiation. Furthermore, co-application of recombinant apoA-I and BMP4 synergistically increased the percentage of beating EBs derived from untransduced D3 ESCs. These together suggests that that pro-cardiogenic apoA-I is mediated via the BMP4-SMAD signaling pathway. Functionally, cardiomyocytes derived from the apoA-I-transduced cells exhibited improved calcium handling properties in both non-caffeine and caffeine-induced calcium transient, suggesting that apoA-I plays a role in enhancing cardiac maturation. This increased cardiac differentiation and maturation has also been observed in human iPSCs, providing further evidence of the beneficial effects of apoA-I in promoting cardiac differentiation. In Conclusion, we present novel experimental evidence that apoA-I enhances cardiac differentiation of ESCs and iPSCs and promotes maturation of the calcium handling property of ESC-derived cardiomyocytes via the BMP4/SMAD signaling pathway.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Department of Physiology, University of Hong Kong, Hong Kong
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Yau-Chi Chan
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Man-Lung Fung
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Department of Physiology, University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Chung-Wah Siu
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| |
Collapse
|
16
|
Wang J, Greene SB, Martin JF. BMP signaling in congenital heart disease: new developments and future directions. ACTA ACUST UNITED AC 2011; 91:441-8. [PMID: 21384533 DOI: 10.1002/bdra.20785] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 01/07/2023]
Abstract
Congenital heart malformations are the most common of all congenital human birth anomalies. During the past decade, research with zebrafish, chick, and mouse models have elucidated many fundamental genetic pathways that govern early cardiac patterning and differentiation. This review highlights the roles of the bone morphogenetic protein (BMP) signaling pathway in cardiogenesis and how defective BMP signals can disrupt the intricate steps of cardiac formation and cause congenital heart defects.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Mizuno D, Agata H, Furue H, Kimura A, Narita Y, Watanabe N, Ishii Y, Ueda M, Tojo A, Kagami H. Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum. Growth Factors 2010; 28:34-43. [PMID: 19835486 DOI: 10.3109/08977190903326362] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although there are numerous reports describing the in vivo bone forming capability of recombinant human bone morphogenetic proteins-2 (rhBMP-2), studies have reported limited effects on human mesenchymal stem cells (hMSCs). However, the reasons for these discrepancies are not well understood. The aim of this study was to investigate the responsiveness of hMSCs to osteoinductive signals, focusing on rhBMP-2 and the effect of serum on that responsiveness. Human MSCs from six donors were analysed. When those cells were treated with osteoinduction medium including dexamethasone (Dex), alkaline phosphatase (ALP) activities increased in all cell lines. On the other hand, rhBMP-2-containing medium failed to increase ALP activity. When five different sera were used for cultivation and induction with rhBMP-2, ALP activities increased in two of them, but not in the others. The expression of BMP-2 antagonist noggin was induced in almost all combinations regardless of the responsiveness to rhBMP-2. On the other hand, the expression of follistatin showed significant variations depending on the serum and cell line. However, the expression did not correlate with the responsiveness to rhBMP-2. The results from this study showed limited but heterogeneous osteogenic response of hMSCs to rhBMP-2 and that the results are affected by the choice of serum. This fact should be concerned for the successful and effective clinical application of rhBMP-2.
Collapse
Affiliation(s)
- Daiki Mizuno
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Armiñán A, Gandía C, García-Verdugo JM, Lledó E, Mullor JL, Montero JA, Sepúlveda P. Cardiac transcription factors driven lineage-specification of adult stem cells. J Cardiovasc Transl Res 2009; 3:61-5. [PMID: 20560034 DOI: 10.1007/s12265-009-9144-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/13/2009] [Indexed: 12/11/2022]
Abstract
Differentiation of human bone marrow mesenchymal stem cells (hBMSC) into the cardiac lineage has been assayed using different approaches such as coculture with cardiac or embryonic cells, treatment with factors, or by seeding cells in organotypic cultures. In most cases, differentiation was evaluated in terms of expression of cardiac-specific markers at protein or molecular level, electrophysiological properties, and formation of sarcomers in differentiated cells. As observed in embryonic stem cells and cardiac progenitors, differentiation of MSC towards the cardiac lineage was preceded by translocation of NKX2.5 and GATA4 transcription factors to the nucleus. Here, we induce differentiation of hBMSC towards the cardiac lineage using coculture with neonatal rat cardiomyocytes. Although important ultrastructural changes occurred during the course of differentiation, sarcomerogenesis was not fully achieved even after long periods of time. Nevertheless, we show that the main cardiac markers, NKX2.5 and GATA4, translocate to the nucleus in a process characteristic of cardiac specification.
Collapse
Affiliation(s)
- Ana Armiñán
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Kennedy KAM, Porter T, Mehta V, Ryan SD, Price F, Peshdary V, Karamboulas C, Savage J, Drysdale TA, Li SC, Bennett SAL, Skerjanc IS. Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative beta-catenin. BMC Biol 2009; 7:67. [PMID: 19814781 PMCID: PMC2764571 DOI: 10.1186/1741-7007-7-67] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 10/08/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation. RESULTS Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a beta-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative beta-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4. CONCLUSION RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating beta-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.
Collapse
Affiliation(s)
- Karen AM Kennedy
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Tammy Porter
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott D Ryan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Feodor Price
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa, Ontario, Canada
| | - Vian Peshdary
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Karamboulas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Josée Savage
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas A Drysdale
- Department of Pediatrics and Physiology and Pharmacology, The University of Western Ontario, Children's Health Research Institute, London, Ontario, Canada
| | - Shun-Cheng Li
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Steffany AL Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. Screening NKX2.5 mutation in a sample of 230 Han Chinese children with congenital heart diseases. Genet Test Mol Biomarkers 2009; 13:159-62. [PMID: 19371212 DOI: 10.1089/gtmb.2008.0044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Congenital heart disease (CHD) is the most common developmental anomaly, affecting approximately 1% of all newborns. Genetic factors play an important role in CHD's development. Germline mutations in NK2 transcription factor related, locus 5 (NKX2.5) have been identified as the factors responsible for various forms of CHD. In this study, we investigated mutations of the NKX2.5 gene's coding region in 230 nonsyndromic CHD patients belonging to the Chinese Han nationality by PCR, denaturing high-performance liquid chromatography, and sequencing. Pathogenic mutations were not found among the patients. Two known single-nucleotide polymorphisms (rs2277923 and rs3729753) were detected, but the differences in the allele and genotype frequencies were insignificant between CHD and the controls (p > 0.05). The data we gathered suggest that NKX2.5 mutations are highly rare in CHD patients of the Chinese Han nationality. Therefore, NKX2.5 mutation investigation should be limited within a number of familial and special phenotype of CHD in Chinese patients.
Collapse
Affiliation(s)
- Weimin Zhang
- Cardiac Center, Beijing Children's Hospital affiliated to Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
21
|
Gianakopoulos PJ, Skerjanc IS. Cross talk between hedgehog and bone morphogenetic proteins occurs during cardiomyogenesis in P19 cells. In Vitro Cell Dev Biol Anim 2009; 45:566-72. [PMID: 19585175 DOI: 10.1007/s11626-009-9228-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/20/2009] [Indexed: 11/24/2022]
Abstract
Hedgehog (Hh) signaling plays a role in heart morphogenesis and can initiate cardiomyogenesis in P19 cells. To determine if Hh signaling is essential for P19 cell cardiomyogenesis, we determined which Hh factors are expressed and the effect of Hh signal transduction inhibitors. Here, we find that the Hh gene family and their downstream mediators are expressed during cardiomyogenesis but an active Hh signaling pathway is not essential. However, loss of Hh signaling resulted in a delay of BMP-4, GATA-4, Gli2, and Meox1 expression during cardiomyogenesis. By using Noggin-overexpressing P19 cells, we determined that Hh signaling was not active during Noggin-mediated inhibition of cardiomyogenesis. Thus, there is cross talk between the Hh and BMP signaling pathways and the Hh pathway appears important for timely cardiomyogenesis.
Collapse
Affiliation(s)
- Peter Junior Gianakopoulos
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada, K1H 8M5
| | | |
Collapse
|
22
|
Balci MM, Akdemir R. NKX2.5 mutations and congenital heart disease: is it a marker of cardiac anomalies? Int J Cardiol 2009; 147:e44-5. [PMID: 19217179 DOI: 10.1016/j.ijcard.2009.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Congenital heart defects (CHD) are the leading cause of morbidity and mortality in infants, the etiology of most CHD remains unknown, with the influence of genetics still topic of debate. Heterozygous mutations in the transcription factor, NKX2.5, were among the first evidence of genetic cause for congenital heart disease. For the prevention of CHD identification of specific genetic causes for congenital cardiac malformations will provide insight into the developmental mechanisms that result in normal and abnormal cardiac development and will allow for improved family counseling.
Collapse
|
23
|
Bracken CM, Mizeracka K, McLaughlin KA. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis. Dev Dyn 2008; 237:132-44. [PMID: 18069689 DOI: 10.1002/dvdy.21387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Bone morphogenetic proteins (BMPs) mediate a wide range of diverse cellular behaviors throughout development. Previous studies implicated an important role for BMP signaling during the differentiation of the definitive mammalian kidney, the metanephros. In order to examine whether BMP signaling also plays an important role during the patterning of earlier renal systems, we examined the development of the earliest nephric system, the pronephros. Using the amphibian model system Xenopus laevis, in combination with reagents designed to inhibit BMP signaling during specific stages of nephric development, we revealed an evolutionarily conserved role for this signaling pathway during renal morphogenesis. Our results demonstrate that conditional BMP inhibition after specification of the pronephric anlagen is completed, but prior to the onset of morphogenesis and differentiation of renal tissues, results in the severe malformation of both the pronephric duct and tubules. Importantly, the effects of BMP signaling on the developing nephron during this developmental window are specific, only affecting the developing duct and tubules, but not the glomus. These data, combined with previous studies examining metanephric development in mice, provide further support that BMP functions to mediate morphogenesis of the specified renal field during vertebrate embryogenesis. Specifically, BMP signaling is required for the differentiation of two types of nephric structures, the pronephric tubules and duct.
Collapse
|
24
|
Fathi F, Murasawa S, Hasegawa S, Asahara T, Kermani AJ, Mowla SJ. Cardiac differentiation of P19CL6 cells by oxytocin. Int J Cardiol 2008; 134:75-81. [PMID: 18538425 DOI: 10.1016/j.ijcard.2008.01.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/31/2007] [Accepted: 01/14/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND It has been reported that P19 embryonal carcinoma (EC) cells differentiate into beating cardiomyocytes under the action of oxytocin (OT). It has been suggested that dimethylsulfoxide (DMSO) acts via the oxytocin/oxytocin receptor pathway because an oxytocin receptor antagonist not only blocks oxytocin-induced cardiomyocyte differentiation, but also blocks DMSO-induced differentiation. In this study, the differentiation ability of OT was tested using P19CL6 cells. METHODS P19CL6 cells were cultured as a confluent monolayer and aggregated cells. OT was then added to culture media as an inducing agent. The cells treated with 1% DMSO were used as a positive control group. Differentiated cells were evaluated morphologically and immunocytochemically, as well as by RT-PCR. In addition, a stable line of green fluorescent protein (GFP)-expressing P19CL6 cells were differentiated into beating cardiomyocytes by OT. RESULTS Aggregated P19CL6 cells could be differentiated into cardiomyocytes, whereas monolayer cells could not differentiate and express specific cardiac muscle marker genes. In the control group, both aggregates and monolayer cells could be differentiated into cardiomyocytes by DMSO. In addition, GFP-expressing P19CL6 cells differentiated efficiently into beating cardiomyocytes when treated with OT. The results of all evaluations confirmed that the differentiated cells were cardiomyocytes. CONCLUSIONS We concluded that embryoid body formation (cell aggregation) is necessary for the differentiation of P19CL6 cells into cardiomyocytes when using OT as an inducer agent. Furthermore, because of the high rate of differentiation efficiency, GFP-expressing cardiomyocytes derived from P19CL6 cells have the potential to be used for regenerative therapies in experimental models.
Collapse
Affiliation(s)
- Fardin Fathi
- KDRC, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | | | | | | | | | | |
Collapse
|
25
|
Wan DC, Pomerantz JH, Brunet LJ, Kim JB, Chou YF, Wu BM, Harland R, Blau HM, Longaker MT. Noggin suppression enhances in vitro osteogenesis and accelerates in vivo bone formation. J Biol Chem 2007; 282:26450-9. [PMID: 17609215 DOI: 10.1074/jbc.m703282200] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several investigations have demonstrated a precise balance to exist between bone morphogenetic protein (BMP) agonists and antagonists, dictating BMP signaling and osteogenesis. We report a novel approach to manipulate BMP activity through a down-regulation of the potent BMP antagonist Noggin, and examined the effects on the bone forming capacity of osteoblasts. Reduction of noggin enhanced BMP signaling and in vitro osteoblast bone formation, as demonstrated by both gene expression profiles and histological staining. The effects of noggin suppression on in vivo bone formation were also investigated using critical-sized calvarial defects in mice repaired with noggin-suppressed osteoblasts. Radiographic and histological analyses revealed significantly more bone regeneration at 2 and 4 weeks post-injury. These findings strongly support the concept of enhanced osteogenesis through a down-regulation in Noggin and suggest a novel approach to clinically accelerate bone formation, potentially allowing for earlier mobilization of patients following skeletal injury or surgical resection.
Collapse
Affiliation(s)
- Derrick C Wan
- Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 2007; 104:9685-90. [PMID: 17522258 PMCID: PMC1876428 DOI: 10.1073/pnas.0702859104] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding pathways controlling cardiac development may offer insights that are useful for stem cell-based cardiac repair. Developmental studies indicate that the Wnt/beta-catenin pathway negatively regulates cardiac differentiation, whereas studies with pluripotent embryonal carcinoma cells suggest that this pathway promotes cardiogenesis. This apparent contradiction led us to hypothesize that Wnt/beta-catenin signaling acts biphasically, either promoting or inhibiting cardiogenesis depending on timing. We used inducible promoters to activate or repress Wnt/beta-catenin signaling in zebrafish embryos at different times of development. We found that Wnt/beta-catenin signaling before gastrulation promotes cardiac differentiation, whereas signaling during gastrulation inhibits heart formation. Early treatment of differentiating mouse embryonic stem (ES) cells with Wnt-3A stimulates mesoderm induction, activates a feedback loop that subsequently represses the Wnt pathway, and increases cardiac differentiation. Conversely, late activation of beta-catenin signaling reduces cardiac differentiation in ES cells. Finally, constitutive overexpression of the beta-catenin-independent ligand Wnt-11 increases cardiogenesis in differentiating mouse ES cells. Thus, Wnt/beta-catenin signaling promotes cardiac differentiation at early developmental stages and inhibits it later. Control of this pathway may promote derivation of cardiomyocytes for basic research and cell therapy applications.
Collapse
Affiliation(s)
- Shuichi Ueno
- *Department of Pathology, Center for Cardiovascular Biology
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Gilbert Weidinger
- Department of Pharmacology, Howard Hughes Medical Institute; and
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Tomoaki Osugi
- *Department of Pathology, Center for Cardiovascular Biology
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Aimee D. Kohn
- Department of Pharmacology, Howard Hughes Medical Institute; and
| | - Jonathan L. Golob
- *Department of Pathology, Center for Cardiovascular Biology
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Lil Pabon
- *Department of Pathology, Center for Cardiovascular Biology
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Hans Reinecke
- *Department of Pathology, Center for Cardiovascular Biology
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Randall T. Moon
- Department of Pharmacology, Howard Hughes Medical Institute; and
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
- To whom correspondence may be addressed at:
Howard Hughes Medical Institute, University of Washington School of Medicine, Box 357370, Seattle, WA 98195. E-mail:
| | - Charles E. Murry
- *Department of Pathology, Center for Cardiovascular Biology
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109
- To whom correspondence may be addressed at:
Center for Cardiovascular Biology, University of Washington School of Medicine, 815 Mercer Street, Seattle, WA 98109. E-mail:
| |
Collapse
|
27
|
Angello JC, Kaestner S, Welikson RE, Buskin JN, Hauschka SD. BMP induction of cardiogenesis in P19 cells requires prior cell-cell interaction(s). Dev Dyn 2006; 235:2122-33. [PMID: 16773658 PMCID: PMC2572146 DOI: 10.1002/dvdy.20863] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline that undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they "self-induce" cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin, and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction.
Collapse
Affiliation(s)
- John C Angello
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
28
|
Akazawa H, Komuro I. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol Ther 2005; 107:252-68. [PMID: 15925411 DOI: 10.1016/j.pharmthera.2005.03.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2005] [Indexed: 11/20/2022]
Abstract
During the past decade, an emerging body of evidence has accumulated that cardiac transcription factors control a cardiac gene program and play a critical role in transcriptional regulation during cardiogenesis and during the adaptive process in adult hearts. Especially, an evolutionally conserved homeobox transcription factor Csx/Nkx2-5 has been in the forefront in the field of cardiac biology, providing molecular insights into the mechanisms of cardiac development and diseases. Csx/Nkx2-5 is indispensable for normal cardiac development, and mutations of the gene are associated with human congenital heart diseases (CHD). In the present review, the regulation of a cardiac gene program by Csx/Nkx2-5 is summarized, with an emphasis on its role in the cardiac development and diseases.
Collapse
Affiliation(s)
- Hiroshi Akazawa
- Division of Cardiovascular Pathophysiology and Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | |
Collapse
|
29
|
Norris RA, Kern CB, Wessels A, Wirrig EE, Markwald RR, Mjaatvedt CH. Detection of betaig-H3, a TGFbeta induced gene, during cardiac development and its complementary pattern with periostin. ACTA ACUST UNITED AC 2005; 210:13-23. [PMID: 16034610 DOI: 10.1007/s00429-005-0010-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2005] [Indexed: 01/06/2023]
Abstract
Regulation of normal cardiac development involves numerous transcription factors, cytoskeletal proteins, signaling molecules, and extracellular matrix proteins. These key molecular components act in concert to induce morphological changes essential for the proper development of a functional four-chambered heart. Growth factors such as BMPs and TGFbeta's play a role in migration, proliferation and differentiation during cardiac development and are important regulators of the extracellular matrix (ECM). Genes responsive to these morphogens are likely to play an equally significant role during cardiac development. Therefore, we sought to clone the chicken TGFbeta induced gene betaig-H3 and evaluate its spatio-temporal expression during heart morphogenesis. Our studies show by Northern analysis, whole mount and section in situ hybridization experiments that betaig-H3 is expressed primarily in the mesenchyme of the atrioventricular and outflow tract cushions and later in the right and left atrioventricular valve leaflets and supporting valve structures. The mRNA expression domains of betaig-H3 show a complementary pattern compared to that of its highly homologous relative, periostin.
Collapse
Affiliation(s)
- Russell A Norris
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Ave BSB 642, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
30
|
Brown CO, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz RJ. The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem 2003; 279:10659-69. [PMID: 14662776 DOI: 10.1074/jbc.m301648200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian homologue of Drosophila tinman, Nkx2-5, plays an early role in regulating cardiac genes and morphogenesis. Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)-beta family of signaling molecules, are involved in numerous developmental processes. BMP signaling is crucial in the regulation of Nkx2-5 expression and specification of the cardiac lineage. Constitutively active BMP type I receptor or the downstream pathway components and DNA-binding transcription factors, Smad1/4 directly activated Nkx2-5 gene transcription. We identified and characterized a novel upstream Nkx2-5 enhancer, composed of clustered repeats of Smad and GATA DNA binding sites. This composite Nkx2-5 enhancer was a direct target of BMP signaling via cooperative interactions between the downstream transducers Smad1/4 and GATA-4. In mammalian two hybrid assays, Smad factors recruited the hybrid gene GATA4-VP16 to strongly drive transcription of a reporter gene containing multimerized Smad binding sites These cofactors interacted through the second zinc finger and adjacent basic domain of GATA-4 and the N-terminal domain of Smads. Smad4 and GATA4 were also found to bind in vivo with the Nkx2-5 composite enhancer, as revealed by chromatin immunoprecipitation analysis of differentiated P19 cells. Finally, transgenic mice containing the Smad/GATA composite enhancer recapitulated early murine Nkx2-5 cardiac expression and deletion of this enhancer within a 10-kb transgene pBS-Nkx2-5 LacZ significantly reduced expression in the cardiac crescent. Thus, integration of GATA transcription factors with BMP signaling, through co-association with Smads factors, may initiate early Nkx2-5 expression; suggesting a vital role for the combination of these factors in the specification of cardiac progenitors.
Collapse
Affiliation(s)
- Carl O Brown
- Department of Molecular and Cellular Biology, The Center for Cardiovascular Development, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
31
|
McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 2003; 42:1650-5. [PMID: 14607454 DOI: 10.1016/j.jacc.2003.05.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The purpose of this study was to estimate the frequency of NKX2.5 mutations in specific cardiovascular anomalies and investigate genotype-phenotype correlations in individuals with NKX2.5 mutations. BACKGROUND Recent reports have implicated mutations in the transcription factor NKX2.5 as a cause of various congenital heart defects (CHD). METHODS We tested genomic deoxyribonucleic acid from 608 prospectively recruited patients with conotruncal anomalies (n = 370), left-sided lesions (n = 160), secundum atrial septal defect (ASD) (n = 71), and Ebstein's malformation (n = 7) for NKX2.5 mutations. RESULTS Twelve distinct mutations in the NKX2.5 coding region were identified in 18 of 608 patients (3%), including 9 of 201 (4%) with tetralogy of Fallot, 3 of 71 (4%) with a secundum ASD, one each with truncus arteriosus, double-outlet right ventricle, L-transposition of the great arteries, interrupted aortic arch, hypoplastic left heart syndrome, and aortic coarctation, but in no patients with D-transposition of the great arteries (n = 86) or valvar aortic stenosis (n = 21). Eleven of the mutations were amino acid-altering missense nucleotide substitutions or deletions, and one was predicted to cause premature termination of translation. None of the mutations were in the homeodomain. Sixteen of the 18 individuals with NKX2.5 mutations in this study had no family history of congenital cardiovascular anomalies, and one had first-degree atrioventricular (AV) block. CONCLUSIONS NKX2.5 mutations occur in a small percentage of patients with various CHD. Most of the mutations identified in this study were missense, outside the homeodomain, and not associated with AV block. These findings suggest that NKX2.5 mutations in non-homeodomain regions may be important in the development of human structural cardiac defects.
Collapse
Affiliation(s)
- Doff B McElhinney
- The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
32
|
Ueyama T, Kasahara H, Ishiwata T, Nie Q, Izumo S. Myocardin expression is regulated by Nkx2.5, and its function is required for cardiomyogenesis. Mol Cell Biol 2003; 23:9222-32. [PMID: 14645532 PMCID: PMC309615 DOI: 10.1128/mcb.23.24.9222-9232.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 05/05/2003] [Accepted: 07/21/2003] [Indexed: 01/12/2023] Open
Abstract
Nkx2.5 (also known as Csx) is an evolutionarily conserved cardiac transcription factor of the homeobox gene family. Nkx2.5 is required for early heart development, since Nkx2.5-null mice die before completion of cardiac looping. To identify genes regulated by Nkx2.5 in the developing heart, we performed subtractive hybridization by using RNA isolated from wild-type and Nkx2.5-null hearts at embryonic day 8.5. We isolated a mouse cDNA encoding myocardin A, which is an alternative spliced isoform of myocardin and the most abundant isoform in the heart from embryo to adult. The expression of myocardin A and myocardin was markedly downregulated in Nkx2.5-null mouse hearts. Transient-cotransfection analysis showed that Nkx2.5 transactivates the myocardin promoter. Inhibition of myocardin function in the teratocarcinoma cell line P19CL6 prevented differentiation into cardiac myocytes after dimethyl sulfoxide treatment. Myocardin A transactivated the promoter of the atrial natriuretic factor gene through the serum response element, which was augmented by bone morphogenetic protein 2 and transforming growth factor beta-activated kinase 1. These results suggest that myocardin expression is regulated by Nkx2.5 and that its function is required for cardiomyogenesis.
Collapse
Affiliation(s)
- Tomomi Ueyama
- Cardiovascular Division, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
33
|
Wu XB, Li Y, Schneider A, Yu W, Rajendren G, Iqbal J, Yamamoto M, Alam M, Brunet LJ, Blair HC, Zaidi M, Abe E. Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest 2003; 112:924-34. [PMID: 12975477 PMCID: PMC193662 DOI: 10.1172/jci15543] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We describe the effects of the overexpression of noggin, a bone morphogenetic protein (BMP) inhibitor, on osteoblast differentiation and bone formation. Cells of the osteoblast and chondrocyte lineages, as well as bone marrow macrophages, showed intense beta-gal histo- or cytostaining in adult noggin+/- mice that had a LacZ transgene inserted at the site of noggin deletion. Despite identical BMP levels, however, osteoblasts of 20-month-old C57BL/6J and 4-month-old senescence-accelerated mice (SAM-P6 mice) had noggin expression levels that were approximately fourfold higher than those of 4-month-old C57BL/6J and SAM-R1 (control) mice, respectively. U-33 preosteoblastic cells overexpressing the noggin gene showed defective maturation and, in parallel, a decreased expression of Runx-2, bone sialoprotein, osteocalcin, and RANK-L. Noggin did not inhibit the ligandless signaling and pro-differentiation action of the constitutively activated BMP receptor type 1A, ca-ALK-3. Transgenic mice overexpressing noggin in mature osteocalcin-positive osteoblasts showed dramatic decreases in bone mineral density and bone formation rates with histological evidence of decreased trabecular bone and CFU-osteoblast colonies at 4 and 8 months. Together, the results provide compelling evidence that noggin, expressed in mature osteoblasts, inhibits osteoblast differentiation and bone formation. Thus, the overproduction of noggin during biological aging may result in impaired osteoblast formation and function and hence, net bone loss.
Collapse
Affiliation(s)
- Xue-Bin Wu
- Division of Endocrinology, Diabetes, and Bone Diseases, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Suk Kim H, Hidaka K, Morisaki T. Expression of ErbB receptors in ES cell-derived cardiomyocytes. Biochem Biophys Res Commun 2003; 309:241-6. [PMID: 12943688 DOI: 10.1016/s0006-291x(03)01521-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To explore the role of ErbB-mediated signaling in cardiogenesis of ES cells, we examined the expression of ErbB receptors as well as effects of a ligand and inhibitors using Nkx2.5GFP ES cells, in which the GFP gene was knocked-in to the Nkx2.5 locus to monitor cardiac differentiation. Although all ErbB receptors were expressed in developing embryoid bodies, expression of ErbB4 was almost exclusively found in differentiated cardiomyocytes. Heregulin beta1, a ligand of ErbB receptors, enhanced the generation of Nkx2.5/GFP(+) cardiomyocytes in embryoid bodies, while AG1478 and PD153035, inhibitors of ErbBs, drastically blocked the generation of Nkx2.5/GFP(+) cardiomyocytes. These results suggest that the signaling pathway mediated by ErbBs is important in the induction and differentiation of cardiomyocytes from ES cells.
Collapse
Affiliation(s)
- Hoe Suk Kim
- Department of Bioscience, National Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, Japan
| | | | | |
Collapse
|
35
|
Ghosh-Choudhury N, Abboud SL, Mahimainathan L, Chandrasekar B, Choudhury GG. Phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2 (BMP-2)-induced myocyte enhancer factor 2A-dependent transcription of BMP-2 gene in cardiomyocyte precursor cells. J Biol Chem 2003; 278:21998-2005. [PMID: 12663654 DOI: 10.1074/jbc.m302277200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth and differentiation factor bone morphogenetic protein-2 (BMP-2) regulates cardiac development during vertebrate embryogenesis. In cardiac precursor cells, BMP-2 has recently been shown to induce expression of cardiac transcription factors, including myocyte enhancer factor 2A (MEF-2A). The specific signal transduction mechanism by which BMP-2 regulates these actions is not known. We investigated the role of phosphatidylinositol (PI) 3-kinase in regulating these processes in cardiomyocyte precursor CL6 cells. BMP-2 increased PI 3-kinase activity in these cells in a time-dependent manner, resulting in increased expression of sarcomeric myosin heavy chain (MHC) and MEF-2A. Inhibition of PI 3-kinase abolished these actions of BMP-2, indicating the involvement of PI 3-kinase in these processes. Furthermore, BMP-2 stimulated specific protein.DNA complex formation when an MEF-2 DNA recognition element was used as probe. Antibody supershift assay confirmed the presence of MEF-2A in this protein.DNA complex. Inhibition of PI 3-kinase activity completely prevented the MEF-2A.DNA complex formation. BMP-2 also increased transcription of a reporter gene driven by an MEF-2-specific DNA element in a PI 3-kinase-dependent manner. Ectopic expression of MEF-2A increased BMP-2 transcription to the same extent induced by BMP-2, indicating that MEF-2A may participate in BMP-2 autoregulation in CL6 cells. Expression of dominant negative PI 3-kinase completely abolished BMP-2-induced as well as MEF-2A-mediated BMP-2 transcription. Furthermore expression of MEF-2A increased MHC expression in a PI 3-kinase-dependent manner. Together these data provide the first evidence that BMP-2-induced PI 3-kinase signaling regulates MEF-2A expression and define a mechanism of MEF-2A-dependent BMP-2 transcription.
Collapse
Affiliation(s)
- Nandini Ghosh-Choudhury
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
36
|
Bober E, Rinkwitz S, Herbrand H. Molecular Basis of Otic Commitment and Morphogenesis: A Role for Homeodomain-Containing Transcription Factors and Signaling Molecules. Curr Top Dev Biol 2003; 57:151-75. [PMID: 14674480 DOI: 10.1016/s0070-2153(03)57005-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eva Bober
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Holly Strasse 1, D-06097, Halle, Germany
| | | | | |
Collapse
|
37
|
Abstract
The heart is the first organ to form during embryogenesis and its circulatory function is critical from early on for the viability of the mammalian embryo. Developmental abnormalities of the heart have also been widely recognized as the underlying cause of many congenital heart malformations. Hence, the developmental mechanisms that orchestrate the formation and morphogenesis of this organ have received much attention among classical and molecular embryologists. Due to the evolutionary conservation of many of these processes, major insights have been gained from the studies of a number of vertebrate and invertebrate models, including mouse, chick, amphibians, zebrafish, and Drosophila. In all of these systems, the heart precursors are generated within bilateral fields in the lateral mesoderm and then converge toward the midline to form a beating linear heart tube. The specification of heart precursors is a result of multiple tissue and cell-cell interactions that involve temporally and spatially integrated programs of inductive signaling events. In the present review, we focus on the molecular and developmental functions of signaling processes during early cardiogenesis that have been defined in both vertebrate and invertebrate models. We discuss the current knowledge on the mechanisms through which signals induce the expression of cardiogenic transcription factors and the relationships between signaling pathways and transcriptional regulators that cooperate to control cardiac induction and the formation of a linear heart tube.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell and Developmental Biology, New York, NY 10029, USA
| | | |
Collapse
|