1
|
Duhan J, Obrai S. Sodium vanadates doped boron phosphorus graphene quantum dots: A novel nanosensor for the fluorescence detection of rutin. Food Chem 2024; 460:140630. [PMID: 39079356 DOI: 10.1016/j.foodchem.2024.140630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
Rutin, a naturally occurring flavonoid compound, possesses notable antioxidant properties along with anti-inflammatory and antiviral effects. This research aimed to improve the selectivity and high fluorescence behavior of novel nanomaterial BPGQDs@NaV, which was synthesized by hydrothermal methods. Through comprehensive characterization utilizing TEM, SEM, XRD, EDS, FT-IR, UV-Vis, TCS-PC, and XPS techniques, the prepared BPGQDs, NaV, and BPGQDs@NaV were thoroughly examined. The resulting BPGQDs@NaV nanomaterials demonstrated stable, reproducible fluorescence responses and exhibited selective recognition capabilities towards rutin. The sensor developed in this study displayed remarkable performance in rutin detection, offering a broad linear range from 5 to 110 nM and an outstanding detection limit of 15.16 nM. A computational study was used to examine energy, stability, band gap, and how rutin interacted with the BPGQDs@NaV, and it also favored the detection mechanism. A portable smartphone-based sensor was also developed for the detection of rutin.
Collapse
Affiliation(s)
- Jyoti Duhan
- Department of Chemistry, Dr BR Ambedkar National Institute of Technology, Jalandhar, India.
| | - Sangeeta Obrai
- Department of Chemistry, Dr BR Ambedkar National Institute of Technology, Jalandhar, India
| |
Collapse
|
2
|
Baral J, Shrestha D, Devkota HP, Adhikari A. Potent ROS inhibitors from Zanthoxylum armatumDC of Nepali origin. Nat Prod Res 2024; 38:3753-3761. [PMID: 37787048 DOI: 10.1080/14786419.2023.2261608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023]
Abstract
A bioassay-guided isolation on the plant Zanthoxylum armatum DC yielded compounds tambulin (1), and prudomestin (2), from ethyl acetate fraction which showed the highest ROS inhibiting activity (IC50 = 17.8 ± 1.1 µg/mL). Structure elucidation of pure compounds was done using mass and NMR spectroscopic techniques. Compounds 1 and 2 revealed potent ROS inhibition with IC50 = 7.5 ± 0.3 and 1.5 ± 0.3 µg/mL, respectively, as compared to standard ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Likewise, both compounds 1 and 2 showed potent antioxidant activity with IC50 = 32.65 ± 0.31 and 26.96 ± 0.19 µg/mL, respectively. In vitro studies were supported by molecular docking and drug-likeliness properties. In silico studies of 1 and 2 with cyclooxygenase-2 (COX-2) showed perfect binding affinity with binding energies of -8.4 and -8.6 kcal/mol, respectively, comparable to standard ibuprofen (-7.7 kcal/mol). Drug likeness and ADMET showed higher gastrointestinal absorption of 1 and 2 and no toxic impact.
Collapse
Affiliation(s)
- Janaki Baral
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Shrestha
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
3
|
Shen YX, Lee PS, Wang CC, Teng MC, Huang JH, Fan HF. Exploring the Cellular Impact of Size-Segregated Cigarette Aerosols: Insights into Indoor Particulate Matter Toxicity and Potential Therapeutic Interventions. Chem Res Toxicol 2024; 37:1171-1186. [PMID: 38870402 PMCID: PMC11256904 DOI: 10.1021/acs.chemrestox.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Exposure to anthropogenic aerosols has been associated with a variety of adverse health effects, increased morbidity, and premature death. Although cigarette smoke poses one of the most significant public health threats, the cellular toxicity of particulate matter contained in cigarette smoke has not been systematically interrogated in a size-segregated manner. In this study, we employed a refined particle size classification to collect cigarette aerosols, enabling a comprehensive assessment and comparison of the impacts exerted by cigarette aerosol extract (CAE) on SH-SY5Y, HEK293T, and A549 cells. Exposure to CAE reduced cell viability in a dose-dependent manner, with organic components having a greater impact and SH-SY5Y cells displaying lower tolerance compared to HEK293T and A549 cells. Moreover, CAE was found to cause increased oxidative stress, mitochondrial dysfunction, and increased levels of apoptosis, pyroptosis, and autophagy, leading to increased cell death. Furthermore, we found that rutin, a phytocompound with antioxidant potential, could reduce intracellular reactive oxygen species and protect against CAE-triggered cell death. These findings underscore the therapeutic potential of antioxidant drugs in mitigating the adverse effects of cigarette aerosol exposure for better public health outcomes.
Collapse
Affiliation(s)
- Yu-Xin Shen
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Pe-Shuen Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Chia C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Ming-Chu Teng
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Jhih-Hong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| |
Collapse
|
4
|
Tang H, Li X, Liu X, Xu Y, Shen J. Rutin intake mitigates the injury of blue light irradiation by altering aging rates of mortality in Drosophila model. Photochem Photobiol 2024; 100:524-529. [PMID: 37665025 DOI: 10.1111/php.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Blue light is known as one of the harmful light pollution that has complex effects on organisms. The massive use of LED lights in cities has greatly increased the frequency of human exposure to blue light, and therefore the hazards of blue light are receiving widespread attention. In our study, Drosophila was used as the model organism to explore the ability of the flavonoid rutin to resist blue light damage under the intensity of 3000 Lux. Siler model analysis was performed. Our results showed sex-specific pattern of rutin as an effective antioxidant. Rutin could help female flies to reduce the initial adult mortality and male flies to slow the increase of adult mortality under blue light irradiation, thus prolonging their average lifespan. Furthermore, after the intake of rutin, the locomotor activity of Drosophila under blue light irradiation was significantly increased, and the total sleep time was significantly decreased. In summary, our results provide preliminary support for exploring the mechanism of rutin against blue light damage.
Collapse
Affiliation(s)
- Hao Tang
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xiangyu Li
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xingyou Liu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Yifan Xu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
5
|
Ozyigit F, Deger AN, Kocak FE, Ekici MF, Simsek H, Arık O. Protective effects of hesperidin in gastric damage caused by experimental ischemia-reperfusion injury model in rats. Acta Cir Bras 2024; 39:e391124. [PMID: 38477785 DOI: 10.1590/acb391124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 03/14/2024] Open
Abstract
PURPOSE This study evaluated the protective effect of hesperidin on injury induced by gastric ischemia-reperfusion. METHODS Fifty male Sprague Dawley rats (250-300 g) were divided into five groups: control (C), sham (S), ischemia (I), ischemia-reperfusion (I/R) and hesperidin + ischemia-reperfusion (Hes + I/R). Hesperidin was injected intraperitoneally at the dose of 100 mg/kg one hour before the experimental stomach ischemia-reperfusion. Celiac artery was ligated. After 45 minutes ischemia and 60 minutes reperfusion period, blood samples were obtained under anesthesia. Then, animals were sacrificed, stomach tissues were excised for biochemical, and histopathological analyses were performed. Malondialdehyde levels and superoxide dismutase, glutathione peroxidase activities and total antioxidant status (TAS), total oxidant status (TOS), protein, total thiol parameters were measured in plasma, and tissue homogenate samples. H + E, periodic acid-Schiff, hypoxia inducible factor, terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and proliferating cell nuclear antigen (PCNA) for cell proliferation as immunohistochemical parameters were determined. RESULTS Upon biochemical and histopathological assessment, hesperidin decreased stomach tissue changes in comparison with IR group. Ischemia-reperfusion injury led to a considerably increase in malondialdehyde, protein, and TOS levels (p < 0.001) in stomach tissue. Hesperidin treatment significantly decreased malondialdehyde, protein, and TOS levels (p < 0.001). Hesperidin increased superoxide dismutase, TAS, total thiol and glutathione peroxidase activities in comparison with IR group. Hesperidin reduced damage and also increased TUNEL and PCNA immunoreactivity in stomach tissue. CONCLUSIONS Hesperidin was able to decrease I/R injury of the stomach tissue due to inhibition of lipid peroxidation and protein oxidation, duration of antioxidant, and free radical scavenger properties. Consequently, hesperidin can provide a beneficial therapeutic choice for preventing stomach tissue ischemia-reperfusion injury in clinical application.
Collapse
Affiliation(s)
- Filiz Ozyigit
- Bandirma Onyedi Eylul University - Faculty of Medicine - Department of Pharmacology - Bandirma, Turkey
| | - Ayse Nur Deger
- Kutahya Health Sciences University - Faculty of Medicine - Department of Pathology - Kutahya, Turkey
| | - Fatma Emel Kocak
- Kutahya Health Sciences University - Faculty of Medicine - Department of Medical Biochemistry - Kutahya, Turkey
| | - Mehmet Fatih Ekici
- Kutahya Health Sciences University - Faculty of Medicine - Department of General Surgery - Kutahya, Turkey
| | - Hasan Simsek
- Aksaray University - Faculty of Medicine - Department of Physiology - Aksaray, Turkey
| | - Ozlem Arık
- Kutahya Health Sciences University - Faculty of Medicine - Department of Biostatistics - Kutahya, Turkey
| |
Collapse
|
6
|
Shanmugasundaram D, Roza JM. Assessment of Anti-Inflammatory and Antioxidant Activities of a Proprietary Preparation of Quercetin-Rutin Blend (SophorOx™) in Exercised Rats. ScientificWorldJournal 2024; 2024:9063936. [PMID: 38371227 PMCID: PMC10874291 DOI: 10.1155/2024/9063936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Objectives Flavonoids comprise a huge class of phenolic compounds widely distributed throughout the plant kingdom. Although quercetin and rutin have been studied individually for their therapeutic value, the synergistic effect of combining the two has previously not been measured. The objective of this trial was to evaluate the anti-inflammatory and antioxidant properties of both quercetin and rutin when combined in the form of SophorOx™ (a proprietary preparation of quercetin-rutin) in exercised rats. Methods Sprague-Dawley rats were orally administered SophorOx™ at 500 mg·kg-1·b.w. and subjected to daily exercise on a fabricated treadmill for 4 weeks. A total of 24 animals were randomly divided into four groups. All the animals were examined for body weight, feed consumption, signs of clinical abnormalities, and morbidity. In addition, serum collected on days 8, 15, 22, and 29 were measured for the liver function test (LFT), random blood sugar (RBS), inflammatory markers C-reactive protein (CRP), oxidative stress markers (8-isoprostane (8-iso-PGF2α), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and cytokine levels interleukin-1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α)) by the ELISA method. Results Rats that received SophorOx™ showed no signs of adverse effects, and no significant changes were observed in body weight, feed consumption, liver enzymes, and blood glucose levels. The exercise-treated rats administered with SophorOx™ exhibited a significant reduction in oxidative and inflammatory marker levels, viz., CRP (113.32 ng·mL-1) and oxidative stress markers 8-OHdG (19.32 pg·mL-1), MDA (1.06 nmol·mL-1), 8-iso-PGF2α (1.29 ng·mL-1), IL-1β (0.77 pg·mL-1), and IL-6 (317.14 pg·mL-1) in comparison to those rodents that were exercised without SophorOx™. Conclusion Oral administration of SophorOx™ significantly reduced oxidative stress and inflammatory marker levels when measured in the rodents subjected to high-intensity exercise.
Collapse
Affiliation(s)
| | - James Martin Roza
- Layn Natural Ingredients, 36 Executive Park, Irvine 250, CA 92614, USA
| |
Collapse
|
7
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Goswami K, Badruddeen, Arif M, Akhtar J, Khan MI, Ahmad M. Flavonoids, Isoflavonoids and others Bioactives for Insulin Sensitizations. Curr Diabetes Rev 2024; 20:e270423216247. [PMID: 37102490 DOI: 10.2174/1573399819666230427095200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
Diabetes is a chronic condition that has an impact on a huge part of the world. Both animals and humans have been demonstrated to benefit from natural goods, and organisms (animals, or microbes). In 2021, approximately 537 million adults (20-79 years) are living with diabetes, making it the one of the biggest cause of death worldwide. Various phytoconstituent preserved β- cells activity helps to prevent the formation of diabetes problems. As a result, β-cells mass and function are key pharmaceutical targets. The purpose of this review is to provide an overview of flavonoids' effects on pancreatic β-cells. Flavonoids have been demonstrated to improve insulin release in cell lines of isolated pancreatic islets and diabetic animal models. Flavonoids are thought to protect β-cells by inhibiting nuclear factor-κB (NF-κB) signaling, activating the phosphatidylinositol 3-kinase (PI3K) pathway, inhibiting nitric oxide production, and lowering reactive oxygen species levels. Flavonoids boost β-cells secretory capacity by improving mitochondrial bioenergetic function and increasing insulin secretion pathways. Some of the bioactive phytoconstituents such as S-methyl cysteine sulfoxides stimulate insulin synthesis in the body and increase pancreatic output. The berberine increased insulin secretion in the HIT-T15 and Insulinoma 6 (MIN6) mouse cell line. Epigallocatechin-3-Gallate protects against toxicity accrued by cytokines, reactive oxygen species (ROS), and hyperglycemia. Quercetin has been proven to boost insulin production by Insulinoma 1 (INS-1) cells and also protect cell apoptosis. Overall flavonoids have beneficial effects on β-cells by prevented their malfunctioning or degradation and improving synthesis or release of insulin from β-cells.
Collapse
Affiliation(s)
- Kushagra Goswami
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Muhammad Arif
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| |
Collapse
|
9
|
Xiao F, Zhu C, Wei X, Chen G, Xu X. Shenhuang plaster enhances intestinal anastomotic healing in rabbits through activation of the TGF-β and Hippo/YAP signaling pathways. J Appl Biomed 2023; 21:208-217. [PMID: 38112460 DOI: 10.32725/jab.2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
Although many efforts have been made to improve management strategies and diagnostic methods in the past several decades, the prevention of anastomotic complications, such as anastomotic leaks and strictures, remain a major clinical challenge. Therefore, new molecular pathways need to be identified that regulate anastomotic healing, and to design new treatments for patients after anastomosis to reduce the occurrence of complications. Rabbits were treated with a MST1/2 inhibitor XMU-XP-1, a Chinese medicine formula Shenhuang plaster (SHP) or a control vehicle immediately after surgery. The anastomotic burst pressure, collagen deposition, and hydroxyproline concentration were evaluated at 3 and 7 days after the surgery, and qRT-PCR and western-blot analyses were used to characterize mRNA and protein expression levels. Both XMU-XP-1 and SHP significantly increased anastomotic burst pressure, collagen deposition, and the concentration of hydroxyproline in intestinal anastomotic tissue at postoperative day 7 (POD 7). Importantly, SHP could induce TGF-β1 expression, which activated its downstream target Smad-2 to activate the TGF-β1 signaling pathway. Moreover, SHP reduced the phosphorylation level of YAP and increased its active form, and treatment with verteporfin, a YAP-TEAD complex inhibitor, significantly suppressed the effects induced by SHP during anastomotic tissue healing. This study demonstrated that activation of the Hippo-YAP pathway enhances anastomotic healing, and that SHP enhances both the TGF-β1/Smad and YAP signaling pathways to promote rabbit anastomotic healing after surgery. These results suggest that SHP could be used to treat patients who underwent anastomosis to prevent the occurrence of anastomotic complications.
Collapse
Affiliation(s)
| | | | - Xing Wei
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, Zhejiang, China
| | | | | |
Collapse
|
10
|
Khan MT, Khan MIUR, Ahmad E, Yousaf MR, Oneeb M. Synergistic effect of extracellular adenosine triphosphate and quercetin on post-thaw quality and fertilization potential of Lohi ram sperm. Cryobiology 2023; 113:104593. [PMID: 37844752 DOI: 10.1016/j.cryobiol.2023.104593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
This study determined the individual and combined effects of extracellular adenosine triphosphate (ATP) and quercetin (QUE) on the quality of post-thawed sperm and the fertilization potential of Lohi rams. In experiment 1, semen samples from four Lohi rams were pooled and extended with different concentrations of ATP or QUE (control; no ATP or QUE, 1 or 2 mM ATP and 10 or 20 μM QUE). In experiment 2, pooled semen samples were extended with various combinations of ATP and QUE (control; no ATP and QUE, 1 mM ATP + 10 μM QUE, 1 mM ATP + 20 μM QUE, 2 mM ATP + 10 μM QUE and 2 mM ATP + 20 μM QUE). All samples in both experiments were cryopreserved and analyzed for post-thawed sperm quality. In experiment 3, the best combination of ATP and QUE from experiment 2 was to extend semen, which was then used for laparoscopic insemination in estrus-synchronized ewes (n = 83). The results of experiment 1 showed that 1 mM ATP and 20 μM QUE treatments resulted in higher total motility, progressive motility, viability, plasma membrane intactness (PMI), and motion kinetics (VCL, VSL, VAP, LIN, and STR) compared to other treatments (p < 0.05). In experiment 2, the 1 mM ATP +10 μM QUE-treated group exhibited significantly higher total and progressive motility, PMI, and motion kinetics (VSL, VCL, VAP, STR, and BCF) compared to the control group (p < 0.05). In experiment 3, the fertilizing potential of sperms treated with 1 mM ATP +10 μM QUE was greater than that of untreated controls (58.1% vs. 27.5%, respectively, p-value = 0.012). In conclusion, the quality of post-thawed ram semen is enhanced when the extender is supplemented with extracellular 1 mM ATP and 20 μM QUE, whether used separately or in combination with 1 mM ATP and 10 μM QUE. Furthermore, the inclusion of 1 mM ATP and 10 μM QUE together in the extender significantly improves in vivo fertility in Lohi ram.
Collapse
Affiliation(s)
- Muhammad Tayyab Khan
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | | | - Ejaz Ahmad
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakriya University Multan, Pakistan.
| | - Muhammad Rizwan Yousaf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Oneeb
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
11
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Rajizadeh MA, Bejeshk MA, Aminizadeh A, Yari A, Rostamabadi F, Bagheri F, Najafipour H, Nematollahi MH, Amirkhosravi A, Mehrabani M, Mehrabani M. Inhalation of Spray-Dried Extract of Salvia rosmarinus Spenn Alleviates Lung Inflammatory, Oxidative, and Remodeling Changes in Asthmatic Rats. Pharmacology 2023; 109:10-21. [PMID: 37918369 DOI: 10.1159/000534392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION For centuries, Salvia rosmarinus Spenn has been applied as folk medicine to cure different diseases due to its anti-inflammatory, antibacterial, antioxidant, antifungal, and antitumor effects. To find bioactive medicinal herbs exerting a protective effect on airway inflammation and remodeling, we assessed the anti-oxidative and anti-inflammatory effects of an aqueous spray-dried extract of Salvia rosmarinus Spenn. (rosemary) in an ovalbumin-induced asthmatic rat model. METHODS Rats were randomly divided into normal control (control), asthma, asthma+rosemary extract (RE) (13 mg/kg), asthma+RE (50 mg/kg), and asthma+budesonide groups. After 50 days, animals were anesthetized, and then blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for subsequent serological and pathological studies. Histopathology of lung tissues was evaluated by H&E staining. The oxidative stress parameters and airway inflammation factors in BALF and lung tissue were explored. RESULTS Using thin layer chromatography, the presence of rosmarinic acid was confirmed in aqueous extract of rosemary. Furthermore, RE markedly decreased immunoglobulin E levels (50 mg/kg; p < 0.001 vs. asthma group) and inflammatory cytokines (50 mg/kg; p < 0.001 vs. asthma group) and increased antioxidant enzymes (50 mg/kg, p < 0.001 vs. asthma group). Furthermore, RE at a concentration of 50 mg/kg obviously reduced the number of inflammatory cells, goblet cells, and pathological changes compared to the asthma group. CONCLUSION The results showed that RE administration might prevent or alleviate allergic asthma-related pathological change, probably via antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhashem Aminizadeh
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Arian Amirkhosravi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Student Research Committee, Kerman University of Medical Science, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Zhang K, Qin Y, Sun W, Shi H, Zhao S, He L, Li C, Zhao J, Pan J, Wang G, Han Z, Zhao C, Yang X. Phylogenomic Analysis of Cytochrome P450 Gene Superfamily and Their Association with Flavonoids Biosynthesis in Peanut ( Arachis hypogaea L.). Genes (Basel) 2023; 14:1944. [PMID: 37895293 PMCID: PMC10606413 DOI: 10.3390/genes14101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cytochrome P450s (CYPs) constitute extensive enzyme superfamilies in the plants, playing pivotal roles in a multitude of biosynthetic and detoxification pathways essential for growth and development, such as the flavonoid biosynthesis pathway. However, CYPs have not yet been systematically studied in the cultivated peanuts (Arachis hypogaea L.), a globally significant cash crop. This study addresses this knowledge deficit through a comprehensive genome-wide analysis, leading to the identification of 589 AhCYP genes in peanuts. Through phylogenetic analysis, all AhCYPs were systematically classified into 9 clans, 43 gene families. The variability in the number of gene family members suggests specialization in biological functions. Intriguingly, both tandem duplication and fragment duplication events have emerged as pivotal drivers in the evolutionary expansion of the AhCYP superfamily. Ka/Ks analysis underscored the substantial influence of strong purifying selection on the evolution of AhCYPs. Furthermore, we selected 21 genes encoding 8 enzymes associated with the flavonoid pathway. The results of quantitative real-time PCR (qRT-PCR) experiments unveiled stage-specific expression patterns during the development of peanut testa, with discernible variations between pink and red testa. Importantly, we identified a direct correlation between gene expression levels and the accumulation of metabolites. These findings offer valuable insights into elucidating the comprehensive functions of AhCYPs and the underlying mechanisms governing the divergent accumulation of flavonoids in testa of different colors.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Yongmei Qin
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Wei Sun
- Linyi Academy of Agricultural Sciences, Linyi 276003, China;
| | - Hourui Shi
- Shandong Seed Management Station, Jinan 250100, China;
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Jin Zhao
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Guanghao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Zhuqiang Han
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Xiangli Yang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| |
Collapse
|
14
|
da Silva BAF, Pessoa RT, da Costa RHS, de Oliveira MRC, Ramos AGB, de Lima Silva MG, da Silva LYS, Medeiros CR, Florencio SGL, Ribeiro-Filho J, Coutinho HDM, Raposo A, Yoo S, Han H, de Menezes IRA, Quintans Júnior LJ. Evaluation of the antiedematogenic and anti-inflammatory properties of Ximenia americana L. (Olacaceae) bark extract in experimental models of inflammation. Biomed Pharmacother 2023; 166:115249. [PMID: 37597323 DOI: 10.1016/j.biopha.2023.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
Edema is one of the obvious indicators of inflammation and a crucial factor to take into account when assessing a substance's capacity to reduce inflammation. We aimed to evaluate the antiedematogenic and anti-inflammatory profile of the hydroethanolic barks extract of Ximenia americana (HEXA). The possible antiedematogenic and anti-inflammatory effect of EHXA (50, 100 mg/kg and 250 mg/kg v.o) was evaluated using the paw edema induced by carrageenan, zymosan, dextran, CFA and by different agents inflammatory (serotonin, histamine, arachidonic acid and PGE2), and pleurisy model induced by carrageenan and its action on IL-1β and TNF-α levels was also evaluated. HEXA demonstrated a significant antiedematogenic effect at concentrations of 50, 100 and 250 mg/kg on paw edema induced by carrageenan, zymosan and dextran. However, the concentration of 50 mg/kg as standard, demonstrating the effect in the subchronic model, induced CFA with inhibition of 59.06 %. In models of histamine-induced paw edema, HEXA showed inhibition of - 30 min: 40.49 %, 60 min: 44.70 % and 90 min: 48.98 %; serotonin inhibition - 30 min: 57.09 %, 60 min: 66.04 % and 90 min: 61.79 %; arachidonic acid inhibition - 15 min: 36.54 %, 30 min: 51.10 %, 45 min: 50.32 % and 60 min: 76.17 %; and PGE2 inhibition - 15 min: 67.78 %, 30 min: 62.30 %, 45 min: 54.25 % and 60 min: 47.92 %. HEXA significantly reduced (p < 0.01) leukocyte migration in the pleurisy model and reduced TNF-α and IL-1β levels in pleural lavage (p < 0.0001). The results showed that HEXA has the potential to have an antiedematogenic impact in both acute and chronic inflammation processes, with a putative mode of action including the suppression or regulation of inflammatory mediators.
Collapse
Affiliation(s)
- Bruno Anderson Fernandes da Silva
- Laboratory of Neurosciences and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, SE, Brazil
| | - Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemical, Regional University of Cariri, Cel Antonio Luis 1161, Pimenta, CEP 63105- 000, Crato, CE, Brazil
| | - Roger Henrique Sousa da Costa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemical, Regional University of Cariri, Cel Antonio Luis 1161, Pimenta, CEP 63105- 000, Crato, CE, Brazil
| | - Maria Rayane Correia de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemical, Regional University of Cariri, Cel Antonio Luis 1161, Pimenta, CEP 63105- 000, Crato, CE, Brazil
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemical, Regional University of Cariri, Cel Antonio Luis 1161, Pimenta, CEP 63105- 000, Crato, CE, Brazil
| | - Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemical, Regional University of Cariri, Cel Antonio Luis 1161, Pimenta, CEP 63105- 000, Crato, CE, Brazil
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemical, Regional University of Cariri, Cel Antonio Luis 1161, Pimenta, CEP 63105- 000, Crato, CE, Brazil
| | - Cassio Rocha Medeiros
- CECAPE College, Av. Padre Cícero, 3917 - São José, Juazeiro do Norte, CE 63024-015, Brazil
| | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Sunghoon Yoo
- Audit Team, Hanmoo Convention (Oakwood Premier), 49, Teheran-ro 87-gil, Gangnam-gu, Seoul 06164, South Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, South Korea.
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemical, Regional University of Cariri, Cel Antonio Luis 1161, Pimenta, CEP 63105- 000, Crato, CE, Brazil
| | - Lucindo José Quintans Júnior
- Laboratory of Neurosciences and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
15
|
Lim JS, Lee SH, Yun H, Lee DY, Cho N, Yoo G, Choi JU, Lee KY, Bach TT, Park SJ, Cho YC. Inhibitory Effects of Ehretia tinifolia Extract on the Excessive Oxidative and Inflammatory Responses in Lipopolysaccharide-Stimulated Mouse Kupffer Cells. Antioxidants (Basel) 2023; 12:1792. [PMID: 37891872 PMCID: PMC10604099 DOI: 10.3390/antiox12101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Sung Ho Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun 55365, Republic of Korea;
| | - Jeong Uk Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122000, Vietnam;
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| |
Collapse
|
16
|
Peng X, Yi X, Deng N, Liu J, Tan Z, Cai Y. Zhishi Daozhi decoction alleviates constipation induced by a high-fat and high-protein diet via regulating intestinal mucosal microbiota and oxidative stress. Front Microbiol 2023; 14:1214577. [PMID: 37789856 PMCID: PMC10544343 DOI: 10.3389/fmicb.2023.1214577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
Background A growing body of evidence has demonstrated that a high-fat and high-protein diet (HFHPD) causes constipation. This study focuses on understanding how the use of Zhishi Daozhi decoction (ZDD) affects the intricate balance of intestinal microorganisms. The insights gained from this investigation hold the potential to offer practical clinical approaches to mitigate the constipation-related issues associated with HFHPD. Materials and methods Mice were randomly divided into five groups: the normal (MN) group, the natural recovery (MR) group, the low-dose ZDD (MLD) group, the medium-dose ZDD (MMD) group, and the high-dose ZDD (MHD) group. After the constipation model was established by HFHPD combined with loperamide hydrochloride (LOP), different doses of ZDD were used for intervention. Subsequently, the contents of cholecystokinin (CCK) and calcitonin gene-related peptide (CGRP) in serum, superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver were determined. The DNA of intestinal mucosa was extracted, and 16S rRNA amplicon sequencing was used to analyze the changes in intestinal mucosal microbiota. Results After ZDD treatment, CCK content in MR group decreased and CGRP content increased, but the changes were not significant. In addition, the SOD content in MR group was significantly lower than in MLD, MMD, and MHD groups, and the MDA content in MR group was significantly higher than in MN, MLD, and MHD groups. Constipation modeling and the intervention of ZDD changed the structure of the intestinal mucosal microbiota. In the constipation induced by HFHPD, the relative abundance of pathogenic bacteria such as Aerococcus, Staphylococcus, Corynebacterium, Desulfovibrio, Clostridium, and Prevotella increased. After the intervention of ZDD, the relative abundance of these pathogenic bacteria decreased, and the relative abundance of Candidatus Arthromitus and the abundance of Tropane, piperidine, and pyridine alkaloid biosynthesis pathways increased in MHD group. Conclusion Constipation induced by HFHPD can increase pathogenic bacteria in the intestinal mucosa, while ZDD can effectively relieve constipation, reduce the relative abundance of pathogenic bacteria, and alleviate oxidative stress injury. In addition, high-dose ZDD can increase the abundance of beneficial bacteria, which is more conducive to the treatment of constipation.
Collapse
Affiliation(s)
- Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liu
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Chen J, Hou S, Zhang Q, Meng J, Zhang Y, Du J, Wang C, Liang D, Guo Y. Genome-Wide Identification and Analysis of the WRKY Gene Family in Asparagus officinalis. Genes (Basel) 2023; 14:1704. [PMID: 37761844 PMCID: PMC10530708 DOI: 10.3390/genes14091704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the related research of the WRKY gene family has been gradually promoted, which is mainly reflected in the aspects of environmental stress and hormone response. However, to make the study of the WRKY gene family more complete, we also need to focus on the whole-genome analysis and identification of the family. In previous studies, the whole WRKY gene family of Arabidopsis, legumes and other plants has been thoroughly studied. However, since the publication of Asparagus officinalis genome-wide data, there has never been an analysis of the whole WRKY gene family. To understand more broadly the function of the WRKY gene family, the whole genome and salt stress transcriptome data of asparagus were used for comprehensive analysis in this study, including WRKY gene family identification, phylogenetic tree construction, analysis of conserved mods and gene domains, extraction of cis-acting elements, intron/exon analysis, species collinearity analysis, and WRKY expression analysis under salt stress. The results showed that a total of 70 genes were selected and randomly distributed on 10 chromosomes and one undefined chromosome. According to the functional classification of Arabidopsis thaliana, the WRKY family of asparagus was divided into 11 subgroups (C1-C9, U1, U2). It is worth considering that the distribution rules of gene-conserved motifs, gene domains and introns/exons in the same subfamily are similar, which suggests that genes in the same subfamily may regulate similar physiological processes. In this study, 11 cis-acting elements of WRKY family were selected, among which auxin, gibberellin, abscisic acid, salicylic acid and other hormone-regulated induction elements were involved. In addition, environmental stress (such as drought stress and low-temperature response) also accounted for a large proportion. Interestingly, we analyzed a total of two tandem duplicate genes and 13 segmental duplication genes, suggesting that this is related to the amplification of the WRKY gene family. Transcriptome data analysis showed that WRKY family genes could regulate plant growth and development by up-regulating and down-regulating gene expression under salt stress. Volcanic maps showed that 3 and 15 AoWRKY genes were significantly up-regulated or down-regulated in NI&NI+S and AMF&AMF+S, respectively. These results provide a new way to analyze the evolution and function of the WRKY gene family, and can provide a reference for the production and research of asparagus.
Collapse
Affiliation(s)
- Jing Chen
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Sijia Hou
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China;
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianqiao Meng
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Yingying Zhang
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Junhong Du
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Cong Wang
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Dan Liang
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Yunqian Guo
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Bekkouch O, Zengin G, Harnafi M, Touiss I, Khoulati A, Saalaoui E, Harnafi H, Abdellattif MH, Amrani S. Anti-Inflammatory Study and Phytochemical Characterization of Zingiber officinale Roscoe and Citrus limon L. Juices and Their Formulation. ACS OMEGA 2023; 8:26715-26724. [PMID: 37546676 PMCID: PMC10398691 DOI: 10.1021/acsomega.2c04263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/09/2023] [Indexed: 08/08/2023]
Abstract
Zingiber officinale and Citrus limon, well known as ginger and lemon, are two vegetals widely used in traditional medicine and the culinary field. The juices of the two vegetals were evaluated based on their inflammation, both in vivo and in vitro. High-performance liquid chromatography (HPLC) was used to characterize different juices from Zingiber officinale Roscoe and Citrus limon. After the application of the HPLC method, different compounds were identified, such as 6-gingerol and 6-gingediol from the ginger juice and isorhamnetin and hesperidin from the lemon juice. In addition, the two juices and their formulation were assessed for their anti-inflammatory activity, in vitro by utilizing the BSA denaturation test, in vivo using the carrageenan-induced inflammation test, and the vascular permeability test. Important and statistically significant anti-inflammatory activities were observed for all juices, especially the formulation. The results of our work showed clearly that the Zingiber officinale and Citrus limon juices protect in vivo the development of the rat paw edema, especially the formulation F composed of the Zingiber officinale and Citrus limon juices, which shows an anti-inflammatory activity equal to -35.95% and -44.05% using 10 and 20 mg/kg of the dose, respectively. Our work also showed that the formulation was the most effective tested extract since it inhibits the vascular permeability by -37% and -44% at the doses of 200 and 400 mg/kg, respectively, and in vitro via the inhibition of the denaturation of BSA by giving a synergetic effect with the highest IC50 equal to 684.61 ± 7.62 μg/mL corresponding to the formulation F. This work aims to develop nutraceutical preparations in the future and furnishes the support for a new investigation into the activities of the various compounds found in Zingiber officinale Roscoe and Citrus limon.
Collapse
Affiliation(s)
- Oussama Bekkouch
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Gökhan Zengin
- Physiology
and Biochemistry Research Laboratory, Department of Biology, Science
Faculty, Selcuk University, 42130Konya, Turkey
| | - Mohamed Harnafi
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Ilham Touiss
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Amine Khoulati
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Hicham Harnafi
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Magda H. Abdellattif
- Chemistry
Department, Sciences College, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Souliman Amrani
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| |
Collapse
|
19
|
Chen S, Wang X, Cheng Y, Gao H, Chen X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023; 28:4982. [PMID: 37446644 DOI: 10.3390/molecules28134982] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Flavonoids represent the main class of plant secondary metabolites and occur in the tissues and organs of various plant species. In plants, flavonoids are involved in many biological processes and in response to various environmental stresses. The consumption of flavonoids has been known to reduce the risk of many chronic diseases due to their antioxidant and free radical scavenging properties. In the present review, we summarize the classification, distribution, biosynthesis pathways, and regulatory mechanisms of flavonoids. Moreover, we investigated their biological activities and discuss their applications in food processing and cosmetics, as well as their pharmaceutical and medical uses. Current trends in flavonoid research are also briefly described, including the mining of new functional genes and metabolites through omics research and the engineering of flavonoids using nanotechnology. This review provides a reference for basic and applied research on flavonoid compounds.
Collapse
Affiliation(s)
- Shen Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yu Cheng
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hongsheng Gao
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Shamim A, Ansari MJ, Aodah A, Iqbal M, Aqil M, Mirza MA, Iqbal Z, Ali A. QbD-Engineered Development and Validation of a RP-HPLC Method for Simultaneous Estimation of Rutin and Ciprofloxacin HCl in Bilosomal Nanoformulation. ACS OMEGA 2023; 8:21618-21627. [PMID: 37360463 PMCID: PMC10286274 DOI: 10.1021/acsomega.3c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
In the given study, a new reverse-phase high-performance liquid chromatography (RP-HPLC) method has been reported for the simultaneous estimation of ciprofloxacin hydrochloride (CPX) and rutin (RUT) using quality by design (QbD) approach. The analysis was carried out by applying the Box-Behnken design having fewer design points and less experimental runs. It relates between factors and responses and gives statistically significant values, along with enhancing the quality of the analysis. CPX and RUT were separated on the Kromasil C18 column (4.6 × 150 mm, 5 μm) using an isocratic mobile phase combination of phosphoric acid buffer (pH 3.0) and acetonitrile with the ratio of 87:13% v/v at a flow rate of 1.0 mL/min. CPX and RUT were detected at their respective wavelengths of 278 and 368 nm using a photodiode array detector. The developed method was validated according to guideline ICH Q2 R (1). The validation parameters taken were linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability which were in the acceptable range. The findings suggest that the developed RP-HPLC method can be successfully applied to analyze novel CPX-RUT-loaded bilosomal nanoformulation prepared by thin-film hydration technique.
Collapse
Affiliation(s)
- Athar Shamim
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Javed Ansari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alhussain Aodah
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451,Saudi Arabia
| | - Mohd. Aqil
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Asgar Ali
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
21
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
22
|
Epure A, Pârvu AE, Vlase L, Benedec D, Hanganu D, Oniga O, Vlase AM, Ielciu I, Toiu A, Oniga I. New Approaches on the Anti-Inflammatory and Cardioprotective Properties of Taraxacum officinale Tincture. Pharmaceuticals (Basel) 2023; 16:ph16030358. [PMID: 36986458 PMCID: PMC10053582 DOI: 10.3390/ph16030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present research investigated the in vivo anti-inflammatory and cardioprotective activities, as well as the antioxidant potential of Taraxacum officinale tincture (TOT), in relation to the polyphenolic composition. Chromatographic and spectrophotometric techniques were used to determine the polyphenolic profile of TOT and the antioxidant activity was preliminarily assessed in vitro by DPPH• and FRAP spectrophotometric methods. The in vivo anti-inflammatory and cardioprotective activities were studied in rat turpentine-induced inflammation and in rat isoprenaline-induced myocardial infarction (MI) models. The main polyphenolic compound identified in TOT was cichoric acid. The oxidative stress determinations showed the capacity of the dandelion tincture not only to decrease the total oxidative stress (TOS), the oxidative stress index (OSI), and the total antioxidant capacity (TAC), but also the malondialdehide (MDA), thiols (SH), and nitrites/nitrates (NOx) levels both in inflammation and MI models. In addition, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatin kinase-MB (CK-MB), and nuclear factor kappa B (NF-κB) parameters were decreased by the administration of the tincture. The results show that T. officinale could be considered a valuable source of natural compounds with important benefits in pathologies linked to oxidative stress.
Collapse
Affiliation(s)
- Alexandra Epure
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Alina E. Pârvu
- Department of Physiopathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Culhuac EB, Maggiolino A, Elghandour MMMY, De Palo P, Salem AZM. Antioxidant and Anti-Inflammatory Properties of Phytochemicals Found in the Yucca Genus. Antioxidants (Basel) 2023; 12:574. [PMID: 36978823 PMCID: PMC10044844 DOI: 10.3390/antiox12030574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The Yucca genus encompasses about 50 species native to North America. Species within the Yucca genus have been used in traditional medicine to treat pathologies related to inflammation. Despite its historical use and the popular notion of its antioxidant and anti-inflammatory properties, there is a limited amount of research on this genus. To better understand these properties, this work aimed to analyze phytochemical composition through documentary research. This will provide a better understanding of the molecules and the mechanisms of action that confer such antioxidant and anti-inflammatory properties. About 92 phytochemicals present within the genus have reported antioxidant or anti-inflammatory effects. It has been suggested that the antioxidant and anti-inflammatory properties are mainly generated through its free radical scavenging activity, the inhibition of arachidonic acid metabolism, the decrease in TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), iNOS (Inducible nitric oxide synthase), and IL-1β (Interleukin 1β) concentration, the increase of GPx (Glutathione peroxidase), CAT (Catalase), and SOD (Superoxide dismutase) concentration, and the inhibition of the MAPK (Mitogen-Activated Protein Kinase), and NF-κB (Nuclear factor kappa B), and the activation of the Nrf2 (Nuclear factor erythroid 2-related factor) signaling pathway. These studies provide evidence of its use in traditional medicine against pathologies related to inflammation. However, more models and studies are needed to properly understand the activity of most plants within the genus, its potency, and the feasibility of its use to help manage or treat chronic inflammation.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| |
Collapse
|
24
|
Mahmoud AM, Mahnashi MH, Alshareef F, El-Wekil MM. Functionalized vanadium disulfide quantum dots as a novel dual-mode sensor for ultrasensitive and highly selective determination of rutin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Kottakis G, Kambouri K, Giatromanolaki A, Valsami G, Kostomitsopoulos N, Tsaroucha A, Pitiakoudis M. Effects of the Antioxidant Quercetin in an Experimental Model of Ulcerative Colitis in Mice. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:87. [PMID: 36676712 PMCID: PMC9861512 DOI: 10.3390/medicina59010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Background and Objectives: Quercetin, a member of the flavanol family found in many fruits, vegetables, leaves and grains has been found to have a wide range of biological effects on human physiology. The aim of this study was to investigate the effects of quercetin, when administered orally in the form of the water-soluble inclusion complex with hydroxypropyl-b-cyclodextrin (Que-HP-β-CD), in an experimental model of ulcerative colitis in mice. Materials and Methods: Animals received either Dextran Sodium Sulphate (DSS), to induce colitis, + Que-HP-β-CD (Group A), DSS alone (Group B) or no intervention (control, Group C) for 7 days. All animals were weighed daily, and evaluation of colitis was performed using the Disease Activity Index (DAI). On day 7 a blood sample was taken from all animals, they were then euthanised, the large intestine was measured, and histological and immunochemical analyses were performed. Results: The DAI demonstrated an increase over time for the groups receiving DSS (Groups A and B) compared with the control group (Group C), with a significant degree of protection being observed in the group that also received quercetin (Group A): The DAI over time slope for Group B was higher than that for Group A by 0.26 points/day (95% Cl 0.20−0.33, p < 0.01). Weight calculations and immunohistochemistry results validated the DAI findings. Conclusions: In conclusion, the administration of quercetin in an ulcerative colitis model in mice presents a therapeutic/prophylactic potential that warrants further investigation.
Collapse
Affiliation(s)
- George Kottakis
- Department of Experimental Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Katerina Kambouri
- Department of Pediatric Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Biomedical Research Foundation (BRFAA) of the Academy of Athens, Experimental Surgery and Translational Research, 11527 Athens, Greece
| | - Alexandra Tsaroucha
- Department of Experimental Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Michael Pitiakoudis
- 2nd Department of General Surgery, University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
26
|
Bae UJ, Jang HN, Lee SH, Kim JY, Kim GC. Oenanthe javanica Ethanolic Extract Alleviates Inflammation and Modifies Gut Microbiota in Mice with DSS-Induced Colitis. Antioxidants (Basel) 2022; 11:antiox11122429. [PMID: 36552637 PMCID: PMC9774932 DOI: 10.3390/antiox11122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oenanthe javanica, commonly known as water dropwort, has long been used to treat acute and chronic hepatitis, abdominal pain, alcohol hangovers, and inflammation in various traditional medicine systems in Asia. However, whether O. javanica has beneficial effects on colitis-induced intestinal damage remains elusive. This study tested the hypothesis that O. javanica has anti-inflammatory and antioxidant activities in mice with dextran sulfate sodium (DSS)-induced colitis. First, treatment of O. javanica ethanol extract (OJE) inhibited the production of inflammatory cytokines in lipopolysaccharide-affected macrophages. Second, in mice with DSS-induced colitis, OJE administration reduced pathological damage to the colon while alleviating weight gain and decreasing colon length, including inflammation and mucosal necrosis. In addition, OJE significantly (p < 0.01) restricted the activation of nuclear factor-κB (NF-κB) and the secretion of pro-inflammatory mediators and increased the expression of Nrf2-phase 2 antioxidant enzymes. The results of 16S rRNA gene sequencing workflows for taxonomic assignment analysis confirmed that the diversity (richness and evenness) of fecal microbiota was markedly elevated in the OJE group. OJE administration reduced the abundance of Proteobacteria including Escherichia and increased the abundance of the genus Muribaculum. These results suggested that OJE exerts beneficial effects on inflammation and gut microbial composition in a mouse model of colitis.
Collapse
|
27
|
Identification of possible bioactive compounds and a comparative study on in vitro biological properties of whole hemp seed and stem. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Akkol EK, Karpuz B, Türkcanoğlu G, Coşgunçelebi FG, Taştan H, Aschner M, Khatkar A, Sobarzo-Sánchez E. The Phytochemical Profile and Biological Activity of Malva neglecta Wallr. in Surgically Induced Endometriosis Model in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227869. [PMID: 36431970 PMCID: PMC9695446 DOI: 10.3390/molecules27227869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Leaves and aerial parts of Malva neglecta Wallr. have been traditionally used in Anatolia for the treatment of pain, inflammation, hemorrhoids, renal stones, constipation, and infertility. This study investigated the effects of M. neglecta leaves in a rat endometriosis model. The dried plant material was extracted with n-hexane, ethyl acetate, and methanol, successively. Experimental endometriosis was surgically induced in six-week-old female, non-pregnant, Wistar albino rats by autotransplant of endometrial tissue to the abdominal wall. After twenty-eight days, rats were evaluated for a second laparotomy. Endometrial foci areas were assessed, and intraabdominal adhesions were scored. Rats were divided into five groups as control, n-hexane, ethyl acetate, methanol, and aqueous extracts, as well as reference. At the end of the treatment, all rats were sacrificed and endometriotic foci areas and intraabdominal adhesions were re-evaluated and compared with the previous findings. Moreover, peritoneal fluid was collected to detect tumor necrosis factor- α (TNF-α), vascular endothelial growth factor (VEGF), and interleukin-6 (IL-6) levels, and cDNA synthesis, and a quantitative real-time polymerase chain reaction (PCR) test was done. The phytochemical content of the most active extract was determined using High-Performance Liquid Chromatography (HPLC). Both endometrial volume and adhesion score decreased significantly in the group treated with methanol extract. In addition, significant decreases were observed in TNF-α, VEGF, and IL-6 levels in animals administered methanol extract. HPLC results showed that the activity caused by the methanol extract of M. neglecta was due to the polyphenols. Taken together, these novel findings indicate that M. neglecta may be a promising alternative for the treatment of endometriosis.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-(31)-22023185 (E.K.A.); +90-(56)-953972783 (E.S.-S.)
| | - Büşra Karpuz
- Department of Pharmacognosy, Faculty of Pharmacy, Başkent University, 06810 Ankara, Turkey
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - Hakkı Taştan
- Department of Biology, Faculty of Science, Gazi University, 06560 Ankara, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anurag Khatkar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Facultad de Ciencias de la Salud, Instituto de Investigación y Postgrado, Universidad Central de Chile, Santiago 8330507, Chile
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-(31)-22023185 (E.K.A.); +90-(56)-953972783 (E.S.-S.)
| |
Collapse
|
29
|
Fast and Selective Production of Quercetin and Saccharides from Rutin using Microwave-Assisted Hydrothermal Treatment in the Presence of Graphene Oxide. Food Chem 2022; 405:134808. [DOI: 10.1016/j.foodchem.2022.134808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
|
30
|
Zhang S, Tang J, Li Y, Li D, Chen G, Chen L, Yang Z, He N. The silkworm gustatory receptor BmGr63 is dedicated to the detection of isoquercetin in mulberry. Proc Biol Sci 2022; 289:20221427. [DOI: 10.1098/rspb.2022.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gustatory systems in phytophagous insects are used to perceive feeding stimulants and deterrents, and are involved in insect decisions to feed on particular plants. During the process, gustatory receptors (Grs) can recognize diverse phytochemicals and provide a molecular basis for taste perception. The silkworm, as a representative Lepidoptera species, has developed a strong feeding preference for mulberry leaves. The mulberry-derived flavonoid glycoside, isoquercetin, is required to induce feeding behaviours. However, the corresponding Grs for isoquercetin and underlying molecular mechanisms remain unclear. In this study, we used molecular methods, voltage clamp recordings and feeding assays to identify silkworm BmGr63, which was tuned to isoquercetin. The use of qRT-PCR confirmed that
BmGr63
was highly expressed in the mouthpart of fourth and fifth instar larvae. Functional analysis showed that oocytes expressing
BmGr63
from the ‘bitter’ clade responded to mulberry extracts. Among 20 test chemicals, BmGr63 specifically recognized isoquercetin. The preference for isoquercetin was not observed in
BmGr63
knock-down groups. The tuning between BmGr63 and isoquercetin has been demonstrated, which is meaningful to explain the silkworm-mulberry feeding mechanism from molecular levels and thus provides evidence for further feeding relationship studies between phytophagous insects and host plants.
Collapse
Affiliation(s)
- Shaoyu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Jiaqi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Yunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Guo Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Lin Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Chedea VS, Macovei ȘO, Bocsan IC, Măgureanu DC, Levai AM, Buzoianu AD, Pop RM. Grape Pomace Polyphenols as a Source of Compounds for Management of Oxidative Stress and Inflammation—A Possible Alternative for Non-Steroidal Anti-Inflammatory Drugs? Molecules 2022; 27:molecules27206826. [PMID: 36296420 PMCID: PMC9612310 DOI: 10.3390/molecules27206826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/25/2022] Open
Abstract
Flavonoids, stilbenes, lignans, and phenolic acids, classes of polyphenols found in grape pomace (GP), were investigated as an important alternative source for active substances that could be used in the management of oxidative stress and inflammation. The benefic antioxidant and anti-inflammatory actions of GP are presented in the literature, but they are derived from a large variety of experimental in vitro and in vivo settings. In these in vitro works, the decrease in reactive oxygen species, malondialdehyde, and thiobarbituric acid reactive substances levels and the increase in glutathione levels show the antioxidant effects. The inhibition of nuclear factor kappa B and prostaglandin E2 inflammatory pathways and the decrease of some inflammatory markers such as interleukin-8 (IL-8) demonstrate the anti-inflammatory actions of GP polyphenols. The in vivo studies further confirmed the antioxidant (increase in catalase, superoxide dismutase and glutathione peroxidase levels and a stimulation of endothelial nitric oxide synthase -eNOS gene expression) and anti-inflammatory (inhibition of IL-1𝛼, IL-1β, IL-6, interferon-𝛾, TNF-α and C-reactive protein release) activities. Grape pomace as a whole extract, but also different individual polyphenols that are contained in GP can modulate the endogenous pathway responsible in reducing oxidative stress and chronic inflammation. The present review analyzed the effects of GP in oxidative stress and inflammation, suggesting that it could become a valuable therapeutic candidate capable to reduce the aforementioned pathological processes. Grape pomace extract could become an adjuvant treatment in the attempt to reduce the side effects of the classical anti-inflammatory medication like non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Veronica Sanda Chedea
- Research Department, Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Ștefan Octavian Macovei
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
- Correspondence:
| | - Dan Claudiu Măgureanu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonia Mihaela Levai
- Department Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 3–5, Clinicilor Street, 400012 Cluj Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| |
Collapse
|
32
|
Pharmacological Interaction of Quercetin Derivatives of Tilia americana and Clinical Drugs in Experimental Fibromyalgia. Metabolites 2022; 12:metabo12100916. [PMID: 36295818 PMCID: PMC9607183 DOI: 10.3390/metabo12100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fibromyalgia (FM) is a pain syndrome characterized by chronic widespread pain and CNS comorbidities. Tilia americana var. mexicana is a medicinal species used to treat anxiety, insomnia, and acute or chronic pain. However, its spectrum of analgesic efficacy for dysfunctional pain is unknown. To investigate a possible therapeutic alternative for FM-type pain, an aqueous Tilia extract (TE) and its flavonoid fraction (FF) containing rutin and isoquercitrin were evaluated alone and/or combined with clinical drugs (tramadol—TRA and pramipexol—PRA) using the reserpine-induced FM model in rats. Chromatographic analysis allowed the characterization of flavonoids, while a histological analysis confirmed their presence in the brain. TE (10–100 mg/kg, i.p.) and FF (10–300 mg/kg, i.p.) produced significant and dose-dependent antihyperalgesic and antiallodynic effects equivalent to TRA (3–10 mg/kg, i.p.) or PRA (0.01–1 mg/kg, s.c.). Nevertheless, the combination of FF + TRA or FF + PRA resulted in an antagonistic interaction by possible competitive action on the serotonin transporter or µ-opioid and D2 receptors, respectively, according to the in silico analysis. Flavonoids were identified in cerebral regions because of their self-epifluorescence. In conclusion, Tilia possesses potential properties to relieve FM-type pain. However, the consumption of this plant or flavonoids such as quercetin derivatives in combination with analgesic drugs might reduce their individual benefits.
Collapse
|
33
|
Houchi S, Messasma Z. Exploring the inhibitory potential of Saussurea costus and Saussurea involucrata phytoconstituents against the Spike glycoprotein receptor binding domain of SARS-CoV-2 Delta (B.1.617.2) variant and the main protease (M pro) as therapeutic candidates, using Molecular docking, DFT, and ADME/Tox studies. J Mol Struct 2022; 1263:133032. [PMID: 35431327 PMCID: PMC8993769 DOI: 10.1016/j.molstruc.2022.133032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
Abstract
The B.1.617.2 Delta variant is considered to be the most infectious of all SARS-CoV2 variants. Here, an attempt has been made through in-silico screening of 55 bioactive compounds from two selected plants, Saussurea costus and Saussurea involucrata as potential inhibitors of two viral proteases, main protease Mpro (PDB ID:6LU7) and the RBD of SGP of Sars-CoV-2 B1.617.2 Delta variant (PDB ID:7ORB) where the binding energy, molecular interactions, ADMET/Tox, chemical descriptors and Quantum-Chemical Calculations were explored. Molecular docking results demonstrated that the three top docked compounds formed relatively stable complexes within the active site and displayed remarkable binding energy in the order of Tangshenoside III, Rutin and Hesperidin (-9.35, -9.14 and -8.57 kcal/mol, respectively) with Mpro and Rutin, Tangshenoside III and Hesperidin (-9.07, -7.71 and -7.57 kcal/mol) with RBD of SGP. These compounds are non-Mutagen and non-carcinogen. Therefore, according to the Lipinski's Rule of Five they exhibited three violations concerning hydrogen acceptor, donor and molecular weight. However, based on the Quantum-Chemical Calculations results the selected ligands have effective reactivity, as they showed lower band gaps. The difference of the ELUMO and EHOMO was low, ranging from 0.0639 to 0.0978 a.u, implying the strong affinity of these inhibitors towards the target proteins. Among the three inhibitors, Rutin exhibited higher reactivity against two viral proteases, main protease (Mpro) and the Sars-CoV-2 B1.617.2, as the band energy gap was lowest among all the three phytochemicals, 0.0639 a.u This could indicate that Rutincan be potential anti-viral drug candidates against the existing SARS-CoV-2, the B.1.617.2 Delta variant.
Collapse
Affiliation(s)
- Selma Houchi
- Department of Biochemistry, Laboratory of Applied Biochemistry, Faculty of Life and Nature Sciences, University of Ferhat Abbas Setif-1, Algeria
| | - Zakia Messasma
- Department of Process Engineering, Laboratory of Electrochemistry, Molecular Engineering and Redox Catalysis, Faculty of Technology, University of Ferhat Abbas Setif-1, 19000, Algeria
- Department of Chemistry, Faculty of Sciences, University of Ferhat Abbas Setif-1, 19000, Algeria
| |
Collapse
|
34
|
Wang C, Liu X, Chen F, Yue L, Cao X, Li J, Cheng B, Wang Z, Xing B. Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119582. [PMID: 35671896 DOI: 10.1016/j.envpol.2022.119582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Selenium engineered nanomaterials (Se ENMs)-enabled agriculture has developed rapidly, however, the roles of surface charge in the bioavailability and enrichment efficiency of Se ENMs are still unknown. Herein, various Se ENMs of homogenous size (40-60 nm) and different surface charges (3.2 ± 0.7, -29.0 ± 0.4, and 45.5 ± 1.3 mV) were prepared to explore the Se content and nutritional quality in Brassica chinensis L. The results demonstrated that soil application of various Se ENMs (0.05 mg kg-1) displayed different bio-availabilities via modulating the secretion of root exudates (e.g., tartaric, malic, and citric acids), microbial community composition (e.g., Flavobacterium, Pseudomonas, Paracoccus, Bacillus and Rhizobium) and root cell wall. Negatively charged Se ENMs (Se (-)) showed the highest Se content in the shoot of B. chinensis (3.7-folds). Se (-) also significantly increased yield (156.9%) and improved nutritional quality (e.g., ascorbic acid, amino acids, flavonoids, fatty acids, and tricarboxylic acid) of B. chinensis. Moreover, after harvest, the Se (-) did not lead to significant change in Se residue in soil, but the amount of Se residue in soil was increased by 5.5% after applying the traditional Se fertilizer (selenite). Therefore, this study provides useful information for producing Se-fortified agricultural products, while minimizing environmental risk.
Collapse
Affiliation(s)
- Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
35
|
Mao Z, Troeschel AN, Judd S, Shikany JM, Levitan EB, Safford MM, Bostick RM. Association of an evolutionary-concordance lifestyle pattern score with incident CVD among Black and White men and women. Br J Nutr 2022; 129:1-10. [PMID: 35942870 PMCID: PMC9908773 DOI: 10.1017/s0007114522002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dietary and lifestyle evolutionary discordance is hypothesised to play a role in the aetiology of CVD, including CHD and stroke. We aimed to investigate associations of a previously reported, total (dietary plus lifestyle) evolutionary-concordance (EC) pattern score with incident CVD, CHD and stroke. We used multivariable Cox proportional hazards regression to investigate associations of the EC score with CVD, CHD and stroke incidence among USA Black and White men and women ≥45 years old in the prospective REasons for Geographic and Racial Differences in Stroke study (2003-2017). The EC score comprised seven equally weighted components: a previously reported dietary EC score (using Block 98 FFQ data) and six lifestyle characteristics (alcohol intake, physical activity, sedentary behaviour, waist circumference, smoking history and social network size). A higher score indicates a more evolutionary-concordant dietary/lifestyle pattern. Of the 15 467 participants in the analytic cohort without a CVD diagnosis at baseline, 1563 were diagnosed with CVD (967 with CHD and 596 with stroke) during follow-up (median 11·0 years). Among participants in the highest relative to the lowest EC score quintile, the multivariable-adjusted hazards ratios and their 95 % CI for CVD, CHD and stroke were, respectively, 0·73 (0·62, 0·86; Ptrend < 0·001), 0·72 (0·59, 0·89; Ptrend < 0·001) and 0·76 (0·59, 0·98; Ptrend = 0·01). The results were similar by sex and race. Our findings support that a more evolutionary-concordant diet and lifestyle pattern may be associated with lower risk of CVD, CHD and stroke.
Collapse
Affiliation(s)
- Ziling Mao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alyssa N. Troeschel
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Suzanne Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - James M. Shikany
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
| | - Emily B. Levitan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | | | - Roberd M. Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
36
|
Rutin and Quercetin Counter Doxorubicin-Induced Liver Toxicity in Wistar Rats via Their Modulatory Effects on Inflammation, Oxidative Stress, Apoptosis, and Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2710607. [PMID: 35936216 PMCID: PMC9348941 DOI: 10.1155/2022/2710607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 12/14/2022]
Abstract
The presented study was performed to verify whether rutin and/or quercetin can inhibit liver injury induced by doxorubicin (DXR) in male Wistar rats. In this study, male Wistar rats were treated via the oral route with rutin and quercetin (50 mg/kg) either alone or in combination every other day for five weeks concomitant with receiving intraperitoneal DXR (2 mg/kg) two times a week for five successive weeks. Quercetin, rutin, and their combination significantly improved the deteriorated serum AST, ALT, and ALP activities and total bilirubin level, as well as albumin, AFP, and CA 19.9 levels in DXR-injected rats. Treatments of the DXR-injected group with quercetin and rutin prevented the elevation in liver lipid peroxidation and the reduction in superoxide dismutase, glutathione-S-transferase and glutathione peroxidase activities, and glutathione content. Treatments with quercetin and rutin significantly repressed the elevated expression of liver p53 and TNF-α and enhanced Nrf2 expression. Furthermore, the treatments significantly reduced DXR-induced liver histological changes. In conclusion, rutin and quercetin either alone or in combination may have potential preventive effects against DXR-induced hepatotoxicity through inhibiting oxidative stress, inflammation, and apoptosis as well as modulating the Nrf2 expression.
Collapse
|
37
|
Henrotin YE, Michlmayr C, Rau SM, Quirke AM, Bigoni M, Ueberall MA. Combination of Enzymes and Rutin to Manage Osteoarthritis Symptoms: Lessons from a Narrative Review of the Literature. Rheumatol Ther 2022; 9:1305-1327. [PMID: 35881306 PMCID: PMC9510077 DOI: 10.1007/s40744-022-00472-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022] Open
Abstract
Osteoarthritis is the most common joint disorder affecting over 300 million people worldwide. It typically affects the knees and the hips, and is characterized by a loss in normal joint movement, stiffness, swelling, and pain in patients. The current gold standard therapy for osteoarthritis targets pain management using nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs are associated with several potentially serious side effects, the most common being gastrointestinal perforation and bleeding. Owing to the side effects, NSAID treatment doses need to be as low as possible and should be continued for the shortest duration possible, which is problematic in a chronic condition like osteoarthritis, which requires long-term management. Numerous clinical trials have examined oral enzyme combinations as a potential new approach in managing pain in patients with osteoarthritis. Oral enzyme combinations containing bromelain in combination with trypsin, both proteolytic enzymes, as well as the plant flavonoid rutin, may be an effective alternative to typical NSAIDs. The aim of this narrative review is to summarize and discuss the evidence on the efficacy of oral enzyme combinations compared to the gold standard (NSAID) in the management of osteoarthritis symptoms. Nine randomized controlled trials identified in this review assessed the efficacy and safety of the oral enzyme combination containing bromelain, trypsin, and rutin in patients with osteoarthritis. Most of the studies assessed the impact of the oral enzyme combination on the improvement of the Lequesne Algofunctional index score, treatment-related pain intensity alterations and adverse events compared to patients receiving NSAIDs. Although largely small scale, the study outcomes suggest that this combination is as effective as NSAIDs in the management of osteoarthritis, without the adverse events associated with NSAID use. INFOGRAPHIC.
Collapse
Affiliation(s)
- Yves E Henrotin
- musculoSKeletal Innovative Research Lab (mSKIL), Institute of Pathology, Level 5, Center for Interdisciplinary Research on Medicines (CIRM), Department of Motricity Sciences, Centre Hospitalier Universitaire Sart-Tilman, University of Liège, Liège, Belgium.,Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium.,Artialis SA, GIGA Tower, Centre Hospitalier Universitaire Sart-Tilman, 4000, Liège, Belgium
| | | | | | | | - Marco Bigoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Michael A Ueberall
- Institute of Neurological Sciences IFNAP, Nordostpark 51, 90411, Nuremberg, Germany.
| |
Collapse
|
38
|
Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Farahighasreaboonasr F, Pakizeh F, Dana VG, Seif F. Quercetin as a JAK-STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett 2022; 27:60. [PMID: 35883021 PMCID: PMC9327369 DOI: 10.1186/s11658-022-00355-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is involved in many immunological processes, including cell growth, proliferation, differentiation, apoptosis, and inflammatory responses. Some of these processes can contribute to cancer progression and neurodegeneration. Owing to the complexity of this pathway and its potential crosstalk with alternative pathways, monotherapy as targeted therapy has usually limited long-term efficacy. Currently, the majority of JAK-STAT-targeting drugs are still at preclinical stages. Meanwhile, a variety of plant polyphenols, especially quercetin, exert their inhibitory effects on the JAK-STAT pathway through known and unknown mechanisms. Quercetin has shown prominent inhibitory effects on the JAK-STAT pathway in terms of anti-inflammatory and antitumor activity, as well as control of neurodegenerative diseases. This review discusses the pharmacological effects of quercetin on the JAK-STAT signaling pathway in solid tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | | | | | - Farid Pakizeh
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Ghobadi Dana
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Enghelab St., Aboureyhan St., Vahid Nazari Crossroad, P17, Tehran, Postal code: 1315795613 Iran
| |
Collapse
|
39
|
Samar J, Butt GY, Shah AA, Shah AN, Ali S, Jan BL, Abdelsalam NR, Hussaan M. Phycochemical and Biological Activities From Different Extracts of Padina antillarum (Kützing) Piccone. FRONTIERS IN PLANT SCIENCE 2022; 13:929368. [PMID: 35937357 PMCID: PMC9354264 DOI: 10.3389/fpls.2022.929368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Seaweeds are non-vascular, photosynthetic that inhabit the coastal regions commonly within rocky intertidal or submerged reef-like habitats and have been one of the richest and most promising sources of bioactive primary and secondary metabolites with antimicrobial properties. They selectively absorb elements like Na, K, Ca, Mg, I, and Br from the seawater and accumulate them in their thalli. Padina antillarum (Kützing) Piccone is a member of Phaeophycota and has remarkable phycochemistry as well as bioactivity. The phycochemical tests of the different extracts showed the presence of alkaloids, terpenoids, saponins, tannins, steroids, and phenols. The relative percentage of Oxirane, tetradecyl (C16H32O), and Cyclononasiloxane (C18H54O9Si9) are higher while Tetrasiloxane (C16H50O7Si8) is lowest in Gas Chromatography - Mass Spectrometry analysis. FRAP, %inhibition, the total antioxidant value of P. antillarum was higher in methanolic extract. Hexane, chloroform extracts showed no zone of inhibition against Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Staphylococcus epidermidis. The methanolic extract of P. antillarum exhibits a maximum zone of inhibition against S. epidermidis (18.66 ± 0.09). Antifungal activity of the P. antillarum in hexane extract exhibited no zone of inhibition against Aspergillus niger and Penicillium notatum while the chloroform extract yields maximum zone (37 ± 0.012, 21.66 ± 0.03). Diabetes mellitus is one of the most familiar chronic diseases associated with carbohydrate metabolism. It is also an indication of co-morbidities such as obesity, hypertension, and hyperlipidemia which are metabolic complications of both clinical and experimental diabetes. The treatment of P. antillarum methanol extract in mice reduced the body weight loss, low level of triglycerides, and elevated HDL cholesterol level as compared to diabetic mice.
Collapse
Affiliation(s)
- Juveria Samar
- Department of Botany, Government College University, Lahore, Pakistan
| | | | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Muhammad Hussaan
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
40
|
Tang M, Zeng Y, Peng W, Xie X, Yang Y, Ji B, Li F. Pharmacological Aspects of Natural Quercetin in Rheumatoid Arthritis. Drug Des Devel Ther 2022; 16:2043-2053. [PMID: 35791403 PMCID: PMC9250769 DOI: 10.2147/dddt.s364759] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/12/2022] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to severe joint damage, disability and mortality. Quercetin (QUE) is a natural flavonoid that is ubiquitous in fruits and vegetables. This article reviews the effect of QUE on articular and extra-articular manifestations of RA in vitro and in vivo. In general, for articular manifestations, QUE inhibited synovial membrane inflammation by reducing inflammatory cytokines and mediators, decreasing oxidative stress, inhibiting proliferation, migration and invasion, and promoting apoptosis of fibroblast-like synoviocytes (FLS), regulated autoimmune response through modulating Th17/Treg imbalance and Th17 cells differentiation, reducing autoantibodies levels and regulating ectonucleoside triphosphate diphosphohydrolase (E-NTPDase)/ectoadenosine deaminase (E-ADA) activities, reduced bony damage via lowering matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa B ligand (RANKL) expression and osteoclasts formation. For extra-articular manifestations, QUE could reverse the neurodegenerative processes of the enteric nervous system (ENS) and exhibited cytoprotective, genoprotective and hepatoprotective effects. In addition, we also summarize some contradictory experimental results and explore the possibility for these differences to form a sound basis for the clinical application of QUE for RA.
Collapse
Affiliation(s)
- Mengshi Tang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yan Zeng
- Department of Rheumatology, Yueyang Central Hospital, Yueyang, 414000, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Xi Xie
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yongyu Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Biting Ji
- Shanghai Jing'an District Dental Disease Prevention and Control Institute, Shanghai, 200040, People's Republic of China
| | - Fen Li
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| |
Collapse
|
41
|
Halevas E, Matsia S, Hatzidimitriou A, Geromichalou E, Papadopoulos T, Katsipis G, Pantazaki A, Litsardakis G, Salifoglou A. A unique ternary Ce(III)-quercetin-phenanthroline assembly with antioxidant and anti-inflammatory properties. J Inorg Biochem 2022; 235:111947. [DOI: 10.1016/j.jinorgbio.2022.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
|
42
|
Pansare AV, Pansare PV, Shedge AA, Pansare SV, Patil VR, Terrasi GP, Donde KJ. Click gold quantum dots biosynthesis with conjugation of quercetin for adenocarcinoma exertion. RSC Adv 2022; 12:18425-18430. [PMID: 35799927 PMCID: PMC9218964 DOI: 10.1039/d2ra02529a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
We developed a cost-effective and eco-friendly click biosynthesis of small molecule quercetin-gold quantum dots (QRT-AuQDs) involving quick conjugation using an ultrasonication method at ambient temperature by utilizing QRT and gold ions in the proportion of 0.1 : 1 (molar ratio). A comparatively very short amount of time (60 seconds) was required as compared to conventional procedures. The present biomimetics research relates to the isolation of bioactive QRT by the circularly spread silica gel layer technique (CSSGLT) and characterization (UV-Vis, FTIR, NMR and DSC analysis). Characterization of the synthesized QRT-AuQDs conjugated complex was carried out by UV-Vis, HR-TEM, DLS, zeta potential and X-ray diffraction. The main objective of the present work was to study the comparative anticancer activity of QRT and QRT-AuQDs on human lung cancer HOP-62 and leukemia K-562 cell lines. The results suggested that QRT-AuQDs showed potential for applications in anticancer treatment and were found to be a more cytotoxic agent in comparison to QRT, causing > 50% inhibition of cancer cells at the concentration < 10-7 M. Hence, small molecule conjugated QRT-AuQDs can be used as a promising material for biomedical, bioengineering and anti-infectives applications.
Collapse
Affiliation(s)
- Amol V Pansare
- Composite Group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa 8600 Dübendorf Switzerland
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Priyanka V Pansare
- Ramnarain Ruia Autonomous College, University of Mumbai Matunga (E) India
| | - Amol A Shedge
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Shubham V Pansare
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai Santacruz (E) Mumbai 400098 India
| | - Giovanni P Terrasi
- Composite Group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa 8600 Dübendorf Switzerland
| | - Kamini J Donde
- Ramnarain Ruia Autonomous College, University of Mumbai Matunga (E) India
| |
Collapse
|
43
|
Callus-Mediated High-Frequency Plant Regeneration, Phytochemical Profiling, Antioxidant Activity and Genetic Stability in Ruta chalepensis L. PLANTS 2022; 11:plants11121614. [PMID: 35736765 PMCID: PMC9229613 DOI: 10.3390/plants11121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
Efficient methods for callus induction and the high-frequency plant regeneration of Ruta chalepensis L. were established, and the phytochemical potential and antioxidant activity of a donor plant, ex-vitro-established micropropagated plants, and callus were also studied. Yellowish-green callus was induced with a frequency of 97.8% from internode shoot segments of the donor plant growing in soil in the botanical garden cultured on Murashige and Skoog (MS) medium containing 10 μM 2,4-D (2,4-dichlorophenoxyacetic acid) and 1 μM BA (6-benzyladenine). Adventitious shoots were regenerated from the yellowish-green callus on MS medium containing 5.0 μM (BA) and 1.0 μM 1-naphthaleneacetic acid (NAA), with a regeneration frequency of 98.4% and a maximum of 54.6 shoots with an average length of 4.5 cm after 8 weeks. The regenerated shoots were rooted in a medium containing 1.0 μM IBA (indole-3-butyric acid) and successfully transferred to ex vitro conditions in pots containing normal garden soil, with a 95% survival rate. The amounts of alkaloids, phenolics, flavonoids, tannins, and antioxidant activity of the ex-vitro-established micropropagated plants were higher than in the donor plant and callus. The highest contents of hesperidin and rutin (93.3 and 55.9 µg/mg, respectively) were found in the ex-vitro-established micropropagated plants compared to those obtained from the donor plant (91.4 and 31.0 µg/mg, respectively) and callus (59.1 and 21.6 µg/mg, respectively). The genetic uniformity of the ex-vitro-established micropropagated plants was appraised by the ISSR markers and compared with the donor plant. This is the first report describing the callus-mediated plant regeneration, as well as the production of phenolic compounds and antioxidant activities in R. chalepensis, which might be a potential alternative technique for the mass propagation and synthesis of bioactive compounds such as hesperidin and rutin.
Collapse
|
44
|
Majdan M, Bobrowska-Korczak B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022; 14:2496. [PMID: 35745226 PMCID: PMC9229651 DOI: 10.3390/nu14122496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of many diseases, including cardiovascular diseases, atherosclerosis, diabetes, asthma, and cancer. An appropriate diet and the active compounds contained in it can affect various stages of the inflammatory process and significantly affect the course of inflammatory diseases. Recent reports indicate that polyphenolic acids, vitamins, minerals, and other components of fruits may exhibit activity stimulating an anti-inflammatory response, which may be of importance in maintaining health and reducing the risk of disease. The article presents the latest data on the chemical composition of fruits and the health benefits arising from their anti-inflammatory and antioxidant effects. The chemical composition of fruits determines their anti-inflammatory and antioxidant properties, but the mechanisms of action are not fully understood.
Collapse
Affiliation(s)
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
45
|
Rodriguez CEB, Ouyang L, Kandasamy R. Antinociceptive effects of minor cannabinoids, terpenes and flavonoids in Cannabis. Behav Pharmacol 2022; 33:130-157. [PMID: 33709984 DOI: 10.1097/fbp.0000000000000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabis has been used for centuries for its medicinal properties. Given the dangerous and unpleasant side effects of existing analgesics, the chemical constituents of Cannabis have garnered significant interest for their antinociceptive, anti-inflammatory and neuroprotective effects. To date, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) remain the two most widely studied constituents of Cannabis in animals. These studies have led to formulations of THC and CBD for human use; however, chronic pain patients also use different strains of Cannabis (sativa, indica and ruderalis) to alleviate their pain. These strains contain major cannabinoids, such as THC and CBD, but they also contain a wide variety of cannabinoid and noncannabinoid constituents. Although the analgesic effects of Cannabis are attributed to major cannabinoids, evidence indicates other constituents such as minor cannabinoids, terpenes and flavonoids also produce antinociception against animal models of acute, inflammatory, neuropathic, muscle and orofacial pain. In some cases, these constituents produce antinociception that is equivalent or greater compared to that produced by traditional analgesics. Thus, a better understanding of the extent to which these constituents produce antinociception alone in animals is necessary. The purposes of this review are to (1) introduce the different minor cannabinoids, terpenes, and flavonoids found in Cannabis and (2) discuss evidence of their antinociceptive properties in animals.
Collapse
Affiliation(s)
- Carl Erwin B Rodriguez
- Department of Psychology, California State University, East Bay, Hayward, California, USA
| | | | | |
Collapse
|
46
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
47
|
Akhtar MA. Anti-Inflammatory Medicinal Plants of Bangladesh—A Pharmacological Evaluation. Front Pharmacol 2022; 13:809324. [PMID: 35401207 PMCID: PMC8987533 DOI: 10.3389/fphar.2022.809324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases are considered major threats to human health worldwide. In Bangladesh, a number of medicinal plants have been used in traditional medicine from time immemorial in the treatment of diverse diseases, including inflammatory disorders. This assignment aims at providing the status of the medicinal plants of Bangladesh which are traditionally used in the management of inflammatory disorders and are investigated for their anti-inflammatory prospects using different preclinical studies and future research directions. The information of medicinal plants assembled in this review was obtained from a literature search of electronic databases such as Google Scholar, PubMed, Scopus, Web of Science and ScienceDirect up to December, 2020 from publications on plants investigated for their anti-inflammatory activities, in which the place of plant sample collection was identified as Bangladesh. Keywords for primary searches were “anti-inflammatory,” “Bangladeshi,” and “medicinal plants.” Criteria followed to include plant species were plants that showed significant anti-inflammatory activities in 1) two or more sets of experiments in a single report, 2) same or different sets of experiments in two or more reports, and, 3) plants which are traditionally used in the treatment of inflammation and inflammatory disorders. In this study, 48 species of medicinal plants have been reviewed which have been used in traditional healing practices to manage inflammatory disorders in Bangladesh. The mechanistic pathways of the in vivo and in vitro study models used for the evaluation of anti-inflammatory properties of plant samples have been discussed. Selected plants were described in further detail for their habitat, anti-inflammatory studies conducted in countries other than Bangladesh, and anti-inflammatory active constituents isolated from these plants if any. Medicinal plants of Bangladesh have immense significance for anti-inflammatory activity and have potential to contribute toward the discovery and development of novel therapeutic approaches to combat diseases associated with inflammation. However, the plants reviewed in this article had chiefly undergone preliminary screening and require substantial investigations including identification of active molecules, understanding the mechanism of action, and evaluation for safety and efficacy to be followed by the formulation of safe and effective drug products.
Collapse
|
48
|
Shanmugasundaram D, Roza JM. Assessment of anti-inflammatory and antioxidant activity of quercetin-rutin blend (SophorOx™) - an invitro cell based assay. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:637-644. [PMID: 35179009 DOI: 10.1515/jcim-2021-0568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/30/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Quercetin & Rutin, are bioactive compounds that are widely used for various therapeutic properties. There's been growing interest in the biological activities of these polyphenols belonging to the class of flavonoids known to have various health benefits. Quercetin is now popularly recognized as a phytochemical remedy for a plethora of disease groups such as metabolic syndrome (more specifically diabetes), obesity/weight management and mood disorders. Due to its unique chemical structure, the most prominent property of Quercetin is probably its antioxidant capability. It acts as a free radical scavenger to form resonance-stabilized phenoxyl radicals. Certain in vitro studies have also shown quercetin to have anti-viral, anti-carcinogenic and platelet aggregation properties. Rutin has also been shown to exert diverse biological effects such as anti-tumor activities, reduction of inflammatory cytokines and antimicrobial activities. The current study was designed to further confirm the antioxidant and anti-inflammatory property of a Quercetin-Rutin blend (SophorOx™). METHODS The analysis was performed in a cell-based assay using RAW 264.7 macrophage cell line. SophorOx™ was screened for cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to obtain optimum concentrations for experimental assays. SophorOx™ was measured for pro-inflammatory cytokine levels (TNF-α & IL-6) and nitric oxide (NO) levels. Additionally, ROS (reactive oxygen species) levels in RAW cells were estimated using a cell-permeant reagent 2'7'-dichlorofluorescein diacetate (DCFH-DA). RESULTS SophorOx™ at 10 µM concentration, exhibited an anti-inflammatory property with significant inhibitory levels of TNF-α (∼28.25%) and IL-6 (∼32.25%). SophorOx™ at similar concentrations reduced nitric oxide levels to 70.55% in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Raw 264.7 cells stimulated with LPS exhibited a significant increase in intracellular ROS and this was significantly reduced (78.2% reduction) at lower concentrations (0.3 µM) of SophorOx™. CONCLUSIONS The anti-inflammatory effects of SophorOx™ were investigated in LPS stimulated RAW 264.7 macrophages. Data suggests, that SophorOx™ reduced levels of nitric oxide, intracellular ROS and pro-inflammatory cytokines (TNF-α & IL-6) at low concentrations without affecting the viability of RAW cells. Present invitro trial suggests that SophorOx™ is a potent antioxidant and anti-inflammatory agent and displays a prominent ability to block mediators of oxidative stress and inflammation.
Collapse
|
49
|
Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100220. [PMID: 35403087 PMCID: PMC8759805 DOI: 10.1016/j.phyplu.2022.100220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 04/15/2023]
Abstract
BACKGROUND Polyphenols and particularly flavonoids are of constant interest to the scientific community. Flavonoids are investigated for their biological and pharmacological purposes, notably as antioxidant, anticancer, antiviral and for their anti-inflammatory activities. Certainly, one of the best-known flavonols recognized for its therapeutic and preventive properties, is quercetin. Despite its biological interest, quercetin suffer from some drawbacks, mainly related to its bioavailability. Hence, its synthetic or biosynthetic derivatives have been the subject of intensive research. The health-promoting biological activities of flavonols and derivatives mainly arise from their capacity to disrupt the host-pathogen interactions and/or to regulate host cellular functions including oxidative processes and immunological responses. In the age of coronavirus pandemic, the anti-inflammatory and antiviral potential of flavonols should be put forward to explore these substances for decreasing the viral load and inflammatory storm caused by the infection. PURPOSE OF STUDY The present review will decipher and discuss the antioxidant, anti-inflammatory and antiviral capacities of major flavonol with a focus on the molecular basis and structure-activity relationships. STUDY DESIGN Current study used a combination of quercetin derivatives, pathway, antioxidant, anti-inflammatory, antiviral activities as keywords to retrieve the literature. This study critically reviewed the current literature and presented the ability of natural analogs of quercetin having superior antioxidant, anti-inflammatory and antiviral effects than the original molecule. RESULTS This review allowed the identification of relevant key structure-activity relationship elements and highlight approaches on the mechanisms governing the antioxidant, antiviral and anti-inflammatory activities. CONCLUSION Through a critical analysis of the literature, flavonols and more precisely quercetin derivatives reviewed and found to act simultaneously on inflammation, virus and oxidative stress, three key factors that may lead to life threatening diseases.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | | | - Anne-Laure Sandenon Seteyen
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Chailas Boina
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Pascale Guiraud
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Jimmy Sélambarom
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
50
|
Lee S, Kim M, Hong S, Kim EJ, Kim JH, Sohn Y, Jung HS. Effects of Sparganii Rhizoma on Osteoclast Formation and Osteoblast Differentiation and on an OVX-Induced Bone Loss Model. Front Pharmacol 2022; 12:797892. [PMID: 35058781 PMCID: PMC8764242 DOI: 10.3389/fphar.2021.797892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Postmenopausal osteoporosis is caused by an imbalance between osteoclasts and osteoblasts and causes severe bone loss. Osteoporotic medicines are classified into bone resorption inhibitors and bone formation promoters according to the mechanism of action. Long-term use of bisphosphonate and selective estrogen receptor modulators (SERMs) can cause severe side effects in postmenopausal osteoporosis patients. Therefore, it is important to find alternative natural products that reduce osteoclast activity and increase osteoblast formation. Sparganii Rhizoma (SR) is the dried tuberous rhizome of Sparganium stoloniferum Buchanan-Hamilton and is called “samreung” in Korea. However, to date, the effect of SR on osteoclast differentiation and the ovariectomized (OVX)-induced bone loss model has not been reported. In vitro, tartrate-resistant acid phosphatase (TRAP) staining, western blots, RT-PCR and other methods were used to examine the effect of SR on osteoclast differentiation and osteoblasts. In vivo, we confirmed the effect of SR in a model of OVX-induced postmenopausal osteoporosis. SR inhibited osteoclast differentiation and decreased the expression of TNF receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells 1 (NFATc1) and c-Fos pathway. In addition, SR stimulates osteoblast differentiation and increased protein expression of the bone morphogenetic protein 2 (BMP-2)/SMAD signaling pathway. Moreover, SR protected against bone loss in OVX-induced rats. Our results appear to advance our knowledge of SR and successfully demonstrate its potential role as a osteoclastogenesis-inhibiting and osteogenesis-promoting herbal medicine for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sungyub Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|