1
|
Russell JK, Conley AC, Wilson JE, Newhouse PA. Cholinergic System Structure and Function Changes in Individuals with Down Syndrome During the Development of Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39485646 DOI: 10.1007/7854_2024_523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adults with Down syndrome represent the population with the highest risk of developing Alzheimer's disease worldwide. The cholinergic system is known to decline in Alzheimer's disease, with this decline responsible for many of the cognitive deficits that develop. The integrity of the cholinergic system across the lifespan in individuals with Down syndrome is not well characterized. Small fetal and infant post-mortem studies suggest an intact cholinergic projection system with a potential reduction in cholinergic receptors, while post-mortem studies in adults with Down syndrome reveal an age-related decrease in cholinergic integrity. Advances in magnetic resonance imaging (MRI) and positron emission tomography (PET) over the last 20 years have allowed for studies investigating the changes in cholinergic integrity across aging and during the development of Alzheimer's disease. One large cross-sectional study demonstrated reduced cholinergic basal forebrain volume measured by MRI associated with increasing Alzheimer's disease pathology. In a small cohort of adults with Down syndrome, we have recently reported that PET measures of cholinergic integrity negatively correlated with amyloid accumulation. New disease-modifying treatments for Alzheimer's disease and treatments under development for Alzheimer's disease in Down syndrome have the potential to preserve the cholinergic system, while treatments targeting the cholinergic system directly may be used in conjunction with disease-modifying therapies to improve cognitive function further. A greater understanding of cholinergic neuronal and receptor integrity across the lifespan in individuals with Down syndrome will provide insights as to when targeting the cholinergic system is an appropriate therapeutic option and, in the future, maybe a valuable screening tool to identify individuals that would most benefit from cholinergic interventions.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander C Conley
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jo Ellen Wilson
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Paul A Newhouse
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
2
|
Jörg M, van der Westhuizen ET, Lu Y, Christopher Choy KH, Shackleford DM, Khajehali E, Tobin AB, Thal DM, Capuano B, Christopoulos A, Valant C, Scammells PJ. Design, synthesis and evaluation of novel 2-phenyl-3-(1H-pyrazol-4-yl)pyridine positive allosteric modulators for the M 4 mAChR. Eur J Med Chem 2023; 258:115588. [PMID: 37423123 PMCID: PMC7616163 DOI: 10.1016/j.ejmech.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and β-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.
Collapse
Affiliation(s)
- Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Yao Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - K H Christopher Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
3
|
Florio E, Serra M, Lewis RG, Kramár E, Freidberg M, Wood M, Morelli M, Borrelli E. D2R signaling in striatal spiny neurons modulates L-DOPA induced dyskinesia. iScience 2022; 25:105263. [PMID: 36274959 PMCID: PMC9579025 DOI: 10.1016/j.isci.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Degeneration of dopaminergic neurons leads to Parkinson's disease (PD), characterized by reduced levels of striatal dopamine (DA) and impaired voluntary movements. DA replacement is achieved by levodopa treatment which in long-term causes involuntary movements or dyskinesia. Dyskinesia is linked to the pulsatile activation of D1 receptors of the striatal medium spiny neurons (MSNs) forming the direct output pathway (dMSNs). The contribution of DA stimulation of D2R in MSNs of the indirect pathway (iMSNs) is less clear. Using the 6-hydroxydopamine model of PD, here we show that loss of DA-mediated inhibition of these neurons intensifies levodopa-induced dyskinesia (LID) leading to reprogramming of striatal gene expression. We propose that the motor impairments characteristic of PD and of its therapy are critically dependent on D2R-mediated iMSNs activity. D2R signaling not only filters inputs to the striatum but also indirectly regulates dMSNs mediated responses.
Collapse
Affiliation(s)
- Ermanno Florio
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Robert G. Lewis
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Enikö Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Michael Freidberg
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, CA 92697, USA
| | - Marcello Wood
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Emiliana Borrelli
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
McDonald JK, van der Westhuizen ET, Pham V, Thompson G, Felder CC, Paul SM, Thal DM, Christopoulos A, Valant C. Biased Profile of Xanomeline at the Recombinant Human M 4 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci 2022; 13:1206-1218. [PMID: 35380782 DOI: 10.1021/acschemneuro.1c00827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many Food and Drug Administration (FDA)-approved drugs are structural analogues of the endogenous (natural) ligands of G protein-coupled receptors (GPCRs). However, it is becoming appreciated that chemically distinct ligands can bind to GPCRs in conformations that lead to different cellular signaling events, a phenomenon termed biased agonism. Despite this, the rigorous experimentation and analysis required to identify biased agonism are often not undertaken in most clinical candidates and go unrealized. Recently, xanomeline, a muscarinic acetylcholine receptor (mAChR) agonist, has entered phase III clinical trials for the treatment of schizophrenia. If successful, xanomeline will be the first novel FDA-approved antipsychotic drug in almost 50 years. Intriguingly, xanomeline's potential for biased agonism at the mAChRs and, in particular, the M4 mAChR, the most promising receptor target for schizophrenia, has not been assessed. Here, we quantify the biased agonism profile of xanomeline and three other mAChR agonists in Chinese hamster ovary cells recombinantly expressing the M4 mAChR. Agonist activity was examined across nine distinct signaling readouts, including the activation of five different G protein subtypes, ERK1/2 phosphorylation, β-arrestin recruitment, calcium mobilization, and cAMP regulation. Relative to acetylcholine (ACh), xanomeline was biased away from ERK1/2 phosphorylation and calcium mobilization compared to Gαi2 protein activation. These findings likely have important implications for our understanding of the therapeutic action of xanomeline and call for further investigation into the in vivo consequences of biased agonism in drugs targeting the M4 mAChR for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Jack K. McDonald
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Steven M. Paul
- Karuna Therapeutics, Boston, Massachusetts 02110, United States
| | - David M. Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol 2021; 11:606656. [PMID: 33584282 PMCID: PMC7878563 DOI: 10.3389/fphar.2020.606656] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - K. H. Christopher Choy
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Simon McKenzie-Nickson
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Sophie J. Bradley
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| |
Collapse
|
6
|
Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, Hollenberg MD. Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci 2019; 59:2778-2791. [PMID: 29860464 DOI: 10.1167/iovs.17-22562] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Myopia is a refractive disorder that degrades vision. It can be treated with atropine, a muscarinic acetylcholine receptor (mAChR) antagonist, but the mechanism is unknown. Atropine may block α-adrenoceptors at concentrations ≥0.1 mM, and another potent myopia-inhibiting ligand, mamba toxin-3 (MT3), binds equally well to human mAChR M4 and α1A- and α2A-adrenoceptors. We hypothesized that mAChR antagonists could inhibit myopia via α2A-adrenoceptors, rather than mAChR M4. Methods Human mAChR M4 (M4), chicken mAChR M4 (cM4), or human α2A-adrenergic receptor (hADRA2A) clones were cotransfected with CRE/promoter-luciferase (CRE-Luc; agonist-induced luminescence) and Renilla luciferase (RLuc; normalizing control) into human cells. Inhibition of normalized agonist-induced luminescence by antagonists (ATR: atropine; MT3; HIM: himbacine; PRZ: pirenzepine; TRP: tropicamide; OXY: oxyphenonium; QNB: 3-quinuclidinyl benzilate; DIC: dicyclomine; MEP: mepenzolate) was measured using the Dual-Glo Luciferase Assay System. Results Relative inhibitory potencies of mAChR antagonists at mAChR M4/cM4, from most to least potent, were QNB > OXY ≥ ATR > MEP > HIM > DIC > PRZ > TRP. MT3 was 56× less potent at cM4 than at M4. Relative potencies of mAChR antagonists at hADRA2A, from most to least potent, were MT3 > HIM > ATR > OXY > PRZ > TRP > QNB > MEP; DIC did not antagonize. Conclusions Muscarinic antagonists block hADRA2A signaling at concentrations comparable to those used to inhibit chick myopia (≥0.1 mM) in vivo. Relative potencies at hADRA2A, but not M4/cM4, correlate with reported abilities to inhibit chick form-deprivation myopia. mAChR antagonists might inhibit myopia via α2-adrenoceptors, instead of through the mAChR M4/cM4 receptor subtype.
Collapse
Affiliation(s)
- Brittany J Carr
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Inflammation Research Network-Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Koichiro Mihara
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Mahmoud Saifeddine
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil M Nathanson
- Department of Pharmacology, University of Washington, Seattle, Washington, United States
| | - William K Stell
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Myslivecek J, Farar V, Valuskova P. M(4) muscarinic receptors and locomotor activity regulation. Physiol Res 2018; 66:S443-S455. [PMID: 29355372 DOI: 10.33549/physiolres.933796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
M(4) muscarinic receptors (M(4) MR) represent a subfamily of G-protein coupled receptors serving a substantial role in spontaneous locomotor activity regulation, cognition and modulation of cholinergic system. With increasing body of literature discussing the role of M(4) MR some controversies arose. Thus, we try here to summarize the current evidence regarding the M(4) MR, with the special focus on their role in Locomotor activity control. We review the molecular function of M(4) MR in specific brain areas implicated in locomotor regulation, and shortly in other CNS processes that could be connected to locomotor activity. We also focus on brain areas implicated in locomotor activity biorhythm changes like suprachiasmatic nucleus, subparaventricular zone posterior hypothalamic area, striatum and thalamus. Gender-related aspects and differences in locomotor activity in males and females are discussed further.
Collapse
Affiliation(s)
- J Myslivecek
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
8
|
Carr BJ, Stell WK. Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks. Sci Rep 2016; 6:9. [PMID: 28442706 PMCID: PMC5431363 DOI: 10.1038/s41598-016-0002-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/22/2016] [Indexed: 11/30/2022] Open
Abstract
Myopia is the most common childhood refractive disorder. Atropine inhibits myopia progression, but its mechanism is unknown. Here, we show that myopia-prevention by atropine requires production of nitric oxide (NO). Form-deprivation myopia (FDM) was induced in week-old chicks by diffusers over the right eye (OD); the left eye (OS) remained ungoggled. On post-goggling days 1, 3, and 5, OD received intravitreally 20 µL of phosphate-buffered saline (vehicle), or vehicle plus: NO source: L-arginine (L-Arg, 60–6,000 nmol) or sodium nitroprusside (SNP, 10–1,000 nmol); atropine (240 nmol); NO inhibitors: L-NIO or L-NMMA (6 nmol); negative controls: D-Arg (10 µmol) or D-NMMA (6 nmol); or atropine plus L-NIO, L-NMMA, or D-NMMA; OS received vehicle. On day 6 post-goggling, refractive error, axial length, equatorial diameter, and wet weight were measured. Vehicle-injected goggled eyes developed significant FDM. This was inhibited by L-Arg (ED50 = 400 nmol) or SNP (ED50 = 20 nmol), but not D-Arg. Higher-dose SNP, but not L-Arg, was toxic to retina/RPE. Atropine inhibited FDM as expected; adding NOS-inhibitors (L-NIO, L-NMMA) to atropine inhibited this effect dose-dependently, but adding D-NMMA did not. Equatorial diameter, wet weight, and metrics of control eyes were not affected by any treatment. In summary, intraocular NO inhibits myopia dose-dependently and is obligatory for inhibition of myopia by atropine.
Collapse
Affiliation(s)
- Brittany J Carr
- Neuroscience Graduate Program, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - William K Stell
- Department of Cell Biology and Anatomy and Department of Surgery; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Rachakonda V, Jadeja RN, Urrunaga NH, Shah N, Ahmad D, Cheng K, Twaddell WS, Raufman JP, Khurana S. M1 Muscarinic Receptor Deficiency Attenuates Azoxymethane-Induced Chronic Liver Injury in Mice. Sci Rep 2015; 5:14110. [PMID: 26374068 PMCID: PMC4571652 DOI: 10.1038/srep14110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cholinergic nervous system regulates liver injury. However, the role of M1 muscarinic receptors (M1R) in modulating chronic liver injury is uncertain. To address this gap in knowledge we treated M1R-deficient and WT mice with azoxymethane (AOM) for six weeks and assessed liver injury responses 14 weeks after the last dose of AOM. Compared to AOM-treated WT mice, M1R-deficient mice had attenuated liver nodularity, fibrosis and ductular proliferation, α-SMA staining, and expression of α1 collagen, Tgfβ-R, Pdgf-R, Mmp-2, Timp-1 and Timp-2. In hepatocytes, these findings were associated with reductions of cleaved caspase-3 staining and Tnf-α expression. In response to AOM treatment, M1R-deficient mice mounted a vigorous anti-oxidant response by upregulating Gclc and Nqo1 expression, and attenuating peroxynitrite generation. M1R-deficient mouse livers had increased expression of Trail-R2, a promotor of stellate cell apoptosis; dual staining for TUNNEL and α-SMA revealed increased stellate cells apoptosis in livers from M1R-deficient mice compared to those from WT. Finally, pharmacological inhibition of M1R reduced H2O2-induced hepatocyte apoptosis in vitro. These results indicate that following liver injury, anti-oxidant response in M1R-deficient mice attenuates hepatocyte apoptosis and reduces stellate cell activation, thereby diminishing fibrosis. Therefore, targeting M1R expression and activation in chronic liver injury may provide therapeutic benefit.
Collapse
Affiliation(s)
- Vikrant Rachakonda
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Ravirajsinh N Jadeja
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| | - Nathalie H Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Nirish Shah
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Daniel Ahmad
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - William S Twaddell
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandeep Khurana
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
10
|
Benes J, Mravec B, Kvetnansky R, Myslivecek J. The restructuring of muscarinic receptor subtype gene transcripts in c-fos knock-out mice. Brain Res Bull 2013; 94:30-9. [PMID: 23395867 DOI: 10.1016/j.brainresbull.2013.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Although c-Fos plays a key role in intracellular signalling, the disruption of the c-fos gene has only minor consequences on the central nervous system (CNS) function. As muscarinic receptors (MR) play important roles in many CNS functions (attention, arousal, and cognition), the c-fos knock-out might be compensated through MR changes. The aim of this study was to evaluate changes in the M1-M5 MR mRNA in selected CNS areas: frontal, parietal, temporal and occipital cortex, striatum, hippocampus, hypothalamus and cerebellum (FC, PC, TC, OC, stria, hip, hypo, and crbl, respectively). Knocking out the c-fos gene changed the expression of MR in FC (reduced M1R, M4R and M5R expression), TC (increased M4R expression), OC (decreased M2R and M3R expression) and hippocampus (reduced M3R expression). Moreover, gender differences were observed in WT mice: increased expression of all M1-M5R in the FC in males and M1-M4R in the striatum in females. A detailed analysis of MR transcripts showed pre-existing correlations in the amount of MR-mRNA between specific regions. WT mice showed three major types of cortico-cortical correlations: fronto-occipital, temporo-parietal and parieto-occipital. The cortico-subcortical correlations involved associations between the FC, PC, TC and striatum. In KO mice, a substantial rearrangement of the correlation pattern was observed: only a temporo-parietal correlation and correlations between the FC and striatum remained, and a new correlation between the hypothalamus and cerebellum appeared. Thus, in addition to the previously described dopamine receptor restructuring, the restructuring of MR mRNA correlations reveals an additional mechanism for adaptation to the c-fos gene knockout.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Lado-Abeal J, Castro-Piedras I, Palos-Paz F, Labarta-Aizpún JI, Albero-Gamboa R. A family with congenital hypothyroidism caused by a combination of loss-of-function mutations in the thyrotropin receptor and adenylate cyclase-stimulating G alpha-protein subunit genes. Thyroid 2011; 21:103-9. [PMID: 21186955 DOI: 10.1089/thy.2010.0187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Resistance to thyrotropin (TSH) causes congenital hypothyroidism (CH). TSH receptor (TSHR) and adenylate cyclase-stimulating G alpha protein subunit (GNAS) loss-of-function mutations cause TSH resistance. We describe a family with TSH resistance and CH bearing a combination of inactivating mutations in TSHR and GNAS genes. We describe studies to determine the molecular mechanisms involved in TSH resistance in this family. METHODS DNA sequencing to identify TSHR and GNAS gene mutations was performed. In vitro effects of the mutations on cAMP production and TSH binding were investigated in COS7 cells. cAMP production was evaluated by transfecting a cAMP response element (CRE)-luciferase reporter with pSVL-TSHR and pSVK3-GNAS vectors. For binding studies, cells transfected with pSVL-TSHR vectors were incubated with iodine-125 bovine TSH ((125)IbTSH). RESULTS Family members with and without CH were heterozygous for the TSHR mutant p.E34K or the GNAS mutant c.750_751insA (=GNASMut). The propositus had CH and he was heterozygous for TSHR p.E34K; his mother, also heterozygous for TSHR p.E34K, did not have CH. The euthyroid propositus' wife was heterozygous for GNASMut. The propositus' two daughters had CH, one was heterozygous for GNASMut and the other a compound heterezygous for TSHR p.E34K and GNASMut. Albright's hereditary osteodystrophy phenotype was present in those with GNASMut mutation but only the daughters had pseudohypoparathyroidism type 1a. Cells transfected with TSHRE34K had lower TSH affinity and less CRE-luciferase response than cells transfected with TSHR wild-type (WT). Cells transfected with GNASMut did not stimulate CRE-luciferase activity, but when cells were transfected with GNASMut plus GNASWT, a similar response to GNASWT alone was observed. The combination of TSHRWT and GNASWT showed higher CRE-luciferase response than TSHRWT and TSHRE34K with either GNASWT or GNASWT plus GNASMut. CONCLUSIONS CH was caused by loss-of-function mutations in TSHR and/or GNAS. The absence of CH in the propositus' mother argues against a role for TSHR p.E34K being the only cause of CH. The minimal thyroidal phenotypic differences between the sisters with pseudohypoparathyroidism type 1a and TSH resistance, both heterozygous for GNAS c.750_751insA but only one bearing the TSHR p.E34K mutant, suggest that the main cause for CH was preferential expression of the mutated maternal GNAS allele in the thyroid gland.
Collapse
Affiliation(s)
- Joaquin Lado-Abeal
- Department of Medicine, Unidade de Enfermedades Tiroideas e Metabolicas, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
12
|
Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur J Pharmacol 2009; 606:50-60. [PMID: 19374848 DOI: 10.1016/j.ejphar.2009.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 01/06/2009] [Accepted: 01/19/2009] [Indexed: 11/22/2022]
Abstract
We investigated the influence of membrane cholesterol content on preferential and non-preferential signaling through the M(2) muscarinic acetylcholine receptor expressed in CHO cells. Cholesterol depletion by 39% significantly decreased the affinity of M(2) receptors for [(3)H]-N-methylscopolamine ([(3)H]-NMS) binding and increased B(max) in intact cells and membranes. Membranes displayed two-affinity agonist binding sites for carbachol and cholesterol depletion doubled the fraction of high-affinity binding sites. In intact cells it also reduced the rate of agonist-induced receptor internalization and changed the profile of agonist binding from a single site to two affinity states. Cholesterol enrichment by 137% had no effects on carbachol E(max) of cAMP synthesis inhibition and on cAMP synthesis stimulation and inositolphosphates (IP) accumulation at higher agonist concentrations (non-preferred pathways). On the other hand, cholesterol depletion significantly increased E(max) of cAMP synthesis inhibition or stimulation without change in potency, and decreased E(max) of IP accumulation. Noteworthy, modifications of membrane cholesterol had no effect on membrane permeability, oxidative activity, protein content, or relative expression of G(s), G(i/o), and G(q/11) alpha subunits. These results demonstrate distinct changes of M(2) receptor signaling through both preferential and non-preferential G-proteins consequent to membrane cholesterol depletion that occur at the level of receptor/G-protein/effector protein interactions in the cell membrane. The significant decrease of IP accumulation by cholesterol depletion was also observed in cells expressing M(3) receptors and by both cholesterol depletion and enrichment in cells expressing M(1) receptors indicating relevance of reduced G(q/11) signaling for the pathogenesis of Alzheimer's disease.
Collapse
|
13
|
Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RAJ. G protein coupling and signaling pathway activation by m1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J Pharmacol Exp Ther 2008; 327:365-74. [PMID: 18664591 DOI: 10.1124/jpet.108.141788] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The M(1) muscarinic acetylcholine (mACh) receptor is among a growing number of G protein-coupled receptors that are able to activate multiple signaling cascades. AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine) is an allosteric agonist that can selectively activate the M(1) mACh receptor in the absence of an orthosteric ligand. Allosteric agonists have the potential to stabilize unique receptor conformations, which may in turn cause differential activation of signal transduction pathways. In the present study, we have investigated the signaling pathways activated by AC-42, its analog 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone), and a range of orthosteric muscarinic agonists [oxotremorine-M (oxo-M), arecoline, and pilocarpine] in Chinese hamster ovary cells recombinantly expressing the human M(1) mACh receptor. Each agonist was able to activate Galpha(q/11)-dependent signaling, as demonstrated by an increase in guanosine 5'-O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding to Galpha(q/11) proteins and total [(3)H]inositol phosphate accumulation assays in intact cells. All three orthosteric agonists caused significant enhancements in [(35)S]GTPgammaS binding to Galpha(i1/2) subunits over basal; however, neither allosteric ligand produced a significant response. In contrast, both orthosteric and allosteric agonists are able to couple to the Galpha(s)/cAMP pathway, enhancing forskolin-stimulated cAMP accumulation. These data provide support for the concept that allosteric and orthosteric mACh receptor agonists both stabilize receptor conformations associated with Galpha(q/11)- and Galpha(s)-dependent signaling; however, AC-42 and 77-LH-28-1, unlike oxo-M, arecoline, and pilocarpine, do not seem to promote M(1) mACh receptor-Galpha(i1/2) coupling, suggesting that allosteric agonists have the potential to activate distinct subsets of downstream effectors.
Collapse
Affiliation(s)
- Rachel L Thomas
- Department of Cell Physiology and Pharmacology, University of Leicester, Room 4/04, Henry Wellcome Building, Lancaster Road, Leicester LE19HN, UK
| | | | | | | | | |
Collapse
|
14
|
Nathanson NM. Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 2008; 119:33-43. [PMID: 18558434 DOI: 10.1016/j.pharmthera.2008.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/28/2008] [Indexed: 12/27/2022]
Abstract
Muscarinic acetylcholine receptors are members of the G-protein coupled receptor superfamily that are expressed in and regulate the function of neurons, cardiac and smooth muscle, glands, and many other cell types and tissues. The correct trafficking of membrane proteins to the cell surface and their subsequent localization at appropriate sites in polarized cells are required for normal cellular signaling and physiological responses. This review will summarize work on the synthesis and trafficking of muscarinic receptors to the plasma membrane and their localization at the cell surface.
Collapse
Affiliation(s)
- Neil M Nathanson
- Department of Pharmacology, School of Medicine, University of Washington, Box 357750, Seattle, WA 98195-7750, USA.
| |
Collapse
|
15
|
Chu JYS, Chung SCK, Lam AKM, Tam S, Chung SK, Chow BKC. Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption. Mol Cell Biol 2007; 27:2499-511. [PMID: 17283064 PMCID: PMC1899889 DOI: 10.1128/mcb.01088-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aquaporin 2 (AQP2) is responsible for regulating the concentration of urine in the collecting tubules of the kidney under the control of vasopressin (Vp). Studies using Vp-deficient Brattleboro rats, however, indicated the existence of substantial Vp-independent mechanisms for membrane insertion, as well as transcriptional regulation, of this water channel. The Vp-independent mechanism(s) is clinically relevant to patients with X-linked nephrogenic diabetes insipidus (NDI) by therapeutically bypassing the dysfunctional Vp receptor. On the basis of studies with secretin receptor-null (SCTR(-/-)) mice, we report here for the first time that mutation of the SCTR gene could lead to mild polydipsia and polyuria. Additionally, SCTR(-/-) mice were shown to have reduced renal expression of AQP2 and AQP4, as well as altered glomerular and tubular morphology, suggesting possible disturbances in the filtration and/or water reabsorption process in these animals. By using SCTR(-/-) mice as controls and comparing them with wild-type animals, we performed both in vivo and in vitro studies that demonstrated a role for secretin in stimulating (i) AQP2 translocation from intracellular vesicles to the plasma membrane in renal medullary tubules and (ii) expression of this water channel under hyperosmotic conditions. The present study therefore provides information for at least one of the Vp-independent mechanisms that modulate the process of renal water reabsorption. Future investigations in this direction should be important in developing therapeutic means for treating NDI patients.
Collapse
Affiliation(s)
- Jessica Y S Chu
- Department of Zoology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
16
|
Spalding TA, Burstein ES. Constitutive activity of muscarinic acetylcholine receptors. J Recept Signal Transduct Res 2006; 26:61-85. [PMID: 16595339 DOI: 10.1080/10799890600567349] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We review the literature describing constitutive activity of the five muscarinic acetylcholine receptors in native and recombinant systems and discuss the effect of constitutive activity on muscarinic pharmacology in the context of modern models of receptor activation. We include a summary of mutations found to cause constitutive activity and discuss the implications of these data for the structure, function, and activation mechanism of muscarinic receptors. Finally, we discuss the possible physiological significance of constitutive activity of muscarinic receptors, incorporating information provided by targeted deletion of each of the muscarinic subtypes.
Collapse
Affiliation(s)
- Tracy A Spalding
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA.
| | | |
Collapse
|
17
|
Yao L, McFarland K, Fan P, Jiang Z, Ueda T, Diamond I. Adenosine A2a blockade prevents synergy between mu-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats. Proc Natl Acad Sci U S A 2006; 103:7877-82. [PMID: 16684876 PMCID: PMC1458620 DOI: 10.1073/pnas.0602661103] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relapse is the most serious limitation of effective medical treatment of opiate addiction. Opiate-related behaviors appear to be modulated by cannabinoid CB1 receptors (CB1) through poorly understood cross-talk mechanisms. Opiate and CB1 receptors are coexpressed in the nucleus accumbens (NAc) and dorsal striatum. These regions also have the highest density of adenosine A2a receptors (A2a) in the brain. We have been investigating the postsynaptic signaling mechanisms of mu-opiate receptors (MORs) and CB1 receptors in primary NAc/striatal neurons. In this article, we present evidence that MOR and CB1 act synergistically on cAMP/PKA signaling in NAc/striatal neurons. In addition, we find that synergy requires adenosine and A2a. Importantly, an A2a antagonist administered either directly into the NAc or indirectly by i.p. injection eliminates heroin-induced reinstatement in rats trained to self-administer heroin, a model of human craving and relapse. These findings suggest that A2a antagonists might be effective therapeutic agents in the management of abstinent heroin addicts.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Corpus Striatum/cytology
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Drug Synergism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Activation
- Gene Expression Regulation/drug effects
- Heroin Dependence
- Humans
- Male
- Neurons/drug effects
- Neurons/metabolism
- Nucleus Accumbens/cytology
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Opioid, mu/metabolism
- Self Administration
- Signal Transduction/physiology
- Theobromine/analogs & derivatives
- Theobromine/metabolism
- Theobromine/pharmacology
- Xanthines/metabolism
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Lina Yao
- *CV Therapeutics, Inc., 3172 Porter Drive, Palo Alto, CA 94304
- Ernest Gallo Clinic and Research Center, 5858 Horton Street, Suite 200, Emeryville, CA 94608; Departments of
- Neurology and
- To whom correspondence may be addressed. E-mail:
or
| | - Krista McFarland
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Peidong Fan
- *CV Therapeutics, Inc., 3172 Porter Drive, Palo Alto, CA 94304
- Ernest Gallo Clinic and Research Center, 5858 Horton Street, Suite 200, Emeryville, CA 94608; Departments of
| | - Zhan Jiang
- *CV Therapeutics, Inc., 3172 Porter Drive, Palo Alto, CA 94304
- Ernest Gallo Clinic and Research Center, 5858 Horton Street, Suite 200, Emeryville, CA 94608; Departments of
| | - Takashi Ueda
- *CV Therapeutics, Inc., 3172 Porter Drive, Palo Alto, CA 94304
- Ernest Gallo Clinic and Research Center, 5858 Horton Street, Suite 200, Emeryville, CA 94608; Departments of
| | - Ivan Diamond
- *CV Therapeutics, Inc., 3172 Porter Drive, Palo Alto, CA 94304
- Ernest Gallo Clinic and Research Center, 5858 Horton Street, Suite 200, Emeryville, CA 94608; Departments of
- Neurology and
- **Cellular and Molecular Pharmacology, and
- Neuroscience Graduate Program, University of California, San Francisco, CA 94110; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
18
|
Sánchez-Lemus E, Arias-Montaño JA. M1 muscarinic receptors contribute to, whereas M4 receptors inhibit, dopamine D1 receptor-induced [3H]-cyclic AMP accumulation in rat striatal slices. Neurochem Res 2006; 31:555-61. [PMID: 16758365 DOI: 10.1007/s11064-006-9052-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2006] [Indexed: 01/01/2023]
Abstract
In rat striatal slices labelled with [(3)H]-adenine and in the presence of 1 mM 3-isobutyl-1-methylxantine (IBMX), cyclic [(3)H]-AMP ([(3)H]-cAMP) accumulation induced by the dopamine D(1) receptor agonist SKF-81297 (1 microM; 177 +/- 13% of basal) was inhibited by the general muscarinic agonist carbachol (maximum inhibition 72 +/- 3%, IC(50) 0.30 +/- 0.06 microM). The muscarinic toxin 7 (MT-7), a selective antagonist at muscarinic M(1) receptors, reduced the effect of SKF-81297 by 40+/-7% (IC(50) 251+/- 57 pM) and enhanced the inhibitory action of a submaximal (1 microM) concentration of carbachol (69 +/- 4% vs. 40 +/- 7% inhibition, IC(50) 386 +/- 105 pM). The toxin MT-1, agonist at M(1) receptors, stimulated [(3)H]-cAMP accumulation in a modest but significant manner (137 +/- 11% of basal at 400 nM), an action additive to that of D(1) receptor activation and blocked by MT-7 (10 nM). The effects of MT-7 on D(1) receptor-induced [(3)H]-cAMP accumulation and the carbachol inhibition were mimicked by the PKC inhibitors Ro-318220 (200 nM) and Gö-6976 (200 nM). Taken together our results indicate that in addition to the inhibitory role of M(4) receptors, in rat striatum acetylcholine stimulates cAMP formation through the activation of M(1 )receptors and PKC stimulation.
Collapse
Affiliation(s)
- Enrique Sánchez-Lemus
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, México, DF, México.
| | | |
Collapse
|
19
|
Pittel Z, Barak D, Segall Y. Function-specific blockage of M(1) and M(3) muscarinic acetylcholine receptors by VX and echothiophate. Brain Res 2006; 1085:102-10. [PMID: 16580648 DOI: 10.1016/j.brainres.2006.02.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/14/2006] [Accepted: 02/19/2006] [Indexed: 11/23/2022]
Abstract
Certain organophosphate (OP) cholinesterase inhibitors (ChEIs) are also known to bind to the muscarinic acetylcholine receptor (mAChR). The functional consequences of such binding were investigated here using the following OP compounds: VX, echothiophate, sarin, and soman. VX (charged at physiological pH) and echothiophate (formally charged) inhibited a specific signal transduction pathway in CHO cells expressing either the M(1) or M(3) mAChR. Hence, they blocked carbamylcholine (CCh)-induced cyclic adenosine monophosphate (cAMP) synthesis (muM) and had almost no effect on CCh-induced phosphoinositide (PI) hydrolysis. These substances were inactive on forskolin-induced cAMP inhibition signaling in CHO cells expressing M(2) mAChR. In binding studies, using [(3)H]-N-methyl scopolamine ([(3)H]NMS) as the competitor ligand, the ChEIs, VX and echothiophate exhibited binding to rat cortical mAChR with K(i) values in the muM range. The non-charged compounds, sarin and soman, were inert in modulating both cAMP metabolism and PI hydrolysis in CHO cells expressing M(1), M(2), and M(3) mAChRs, and no binding was observed in presence of [(3)H]NMS. These data suggest that VX and echothiophate act as function-specific blockers via a non-classical path of antagonistic activity, implying the involvement of allosteric/ectopic-binding site in M(1) and M(3) mAChRs. The functionally selective antagonistic behavior of echothiophate and VX makes them potential tools for dissecting the interactions of the mAChR with different G proteins.
Collapse
Affiliation(s)
- Zipora Pittel
- Department of Medicinal Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona, Israel 74100.
| | | | | |
Collapse
|
20
|
Mistry R, Dowling MR, Challiss RAJ. An investigation of whether agonist-selective receptor conformations occur with respect to M2 and M4 muscarinic acetylcholine receptor signalling via Gi/o and Gs proteins. Br J Pharmacol 2005; 144:566-75. [PMID: 15655507 PMCID: PMC1576035 DOI: 10.1038/sj.bjp.0706090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. A range of muscarinic acetylcholine (mACh) receptor agonists (methacholine (MCh), oxotremorine-M (OXO-M), oxotremorine (OXO), arecoline (AREC), bethanechol (BETH), pilocarpine (PILO)) have been investigated with respect to their binding to, and activation of, M(2) and M(4) mACh receptors, recombinantly expressed in Chinese hamster ovary cells, to explore the possibility that these agonists may differentially affect mACh receptor-G(i/o) and -G(s) coupling. 2. M(2)/M(4) mACh receptor coupling to the adenylyl cyclase/cyclic AMP signalling pathway has been explored in intact cells. G(i/o)-mediated negative coupling to adenylyl cyclase was explored functionally by assessing the ability of the mACh receptor agonists to inhibit forskolin-stimulated enzymic activity. Following pertussis toxin treatment (100 ng ml(-1), 18-20 h) to inactivate G(i/o) proteins, each agonist caused a G(s)-mediated enhancement of forskolin-stimulated adenylyl cyclase activity. 3. At both M(2) and M(4) mACh receptors, all agonists tested were more potent in mediating G(i/o)- versus G(s)-coupled responses. This difference (determined as the pIC(50) (G(i/o) coupling) minus pEC(50) (G(s) coupling) value) was greatest for AREC (65-75-fold) and least for BETH and PILO (</=10-fold). 4. Using apparent binding affinities (pK(B)), and potency (EC(50)/IC(50)) and responsiveness (E(max)/I(max)) estimates, relative efficacy (e(rel)) values for each agonist with respect to M(2) and M(4) mACh receptor coupling to G(i/o)- and G(s)-mediated signalling were also calculated. While the e(rel) values obtained for MCh and OXO-M in CHO-m2 cells were similar, OXO-M behaved as a 'super-agonist' at the M(4) mACh receptor giving greater e(rel) values for both G(i/o) and G(s) coupling relative to MCh. 5. The experimental data indicate that while interesting differences between agonists with respect to M(2)/M(4) mACh receptor activation and receptor-G(i/o) and -G(s) coupling can be discerned, no clear examples of agonist trafficking of signal have emerged.
Collapse
Affiliation(s)
- Rajendra Mistry
- Department of Cell Physiology and Pharmacology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN
| | - Mark R Dowling
- Department of Cell Physiology and Pharmacology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN
| | - R A John Challiss
- Department of Cell Physiology and Pharmacology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN
- Author for correspondence:
| |
Collapse
|
21
|
Yao L, McFarland K, Fan P, Jiang Z, Inoue Y, Diamond I. Activator of G protein signaling 3 regulates opiate activation of protein kinase A signaling and relapse of heroin-seeking behavior. Proc Natl Acad Sci U S A 2005; 102:8746-51. [PMID: 15937104 PMCID: PMC1142483 DOI: 10.1073/pnas.0503419102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleus accumbens (NAc) is central to heroin addiction. Activation of opiate receptors in the NAc dissociates G(i/o) into alpha and betagamma subunits. Galpha(i) inhibits cAMP production, but betagamma regulates several molecular pathways, including protein kinase A (PKA). We show in NAc/striatal neurons that opiates paradoxically activate PKA signaling by means of betagamma dimers. Activation requires Galpha(i3) and an activator of G protein signaling 3 (AGS3). AGS3 competes with betagamma for binding to Galpha(i3)-GDP and enhances the action of unbound betagamma. AGS3 and Galpha(i3) knockdown prevents opiate activation of PKA signaling. In rats self-administering heroin, AGS3 antisense in the NAc core, but not shell, eliminates reinstatement of heroin-seeking behavior, a model of human relapse. Thus, Galpha(i3)/betagamma/AGS3 appears to mediate mu opiate receptor activation of PKA signaling as well as heroin-seeking behavior.
Collapse
Affiliation(s)
- Lina Yao
- Ernest Gallo Clinic and Research Center, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Marín YE, Chen S. Involvement of metabotropic glutamate receptor�1, a G protein coupled receptor, in melanoma development. J Mol Med (Berl) 2004; 82:735-49. [PMID: 15322701 DOI: 10.1007/s00109-004-0566-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 05/18/2004] [Indexed: 01/02/2023]
Abstract
Melanoma is the aberrant proliferation of melanocytes, the cells in the skin responsible for pigment production. In the United States the current lifetime risk of melanoma development is 1 in 57 in males and 1 in 81 in females. In its early stages melanoma can be surgically removed with great success; however, advanced stages of melanoma have a high mortality rate due to the lack of responsiveness to currently available therapies. The development of animal models to be used in the studies of melanoma will provide the means for developing improved and targeted treatments for this disease. This review focuses on the recent report of a mouse melanoma model, TG-3, which has implicated the ectopic expression of the metabotropic glutamate receptor 1 (Grm1), a G protein coupled receptor (GPCR), in melanomagenesis and metastasis. The involvement of other GPCRs in cellular transformation, particularly GPCRs in melanoma biology, and signaling of Grm1 are also discussed.
Collapse
Affiliation(s)
- Yarí E Marín
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | | |
Collapse
|
23
|
Sadee W, Hoeg E, Lucas J, Wang D. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS PHARMSCI 2001; 3:E22. [PMID: 11741273 PMCID: PMC2751017 DOI: 10.1208/ps030322] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.
Collapse
Affiliation(s)
- W Sadee
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco CA 94143-0446, USA.
| | | | | | | |
Collapse
|
24
|
Leaney JL, Dekker LV, Tinker A. Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca(2+)-independent protein kinase C. J Physiol 2001; 534:367-79. [PMID: 11454957 PMCID: PMC2278717 DOI: 10.1111/j.1469-7793.2001.00367.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Members of the Kir3.0 family of inwardly rectifying K(+) channels are expressed in neuronal, atrial and endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials (IPSPs), slowing heart rate and modulating hormone release. They are activated directly by G(betagamma) subunits released in response to G(i/o)-coupled receptor stimulation. However, it is not clear to what extent this process can be dynamically regulated by other cellular signalling systems. In this study we have explored pathways activated by the G(q/11)-coupled M(1) and M(3) muscarinic receptors and their role in the regulation of Kir3.1+3.2A neuronal-type channels stably expressed in the human embryonic kidney cell line HEK293. 2. We describe a novel biphasic pattern of behaviour in which currents are initially stimulated but subsequently profoundly inhibited through activation of M(1) and M(3) receptors. This contrasts with the simple stimulation seen through activation of M(2) and M(4) receptors. 3. Channel stimulation via M(1) but not M(3) receptors was sensitive to pertussis toxin whereas channel inhibition through both M(1) and M(3) receptors was insensitive. In contrast over-expression of the C-terminus of phospholipase Cbeta1 or a G(q/11)-specific regulator of G protein signalling (RGS2) essentially abolished the inhibitory phase. 4. The inhibitory effects of M(1) and M(3) receptor stimulation were mimicked by phorbol esters and a synthetic analogue of diacylglycerol but not by the inactive phorbol ester 4alphaphorbol. Inhibition of the current by a synthetic analogue of diacylglycerol effectively occluded any further inhibition (but not activation) via the M(3) receptor. 5. The receptor-mediated inhibitory phenomena occur with essentially equal magnitude at all intracellular calcium concentrations examined (range, 0-669 nM). 6. The expression of endogenous protein kinase C (PKC) isoforms in HEK293 cells was examined by immunoblotting, and their translocation in response to phorbol ester treatment by cellular extraction. The results indicated the expression and translocation of the novel PKC isoforms PKCdelta and PKCepsilon. 7. We also demonstrate that activation of such a pathway via both receptor-mediated and receptor-independent means profoundly attenuated subsequent channel stimulation by G(i/o)-coupled receptors. 8. Our data support a role for a Ca(2+)-independent PKC isoform in dynamic channel regulation, such that channel activity can be profoundly reduced by M(1) and M(3) muscarinic receptor stimulation.
Collapse
Affiliation(s)
- J L Leaney
- Centre for Clinical Pharmacology, Department of Medicine, UCL, The Rayne Institute, 5 University Street, London WC1E 6JJ, UK
| | | | | |
Collapse
|
25
|
Kähler CM, Pischel AB, Haller T, Meierhofer C, Djanani A, Kaufmann G, Wiedermann CJ. Signal transduction pathways in directed migration of human monocytes induced by human growth hormone in vitro. Int Immunopharmacol 2001; 1:1351-61. [PMID: 11460315 DOI: 10.1016/s1567-5769(01)00067-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The human growth hormone (GH) was shown to modulate leukocyte functions such as stimulating directed migration of human monocytes in vitro. Dimerisation of GH-receptors leads to the activation of various signalling mechanisms. As transduction of GH signals to monocytes is unknown, we investigated GH signalling mechanisms in monocyte migration using a modified Boyden chamber chemotaxis assay. Inhibition of tyrosyl phosphorylation of GH receptor-associated tyrosine kinase by tyrphostin-23 or staurosporine blocked GH-stimulated monocyte migration down to random levels. Furthermore, pre-incubation with effective concentrations of 4B-phorbol-12-myristate-13-acetate (PMA), staurosporine and bisindolylmaleimide I, inhibitors of protein kinase C, significantly decreased GH-induced migration, suggesting that PKC is involved in the signalling cascade. Additionally, phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK) activation seems to be required. This study revealed signalling pathways in monocyte movement toward GH in vitro.
Collapse
Affiliation(s)
- C M Kähler
- Pneumology Service, Department of General Internal Medicine, Faculty of Medicine, University of Innsbruck, Anichstrasse, 35, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Kohen R, Fashingbauer LA, Heidmann DE, Guthrie CR, Hamblin MW. Cloning of the mouse 5-HT6 serotonin receptor and mutagenesis studies of the third cytoplasmic loop. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 90:110-7. [PMID: 11406289 DOI: 10.1016/s0169-328x(01)00090-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have cloned the mouse 5-HT6 serotonin receptor and examined structure-function relationships in the C-terminal end of the third cytoplasmic (CIII) loop, introducing point mutations by site-directed mutagenesis at positions 264 to 268. We examined the ability of 5-HT6 wild type and receptor mutants to activate a cAMP responsive reporter gene when transiently expressed in JEG-3 or COS-7 cells. The wild type 5-HT6 receptor showed strong constitutive activity even when expressed at very low levels and which increased in proportion to the amount of receptor cDNA transfected. Three of the five mutants investigated (K264I, K267A and A268R) showed reduction in constitutive activity compared to wild type. These data suggest that constitutive activity may be important to 5-HT6 receptor activity in vivo and that, unlike some other G-protein coupled receptors, alteration in the BBXXB CIII-loop motif reduces rather than further activates basal activity of the murine 5-HT6 receptor.
Collapse
Affiliation(s)
- R Kohen
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, GRECC-182B, 1660 S. Columbian Way, Seattle, WA 98108, USA
| | | | | | | | | |
Collapse
|
27
|
Erlenbach I, Kostenis E, Schmidt C, Hamdan FF, Pausch MH, Wess J. Functional expression of M(1), M(3) and M(5) muscarinic acetylcholine receptors in yeast. J Neurochem 2001; 77:1327-37. [PMID: 11389184 DOI: 10.1046/j.1471-4159.2001.00344.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The goal of this study was to functionally express the three G(q)-coupled muscarinic receptor subtypes, M(1), M(3) and M(5), in yeast (Saccharomyces cerevisiae). Transformation of yeast with expression constructs coding for the full-length receptors resulted in very low numbers of detectable muscarinic binding sites (B(max) < 5 fmol/mg). Strikingly, deletion of the central portion of the third intracellular loops of the M(1), M(3) and M(5) muscarinic receptors resulted in dramatic increases in B(max) values (53-214 fmol/mg). To monitor productive receptor/G-protein coupling, we used specifically engineered yeast strains that required agonist-stimulated receptor/G-protein coupling for cell growth. These studies showed that the shortened versions of the M(1), M(3) and M(5) receptors were unable to productively interact with the endogenous yeast G protein alpha-subunit, Gpa1p, or a Gpa1 mutant subunit that contained C-terminal mammalian Galpha(s) sequence. In contrast, all three receptors gained the ability to efficiently couple to a Gpa1/Galpha(q) hybrid subunit containing C-terminal mammalian Galpha(q) sequence, indicating that the M(1), M(3) and M(5) muscarinic receptors retained proper G-protein coupling selectivity in yeast. This is the first study to report the expression of muscarinic receptors in a coupling-competent form in yeast. The strategy described here, which involves structural modification of both receptors and co-expressed G proteins, should facilitate the functional expression of other classes of G protein-coupled receptors in yeast.
Collapse
Affiliation(s)
- I Erlenbach
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Nadler LS, Kumar G, Nathanson NM. Identification of a basolateral sorting signal for the M3 muscarinic acetylcholine receptor in Madin-Darby canine kidney cells. J Biol Chem 2001; 276:10539-47. [PMID: 11136723 DOI: 10.1074/jbc.m007190200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) can be differentially localized in polarized cells. To identify potential sorting signals that mediate mAChR targeting, we examined the sorting of mAChRs in Madin-Darby canine kidney cells, a widely used model system. Expression of FLAG-tagged mAChRs in polarized Madin-Darby canine kidney cells demonstrated that the M(2) subtype is sorted apically, whereas M(3) is targeted basolaterally. Expression of M(2)/M(3) receptor chimeras revealed that a 21-residue sequence, Ser(271)-Ser(291), from the M(3) third intracellular loop contains a basolateral sorting signal. Substitution of sequences containing the M(3) sorting signal into the homologous regions of M(2) was sufficient to confer basolateral localization to this apical receptor. Sequences containing the M(3) sorting signal also conferred basolateral targeting to M(2) when added to either the third intracellular loop or the C-terminal cytoplasmic tail. Furthermore, addition of a sequence containing the M(3) basolateral sorting signal to the cytoplasmic tail of the interleukin-2 receptor alpha-chain caused significant basolateral targeting of this heterologous apical protein. The results indicate that the M(3) basolateral sorting signal is dominant over apical signals in M(2) and acts in a position-independent manner. The M(3) sorting signal represents a novel basolateral targeting motif for G protein-coupled receptors.
Collapse
Affiliation(s)
- L S Nadler
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | | | |
Collapse
|
29
|
Michal P, Lysíková M, Tuček S. Dual effects of muscarinic M(2) acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists. Br J Pharmacol 2001; 132:1217-28. [PMID: 11250872 PMCID: PMC1572666 DOI: 10.1038/sj.bjp.0703931] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Muscarinic M(2) receptors normally inhibit the production of cyclic AMP via G(i) proteins, but a stimulatory component occurs in their effect at high agonist concentrations, believed to be based on the activation of G(s) proteins. We investigated the conditions which determine the occurrence and extent of the stimulatory component in CHO cells stably expressing muscarinic M(2) receptors. 2. Biphasic concentration-response curves (decline followed by return towards control values) were obtained after 10 min incubation with carbachol, oxotremorine-M, acetylcholine, arecoline and arecaidine propargyl ester, but the upward phase was missing with oxotremorine, methylfurmethide, furmethide and pentylthio-TZTP. Shortening the incubation favoured the occurrence of the stimulatory component. Carbachol (1 mM) and oxotremorine-M (1 mM) brought about net stimulation (above 100% of control) of cyclic AMP synthesis during 2 min incubations. The stimulatory components disappeared after the density of receptors had been lowered with oxyphenonium mustard. 3. All agonists stimulated the synthesis of cyclic AMP in cells pretreated with pertussis toxin. 4. Most differences between agonists regarding the stimulatory component of their effect on cyclic AMP synthesis could be explained by differences in their efficacy and the induced receptor internalization. 5. We propose that the G(s)-mediated stimulatory component of the effect of muscarinic M(2) receptors on cyclic AMP synthesis only occurs if the density of activated receptors is high enough to saturate the G(i) proteins and proportionate to the receptors' low affinity for the G(s) proteins. It tends to be abolished by receptor internalization.
Collapse
Affiliation(s)
- Pavel Michal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Michaela Lysíková
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Stanislav Tuček
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic
- Author for correspondence:
| |
Collapse
|
30
|
Xing H, Tran HC, Knapp TE, Negulescu PA, Pollok BA. A fluorescent reporter assay for the detection of ligands acting through Gi protein-coupled receptors. J Recept Signal Transduct Res 2000; 20:189-210. [PMID: 11192018 DOI: 10.3109/10799890009150644] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Accompanying the advances in basic biology of G protein-coupled receptors (GPCRs) is the practical need among biopharmaceutical companies for sensitive assays to assess GPCR function, particularly formats that are compatible with high-throughput drug screening. Here we describe a novel cell-based assay format for the high-throughput detection of ligands for Gi protein-coupled receptors. Two Gi-GPCRs, mu-opioid receptor (mu-OPR) and 5-hydroxytryptamine receptor la (5HT1aR) are employed as model receptor targets. The key feature of this assay system is the isolation of stable, clonal Chinese hamster ovary (CHO) cell lines that carry three separate expression plasmids: (1) a chimeric Gq/i5 protein (which re-directs a negative Gi-type signal to a positive Gq-type response), (2) a given Gi-GPCR, and (3) a beta-lactamase (beta1a) reporter gene responsive to Gi-GPCR signaling. Cell-based assays built using this format show appropriate rank order of potency among a reference set of receptor agonist and antagonist compounds. Such assays are also robust, reliable, and can be used for industrial-scale applications such as high-throughput screening for drug leads.
Collapse
Affiliation(s)
- H Xing
- Aurora Biosciences Corporation, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
31
|
Durocher Y, Perret S, Thibaudeau E, Gaumond MH, Kamen A, Stocco R, Abramovitz M. A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem 2000; 284:316-26. [PMID: 10964415 DOI: 10.1006/abio.2000.4698] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe in detail a robust, sensitive, and versatile functional assay for G-protein-coupled receptors (GPCRs) expressed in human embryonic kidney (HEK) 293-EBNA (Epstein-Barr virus nuclear antigen) (designated 293E) cells. The ability to grow these cells in suspension, in conjunction with the use of the secreted form of the human placental alkaline phosphatase (SEAP) as the reporter enzyme transcriptionally regulated by 5-cyclic AMP (cAMP) response elements (CREs) (Chen et al., Anal. Biochem. 226, 349-354 (1995)), makes this CRE-SEAP assay potentially attractive for high-throughput screening (HTS). A 293E clonal cell line, stably transfected with the CRE-SEAP plasmid, was initially characterized with compounds known to activate intracellular signal transduction pathways similar to those activated by GPCRs. Forskolin and cAMP analogues were potent at inducing SEAP expression but calcium ionophores (A23187 and ionomycin) were without effect. The forskolin response was also potentiated by the protein kinase C activator phorbol myristate acetate as well as the phosphodiesterase inhibitor isobutylmethylxanthine. Previously established cell lines expressing the G(alphas)-coupled DP or the G(alphaq)-coupled-EP(1) prostanoid receptors were stably transfected with the reporter gene construct and clones were selected based on their ability to secrete SEAP upon agonist challenge. Pharmacological characterization of the DP and EP(1) receptors displayed a similar rank order of potency for several known prostanoids and related compounds to that previously reported using classical binding assays or other functional assays. The CRE-SEAP assay was also used to characterize the EP(1) receptor antagonists SC-51322, SC-51089, and AH6809. In summary, we have established a reporter gene assay for GPCRs that couple to both G(alphas) and G(alphaq) and is amenable to HTS of both agonists and antagonists.
Collapse
Affiliation(s)
- Y Durocher
- Bioprocess Sector, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada.
| | | | | | | | | | | | | |
Collapse
|
32
|
Schlador ML, Grubbs RD, Nathanson NM. Multiple topological domains mediate subtype-specific internalization of the M2 muscarinic acetylcholine receptor. J Biol Chem 2000; 275:23295-302. [PMID: 10930431 DOI: 10.1074/jbc.m002380200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocytosis of agonist-activated G protein-coupled receptors (GPCRs) is required for both resensitization and recycling to the cell surface as well as lysosomal degradation. Thus, this process is crucial for regulation of receptor signaling and cellular responsiveness. Although many GPCRs internalize into clathrin-coated vesicles in a dynamin-dependent manner, some receptors, including the M(2) muscarinic acetylcholine receptor (mAChR), can also exhibit dynamin-independent internalization. We have identified five amino acids, located in the sixth and seventh transmembrane domains and the third intracellular loop, that are essential for agonist-induced M(2) mAChR internalization via a dynamin-independent mechanism in JEG-3 choriocarcinoma cells. Substitution of these residues into the M(1) mAChR, which does not internalize in these cells, is sufficient for conversion to the internalization-competent M(2) mAChR phenotype, whereas removal of these residues from the M(2) mAChR blocks internalization. Cotransfection of a dominant-negative isoform of dynamin has no effect on M(2) mAChR internalization. An internalization-incompetent M(2) mutant that lacks a subset of the necessary residues can still internalize via a G protein-coupled receptor kinase-2 and beta-arrestin-dependent pathway. Furthermore, internalization is independent of the signal transduction pathway that is activated. These results identify a novel motif that specifies structural requirements for subtype-specific dynamin-independent internalization of a GPCR.
Collapse
Affiliation(s)
- M L Schlador
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
33
|
Nathanson NM. A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. Proc Natl Acad Sci U S A 2000; 97:6245-7. [PMID: 10841527 PMCID: PMC33994 DOI: 10.1073/pnas.97.12.6245] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- N M Nathanson
- Department of Pharmacology, Box 357750, University of Washington, Seattle, WA 98195-7750, USA.
| |
Collapse
|
34
|
Leaney JL, Tinker A. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc Natl Acad Sci U S A 2000; 97:5651-6. [PMID: 10779550 PMCID: PMC25883 DOI: 10.1073/pnas.080572297] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inwardly rectifying potassium (K(+)) channels gated by G proteins (Kir3.x family) are widely distributed in neuronal, atrial, and endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials, slowing the heart rate and modulating hormone release. They are directly activated by G(betagamma) subunits released from G protein heterotrimers of the G(i/o) family upon appropriate receptor stimulation. Here we examine the role of isoforms of pertussis toxin (PTx)-sensitive G protein alpha subunits (G(ialpha1-3) and G(oalphaA)) in mediating coupling between various receptor systems (A(1), alpha(2A), D(2S), M(4), GABA(B)1a+2, and GABA(B)1b+2) and the cloned counterpart of the neuronal channel (Kir3.1+3.2A). The expression of mutant PTx-resistant G(i/oalpha) subunits in PTx-treated HEK293 cells stably expressing Kir3.1+3.2A allows us to selectively investigate that coupling. We find that, for those receptors (A(1), alpha(2A)) known to interact with all isoforms, G(ialpha1-3) and G(oalphaA) can all support a significant degree of coupling to Kir3.1+3.2A. The M(4) receptor appears to preferentially couple to G(ialpha2) while another group of receptors (D(2S), GABA(B)1a+2, GABA(B)1b+2) activates the channel predominantly through G(betagamma) liberated from G(oA) heterotrimers. Interestingly, we have also found a distinct difference in G protein coupling between the two splice variants of GABA(B)1. Our data reveal selective pathways of receptor activation through different G(i/oalpha) isoforms for stimulation of the G protein-gated inwardly rectifying K(+) channel.
Collapse
Affiliation(s)
- J L Leaney
- Centre for Clinical Pharmacology, Department of Medicine, University College London, The Rayne Institute, 5 University Street, London WC1E 6JJ, United Kingdom
| | | |
Collapse
|
35
|
Fitzgerald LR, Mannan IJ, Dytko GM, Wu HL, Nambi P. Measurement of responses from Gi-, Gs-, or Gq-coupled receptors by a multiple response element/cAMP response element-directed reporter assay. Anal Biochem 1999; 275:54-61. [PMID: 10542109 DOI: 10.1006/abio.1999.4295] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have established a rapid, sensitive, high-throughput assay that requires one assay condition to detect agonist effects from Gi-, Gs-, and Gq-coupled receptors. We utilized a vector containing a promoter with three multiple response elements, the vasoactive intestinal peptide promoter and a cAMP response element controlling the transcription of the luciferase gene. An adrenergic agonist, para-aminoclonidine, inhibited forskolin-stimulated luciferase expression when cells were cotransfected with the Gi-coupled alpha(2)-C adrenergic receptor and the MRE/CRE reporter vector. Further, we demonstrate that gastrin-releasing peptide, which activates a Gq-coupled GRP receptor, isoproterenol, which activates a Gs-coupled beta-adrenergic receptor, calcium ionophores, and phorbol 12-myristate 13-acetate, a stimulator of protein kinase C, can mediate increases in luciferase expression in the presence of forskolin but not in its absence. The effect at Gi-coupled receptor activation correlates with the phosphorylation of the CRE binding protein (CREB); however, the mechanisms mediating the responses to Gq- and Gs-coupled receptors are more complex. We demonstrate that this assay is useful for pharmacological analysis of both agonists and antagonists and has the potential to associate orphan G-protein-coupled receptors with their corresponding ligands.
Collapse
Affiliation(s)
- L R Fitzgerald
- Department of Renal Pharmacology, SmithKline Beecham Pharmaceuticals, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | |
Collapse
|
36
|
Bae H, Cabrera-Vera TM, Depree KM, Graber SG, Hamm HE. Two amino acids within the alpha4 helix of Galphai1 mediate coupling with 5-hydroxytryptamine1B receptors. J Biol Chem 1999; 274:14963-71. [PMID: 10329698 DOI: 10.1074/jbc.274.21.14963] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that residues 299-318 in Galphai1 participate in the selective interaction between Galphai1 and the 5-hydroxytryptamine1B (5-HT1B) receptor (Bae, H., Anderson, K., Flood, L. A., Skiba, N. P., Hamm, H. E., and Graber, S. G. (1997) J. Biol. Chem. 272, 32071-32077). The present study more precisely defines which residues within this domain are critical for 5-HT1B receptor-mediated G protein activation. A series of Galphai1/Galphat chimeras and point mutations were reconstituted with Gbetagamma and Sf9 cell membranes containing the 5-HT1B receptor. Functional coupling to 5-HT1B receptors was assessed by 1) [35S]GTPgammaS binding and 2) agonist affinity shift assays. Replacement of the alpha4 helix of Galphai1 (residues 299-308) with the corresponding sequence from Galphat produced a chimera (Chi22) that only weakly coupled to the 5-HT1B receptor. In contrast, substitution of residues within the alpha4-beta6 loop region of Galphai1 (residues 309-318) with the corresponding sequence in Galphat either permitted full 5-HT1B receptor coupling to the chimera (Chi24) or only minimally reduced coupling to the chimeric protein (Chi25). Two mutations within the alpha4 helix of Galphai1 (Q304K and E308L) reduced agonist-stimulated [35S]GTPgammaS binding, and the effects of these mutations were additive. The opposite substitutions within Chi22 (K300Q and L304E) restored 5-HT1B receptor coupling, and again the effects of the two mutations were additive. Mutations of other residues within the alpha4 helix of Galphai1 had minimal to no effect on 5-HT1B coupling behavior. These data provide evidence that alpha4 helix residues in Galphai participate in directing specific receptor interactions and suggest that Gln304 and Glu308 of Galphai1 act in concert to mediate the ability of the 5-HT1B receptor to couple specifically to inhibitory G proteins.
Collapse
Affiliation(s)
- H Bae
- Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
37
|
Hamilton SE, McKinnon LA, Jackson DA, Goldman PS, Migeon JC, Habecker BA, Thomas SL, Nathanson NM. Molecular analysis of the regulation of muscarinic receptor expression and function. Life Sci 1999; 56:939-43. [PMID: 10188796 DOI: 10.1016/0024-3205(95)00031-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several systems are being used to determine the molecular and cellular basis for the regulation of expression and function of the muscarinic receptors. Treatment of chick heart cells in culture results in decreased levels of mRNA encoding the cm2 and cm4 receptors. This probably results from decreased gene transcription which requires concomitant mAChR-mediated inhibition of adenylyl cyclase and mAChR-mediated stimulation of phospholipase C. Site-directed mutagenesis was used to demonstrate that the single tyrosine residue in the carboxyl-terminal cytoplasmic tail of the m2 receptor is involved in agonist-induced down-regulation but not sequestration. Activation of heterologous receptors in chick heart cells can also regulate mAChR mRNA levels. A cAMP-regulated luciferase reporter gene, has been used to demonstrate that the m4 receptor preferentially couples to Gi alpha-2 or Go alpha over Gi alpha-1 or Gi alpha-3 to mediate inhibition of adenylyl cyclase activity. Finally, in order to determine the role of individual receptor subtypes in muscarinic-mediated responses in vivo, we are beginning to use the method of targeted gene disruption by homologous recombination to generate mice deficient in specific receptor subtypes.
Collapse
Affiliation(s)
- S E Hamilton
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kenny BA, Bushfield M, Parry-Smith DJ, Fogarty S, Treherne JM. The application of high-throughput screening to novel lead discovery. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1999; 51:245-69. [PMID: 9949864 DOI: 10.1007/978-3-0348-8845-5_7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to discover new lead compounds for novel therapeutic targets is a pivotal step in drug discovery programmes. High-throughput screening (HTS) utilises a number of platforms for the rapid screening of novel targets to accelerate this process. Key issues in HTS include assay configuration and the ability of a high-throughput screen to predict drug-target interactions accurately. This review highlights a number of issues in the HTS process and describes three key target areas that are likely to be sources of novel, therapeutically important drugs. Particular emphasis is placed on the mechanistic basis of drug-target interactions that are of prime importance in the design of HTS approaches. Critical aspects of information management related to HTS are summarised.
Collapse
Affiliation(s)
- B A Kenny
- Cambridge Drug Discovery, Cambridge, UK
| | | | | | | | | |
Collapse
|
39
|
Wildin RS, Cogdell DE, Valadez V. AVPR2 variants and V2 vasopressin receptor function in nephrogenic diabetes insipidus. Kidney Int 1998; 54:1909-22. [PMID: 9853256 DOI: 10.1046/j.1523-1755.1998.00214.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The AVPR2 gene encodes the type 2 vasopressin receptor, a member of the vasopressin/oxytocin receptor subfamily of G protein-coupled receptors. Disruption of AVPR2 causes X-linked congenital nephrogenic diabetes insipidus (NDI), yet the functional significance of most gene sequence variations found in association with NDI has not been proven. The large number of naturally occurring AVPR2 mutations constitutes a model system for studying the structure-function relationship of G protein-coupled receptors. This analysis can be aided by examining amino acid sequence variation and conservation among evolutionarily disparate members of the subfamily. METHODS Twenty-five new NDI patients were evaluated by DNA sequencing for mutations in AVPR2. Receptors encoded by eighteen NDI alleles were tested for physiologic signaling activity in response to varying concentrations of arginine vasopressin (AVP) in a sensitive cell culture assay. Seventeen amino acid sequences from the vasopressin/oxytocin receptor subfamily were aligned and conserved residues were identified and correlated with the locations of NDI associated variations. RESULTS Twenty-four variant alleles were found among the 25 new patients. Thirteen had no prior family history of expressed NDI. All 18 of the NDI-associated AVPR2 alleles tested for function demonstrated diminished response to stimulation with AVP. Twelve failed to respond at all, whereas six signaled only at high AVP concentrations. Evolutionarily conserved residues clustered in the transmembrane domains and in the first and second extracellular loops, and NDI-associated missense mutations appeared mostly in the conserved domains. CONCLUSIONS Sporadic cases are frequent and they usually represent the X-linked rather than the autosomal form of NDI. Genetic and functional testing can confirm this in individual cases. Mutations in this study affecting ligand binding domains tend to retain partial signaling in vitro, whereas those that introduce a charged residue in a transmembrane domain are inactive. The minimal partial signaling observed in cultured cells is unlikely to correlate with clinically significant urine concentrating ability. Other AVPR2 mutations with milder effects on receptor function probably exist, but may not be expressed clinically as typical NDI.
Collapse
Affiliation(s)
- R S Wildin
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, USA.
| | | | | |
Collapse
|
40
|
Abstract
Molecular cloning studies have shown that G-protein-coupled receptors form one of the largest protein families found in nature, and it is estimated that approximately 1000 different such receptors exist in mammals. Characteristically, when activated by the appropriate ligand, an individual receptor can recognize and activate only a limited set of the many structurally closely related heterotrimeric G-proteins expressed within a cell. To understand how this selectivity is achieved at a molecular level has become the focus of an ever increasing number of laboratories. This review provides an overview of recent structural, molecular genetic, biochemical, and biophysical studies that have led to novel insights into the molecular mechanisms governing receptor-mediated G-protein activation and receptor/G-protein coupling selectivity.
Collapse
Affiliation(s)
- J Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
George SE, Bungay PJ, Naylor LH. Functional analysis of the D2L dopamine receptor expressed in a cAMP-responsive luciferase reporter cell line. Biochem Pharmacol 1998; 56:25-30. [PMID: 9698085 DOI: 10.1016/s0006-2952(98)00014-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Chinese hamster ovary (CHO) cell line expressing the firefly luciferase gene under the control of six cAMP response elements (CREs) was stably transfected with the long form of the rat D2 dopamine receptor. Saturation binding analysis using [3H]spiperone showed that the receptor was expressed at low levels (Bmax = 96.5+/-15.8 fmol/mg), but with an affinity characteristic of the D2 receptor (Kd = 21.5+/-3.7 pM). Luciferase expression in this cell line was modified in a dose dependent manner with dopamine receptor agonists (N-propylapomorphine > apomorphine > quinpirole > dopamine) and antagonists (spiperone > (+)-butaclamol > D0710 > (-)-sulpiride > tiapride > remoxipride), according to their rank order of potency in binding and cAMP accumulation studies. Dopamine-mediated inhibition of forskolin-stimulated luciferase expression was pertussis toxin sensitive. This demonstrated the efficiency of the luciferase reporter gene assay for the functional testing of D2 dopamine receptors, which are negatively coupled to the adenylyl cyclase signaling pathway, when heterogously expressed at low levels in CHO cells.
Collapse
Affiliation(s)
- S E George
- Department of Biosciences, The University of Kent, Canterbury, UK
| | | | | |
Collapse
|
42
|
Hamilton SE, Schlador ML, McKinnon LA, Chmelar RS, Nathanson NM. Molecular mechanisms for the regulation of the expression and function of muscarinic acetylcholine receptors. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:275-8. [PMID: 9789822 DOI: 10.1016/s0928-4257(98)80032-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The regulation of muscarinic acetylcholine receptor expression and function was investigated in cultured cells and in knockout mice. Muscarinic agonist exposure causes m2 receptor desensitization and sequestration and decreases the expression of cardiac potassium channels. The expression of m2 receptors in chick retina is regulated by a developmentally regulated secreted factor. Mice lacking the m1 receptor exhibit a loss of muscarinic regulation of M-current potassium channel activity and pilocarpine-induced seizures.
Collapse
Affiliation(s)
- S E Hamilton
- Department of Pharmacology, University of Washington, Seattle 98195-7750, USA
| | | | | | | | | |
Collapse
|
43
|
Rosoff ML, Nathanson NM. GATA factor-dependent regulation of cardiac m2 muscarinic acetylcholine gene transcription. J Biol Chem 1998; 273:9124-9. [PMID: 9535902 DOI: 10.1074/jbc.273.15.9124] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The m2 subtype is the predominant muscarinic acetylcholine receptor subtype expressed in heart and regulates the rate and force of cardiac contraction. We have previously reported the isolation of the promoter region for the chick m2 receptor gene and defined a region of the chick m2 promoter sufficient for high level expression in cardiac primary cultures. In this manuscript we demonstrate transactivation of cm2 promoter by the GATA family of transcription factors. In addition, we define the GATA-responsive element in the chick m2 promoter and demonstrate that this element is required for expression in cardiac primary cultures. Finally, we demonstrate specific binding of both a chick heart nuclear protein and of cloned chick GATA-4, -5, and -6 to the GATA-responsive element.
Collapse
Affiliation(s)
- M L Rosoff
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
44
|
Bae H, Anderson K, Flood LA, Skiba NP, Hamm HE, Graber SG. Molecular determinants of selectivity in 5-hydroxytryptamine1B receptor-G protein interactions. J Biol Chem 1997; 272:32071-7. [PMID: 9405403 DOI: 10.1074/jbc.272.51.32071] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The recognition between G protein and cognate receptor plays a key role in specific cellular responses to environmental stimuli. Here we explore specificity in receptor-G protein coupling by taking advantage of the ability of the 5-hydroxytryptamine1B (5-HT1B) receptor to discriminate between G protein heterotrimers containing Galphai1 or Galphat. Gi1 can interact with the 5-HT1B receptor and stabilize a high affinity agonist binding state of this receptor, but Gt cannot. A series of Galphat/Galphai1 chimeric proteins have been generated in Escherichia coli, and their functional integrity has been reported previously (Skiba, N. P., Bae, H., and Hamm, H. E. (1996) J. Biol. Chem. 271, 413-424). We have tested the functional coupling abilities of the Galphat/Galphai1 chimeras to 5-HT1B receptors using high affinity agonist binding and receptor-stimulated guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding. In the presence of betagamma subunits, amino acid residues 299-318 of Galphai1 increase agonist binding to the 5-HT1B receptor and receptor stimulation of GTPgammaS binding. Moreover, Galphai1 containing only Galphat amino acid sequences from this region does not show any coupling ability to 5-HT1B receptors. Our studies suggest that the alpha4 helix and alpha4-beta6 loop region of Galphas are an important region for specific recognition between receptors and Gi family members.
Collapse
Affiliation(s)
- H Bae
- Department of Physiology & Biophysics, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wang D, Chen P, Liu W, Li CS, Halpern M. Chemosignal transduction in the vomeronasal organ of garter snakes: Ca(2+)-dependent regulation of adenylate cyclase. Arch Biochem Biophys 1997; 348:96-106. [PMID: 9390179 DOI: 10.1006/abbi.1997.0366] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Earthworm shock secretion contains a 20-kDa vomeronasally mediated chemoattractive protein for garter snakes. Both the ligand-receptor binding and the chemoattractivity of ES20 are Ca(2+)-dependent. When ES20 binds to its G-protein-coupled receptors in the vomeronasal epithelium, the inositol 1,4,5-trisphosphate (IP3) level is increased, but the level of cAMP is reduced. Furthermore, forskolin-stimulated levels of cAMP are completely blocked by ES20-receptor binding or by Ca2+ alone and the effect of calcium ions can be nullified by EGTA. Previously, we hypothesized that the decrease in cAMP was due to activation of a Ca(2+)-dependent phosphodiesterase. In the present study, we provide evidence that the decrease in cAMP is due mainly to the regulation of adenylate cyclase (AC) activity by Ca2+ or is indirectly mediated by ES20. Results obtained with intact vomeronasal sensory epithelium suggest that the binding of ES20 to its receptors facilitates generation of IP3 which mobilizes intracellularly sequestered Ca2+, resulting in an increase of cystosolic Ca2+. A further increase in cytosolic Ca2+ occurs through Ca2+ influx from extracellular sources. Garter snake vomeronasal AC does not require calmodulin for its activity and shows a biphasic response to increasing concentrations of Ca2+; its activity is modulated both positively and negatively by this bivalent cation.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry, State University of New York Health Science Center at Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
46
|
Schlador ML, Nathanson NM. Synergistic regulation of m2 muscarinic acetylcholine receptor desensitization and sequestration by G protein-coupled receptor kinase-2 and beta-arrestin-1. J Biol Chem 1997; 272:18882-90. [PMID: 9228066 DOI: 10.1074/jbc.272.30.18882] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The m2 muscarinic acetylcholine receptor (m2 mAChR) belongs to the superfamily of G protein-coupled receptors and is regulated by many processes that attenuate signaling following prolonged stimulation by agonist. We used a heterologous expression system to examine the ability of G protein-coupled receptor kinase-2 (GRK2) and beta-arrestin-1 to regulate the phosphorylation state and to promote desensitization and sequestration of the m2 mAChR. Treatment of JEG-3 cells transiently expressing the m2 mAChR with a muscarinic agonist induced an approximately 4- or 8-fold increase in receptor phosphorylation in the absence or presence of cotransfected GRK2, respectively, compared with untreated cells transfected with receptor alone. Using the expression of a cAMP-regulated reporter gene to measure receptor function, we found that transiently transfected m2 mAChRs underwent functional desensitization following exposure to agonist. Transfected GRK2 enhanced agonist-induced functional desensitization in a manner that was synergistically enhanced by cotransfection of beta-arrestin-1, which had no effect on m2 mAChR function when coexpressed in the absence of GRK2. Finally, GRK2 and beta-arrestin-1 synergistically enhanced both the rate and extent of agonist-induced m2 mAChR sequestration. These results are the first to demonstrate that agonist-induced desensitization and sequestration of the m2 mAChR in the intact cell can be enhanced by the presence of GRK2 and beta-arrestin-1 and show that these molecules have multiple actions on the m2 mAChR.
Collapse
Affiliation(s)
- M L Schlador
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
47
|
Abstract
To clarify the findings that clozapine is both a muscarinic receptor agonist and antagonist, we examined the effects of neuroleptics on forskolin-stimulated cAMP accumulation in Chinese hamster ovary cells expressing human muscarinic m4 receptors (CHO-hm4) and in rat striatum. With CHO-hm4 cells, clozapine induced a concentration-dependent and atropine-sensitive inhibition on cAMP formation, with EC50 = 60 nM and Emax = 74% of carbachol maximum. Other atypical neuroleptics, fluperlapine, tenilapine and olanzapine, were similar but less potent, while risperidone, rilapine, quetiapine (ICI 204,636), sertindole, and ziprasidone had almost no effect. Typical neuroleptics, haloperidol, chlorpromazine, fluphenazine, thiothixene, thioridazine, and molindone, showed either no effect or an atropine-resistant inhibition of cAMP formation. However, in rat striatal tissues, clozapine, up to 10 microM, did not show a significant inhibition of cAMP formation, probably due to a relatively low abundance of muscarinic m4 receptors and the presence of multiple types of muscarinic and other receptors, with which clozapine interacts. Nevertheless, muscarinic m4 receptor agonism, to some extent, may be a relevant mechanism for the therapeutic efficacy and side effects of clozapine and some atypical neuroleptics.
Collapse
Affiliation(s)
- X P Zeng
- Neuropharmacology Laboratory, Mayo Clinic Jacksonville, Mayo Foundation for Medical Education and Research, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
48
|
Gerhardt CC, Bakker RA, Piek GJ, Planta RJ, Vreugdenhil E, Leysen JE, Van Heerikhuizen H. Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Mol Pharmacol 1997; 51:293-300. [PMID: 9203635 DOI: 10.1124/mol.51.2.293] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe the cloning and functional expression of a cDNA encoding a novel G protein-coupled receptor, which was isolated from the central nervous system of the pond snail Lymnaea stagnalis. The amino acid sequence predicted by this cDNA shows highest similarity with the sequence of the Locusta tyramine receptor, the Drosophila tyramine/octopamine receptor, and the mammalian alpha-adrenergic receptors. On expression in mammalian cells, [3H]rauwolscine, an alpha2-adrenergic receptor antagonist, binds with high affinity (K(D) = 2.9 x 10(-9) M) to the receptor. Of several tested neurotransmitters, octopamine (which is considered to be the invertebrate counterpart of norepinephrine) showed the highest affinity (1.9 x 10(-6) M) for the receptor. Therefore, we consider this receptor to be the first true octopamine receptor to be cloned. The ligand binding properties of the novel receptor, designated Lym oa1, seem to be distinct from any of the binding profiles described for octopamine receptors in tissue preparations. Although the pharmacological profile of Lym oa1 shows some similarity with that of Tyr/Oct-Dro and Tyr-Loc, there are also clear differences. In particular, phentolamine, chlorpromazine, and mianserine display markedly higher affinities for Lym oa1 than for the insect receptors. As far as the vertebrate adrenergic receptors are concerned, the ligand binding properties of Lym oa1 resemble alpha2-adrenergic receptors more than they do alpha- or beta-adrenergic receptors. Octopaminergic stimulation of Lym oa1 induces an increase in both inositol phosphates and cAMP (EC50 = 9.1 x 10(-7) M and 5.1 x 10(-6) M, respectively). This is in contrast to the signal transduction pathways described for the related tyramine- and alpha2-adrenergic receptors, which couple in an inhibitory way to adenylyl cyclase.
Collapse
Affiliation(s)
- C C Gerhardt
- Department of Biochemistry and Molecular Biology, Research Institute Neurosciences, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
McKinnon LA, Rosoff M, Hamilton SE, Schlador ML, Thomas SL, Nathanson NM. Regulation of muscarinic receptor expression and function in cultured cells and in knock-out mice. Life Sci 1997; 60:1101-4. [PMID: 9121353 DOI: 10.1016/s0024-3205(97)00053-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have investigated the molecular and cellular basis for the regulation of expression and function of the muscarinic acetylcholine receptors. Treatment of cultured chick cardiac cells with the agonist carbachol results in decreased levels of mRNA encoding the m2 and m4 receptors. Treatment of chick embryos in ovo with carbachol results in decreased levels of mRNA encoding the potassium channel subunits GIRK1 and GIRK4 as well as the m2 receptor. There are thus multiple pathways for the regulation of mAChR responsiveness by long-term agonist exposure. Immunoblot, immunoprecipitation, and solution hybridization analyses have been used to quantitate the regulation of mAChR expression in chick retina during embryonic development. The m4 receptor is the predominant subtype expressed early in development, while the expression of the m3 and m2 receptors increases later in development. A cAMP-regulated luciferase reporter gene has been used to demonstrate that the m2 and m4 receptors have distinct specificities for coupling to G-protein subtypes to mediate inhibition of adenylyl cyclase. This system has also been used to demonstrate that beta-arrestin1 and beta-adrenergic receptor kinase-1 act synergistically to promote receptor desensitization. We have isolated the promoter region for the chick m2 receptor gene, identified regions of the promoter required to drive high level expression in cardiac and neural cells, and have identified a region which confers sensitivity of gene expression to neurally active cytokines. Finally, in order to determine the role of individual receptor subtypes in muscarinic-mediated responses in vivo, we have used the method of targeted gene disruption by homologous recombination to generate mice deficient in the m1 receptor.
Collapse
Affiliation(s)
- L A McKinnon
- Department of Pharmacology, University of Washington, Seattle 98195-7750, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
G-protein-coupled receptors (GPCRs) are integral membrane proteins of great pharmacological importance owing to their central role in the regulation of cellular responses to external stimuli. Heterologous expression systems have been used to explore ligand binding, G protein and effector coupling, and structural aspects of the receptors. GPCRs can be expressed in a functional form in all expression systems, but with varying degrees of success because of differences in receptor and host cell characteristics. This article will discuss aspects related to the choice and suitability of expression systems for the intended analysis of GPCR properties.
Collapse
|