1
|
Amaral LMPF, Moniz T, Silva AMN, Rangel M. Vanadium Compounds with Antidiabetic Potential. Int J Mol Sci 2023; 24:15675. [PMID: 37958659 PMCID: PMC10650557 DOI: 10.3390/ijms242115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Over the last four decades, vanadium compounds have been extensively studied as potential antidiabetic drugs. With the present review, we aim at presenting a general overview of the most promising compounds and the main results obtained with in vivo studies, reported from 1899-2023. The chemistry of vanadium is explored, discussing the importance of the structure and biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect. The spectroscopic characterization of vanadium compounds is discussed, particularly magnetic resonance methodologies, emphasizing its relevance for understanding species activity, speciation, and interaction with biological membranes. Finally, the most relevant studies regarding the use of vanadium compounds to treat diabetes are summarized, considering both animal models and human clinical trials. An overview of the main hypotheses explaining the biological activity of these compounds is presented, particularly the most accepted pathway involving vanadium interaction with phosphatase and kinase enzymes involved in the insulin signaling cascade. From our point of view, the major discoveries regarding the pharmacological action of this family of compounds are not yet fully understood. Thus, we still believe that vanadium presents the potential to help in metabolic control and the clinical management of diabetes, either as an insulin-like drug or as an insulin adjuvant. We look forward to the next forty years of research in this field, aiming to discover a vanadium compound with the desired therapeutic properties.
Collapse
Affiliation(s)
- Luísa M. P. F. Amaral
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
| | - Tânia Moniz
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André M. N. Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Rangel
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Baj J, Kowalska B, Barbachowska A, Forma A, Flieger M, Majerek D, Teresiński G, Flieger W, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Linking Metallic Micronutrients and Toxic Xenobiotics to Atherosclerosis and Fatty Liver Disease-Postmortem ICP-MS Analysis of Selected Human Tissues. Nutrients 2023; 15:3458. [PMID: 37571395 PMCID: PMC10420647 DOI: 10.3390/nu15153458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Dyslipidaemia is a disorder of the lipid metabolism, caused mainly by poor eating habits. The most severe consequence of an inappropriate diet is the development of atherosclerosis and hepatic steatosis. It is generally believed that a change in nutrition, and increased physical activity can eliminate these health problems. The contemporary research and therapies used to treat dyslipidemia mainly focus on lowering the triglyceride and cholesterol levels. However, disturbances in trace element homeostasis or the accumulation of toxic elements can also affect physiological processes, and be involved in the development of metabolically mediated diseases. The present study aimed to determine the mineral profiles of liver and brain tissues collected at autopsy (n = 39) in groups of people with hepatic steatosis (n = 5), atherosclerosis (n = 9), hepatic steatosis, and atherosclerosis (n = 16), and others without the selected disorders (n = 9). Concentrations of 51 elements were analysed via inductively coupled plasma mass spectrometry (ICP-MS) after the initial wet mineralisation of the samples with nitric acid. The results obtained allow us to conclude that the hepatic steatosis group suffers from a deficiency of important trace elements, such as copper, zinc, and molybdenum (p < 0.05), whereas the group with atherosclerosis is characterised by elevated levels of cadmium in the liver tissue (p = 0.01). Analysing the mean values of the element concentrations measured in 11 brain areas, statistically significant higher levels of calcium and copper (p < 0.001) were found in the atherosclerosis group, compared to the hepatic steatosis group, confirming the involvement of these elements in the pathogenesis of atherosclerosis. In addition, an accumulation of cadmium, lead, titanium, and strontium in the brain tissue was observed in the atherosclerosis group. While the accumulation of individual elements differs in different parts of the brain, the differences in the cadmium content (p < 0.05) between the study groups apply to the whole brain, except for the nucleus accumbens septi area, where a statistically significant titanium accumulation occurs in the atherosclerosis and steatosis groups, compared to the others (p < 0.05). In addition, the disruption of elemental homeostasis in the brain of a single case with bipolar disorder, and a case with hip replacement was observed. Our results confirm the involvement of chemical elements in the pathogenesis of selected metabolic diseases, and the need for further studies in larger populations.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (W.F.)
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, ul. Krasnystawska, 21-010 Łęczna, Poland;
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (W.F.)
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Dariusz Majerek
- Department of Applied Mathematics, University of Technology, 20-618 Lublin, Poland;
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (W.F.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Meical School, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Vanadium in Bipolar Disorders-Reviving an Old Hypothesis. Int J Mol Sci 2022; 23:ijms232213901. [PMID: 36430373 PMCID: PMC9697979 DOI: 10.3390/ijms232213901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Our previous studies supported the notion that alterations in Na+, K+-ATPase activity were involved in the etiology of BD. As various chemical elements inhibit Na+, K+-ATPase, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients, and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of V was significantly lower in the pre-frontal cortex of BD patients compared with that of the controls. Intracerebroventricular administration of V in mice elicited anxiolytic and depressive activities, concomitantly inhibited brain Na+, K+-ATPase activity, and increased extracellular signal-regulated kinase phosphorylation. A hypothesis associating V with BD was set forth decades ago but eventually faded out. Our results are in accord with the hypothesis and advocate for a thorough examination of the possible involvement of chemical elements, V in particular, in BD.
Collapse
|
4
|
Liao X, Liu Y, Zheng J, Zhao X, Cui L, Hu S, Xia T, Si S. Diverse Pathways of Engineered Nanoparticle-Induced NLRP3 Inflammasome Activation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3908. [PMID: 36364684 PMCID: PMC9656364 DOI: 10.3390/nano12213908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of engineered nanomaterials (ENMs) in biomedical applications, their biocompatibility and cytotoxicity need to be evaluated properly. Recently, it has been demonstrated that inflammasome activation may be a vital contributing factor for the development of biological responses induced by ENMs. Among the inflammasome family, NLRP3 inflammasome has received the most attention because it directly interacts with ENMs to cause the inflammatory effects. However, the pathways that link ENMs to NLRP3 inflammasome have not been thoroughly summarized. Thus, we reviewed recent findings on the role of major ENMs properties in modulating NLRP3 inflammasome activation, both in vitro and in vivo, to provide a better understanding of the underlying mechanisms. In addition, the interactions between ENMs and NLRP3 inflammasome activation are summarized, which may advance our understanding of safer designs of nanomaterials and ENM-induced adverse health effects.
Collapse
Affiliation(s)
- Xin Liao
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yudong Liu
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shen Hu
- School of Dentistry and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shanshan Si
- Department of Oral Emergency, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
5
|
A combined experimental and theoretical studies of two new decavanadatet: (C6N2H9)4[H2V10O28]·4H2O and (C7H9NF)4[H2V10O28]·2H2O. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Zarroug R, Artetxe B, Ayed B, López X, Ribeiro N, Correia I, Pessoa JC. New phosphotetradecavanadate hybrids: crystal structure, DFT analysis, stability and binding interactions with bio-macromolecules. Dalton Trans 2022; 51:8303-8317. [PMID: 35583072 DOI: 10.1039/d2dt00690a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two novel bicapped Keggin polyoxidovanadates with organic cations, (C6H8N)5[H4PV14O42]·5H2O (1) and (C6H14N4)2(NH4)[H4PV14O42]·11H2O (2), (PV14O426- = PV14, C6H7N = 3-picoline and C6H12N4 = methenamine) were synthesized. These compounds were isolated and characterized in the solid state and in solution by elemental analysis, powder X-ray diffraction, FTIR, UV-vis, 51V, 31P, 13C and 1H NMR, and fluorescence spectroscopy. Further confirmation of the PV14 structures was obtained by single-crystal X-ray diffraction studies of 1 and 2. The Hirshfeld surface analysis was performed to confirm that within the intermolecular interactions occurring in the two crystals, the O⋯H/H⋯O, O⋯O and H⋯H interactions dominate. The protonation and one-electron reduction of the PV14 moiety were also analysed by means of DFT calculations; besides confirming the protonation sites and correctly predicting the pKa values, the DFT results also indicate that molecular reduction is energetically more favourable in protonated PV14 anions. Upon the addition of PV14 anions to bovine serum albumin (BSA) up to a ratio of 1 : 1, the fluorescence decreased by 45% for both 1 and 2, indicating that the interaction of vanadium-containing species with this protein takes place; log(KSV) values of ca. 5.5 were obtained in both systems. Upon the addition of 1 or 2 to solutions of calf-thymus DNA (ctDNA), changes were observed in the UV-vis absorption and circular dichroism spectra. The significance of the changes observed is discussed considering the several V-containing species that form in the solution.
Collapse
Affiliation(s)
- Rim Zarroug
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia.,Department of Chemistry, Faculty of Sciences, University of Gabes, Tunisia
| | - Beñat Artetxe
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Brahim Ayed
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia
| | - Xavier López
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Nádia Ribeiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
7
|
Corona-Motolinia ND, Martínez-Valencia B, Noriega L, Sánchez-Gaytán BL, Melendez FJ, García-García A, Choquesillo-Lazarte D, Rodríguez-Diéguez A, Castro ME, González-Vergara E. Tris(2-Pyridylmethylamine)V(O)2 Complexes as Counter Ions of Diprotonated Decavanadate Anion: Potential Antineoplastic Activity. Front Chem 2022; 10:830511. [PMID: 35252118 PMCID: PMC8888438 DOI: 10.3389/fchem.2022.830511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6–31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds’ main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate’s anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.
Collapse
Affiliation(s)
- Nidia D. Corona-Motolinia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Beatriz Martínez-Valencia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lisset Noriega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Francisco J. Melendez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Amalia García-García
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| |
Collapse
|
8
|
Stéger A, Palmgren M. Root hair growth from the pH point of view. FRONTIERS IN PLANT SCIENCE 2022; 13:949672. [PMID: 35968128 PMCID: PMC9363702 DOI: 10.3389/fpls.2022.949672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Root hairs are tubular outgrowths of epidermal cells that increase the root surface area and thereby make the root more efficient at absorbing water and nutrients. Their expansion is limited to the root hair apex, where growth is reported to take place in a pulsating manner. These growth pulses coincide with oscillations of the apoplastic and cytosolic pH in a similar way as has been reported for pollen tubes. Likewise, the concentrations of apoplastic reactive oxygen species (ROS) and cytoplasmic Ca2+ oscillate with the same periodicity as growth. Whereas ROS appear to control cell wall extensibility and opening of Ca2+ channels, the role of protons as a growth signal in root hairs is less clear and may differ from that in pollen tubes where plasma membrane H+-ATPases have been shown to sustain growth. In this review, we outline our current understanding of how pH contributes to root hair development.
Collapse
|
9
|
Kodama T, Kameshima S, Otani K, Okada M, Yamawaki H. Eukaryotic elongation factor 2 kinase inhibitor, A484954 induces diuretic effect via renal vasorelaxation in spontaneously hypertensive rats. Eur J Pharmacol 2021; 913:174637. [PMID: 34801528 DOI: 10.1016/j.ejphar.2021.174637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K), alternatively known as calmodulin-dependent protein kinase III, inhibits protein translation via phosphorylating its sole substrate, eEF2. We previously demonstrated that expression and activity of eEF2K change in mesenteric artery from spontaneously hypertensive rats (SHR) with aging and that eEF2K is involved in pathogenesis of essential hypertension. In addition, we have recently revealed that acute intravenous injection with A484954, a selective eEF2K inhibitor, lowers blood pressure specifically in SHR partly via inducing vasorelaxation. In this study, we examined whether A484954 induces diuretic effect. After male SHR and normotensive Wistar Kyoto rats (WKY) were given a single intraperitoneal injection of A484954 (2.5 mg/kg, 0.5-9 h), urine was collected using metabolic cage. Contraction of isolated renal arteries form SHR was isometrically measured. While A484954 did not induce diuretic effect in WKY, it increased urine output, water intake, and urinary sodium excretion in SHR. A484954 (10 μM) induced vasorelaxation in isolated renal arteries, which was inhibited by a β-adrenergic receptor antagonist, propranolol. It was confirmed that A484954 increased renal blood flow in SHR as measured by renal ultrasonography. In summary, it was for the first time revealed that A484954 induces diuretic effect in SHR at least partly via renal vasorelaxation through β-adrenergic receptor.
Collapse
Affiliation(s)
- Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Satoshi Kameshima
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
10
|
2-Aminopyrimidinium Decavanadate: Experimental and Theoretical Characterization, Molecular Docking, and Potential Antineoplastic Activity. INORGANICS 2021. [DOI: 10.3390/inorganics9090067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interest in decavanadate anions has increased in recent decades, since these clusters show interesting applications as varied as sensors, batteries, catalysts, or new drugs in medicine. Due to the capacity of the interaction of decavanadate with a variety of biological molecules because of its high negative charge and oxygen-rich surface, this cluster is being widely studied both in vitro and in vivo as a treatment for several global health problems such as diabetes mellitus, cancer, and Alzheimer’s disease. Here, we report a new decavanadate compound with organic molecules synthesized in an aqueous solution and structurally characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. The decavanadate anion was combined with 2-aminopyrimidine to form the compound [2-ampymH]6[V10O28]·5H2O (1). In the crystal lattice, organic molecules are stacked by π–π interactions, with a centroid-to-centroid distance similar to that shown in DNA or RNA molecules. Furthermore, computational DFT calculations of Compound 1 corroborate the hydrogen bond interaction between pyrimidine molecules and decavanadate anions, as well as the π–π stacking interactions between the central pyrimidine molecules. Finally, docking studies with test RNA molecules indicate that they could serve as other potential targets for the anticancer activity of decavanadate anion.
Collapse
|
11
|
Tamara M, Micaela BM, Gastón BC, Silvina SV, Edith MN, Horacio CC, Nazareno CA. Inhibition of flippase-like activity by tubulin regulates phosphatidylserine exposure in erythrocytes from hypertensive and diabetic patients. J Biochem 2021; 169:731-745. [PMID: 33576821 DOI: 10.1093/jb/mvab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/09/2021] [Indexed: 02/04/2023] Open
Abstract
Plasma membrane tubulin is an endogenous regulator of P-ATPases and the unusual accumulation of tubulin in the erythrocyte membrane results in a partial inhibition of some their activities, causing hemorheological disorders like reduced cell deformability and osmotic resistance. These disorders are of particular interest in hypertension and diabetes, where the abnormal increase in membrane tubulin may be related to the disease development. Phosphatidylserine is more exposed on the membrane of diabetic erythrocytes than in healthy cells. In most cells, phosphatidylserine is transported from the exoplasmic to the cytoplasmic leaflet of the membrane by lipid flippases. Here we report that phosphatidylserine is more exposed in erythrocytes from both hypertensive and diabetic patients than in healthy erythrocytes, which could be attributed to the inhibition of flippase activity by tubulin. This is supported by: (i)- the translocation rate of a fluorescent phosphatidylserine analog in hypertensive and diabetic erythrocytes was slower than in healthy cells, (ii)- the pharmacological variation of membrane tubulin in erythrocytes and K562 cells was linked to changes in phosphatidylserine translocation, (iii)- the P-ATPase-dependent phosphatidylserine translocation in inside-out vesicles from human erythrocytes was inhibited by tubulin. These results suggest that tubulin regulates flippase activity and hence the membrane phospholipid asymmetry.
Collapse
Affiliation(s)
- Muhlberger Tamara
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Balach Melisa Micaela
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Bisig Carlos Gastón
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Santander Verónica Silvina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Monesterolo Noelia Edith
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Casale Cesar Horacio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Campetelli Alexis Nazareno
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
12
|
Kostenkova K, Arhouma Z, Postal K, Rajan A, Kortz U, Nunes GG, Crick DC, Crans DC. Pt IV- or Mo VI-substituted decavanadates inhibit the growth of Mycobacterium smegmatis. J Inorg Biochem 2021; 217:111356. [PMID: 33582396 DOI: 10.1016/j.jinorgbio.2021.111356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Inhibitory effects of two monosubstituted decavanadates by PtIV in monoplatino(IV)nonavanadate(V) ([H2PtIVV9O28]5-, V9Pt), and by MoIV in monomolybdo(VI)nonavanadate(V) ([MoVIV9O28]5-,V9Mo) were investigated against the growth of Mycobacterium smegmatis with the EC50 values of 0.0048 mM and 0.015 mM, respectively. These compare to the reported inhibitory value for decavanadate ([V10O28]6-/[HV10O28]5-, V10) on Mycobacterium smegmatis (EC50 = 0.0037 mM). Time-dependent 51V NMR spectroscopic studies were carried out for all three polyanions in aqueous solution, biological medium (7H9), heated and non-heated supernatant to evaluate their stability in their respective media, monitor their hydrolysis to form various oxovanadates over time and calculate the EC50 values. These studies allow us to calculate adjusted and maximum EC50 for the polyoxovanadate (POV) present in solution at the beginning of the study when there is most intact anion in the media and thus the EC50 values represent the initial effects of the POVs. The results have shown that V10 is 1.3 times more potent than V9Pt and 4 times more potent than V9Mo, indicating that the inhibitory effects of monosubstituted polyanions are related to the V10 structure. We attributed the minor differences in the growth inhibitory effects to the differences in charges (5- vs 6-) of V9Pt and V9Mo compared to V10 and/or the differences in the chemical composition. We concluded that the potency of the growth inhibition by V10 is mainly due to the chemical properties of the vanadium and the decametalate's unique structure even though the presence of the Mycobacterium smegmatis facilitate hydrolysis of the anions. SYNOPSIS: Two decavanadate derivatives, monoplatino(IV)nonavanadate(V) ([H2PtIVV9O28]5-), monomolybdo(VI)nonavanadate(V) ([MoVIV9O28]5-) and decavanadate are more potent growth inhibitors of Mycobacterium smegmatis than monomeric vanadate. The spectroscopic characterization carried out in the growth medium led to the conclusion that both the decavanadate structure and its properties are important for its growth effects.
Collapse
Affiliation(s)
- Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Zeyad Arhouma
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, United States
| | - Kahoana Postal
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States; Department of Chemistry, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Ananthu Rajan
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany
| | - Giovana G Nunes
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Dean C Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, United States; Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO 80523, United States
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
13
|
Gillio Meina E, Niyogi S, Liber K. Multiple Linear Regression Modeling Predicts the Effects of Surface Water Chemistry on Acute Vanadium Toxicity to Model Freshwater Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1737-1745. [PMID: 32526064 DOI: 10.1002/etc.4798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/02/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Multiple linear regression (MLR) modeling has been successfully used to predict how water chemistry variables influence the toxicity of cationic metals to aquatic organisms, but no MLR model exists for vanadium (V). Recent research has indicated that an increase in pH (from 6 to 9), or high concentrations of sodium (473 mg Na+ /L), increase V toxicity to Daphnia pulex. In contrast, increases in alkalinity (>100 mg as CaCO3 ) and sulfate (>100 mg SO42- /L) reduce V toxicity. How these variables influence V toxicity to Oncorhynchus mykiss (rainbow trout) was still unknown. Our results show that increasing pH from 6.2 to 8.9 tended to decrease the 96-h median lethal concentration (LC50) for V toxicity to O. mykiss by 9.6 mg V/L. An alkalinity increase from 71 to 330 mg/L as CaCO3 tended to increase the 96-h LC50 by 3.3 mg V/L, whereas when SO42- rose from 150 to 250 mg/L, the LC50 significantly increased by 0.3 mg V/L followed by a significant decrease of 1 mg V/L when SO42- was >250 mg/L. Sodium (between 100 and 336 mg/L) showed no effect on V toxicity to O. mykiss. The toxicity patterns for O. mykiss were similar to those observed for D. pulex, except for that of SO42- , potentially indicating different mechanisms of V uptake or regulation in the 2 species. The LC50s and associated water chemistry were combined to develop an MLR model for O. mykiss and D. pulex. Alkalinity and pH modified V toxicity to both species, whereas SO42- influenced V toxicity to D. pulex. Overall, MLR models should be considered for creating new local benchmarks or water quality guidelines for V. Environ Toxicol Chem 2020;39:1737-1745. © 2020 SETAC.
Collapse
Affiliation(s)
| | - Som Niyogi
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Samart N, Althumairy D, Zhang D, Roess DA, Crans DC. Initiation of a novel mode of membrane signaling: Vanadium facilitated signal transduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Abstract
In bacteria, K+ is used to maintain cell volume and osmotic potential. Homeostasis normally involves a network of constitutively expressed transport systems, but in K+ deficient environments, the KdpFABC complex uses ATP to pump K+ into the cell. This complex appears to be a hybrid of two types of transporters, with KdpA descending from the superfamily of K+ transporters and KdpB belonging to the superfamily of P-type ATPases. Studies of enzymatic activity documented a catalytic cycle with hallmarks of classical P-type ATPases and studies of ion transport indicated that K+ import into the cytosol occurred in the second half of this cycle in conjunction with hydrolysis of an aspartyl phosphate intermediate. Atomic structures of the KdpFABC complex from X-ray crystallography and cryo-EM have recently revealed conformations before and after formation of this aspartyl phosphate that appear to contradict the functional studies. Specifically, structural comparisons with the archetypal P-type ATPase, SERCA, suggest that K+ transport occurs in the first half of the cycle, accompanying formation of the aspartyl phosphate. Further controversy has arisen regarding the path by which K+ crosses the membrane. The X-ray structure supports the conventional view that KdpA provides the conduit, whereas cryo-EM structures suggest that K+ moves from KdpA through a long, intramembrane tunnel to reach canonical ion binding sites in KdpB from which they are released to the cytosol. This review discusses evidence supporting these contradictory models and identifies key experiments needed to resolve discrepancies and produce a unified model for this fascinating mechanistic hybrid.
Collapse
Affiliation(s)
- Bjørn P Pedersen
- a Department of Molecular Biology and Genetics, Aarhus University , Aarhus C , Denmark
| | - David L Stokes
- b Department of Cell Biology, New York University School of Medicine, Skirball Institute , New York , NY , USA
| | - Hans-Jürgen Apell
- c Department of Biology, University of Konstanz , Konstanz , Germany
| |
Collapse
|
16
|
Wang X, Chang CH, Jiang J, Liu X, Li J, Liu Q, Liao YP, Li L, Nel AE, Xia T. Mechanistic Differences in Cell Death Responses to Metal-Based Engineered Nanomaterials in Kupffer Cells and Hepatocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000528. [PMID: 32337854 PMCID: PMC7263057 DOI: 10.1002/smll.202000528] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/18/2023]
Abstract
The mononuclear phagocyte system in the liver is a frequent target for nanoparticles (NPs). A toxicological profiling of metal-based NPs is performed in Kupffer cell (KC) and hepatocyte cell lines. Sixteen NPs are provided by the Nanomaterial Health Implications Research Consortium of the National Institute of Environmental Health Sciences to study the toxicological effects in KUP5 (KC) and Hepa 1-6 cells. Five NPs (Ag, CuO, ZnO, SiO2 , and V2 O5 ) exhibit cytotoxicity in both cell types, while SiO2 and V2 O5 induce IL-1β production in KC. Ag, CuO, and ZnO induced caspase 3 generated apoptosis in both cell types is accompanied by ion shedding and generation of mitochondrial reactive oxygen species (ROS) in both cell types. However, the cell death response to SiO2 in KC differs by inducing pyroptosis as a result of potassium efflux, caspase 1 activation, NLRP3 inflammasome assembly, IL-1β release, and cleavage of gasdermin-D. This releases pore-performing peptide fragments responsible for pyroptotic cell swelling. Interestingly, although V2 O5 induces IL-1β release and delays caspase 1 activation by vanadium ion interference in membrane Na+ /K+ adenosine triphosphate (ATP)ase activity, the major cell death mechanism in KC (and Hepa 1-6) is caspase 3 mediated apoptosis. These findings improve the understanding of the mechanisms of metal-based engineered nanomaterial (ENM) toxicity in liver cells toward comprehensive safety evaluation.
Collapse
Affiliation(s)
- Xiang Wang
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Chong Hyun Chang
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Jinhong Jiang
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Jiulong Li
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Qi Liu
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Linjiang Li
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| |
Collapse
|
17
|
Lerchundi R, Huang N, Rose CR. Quantitative Imaging of Changes in Astrocytic and Neuronal Adenosine Triphosphate Using Two Different Variants of ATeam. Front Cell Neurosci 2020; 14:80. [PMID: 32372916 PMCID: PMC7186936 DOI: 10.3389/fncel.2020.00080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Genetically encoded nanosensors such as the FRET-based adenosine triphosphate (ATP) sensor ATeam enable the measurement of changes in ATP levels inside cells, promoting our understanding of metabolic interactions between astrocytes and neurons. The sensors are usually well characterized in vitro but display altered properties when expressed inside cells, precluding a meaningful conversion of changes in FRET ratios into changes in intracellular ATP concentrations ([ATP]) on the basis of their in vitro properties. Here, we present an experimental strategy for the intracellular calibration of two different variants of ATeam in organotypic tissue slice culture of the mouse brain. After cell-type-specific expression of the sensors in astrocytes or neurons, slices were first perfused with a saline containing the saponin β-escin to permeabilize plasma membranes for ATP. Next, cells were depleted of ATP by perfusion with ATP-free saline containing metabolic inhibitors. Finally, ATP was re-added at defined concentrations and resulting changes in the FRET ratio recorded. When employing this protocol, ATeam1.03 expressed in astrocytes reliably responds to changes in [ATP], exhibiting an apparent KD of 9.4 mM. The high-affinity sensor ATeam1.03YEMK displayed a significantly lower intracellular KD of 2.7 mM. On the basis of these calibrations, we found that induction of a recurrent neuronal network activity resulted in an initial transient increase in astrocytic [ATP] by ~0.12 mM as detected by ATeam1.03YEMK, a result confirmed using ATeam1.03. In neurons, in contrast, [ATP] immediately started to decline upon initiation of a network activity, amounting to a decrease by an average of 0.29 mM after 2 min. Taken together, our results demonstrate that ATeam1.03YEMK and ATeam1.03 display a significant increase in their apparent KD when expressed inside cells as compared with in vitro. Moreover, they show that both ATeam variants enable the quantitative detection of changes of astrocytic and neuronal [ATP] in the physiological range. ATeam1.03YEMK, however, seems preferable because its KD is close to baseline ATP levels. Finally, our data support the idea that synchronized neuronal activity initially stimulates the generation of ATP in astrocytes, presumably through increased glycolysis, whereas ATP levels in neurons decline.
Collapse
Affiliation(s)
- Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Na Huang
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Aihemaiti A, Gao Y, Meng Y, Chen X, Liu J, Xiang H, Xu Y, Jiang J. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135637. [PMID: 31810710 DOI: 10.1016/j.scitotenv.2019.135637] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Vanadium is a multivalent redox-sensitive metal that is widely distributed in the environment. Low levels of vanadium elevate plant height, root length, and biomass production due to enhanced chlorophyll biosynthesis, seed germination, essential element uptake, and nitrogen assimilation and utilization. However, high vanadium concentrations disrupt energy metabolism and matter cycling; inhibit key enzymes mediating energy production, protein synthesis, ion transportation, and other important physiological processes; and lead to growth retardation, root and shoot abnormalities, and even death of plants. The threshold level of toxicity is highly plant species-specific, and in most cases, the half maximal effective concentration (EC50) of vanadium for plants grown under hydroponic conditions and in soil varies from 1 to 50 mg/L, and from 18 to 510 mg/kg, respectively. Plants such as Chinese green mustard, chickpea, and bunny cactus could accumulate high concentrations of vanadium in their tissues, and thus are suitable for decontaminating and reclaiming of vanadium-polluted soils on a large scale. Soil pH, organic matter, and the contents of iron and aluminum (hydr)oxides, phosphorus, calcium, and other coexisting elements affect the bioavailability, toxicity, and plant uptake of vanadium. Mediation of these conditions or properties in vanadium-contaminated soils could improve plant tolerance, accumulation, or exclusion, thereby enhancing phytoremediation efficiency. Phytoremediation with the assistance of soil amendments and microorganisms is a promising method for decontamination of vanadium polluted soils.
Collapse
Affiliation(s)
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuejing Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiwei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Honglin Xiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yiwen Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Moore EK, Hao J, Spielman SJ, Yee N. The evolving redox chemistry and bioavailability of vanadium in deep time. GEOBIOLOGY 2020; 18:127-138. [PMID: 32048807 DOI: 10.1111/gbi.12375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/22/2019] [Accepted: 11/30/2019] [Indexed: 05/19/2023]
Abstract
The incorporation of metal cofactors into protein active sites and/or active regions expanded the network of microbial metabolism during the Archean eon. The bioavailability of crucial metal cofactors is largely influenced by earth surface redox state, which impacted the timing of metabolic evolution. Vanadium (V) is a unique element in geo-bio-coevolution due to its complex redox chemistry and specific biological functions. Thus, the extent of microbial V utilization potentially represents an important link between the geo- and biospheres in deep time. In this study, we used geochemical modeling and network analysis to investigate the availability and chemical speciation of V in the environment, and the emergence and changing chemistry of V-containing minerals throughout earth history. The redox state of V shifted from a more reduced V(III) state in Archean aqueous geochemistry and mineralogy to more oxidized V(IV) and V(V) states in the Proterozoic and Phanerozoic. The weathering of vanadium sulfides, vanadium alkali metal minerals, and vanadium alkaline earth metal minerals were potential sources of V to the environment and microbial utilization. Community detection analysis of the expanding V mineral network indicates tectonic and redox influence on the distribution of V mineral-forming elements. In reducing environments, energetic drivers existed for V to potentially be involved in early nitrogen fixation, while in oxidizing environments vanadate ( VO43-]]> ) could have acted as a metabolic electron acceptor and phosphate mimicking enzyme inhibitor. The coevolving chemical speciation and biological functions of V due to earth's changing surface redox conditions demonstrate the crucial links between the geosphere and biosphere in the evolution of metabolic electron transfer pathways and biogeochemical cycles from the Archean to Phanerozoic.
Collapse
Affiliation(s)
- Eli K Moore
- Department of Environmental Science, School of Earth and the Environment, Rowan University, Glassboro, NJ, USA
| | - Jihua Hao
- University of Lyon, Université Lyon 1, Ens de Lyon, CNRS, Villeurbanne, France
| | - Stephanie J Spielman
- Department of Biological Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Nathan Yee
- School of Biological and Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
20
|
Pisano M, Arru C, Serra M, Galleri G, Sanna D, Garribba E, Palmieri G, Rozzo C. Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways. Metallomics 2019; 11:1687-1699. [PMID: 31490510 DOI: 10.1039/c9mt00174c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant melanoma (MM) is the most fatal skin cancer, whose incidence has critically increased in the last decades. Recent molecular therapies are giving excellent results in the remission of melanoma but often they induce drug resistance in patients limiting their therapeutic efficacy. The search for new compounds able to overcome drug resistance is therefore essential. Vanadium has recently been cited for its anticancer properties against several tumors, but only a few data regard its effect against MM. In a previous work we demonstrated the anticancer activity of four different vanadium species towards MM cell lines. The inorganic anion vanadate(v) (VN) and the oxidovanadium(iv) complex [VO(dhp)2] (VS2), where dhp is 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, showed IC50 values of 4.7 and 2.6 μM, respectively, against the A375 MM cell line, causing apoptosis and cell cycle arrest. Here we demonstrate the involvement of Reactive Oxygen Species (ROS) production in the pro-apoptotic effect of these two V species and evaluate the activation of different cell cycle regulators, to investigate the molecular mechanisms involved in their antitumor activity. We establish that VN and VS2 treatments reduce the phosphorylation of extracellular-signal regulated kinase (ERK) by about 80%, causing the deactivation of the mitogen activated protein kinase (MAPK) pathway in A375 cells. VN and VS2 also induce dephosphorylation of the retinoblastoma protein (Rb) (VN 100% and VS2 90%), together with a pronounced increase of cyclin-dependent kinase inhibitor 1 p21 (p21Cip1) protein expression up to 1800%. Taken together, our results confirm the antitumor properties of vanadium against melanoma cells, highlighting its ability to induce apoptosis through generation of ROS and cell cycle arrest by counteracting MAPK pathway activation and strongly inducing p21Cip1 expression and Rb hypo-phosphorylation.
Collapse
Affiliation(s)
- Marina Pisano
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca 3, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gillio Meina E, Raes K, Liber K. Models for the acute and chronic aqueous toxicity of vanadium to Daphnia pulex under a range of surface water chemistry conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:301-309. [PMID: 31075562 DOI: 10.1016/j.ecoenv.2019.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/07/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Alberta's oil sands petroleum coke (PC) generation has in recent years surpassed 10 million tonnes. Petroleum coke has been proposed as an industrial-scale sorbent to reduce concentrations of organic chemicals in oil sands process-affected water (OSPW). However, PC contains up to 1000 mg of vanadium (V) per kg of PC, and during the treatment it leaches from coke reaching levels of up to 7 mg/L in "treated" OSPW. Little information is available on how common water quality variables affect the toxicity of V to aquatic organisms. Here descriptive relationships are presented to describe how site-specific surface water characteristics representative of the Alberta oil sands region influence the toxicity of V to Daphnia pulex. Results revealed that when D. pulex was exposed to an increase in pH, a threshold relationship was found where acute V toxicity increased from a lethal median concentration (LC50) of 1.7 to 1.2 mg V/L between pH 6 and 7 and then levelled off at around 1 mg V/L. When alkalinity (from 75 to 541 mg/L as CaCO3) and sulphate (from 54 to 394 mg/L) increased, the acute toxicity of V decreased slightly with LC50s changing from 0.6 to 1.6, and from 0.9 to 1.4, respectively. When the length of V exposure was extended (from 2 to 21 d), only an increase of sulphate from 135 to 480 mg/L caused a slight increase in V toxicity from a LC50 of 0.6 to 0.4 mg V/L, the opposite trend seen in the acute exposures. In addition, the influence of two OSPW representative mixtures of increasing sodium and sulphate, and increasing alkalinity and sulphate on V acute toxicity to D. pulex were evaluated; only the mixture of increasing sodium (from 18 to 536 mg/L) and sulphate (from 55 to 242 mg/L) caused a slight decrease in V acute toxicity (LC50 1.0-2.1 mg V/L). Evidence is presented that variations in surface water chemistry can affect V toxicity to daphnids, although only to a small degree (i.e. within a maximum factor of 2 in all cases evaluated here). These relationships should be considered when creating new water quality guidelines or local benchmarks for V.
Collapse
Affiliation(s)
- Esteban Gillio Meina
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
22
|
Abstract
In this manuscript, we describe medical applications of each first-row transition metal including nutritional, pharmaceutical, and diagnostic applications. The 10 first-row transition metals in particular are found to have many applications since there five essential elements among them. We summarize the aqueous chemistry of each element to illustrate that these fundamental properties are linked to medical applications and will dictate some of nature’s solutions to the needs of cells. The five essential trace elements—iron, copper, zinc, manganese, and cobalt—represent four redox active elements and one redox inactive element. Since electron transfer is a critical process that must happen for life, it is therefore not surprising that four of the essential trace elements are involved in such processes, whereas the one non-redox active element is found to have important roles as a secondary messenger.. Perhaps surprising is the fact that scandium, titanium, vanadium, chromium, and nickel have many applications, covering the entire range of benefits including controlling pathogen growth, pharmaceutical and diagnostic applications, including benefits such as nutritional additives and hardware production of key medical devices. Some patterns emerge in the summary of biological function andmedical roles that can be attributed to small differences in the first-row transition metals.
Collapse
|
23
|
Fraqueza G, Fuentes J, Krivosudský L, Dutta S, Mal SS, Roller A, Giester G, Rompel A, Aureliano M. Inhibition of Na +/K +- and Ca 2+-ATPase activities by phosphotetradecavanadate. J Inorg Biochem 2019; 197:110700. [PMID: 31075720 DOI: 10.1016/j.jinorgbio.2019.110700] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) are promising inorganic inhibitors for P-type ATPases. The experimental models used to study the effects of POMs on these ATPases are usually in vitro models using vesicles from several membrane sources. Very recently, some polyoxotungstates, such as the Dawson anion [P2W18O62]6-, were shown to be potent P-type ATPase inhibitors; being active in vitro as well as in ex-vivo. In the present study we broaden the spectrum of highly active inhibitors of Na+/K+-ATPase from basal membrane of epithelial skin to the bi-capped Keggin-type anion phosphotetradecavanadate Cs5.6H3.4PV14O42 (PV14) and we confront the data with activity of other commonly encountered polyoxovanadates, decavanadate (V10) and monovanadate (V1). The X-ray crystal structure of PV14 was solved and contains two trans-bicapped α-Keggin anions HxPV14O42(9-x)-. The anion is built up from the classical Keggin structure [(PO4)@(V12O36)] capped by two [VO] units. PV14 (10 μM) exhibited higher ex-vivo inhibitory effect on Na+/K+-ATPase (78%) than was observed at the same concentrations of V10 (66%) or V1 (33%). Moreover, PV14 is also a potent in vitro inhibitor of the Ca2+-ATPase activity (IC50 5 μM) exhibiting stronger inhibition than the previously reported activities for V10 (15 μM) and V1 (80 μM). Putting it all together, when compared both P-typye ATPases it is suggested that PV14 exibited a high potential to act as an in vivo inhibitor of the Na+/K+-ATPase associated with chloride secretion.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE, University of Algarve, 8005-139 Faro, Portugal; CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Juan Fuentes
- CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Lukáš Krivosudský
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria; Comenius University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| | - Sib Sankar Mal
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India.
| | - Alexander Roller
- Universität Wien, Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, 1090 Wien, Austria
| | - Gerald Giester
- Universität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria.
| | - Manuel Aureliano
- CCMar, University of Algarve, 8005-139 Faro, Portugal; FCT, University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
24
|
Trapped mixed [(water)4–(ammonium)4]4+ octamer in a 3D-binodal (4,8)-connected decavanadate core with hexamethylenetetramine: Synthesis, structure, photophysical and antimicrobial properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Banerjee A, Dash SP, Mohanty M, Sanna D, Sciortino G, Ugone V, Garribba E, Reuter H, Kaminsky W, Dinda R. Chemistry of mixed-ligand oxidovanadium(IV) complexes of aroylhydrazones incorporating quinoline derivatives: Study of solution behavior, theoretical evaluation and protein/DNA interaction. J Inorg Biochem 2019; 199:110786. [PMID: 31377474 DOI: 10.1016/j.jinorgbio.2019.110786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
Abstract
A series of eight hexacoordinated mixed-ligand oxidovanadium(IV) complexes [VO(Lx)(LN-N)] (1-8), where Lx = L1 - L4 are four differently substituted ONO donor aroylhydrazone ligands and LN-N are N,N-donor bases like 2,2'-bipyridine (bipy) (1, 3, 5 and 7) and 1,10-phenanthroline (phen) (2, 4, 6 and 8), have been reported. All synthesized complexes have been characterized by various physicochemical techniques and molecular structures of 1 and 6 were determined by X-ray crystallography. With a view to evaluate the biological activity of the VIVO species, the behavior of the systems VIVO2+/Lx, VIVO2+/Lx/bipy and VIVO2+/Lx/phen was studied as a function of pH in a mixture of H2O/DMSO 50/50 (v/v). DFT calculations allowed finding out the relative stability of the tautomeric forms of the ligands, and predicting the structure of vanadium complexes and their EPR parameters. To study their interaction with proteins, firstly the ternary systems VIVO2+/L1,2 with 1-methylimidazole, which is a good model for histidine binding, were examined. Subsequently the interaction of the complexes with lysozyme (Lyz), cytochrome c (Cyt) and bovine serum albumin (BSA) was studied. The results indicate that the complexes showed moderate binding affinity towards BSA, while no interaction takes place with lysozyme and cytochrome c. This could be explained with the higher number of accessible coordinating and polar residues for BSA than for Lyz and Cyt. Further, the complexes were also evaluated for their DNA binding propensity through UV-vis absorption titration and fluorescence spectral studies. These results were consistent with BSA binding affinity and showed moderate binding affinity towards CT-DNA.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree P Dash
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India; Department of Basic Sciences, Parala Maharaja Engineering College, Sitalapalli, Brahmapur, Odisha 761003, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain; Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
26
|
Terada Y, Higashi N, Hidaka Y, Isomoto Y, Yayama K. Protein Tyrosine Phosphatase Inhibitor, Orthovanadate, Induces Contraction via Rho Kinase Activation in Mouse Thoracic Aortas. Biol Pharm Bull 2019; 42:877-885. [PMID: 31155587 DOI: 10.1248/bpb.b18-00708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Orthovanadate (OVA), a protein tyrosine phosphatase inhibitor, induces contraction in endothelium-denuded mouse thoracic aortas. OVA-induced contraction was significantly (vs. control rings) suppressed by Rho kinase (Y-27632, 10 µM), extracellular signal-regulated kinase 1 and 2 (Erk1/2, FR180204, 10 µM), Erk1/2 kinase (MEK, PD98059, 10 µM), epidermal growth factor receptor (EGFR, AG1478, 10 µM), and Src inhibitors, and was partially suppressed by c-Jun N-terminal kinase (JNK, AS601245, 10 µM) and p38 (SB203580, 10 µM) inhibitors. However, a myosin light chain kinase inhibitor (ML-7, 10 µM) and a metalloproteinase inhibitor (TAPI-0, 10 µM) had no effect on OVA-induced contraction in mouse thoracic aortas. Phosphorylation of myosin phosphatase target subunit 1 (MYPT1) was abolished by inhibitors of Src, EGFR, MEK, Erk1/2, and Rho kinase, but not by inhibitors of JNK and p38. Erk1/2 phosphorylation by OVA was blocked by inhibitors of EGFR, Src, MEK, and Erk1/2, but not by Rho kinase inhibition. Src phosphorylation at Tyr-416 was abrogated by only Src inhibitor. EGFR phosphorylation at Tyr-1173 was suppressed by a Src inhibitor. These findings suggest that OVA induces contraction via activation of Src, EGFR, MEK, Erk1/2, and Rho kinase, leading to inactivation of myosin light chain phosphatase via MYPT1 phosphorylation.
Collapse
Affiliation(s)
- Yuka Terada
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Naoki Higashi
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Yuki Hidaka
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Yasumasa Isomoto
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Katsutoshi Yayama
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
27
|
Bošnjaković-Pavlović N, Xu X, Krstić D, Gillet JM, Wei Y, Wu P, Čolović M, Spasojević-de Biré A. Experimental and theoretical insights of functionalized hexavanadates on Na +/K +-ATPase activity; molecular interaction field, ab initio calculations and in vitro assays. J Inorg Biochem 2019; 198:110720. [PMID: 31150927 DOI: 10.1016/j.jinorgbio.2019.110720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/27/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023]
Abstract
The influence of three functionalized hexavanadates (V6): Na2 [V6O13{(OCH2)3CCH3}2], [H2]2 [V6O13{(OCH2)3CCH2OCOCH2CH3}2] and [(C4H9)4N]2 [V6O13{(OCH2)3CCH2OOC(CH3)2-COOH}2 on Na+/K+-ATPase activity, was investigated in vitro. Including compounds already tested by Xu et al. (Journal of Inorganic Biochemistry 161 (2016) 27-36), all functionalized hexavanadates inhibit the activity of Na+/K+-ATPase in a dose-dependent manner but with different inhibitory potencies. Na2 [V6O13{(OCH2)3CCH3}2] was found to have the best inhibition properties - showing 50% inhibition IC50 = 5.50 × 10-5 M, while [(C4H9)4N]2 [V6O13{(OCH2)3CCH2OOC(CH3)2-COOH}2] showed the lowest inhibitory power, IC50 = 1.31 × 10-4 M. In order to understand the bioactivity of functionalized hexavanadates series, we have also used a combined theoretical approach: determination of electrostatic potential from ab initio theoretical calculations and computation of the molecular interaction field (MIF) surface.
Collapse
Affiliation(s)
- Nada Bošnjaković-Pavlović
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Xiao Xu
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Serbia
| | - Jean-Michel Gillet
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Yongge Wei
- Department of Chemistry, Tsinghua University, 100084 Beijing, PR China
| | - Pingfan Wu
- Institute of POM-based Materials, The Synergistic Innovation Center of Catalysis Materials of Hubei Province, Hubei University of Technology, 430086 Wuhan, Hubei Province, PR China
| | - Mirjana Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Anne Spasojević-de Biré
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
29
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
30
|
Pal RP, Mani V, Tripathi D, Datt C. Inorganic Vanadium Supplementation in Crossbred Calves: Effects on Antioxidant Status, Immune Response and Haemato-Biochemical Attributes. Biol Trace Elem Res 2018; 186:154-161. [PMID: 29550952 DOI: 10.1007/s12011-018-1295-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/23/2022]
Abstract
The aim of the study was to assess the effect of inorganic vanadium (V) supplementation on antioxidant enzymes, immune status, and haemato-biochemical attributes of growing crossbred calves. Twenty-four male Karan Fries calves (Tharparkar × Holstein Friesian) (initial body mass 72.83 ± 2.5 kg; age 3-9 month) were randomly allocated to four groups: the control (received basal diet devoid of supplemental V), the 3 ppm (received basal diet with 3 mg/kg V), the 6 ppm (received basal diet with 6 mg/kg V) and the 9 ppm group (received basal diet with 9 mg/kg V). All the calves were fed for 150 days as per ICAR (2013) feeding standards to meet their nutrient requirements for 500 g growth rate/day. Peripheral blood samples were collected at the start of experiment and subsequently at 30, 60, 90, 120 and 150 days post-V supplementation for determination of antioxidant enzyme activity, immunological parameters and haemato-biochemical attributes. Results indicated that dietary supplementation of V did not affect daily gain, feed intake and haematological parameters. Crossbred calves fed with 9 mg V/kg diet showed reduced (P < 0.05) plasma total cholesterol concentration; however, plasma total protein and glucose concentration remained unaltered. Glutathione peroxidase (GPx) activity as well as immunoglobulin G (IgG) concentration was significantly (P < 0.05) higher in group supplemented with 9 mg V/kg DM; however, superoxide dismutase (SOD), catalase activity and total plasma immunoglobulin (Ig) concentration were similar in all experimental group. Dietary V supplementation showed a negative relation with plasma thiobarbituric acid reactive substances (TBARS) concentration, whereas non-esterified fatty acid (NEFA) concentration remained unaltered among all groups. Plasma V level increased (P < 0.05) with increasing dietary V levels without affecting levels of Ca, Mg, Fe, Cu and Zn. In conclusion, a dietary addition of 9 mg V/kg DM reduced cholesterol content and improved antioxidant and immune response in growing crossbred calves.
Collapse
Affiliation(s)
- Ravi Prakash Pal
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Veena Mani
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Deepika Tripathi
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Chander Datt
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
31
|
Sánchez-Lara E, Treviño S, Sánchez-Gaytán BL, Sánchez-Mora E, Eugenia Castro M, Meléndez-Bustamante FJ, Méndez-Rojas MA, González-Vergara E. Decavanadate Salts of Cytosine and Metformin: A Combined Experimental-Theoretical Study of Potential Metallodrugs Against Diabetes and Cancer. Front Chem 2018; 6:402. [PMID: 30333969 PMCID: PMC6176007 DOI: 10.3389/fchem.2018.00402] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Cytosine, a DNA and RNA building-block, and Metformin, the most widely prescribed drug for the treatment of Type 2 Diabetes mellitus were made to react separately with ammonium or sodium metavanadates in acidic aqueous solutions to obtain two polyoxovanadate salts with a 6:1 ratio of cation-anion. Thus, compounds [HCyt]6[V10O28]·4H2O, 1 and [HMetf]6[V10O28]·6H2O, 2 (where HCyt = Cytosinium cation, [C4H6N3O]+ and HMetf = Metforminium cation, [C4H12N5]+) were obtained and characterized by elemental analysis, single crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), solution 51V-NMR, thermogravimetric analysis (TGA-DTGA), as well as, theoretical methods. Both compounds crystallized in P1 ¯ space group with Z' = 1/2, where the anionic charge of the centrosymmetric ion [V10O28]6- is balanced by six Cytosinium and six Metforminium counterions, respectively. Compound 1 is stabilized by π-π stacking interactions coming from the aromatic rings of HCyt cations, as denoted by close contacts of 3.63 Å. On the other hand, guanidinium moieties from the non-planar HMetf in Compound 2 interact with decavanadate μ2-O atoms via N-H···O hydrogen bonds. The vibrational spectroscopic data of both IR and Raman spectra show that the dominant bands in the 1000-450 cm-1 range are due to the symmetric and asymmetric ν(V-O) vibrational modes. In solution, 51V-NMR experiments of both compounds show that polyoxovanadate species are progressively transformed into the monomeric, dimeric and tetrameric oxovanadates. The thermal stability behavior suggests a similar molecular mechanism regarding the loss of water molecules and the decomposition of the organic counterions. Yet, no changes were observed in the TGA range of 540-580°C due to the stability of the [V10O28]6- fragment. Dispersion-corrected density functional theory (DFT-D) calculations were carried out to model the compounds in aqueous phase using a polarized continuum model calculation. Optimized structures were obtained and the main non-covalent interactions were characterized. Biological activities of these compounds are also under investigation. The combination of two therapeutic agents opens up a window toward the generation of potential metalopharmaceuticals with new and exciting pharmacological properties.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Enrique Sánchez-Mora
- Instituto de Física “Luis Rivera Terrazas”, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Miguel A. Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, Mexico
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
32
|
Eiam-Ong S, Nakchui Y, Chaipipat M, Eiam-Ong S. Vanadate-Induced Renal cAMP and Malondialdehyde Accumulation Suppresses Alpha 1 Sodium Potassium Adenosine Triphosphatase Protein Levels. Toxicol Res 2018; 34:143-150. [PMID: 29686776 PMCID: PMC5903140 DOI: 10.5487/tr.2018.34.2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/10/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that vanadate causes nephrotoxicity. Vanadate inhibits renal sodium potassium adenosine triphosphatase (Na, K-ATPase) activity and this is more pronounced in injured renal tissues. Cardiac cyclic adenosine monophosphate (cAMP) is enhanced by vanadate, while increased cAMP suppresses Na, K-ATPase action in renal tubular cells. There are no in vivo data collectively demonstrating the effect of vanadate on renal cAMP levels; on the abundance of the alpha 1 isoform (α1) of the Na, K-ATPase protein or its cellular localization; or on renal tissue injury. In this study, rats received a normal saline solution or vanadate (5 mg/kg BW) by intraperitoneal injection for 10 days. Levels of vanadium, cAMP, and malondialdehyde (MDA), a marker of lipid peroxidation were measured in renal tissues. Protein abundance and the localization of renal α1-Na, K-ATPase was determined by Western blot and immunohistochemistry, respectively. Renal tissue injury was examined by histological evaluation and renal function was assessed by blood biochemical parameters. Rats treated with vanadate had markedly increased vanadium levels in their plasma, urine, and renal tissues. Vanadate significantly induced renal cAMP and MDA accumulation, whereas the protein level of α1-Na, K-ATPase was suppressed. Vanadate caused renal damage, azotemia, hypokalemia, and hypophosphatemia. Fractional excretions of all studied electrolytes were increased with vanadate administration. These in vivo findings demonstrate that vanadate might suppress renal α1-Na, K-ATPase protein functionally by enhancing cAMP and structurally by augmenting lipid peroxidation.
Collapse
Affiliation(s)
- Somchit Eiam-Ong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuyen Nakchui
- School of Medicine, Walailak University, Nakhonsrithammarat, Thailand
| | - Mookda Chaipipat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
33
|
Affiliation(s)
| | - O. Yoshida
- Kyoto University Hospital, Kyoto - Japan
| |
Collapse
|
34
|
Vanadium Compounds as PTP Inhibitors. Molecules 2017; 22:molecules22122269. [PMID: 29257048 PMCID: PMC6150004 DOI: 10.3390/molecules22122269] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023] Open
Abstract
Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.
Collapse
|
35
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
36
|
Cervantes-Yépez S, López-Zepeda LS, Fortoul TI. Vanadium inhalation induces retinal Müller glial cell (MGC) alterations in a murine model. Cutan Ocul Toxicol 2017; 37:200-206. [PMID: 29157004 DOI: 10.1080/15569527.2017.1392560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vanadium (V) is a transition metal adhered to suspended particles. Previous studies demonstrated that V inhalation causes oxidative stress in the ependymal epithelium, the choroid plexus on brain lateral ventricles and in the retina. Inhaled-V reaches the eye´s retina through the systemic circulation; however, its effect on the retina has not been widely studied. The Müller glial cell provides support and structure to the retina, facilitates synapses and regulates the microenvironment and neuronal metabolism. Hence, it is of great interest to study the effect of V exposure on the expression and localization of specific biomarkers on this cell. METHODS Male CD-1 mice were exposed to V inhalation 1 h/twice/week for 4 and 8-Wk. Expression changes in the retina of Glial fibrillary acidic protein, highly expressed in Müller glial cell when retina is damaged, and Glutamine synthetase, important in preventing excitotoxicity in the retina, were analysed by immunohistochemistry. RESULTS Glial fibrillary acidic protein expression increased at 4-Wk of V inhalation compared to the control and decreased at 8-Wk of exposure. A time-dependent gradual reduction in glutamine synthetase expression was observed. CONCLUSION Changes in glial fibrillary acidic protein expression induced by V suggest retinal damage, whereas glutamine synthetase gradual reduction might indicate that photoreceptors, which produce most of the glutamine synthetase substrate in the retina, are degenerating, probably as a consequence of the oxidative stress induced by V.
Collapse
Affiliation(s)
- Silvana Cervantes-Yépez
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| | - Lorena Sofía López-Zepeda
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| | - Teresa I Fortoul
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| |
Collapse
|
37
|
Sultan S, Ashiq U, Jamal RA, Mahroof-Tahir M, Shaikh Z, Shamshad B, Lateef M, Iqbal L. Vanadium(V) complexes with hydrazides and their spectroscopic and biological properties. Biometals 2017; 30:873-891. [PMID: 28994011 DOI: 10.1007/s10534-017-0054-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022]
Abstract
The present study explores the synthesis and inhibitory potential of vanadium(V) complexes of hydrazides (1c-12c) against oxidative enzymes including xanthine oxidase and lipoxygenase (LOX). In addition, non-enzymatic radical scavenging activities of these complexes were also determined. On the basis of spectral, elemental and physical data, synthesized vanadium(V) complexes are tentatively assigned to have an octahedral geometry with two hydrazide ligands and two oxo groups forming a negatively charged sphere complex with ammonium as counter ion. This is further verified by the conductivity studies of the complexes. Results show that hydrazide ligands (1-12) and their respective vanadium(V) complexes (1c-12c) posses scavenging and inhibition potential against DPPH and LOX, respectively. However, contrary to that uncoordinated ligands showed no activity against nitric oxide, superoxide and xanthine oxidase whereas their complexes showed varying degree of activity. These studies indicate that geometry of complex, nature and position of substituent groups play a vital role in scavenging and inhibition potential of these compounds.
Collapse
Affiliation(s)
- Sadaf Sultan
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Uzma Ashiq
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan.
| | - Rifat Ara Jamal
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | | | - Zara Shaikh
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Bushra Shamshad
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | | | - Lubna Iqbal
- PCSIR Laboratories Complex, Karachi, Pakistan
| |
Collapse
|
38
|
Biswas N, Patra D, Mondal B, Bera S, Acharyya S, Biswas AK, Mukhopadhyay TK, Pal A, Drew MGB, Ghosh T. Exploring the effect of hydroxylic and non-hydroxylic solvents on the reaction of [V IVO(β-diketonate) 2] with 2-aminobenzoylhydrazide in aerobic and anaerobic conditions. Dalton Trans 2017; 46:10963-10985. [PMID: 28766668 DOI: 10.1039/c7dt01776f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Refluxing [VIVO(β-diketonate)2], namely [VIVO(acetylacetonate)2] and [VIVO(benzoylacetonate)2], separately with an equivalent or excess amount of 2-aminobenzoylhydrazide (ah) in laboratory grade (LG) CH3OH in aerobic conditions afforded non-oxidovanadium(iv) and oxidovanadium(v) complexes of the type [VIV(L1)2] (1), [VVO(L1)(OCH3)]2 (3) and [VIV(L2)2] (2), and [VVO(L2)(OCH3)] (4), respectively. (L1)2- and (L2)2- represent the dianionic forms of 2-aminobenzoylhydrazone of acetylacetone (H2L1) and benzoylacetone (H2L2), respectively, (general abbreviation, H2L), which was formed by the in situ condensation of ah with the respective coordinated [β-diketonate] in medium-to-good yield. The yield of different resulting products was dependent upon the ratio of ah to [VIVO(β-diketonate)2]. For example, the yield of 1 and 2 complexes increased significantly associated with a decrease in the amount of 3 and 4 with an increase in the molar ratio of ah. Upon replacing CH3OH by a non-hydroxylic solvent, LG CHCl3, the above reaction yielded only oxidovanadium(v) complexes of the type [VVO(L1)(OH)]2 (5), [VVO(L2)(OH)] (6) and [VO3(L)2] (7, 8) whereas, upon replacing CHCl3 by another non-hydroxylic solvent, namely LG CH3CN, only the respective [VO3(L)2] (7, 8) complex was isolated in 72-78% yield. However, upon performing the above reactions in the absence of air using dry CH3OH or dry CHCl3, only the respective [VIV(L)2] complex was obtained, suggesting that aerial oxygen was the oxidising agent and the type of pentavalent product formed was dependent upon the nature of solvent used. Complexes 3 and 4 were converted, respectively, to 7 and 8 on refluxing in LG CHCl3via the respective unstable complex 5 and 6. The DFT calculated change in internal energy (ΔE) for the reactions 2[VVO(L2)(OCH3)] + 2H2O → 2[VVO(L2)(OH)] + 2CH3OH and 2[VVO(L2)(OH)] → [VO3(L2)2] + H2O was, respectively, +3.61 and -7.42 kcal mol-1, suggesting that the [VVO(L2)(OH)] species was unstable and readily transformed to the stable [VO3(L2)2] complex. Upon one-electron reduction at an appropriate potential, each of 7 and 8 generated mixed-valence [(L)VVO-(μ-O)-OVIV(L)]- species, which showed valence-delocalisation at room temperature and localisation at 77 K. Some of the complexes showed a wide range of toxicity in a dose-dependent manner against lung cancer cells comparable with that observed with cis-platin.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Postgraduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Seddigh S. Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects. Comput Biol Chem 2017; 68:266-281. [DOI: 10.1016/j.compbiolchem.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
|
40
|
High cytotoxicity of vanadium(IV) complexes with 1,10-phenanthroline and related ligands is due to decomposition in cell culture medium. J Biol Inorg Chem 2017; 22:663-672. [PMID: 28374136 DOI: 10.1007/s00775-017-1453-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Cytotoxic effects of Metvan (cis-[VIVO(OSO3)(Me2phen)2], where Me2phen = 4,7-dimethyl-1,10-phenanthroline) and its analogues with 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy) ligands in cultured human lung cancer (A549) cells have been re-investigated in conjunction with reactivity of the V(IV) complexes in neutral aerated aqueous solutions and in cell culture medium. All the V(IV) complexes underwent rapid oxidation to the corresponding V(V) species (cis-[VV(O)2L2]+), followed by release of free ligands (shown by electrospray mass spectrometry). Decomposition of V(IV) complexes in cell culture medium within minutes at 310 K was confirmed by UV-Vis and EPR spectroscopies. High cytotoxicities (low μM or sub-μM IC50 range in 72 h assays) were observed for the phen and Me2phen complexes, but they were not different from that of the corresponding free ligands, which confirmed that the original V(IV) complexes played no significant role in the observed biological activities. The cytotoxicities of the ligands were most likely due to their complexation of redox-active essential metal ions, such as Cu(II) and Fe(II), in the medium, and their increased cellular uptake, leading to oxidative stress-related cell death. These results emphasize the need to assess the stability of metal-based drugs under the conditions of biological assays, particularly when biologically active ligands, such as 1,10-phenanthroline and its derivatives, are used. These ligands have high systemic toxicities in vivo and their release in the GI tract and blood makes the complexes unsuitable for use as anti-cancer drugs.
Collapse
|
41
|
|
42
|
Schiffer S, Liber K. Toxicity of aqueous vanadium to zooplankton and phytoplankton species of relevance to the athabasca oil sands region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:1-11. [PMID: 27871041 DOI: 10.1016/j.ecoenv.2016.10.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Vanadium (V) is an abundant trace metal present in bitumen from the Athabasca Oil Sands (AOS) region in Alberta, Canada. The upgrading of bitumen can result in the production of large volumes of a carbonaceous material referred to as petroleum coke that contains V at elevated levels compared to the native bitumen. Previous studies have shown that coke has the capacity to leach ecotoxicologically relevant levels of V into water it contacts, yet limited data are available on the toxicity of aqueous V to planktonic organisms. Therefore, this study set out to evaluate the acute and chronic toxicity of V (as vanadate oxyanions) to freshwater zooplankton and phytoplankton species that are either commonly-used laboratory species, or species more regionally-representative of northern Alberta. Four cladoceran (2-d and 21-d tests) and two algal (3-d tests) species were exposed to V to obtain both acute and chronic toxicity estimates. Acute V toxicity (LC50s) ranged from 0.60mgV/L for Ceriodaphnia quadrangula to 2.17mgV/L for Daphnia pulex. Chronic toxicity estimates (EC50s) for cladoceran survival and reproduction were nearly identical within species and ranged from a low of 0.13 to a high of 0.46mgV/L for Daphnia dentifera and D. pulex, respectively. The lack of sublethal V toxicity in daphnia suggests a direct mechanism of toxicity through ion imbalance. Growth inhibition (EC50) of green algae occurred at concentrations of 3.24 and 4.12mgV/L for Pseudokirchneriella subcapitata and Scenedesmus quadricauda, respectively. Overall, cladocerans were more sensitive to V than green algae, with survival of the field-collected D. dentifera being approximately 2.5 to 3.5 times more sensitive to acute and chronic V exposure than the standard test species D. pulex. However, there were no significant differences in V toxicity between the field-collected cladocerans Simocephalus serrulatus and C. quadrangula, compared to the respective standard species D. pulex and Ceriodaphnia dubia. Similarly, there were no significant differences in sensitivity to V in the two algal species evaluated. Based on V concentrations reported in laboratory-generated coke leachates, zooplankton survival could be adversely impacted under conditions of chronic leachate exposure if V concentrations in the environment exceed 0.1mg/L. Furthermore, toxicity thresholds from commonly-used planktonic test species would likely have sufficed for derivation of a V water quality guideline (WQG) for protection of local aquatic communities near oil sands operations, but the new data presented here on V toxicity to more regionally-representative species will strengthen the database for WQG derivation.
Collapse
Affiliation(s)
- Stephanie Schiffer
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3; Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
43
|
In situ determination of V(V) by diffusive gradients in thin films and inductively coupled plasma mass spectrometry techniques using amberlite IRA-410 resin as a binding layer. Anal Chim Acta 2017; 950:32-40. [DOI: 10.1016/j.aca.2016.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022]
|
44
|
Mutlu E, Cristy T, Graves SW, Hooth MJ, Waidyanatha S. Characterization of aqueous formulations of tetra- and pentavalent forms of vanadium in support of test article selection in toxicology studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:405-416. [PMID: 27726079 DOI: 10.1007/s11356-016-7803-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Tetravalent (VIV) and pentavalent (VV) forms of vanadium were selected for testing by the National Toxicology Program via drinking water exposure due to potential human exposure. To aid in the test article selection, drinking water formulations (125-2000 mg/L) of vanadyl sulfate (VIV), sodium orthovanadate, and sodium metavanadate (VV) were characterized by ultraviolet/visible (UV/VIS) spectroscopy, mass spectrometry (MS), or 51V nuclear magnetic resonance (NMR) spectroscopy. Aqueous formulations of orthovanadate, metavanadate, and vanadyl sulfate in general were basic, neutral, and acidic, respectively. Changes in vanadium speciation were investigated by adjusting formulation pH to acidic, neutral, or basic. There was no visible difference in UV/VIS spectra of pentavalent forms. NMR and MS analyses showed that the predominant oxidovanadate species in both ortho- and metavanadate formulations at basic and acidic pH, respectively, were the monomer and decamer, while, a mixture of oxidovanadates were present at neutral pH. Oxidovanadate species were not observed in vanadyl sulfate formulations at acidic pH but were observed at basic pH suggesting conversion of VIV to VV. These data suggest that formulations of both ortho- and metavanadate form similar oxidovanadate species in acidic, neutral and basic pH and exist mainly in the VV form while vanadyl sulfate exists mainly as VIV in acidic pH. Therefore, the formulation stability overtime was investigated only for sodium metavanadate and vanadyl sulfate. Drinking water formulations (50 and 2000 mg/L) of metavanadate (~pH 7) and vanadyl sulfate (~pH 3.5) were ≥92 % of target concentration up to 42 days at ~5 °C and ambient temperature demonstrating the utility in toxicology studies.
Collapse
Affiliation(s)
- Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop K2-07, Research Triangle Park, NC, 27709, USA
| | - Tim Cristy
- Battelle Memorial Institute, Columbus, OH, USA
| | | | - Michelle J Hooth
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop K2-07, Research Triangle Park, NC, 27709, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop K2-07, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
45
|
Rehder D. Implications of vanadium in technical applications and pharmaceutical issues. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 2016; 327-328:70-83. [PMID: 27890939 PMCID: PMC5115158 DOI: 10.1016/j.ccr.2016.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
A new paradigm in metallobiochemistry describes the activation of inactive metalloenzymes by metal ion removal. Protein tyrosine phosphatases (PTPs) do not seem to require a metal ion for enzymatic activity. However, both metal cations and metal anions modulate their enzymatic activity. One binding site is the phosphate binding site at the catalytic cysteine residue. Oxyanions with structural similarity to phosphate, such as vanadate, inhibit the enzyme with nanomolar to micromolar affinities. In addition, zinc ions (Zn2+) inhibit with picomolar to nanomolar affinities. We mapped the cation binding site close to the anion binding site and established a specific mechanism of inhibition occurring only in the closed conformation of the enzyme when the catalytic cysteine is phosphorylated and the catalytic aspartate moves into the active site. We discuss this dual inhibition by anions and cations here for PTP1B, the most thoroughly investigated protein tyrosine phosphatase. The significance of the inhibition in phosphorylation signaling is becoming apparent only from the functions of PTP1B in the biological context of metal cations as cellular signaling ions. Zinc ion signals complement redox signals but provide a different type of control and longer lasting inhibition on a biological time scale owing to the specificity and affinity of zinc ions for coordination environments. Inhibitor design for PTP1B and other PTPs is a major area of research activity and interest owing to their prominent roles in metabolic regulation in health and disease, in particular cancer and diabetes. Our results explain the apparent dichotomy of both cations (Zn2+) and oxyanions such as vanadate inhibiting PTP1B and having insulin-enhancing ("anti-diabetic") effects and suggest different approaches, namely targeting PTPs in the cell by affecting their physiological modulators and considering a metallodrug approach that builds on the knowledge of the insulin-enhancing effects of both zinc and vanadium compounds.
Collapse
Affiliation(s)
- Elisa Bellomo
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Kshetrimayum Birla Singh
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Christer Hogstrand
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Wolfgang Maret
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
47
|
|
48
|
Abstract
Vanadium is omnipresent in trace amounts in the environment, in food and also in the human body, where it might serve as a regulator for phosphate-dependent proteins. Potential vanadium-based formulations--inorganic and coordination compounds with organic ligands--commonly underlie speciation in the body, that is, they are converted to vanadate(V), oxidovanadium(IV) and to complexes with the body's own ligand systems. Vanadium compounds have been shown to be potentially effective against diabetes Type 2, malign tumors including cancer, endemic tropical diseases (such as trypanosomiasis, leishmaniasis and amoebiasis), bacterial infections (tuberculosis and pneumonia) and HIV infections. Furthermore, vanadium drugs can be operative in cardio- and neuro-protection. So far, vanadium compounds have not yet been approved as pharmaceuticals for clinical use.
Collapse
|
49
|
Cheng Y, Woolf TF, Gan J, He K. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review. Chem Biol Interact 2015; 255:23-30. [PMID: 26683212 DOI: 10.1016/j.cbi.2015.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023]
Abstract
The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross-species comparisons.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | | | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA
| | - Kan He
- Biotranex LLC, Monmouth Junction, NJ 08852, USA.
| |
Collapse
|
50
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|