1
|
Kim SQ, Mohallem R, Franco J, Buhman KK, Kim KH, Aryal UK. Multi-Omics Approach Reveals Dysregulation of Protein Phosphorylation Correlated with Lipid Metabolism in Mouse Non-Alcoholic Fatty Liver. Cells 2022; 11:cells11071172. [PMID: 35406736 PMCID: PMC8997945 DOI: 10.3390/cells11071172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity caused by overnutrition is a major risk factor for non-alcoholic fatty liver disease (NAFLD). Several lipid intermediates such as fatty acids, glycerophospholipids and sphingolipids are implicated in NAFLD, but detailed characterization of lipids and their functional links to proteome and phosphoproteome remain to be elucidated. To characterize this complex molecular relationship, we used a multi-omics approach by conducting comparative proteomic, phoshoproteomic and lipidomic analyses of high fat (HFD) and low fat (LFD) diet fed mice livers. We quantified 2447 proteins and 1339 phosphoproteins containing 1650 class I phosphosites, of which 669 phosphosites were significantly different between HFD and LFD mice livers. We detected alterations of proteins associated with cellular metabolic processes such as small molecule catabolic process, monocarboxylic acid, long- and medium-chain fatty acid, and ketone body metabolic processes, and peroxisome organization. We observed a significant downregulation of protein phosphorylation in HFD fed mice liver in general. Untargeted lipidomics identified upregulation of triacylglycerols, glycerolipids and ether glycerophosphocholines and downregulation of glycerophospholipids, such as lysoglycerophospholipids, as well as ceramides and acylcarnitines. Analysis of differentially regulated phosphosites revealed phosphorylation dependent deregulation of insulin signaling as well as lipogenic and lipolytic pathways during HFD induced obesity. Thus, this study reveals a molecular connection between decreased protein phosphorylation and lipolysis, as well as lipid-mediated signaling in diet-induced obesity.
Collapse
Affiliation(s)
- Sora Q. Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.Q.K.); (K.K.B.)
| | - Rodrigo Mohallem
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Jackeline Franco
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
| | - Kimberly K. Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.Q.K.); (K.K.B.)
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Uma K. Aryal
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-4960
| |
Collapse
|
2
|
Park HC, Park BO, Kim HS, Kim SH, Lee SW, Chung WS. AtMPK6-induced phosphorylation of AtERF72 enhances its DNA binding activity and interaction with TGA4/OBF4 in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:11-20. [PMID: 33073469 DOI: 10.1111/plb.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The ethylene-responsive element binding factor (ERF) family is a large family of transcription factors involved in plant development and environmental stress responses. We previously reported the identification of 29 putative substrates of Mitogen-activated Protein Kinase3 (AtMPK3), AtMPK4 and AtMPK6, based on a solid-phase phosphorylation screening using a lambda phage expression library in Arabidopsis thaliana. In this study, a putative MPK substrate, AtERF72 (At3g16770), was strongly phosphorylated by AtMPK6 on the serine residue at position 151 (Ser151). AtERF72 binds to the GCC box (AGCCGCC) in the promoters of several pathogenesis-related (PR) genes and activates their transcription. We also show that the DNA-binding activity of AtERF72 is enhanced upon phosphorylation by AtMPK6 in vitro. In addition, transient co-expression experiments in Arabidopsis protoplasts revealed that effector constructs expressing a mutant variant of AtERF72, AtERF72S151D (carrying a Ser to aspartic acid [Asp] substitution at amino acid position 151) showed higher expression of the β-glucuronidase (GUS) reporter gene driven by the GCC box element than effector constructs expressing the wild-type AtERF72. Furthermore, yeast two-hybrid assays revealed that the interaction between AtERF72S151D and TGA4/OBF4 was stronger than that between wild-type AtERF72 and TGA4/OBF4. Since AtERF72S151D is equivalent to AtERF72 phosphorylated by AtMPK6 at Ser151, these results suggest that the phosphorylation of AtERF72 by AtMPK6 triggers an event of transcriptional regulation from defence signalling in Arabidopsis.
Collapse
Affiliation(s)
- H C Park
- Team of Vulnerable Ecological Research, Division of Climate and Ecology, Bureau of Conservation & Assessment Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - B O Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - H S Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - S H Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - S W Lee
- Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - W S Chung
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Lombardi AA, Gibb AA, Arif E, Kolmetzky DW, Tomar D, Luongo TS, Jadiya P, Murray EK, Lorkiewicz PK, Hajnóczky G, Murphy E, Arany ZP, Kelly DP, Margulies KB, Hill BG, Elrod JW. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat Commun 2019; 10:4509. [PMID: 31586055 PMCID: PMC6778142 DOI: 10.1038/s41467-019-12103-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Fibroblast to myofibroblast differentiation is crucial for the initial healing response but excessive myofibroblast activation leads to pathological fibrosis. Therefore, it is imperative to understand the mechanisms underlying myofibroblast formation. Here we report that mitochondrial calcium (mCa2+) signaling is a regulatory mechanism in myofibroblast differentiation and fibrosis. We demonstrate that fibrotic signaling alters gating of the mitochondrial calcium uniporter (mtCU) in a MICU1-dependent fashion to reduce mCa2+ uptake and induce coordinated changes in metabolism, i.e., increased glycolysis feeding anabolic pathways and glutaminolysis yielding increased α-ketoglutarate (αKG) bioavailability. mCa2+-dependent metabolic reprogramming leads to the activation of αKG-dependent histone demethylases, enhancing chromatin accessibility in loci specific to the myofibroblast gene program, resulting in differentiation. Our results uncover an important role for the mtCU beyond metabolic regulation and cell death and demonstrate that mCa2+ signaling regulates the epigenome to influence cellular differentiation.
Collapse
Affiliation(s)
- Alyssa A Lombardi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Andrew A Gibb
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ehtesham Arif
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Devin W Kolmetzky
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Timothy S Luongo
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Emma K Murray
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Pawel K Lorkiewicz
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA
| | - György Hajnóczky
- Department of Pathology Anatomy and Cell Biology, MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Zoltan P Arany
- Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Daniel P Kelly
- Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Kenneth B Margulies
- Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Bradford G Hill
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochem J 2017; 474:2785-2801. [PMID: 28706006 PMCID: PMC5545928 DOI: 10.1042/bcj20170474] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Although ancillary pathways of glucose metabolism are critical for synthesizing cellular building blocks and modulating stress responses, how they are regulated remains unclear. In the present study, we used radiometric glycolysis assays, [13C6]-glucose isotope tracing, and extracellular flux analysis to understand how phosphofructokinase (PFK)-mediated changes in glycolysis regulate glucose carbon partitioning into catabolic and anabolic pathways. Expression of kinase-deficient or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat neonatal cardiomyocytes co-ordinately regulated glycolytic rate and lactate production. Nevertheless, in all groups, >40% of glucose consumed by the cells was unaccounted for via catabolism to pyruvate, which suggests entry of glucose carbons into ancillary pathways branching from metabolites formed in the preparatory phase of glycolysis. Analysis of 13C fractional enrichment patterns suggests that PFK activity regulates glucose carbon incorporation directly into the ribose and the glycerol moieties of purines and phospholipids, respectively. Pyrimidines, UDP-N-acetylhexosamine, and the fatty acyl chains of phosphatidylinositol and triglycerides showed lower 13C incorporation under conditions of high PFK activity; the isotopologue 13C enrichment pattern of each metabolite indicated limitations in mitochondria-engendered aspartate, acetyl CoA and fatty acids. Consistent with this notion, high glycolytic rate diminished mitochondrial activity and the coupling of glycolysis to glucose oxidation. These findings suggest that a major portion of intracellular glucose in cardiac myocytes is apportioned for ancillary biosynthetic reactions and that PFK co-ordinates the activities of the pentose phosphate, hexosamine biosynthetic, and glycerolipid synthesis pathways by directly modulating glycolytic intermediate entry into auxiliary glucose metabolism pathways and by indirectly regulating mitochondrial cataplerosis.
Collapse
|
5
|
Role and mechanism of the AMPK pathway in waterborne Zn exposure influencing the hepatic energy metabolism of Synechogobius hasta. Sci Rep 2016; 6:38716. [PMID: 27934965 PMCID: PMC5146659 DOI: 10.1038/srep38716] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism.
Collapse
|
6
|
Salabei JK, Lorkiewicz PK, Mehra P, Gibb AA, Haberzettl P, Hong KU, Wei X, Zhang X, Li Q, Wysoczynski M, Bolli R, Bhatnagar A, Hill BG. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 2016; 291:13634-48. [PMID: 27151219 DOI: 10.1074/jbc.m116.722496] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair.
Collapse
Affiliation(s)
- Joshua K Salabei
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | | | - Parul Mehra
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Andrew A Gibb
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Petra Haberzettl
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Kyung U Hong
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Xiaoli Wei
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202
| | - Xiang Zhang
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202 Pharmacology and Toxicology, and
| | | | | | - Roberto Bolli
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Aruni Bhatnagar
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics
| | - Bradford G Hill
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics,
| |
Collapse
|
7
|
Lamming DW, Demirkan G, Boylan JM, Mihaylova MM, Peng T, Ferreira J, Neretti N, Salomon A, Sabatini DM, Gruppuso PA. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). FASEB J 2013; 28:300-15. [PMID: 24072782 DOI: 10.1096/fj.13-237743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.
Collapse
Affiliation(s)
- Dudley W Lamming
- 3Division of Pediatric Endocrinology, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Phosphofructo-2-kinase/fructose-2,6-bisphosphatase modulates oscillations of pancreatic islet metabolism. PLoS One 2012; 7:e34036. [PMID: 22532827 PMCID: PMC3332096 DOI: 10.1371/journal.pone.0034036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/21/2012] [Indexed: 12/29/2022] Open
Abstract
Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis.
Collapse
|
9
|
Enzymatic preparation of high-specific-activity beta-D-[6,6'-3H]fructose-2,6-bisphosphate: Application to a sensitive assay for fructose-2,6-bisphosphatase. Anal Biochem 2010; 406:97-104. [PMID: 20541516 DOI: 10.1016/j.ab.2010.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 11/22/2022]
Abstract
beta-D-Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is an important regulator of eukaryotic glucose homeostasis, functioning as a potent activator of 6-phosphofructo-1-kinase and inhibitor of fructose-1,6-bisphosphatase. Pharmaceutical manipulation of intracellular Fru-2,6-P(2) levels, therefore, is of interest for the treatment of certain diseases, including diabetes and cancer. [2-(32)P]Fru-2,6-P(2) has been the reagent of choice for studying the metabolism of this effector molecule; however, its short half-life necessitates frequent preparation. Here we describe a convenient, economical, one-pot enzymatic preparation of high-specific-activity tritium-labeled Fru-2,6-P(2). The preparation involves conversion of readily available, carrier-free d-[6,6'-(3)H]glucose to [6,6'-(3)H]Fru-2,6-P(2) using hexokinase, glucose-6-phosphate isomerase, and 6-phosphofructo-2-kinase. The key reagent in this preparation, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from human liver, was produced recombinantly in Escherichia coli and purified in a single step using an appendant C-terminal hexa-His affinity tag. Following purification by anion exchange chromatography using triethylammonium bicarbonate as eluant, radiochemically pure [6,6'-(3)H]Fru-2,6-P(2) having a specific activity of 50 Ci/mmol was obtained in yields averaging 35%. [6,6'-(3)H]Fru-2,6-P(2) serves as a stable, high-specific-activity substrate in a facile assay capable of detecting fructose-2,6-bisphosphatase in the range of 10(-14) to 10(-15) mol, and it should prove to be useful in many studies of the metabolism of this important biofactor.
Collapse
|
10
|
Guven-Ozkan T, Robertson SM, Nishi Y, Lin R. zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 2010; 137:3373-82. [PMID: 20826530 PMCID: PMC2947753 DOI: 10.1242/dev.055327] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2010] [Indexed: 02/03/2023]
Abstract
Specification of primordial germ cells requires global repression of transcription. In C. elegans, primordial germ cells are generated through four rounds of asymmetric divisions, starting from the zygote P0, each producing a transcriptionally repressed germline blastomere (P1-P4). Repression in P2-P4 requires PIE-1, which is provided maternally in oocytes and segregated to all germline blastomeres. We have shown previously that OMA-1 and OMA-2 repress global transcription in P0 and P1 by sequestering TAF-4, an essential component of TFIID. Soon after the first mitotic cycle, OMA proteins undergo developmentally regulated degradation. Here, we show that OMA proteins also repress transcription in P2-P4 indirectly, through a completely different mechanism that operates in oocytes. OMA proteins bind to both the 3' UTR of the zif-1 transcript and the eIF4E-binding protein, SPN-2, repressing translation of zif-1 mRNA in oocytes. zif-1 encodes the substrate-binding subunit of the E3 ligase for PIE-1 degradation. Inhibition of zif-1 translation in oocytes ensures high PIE-1 levels in oocytes and germline blastomeres. The two OMA protein functions are strictly regulated in both space and time by MBK-2, a kinase activated following fertilization. Phosphorylation by MBK-2 facilitates the binding of OMA proteins to TAF-4 and simultaneously inactivates their function in repressing zif-1 translation. Phosphorylation of OMA proteins displaces SPN-2 from the zif-1 3' UTR, releasing translational repression. We propose that MBK-2 phosphorylation serves as a developmental switch, converting OMA proteins from specific translational repressors in oocytes to global transcriptional repressors in embryos, together effectively repressing transcription in all germline blastomeres.
Collapse
Affiliation(s)
| | | | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
11
|
Wang Q, Donthi RV, Wang J, Lange AJ, Watson LJ, Jones SP, Epstein PN. Cardiac phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase increases glycolysis, hypertrophy, and myocyte resistance to hypoxia. Am J Physiol Heart Circ Physiol 2008; 294:H2889-97. [PMID: 18456722 DOI: 10.1152/ajpheart.91501.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During ischemia and heart failure, there is an increase in cardiac glycolysis. To understand if this is beneficial or detrimental to the heart, we chronically elevated glycolysis by cardiac-specific overexpression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) in transgenic mice. PFK-2 controls the level of fructose-2,6-bisphosphate (Fru-2,6-P2), an important regulator of phosphofructokinase and glycolysis. Transgenic mice had over a threefold elevation in levels of Fru-2,6-P2. Cardiac metabolites upstream of phosphofructokinase were significantly reduced, as would be expected by the activation of phosphofructokinase. In perfused hearts, the transgene caused a significant increase in glycolysis that was less sensitive to inhibition by palmitate. Conversely, oxidation of palmitate was reduced by close to 50%. The elevation in glycolysis made isolated cardiomyocytes highly resistant to contractile inhibition by hypoxia, but in vivo the transgene had no effect on ischemia-reperfusion injury. Transgenic hearts exhibited pathology: the heart weight-to-body weight ratio was increased 17%, cardiomyocyte length was greater, and cardiac fibrosis was increased. However, the transgene did not change insulin sensitivity. These results show that the elevation in glycolysis provides acute benefits against hypoxia, but the chronic increase in glycolysis or reduction in fatty acid oxidation interferes with normal cardiac metabolism, which may be detrimental to the heart.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
A role for PFK-2/FBPase-2, as distinct from fructose 2,6-bisphosphate, in regulation of insulin secretion in pancreatic β-cells. Biochem J 2008; 411:41-51. [DOI: 10.1042/bj20070962] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PFK-2/FBPase-2 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase) catalyses the formation and degradation of fructose 2,6-P2 (fructose 2,6-bisphosphate) and is also a glucokinase-binding protein. The role of fructose 2,6-P2 in regulating glucose metabolism and insulin secretion in pancreatic β-cells is unresolved. We down-regulated the endogenous isoforms of PFK-2/FBPase-2 with siRNA (small interfering RNA) and expressed KA (kinase active) and KD (kinase deficient) variants to distinguish between the role of PFK-2/FBPase-2 protein and the role of its product, fructose 2,6-P2, in regulating β-cell function. Human islets expressed the PFKFB2 (the gene encoding isoform 2 of the PFK2/FBPase2 protein) and PFKFB3 (the gene encoding isoform 3 of the PFK2/FBPase2 protein) isoforms and mouse islets expressed PFKFB2 at the mRNA level [RT–PCR (reverse transcription–PCR)]. Rat islets expressed PFKFB2 lacking the C-terminal phosphorylation sites. The glucose-responsive MIN6 and INS1E cell lines expressed PFKFB2 and PFKFB3. PFK-2 activity and the cell content of fructose 2,6-P2 were increased by elevated glucose concentration and during pharmacological activation of AMPK (AMP-activated protein kinase), which also increased insulin secretion. Partial down-regulation of endogenous PFKFB2 and PFKFB3 in INS1E by siRNA decreased PFK-2/FBPase-2 protein, fructose 2,6-P2 content, glucokinase activity and glucoseinduced insulin secretion. Selective down-regulation of glucose-induced fructose 2,6-P2 in the absence of down-regulation of PFK-2/FBPase-2 protein, using a KD PFK-2/FBPase-2 variant, resulted in sustained glycolysis and elevated glucose-induced insulin secretion, indicating an over-riding role of PFK-2/FBPase-2 protein, as distinct from its product fructose 2,6-P2, in potentiating glucose-induced insulin secretion. Whereas down-regulation of PFK-2/FBPase-2 decreased glucokinase activity, overexpression of PFK-2/FBPase-2 only affected glucokinase distribution. It is concluded that PFK-2/FBPase-2 protein rather than its product fructose 2,6-P2 is the over-riding determinant of glucose-induced insulin secretion through regulation of glucokinase activity or subcellular targeting.
Collapse
|
13
|
Mukhtar MH, Payne VA, Arden C, Harbottle A, Khan S, Lange AJ, Agius L. Inhibition of glucokinase translocation by AMP-activated protein kinase is associated with phosphorylation of both GKRP and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Am J Physiol Regul Integr Comp Physiol 2008; 294:R766-74. [PMID: 18199594 DOI: 10.1152/ajpregu.00593.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate of glucose phosphorylation in hepatocytes is determined by the subcellular location of glucokinase and by its association with its regulatory protein (GKRP) in the nucleus. Elevated glucose concentrations and precursors of fructose 1-phosphate (e.g., sorbitol) cause dissociation of glucokinase from GKRP and translocation to the cytoplasm. In this study, we investigated the counter-regulation of substrate-induced translocation by AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside), which is metabolized by hepatocytes to an AMP analog, and causes activation of AMP-activated protein kinase (AMPK) and depletion of ATP. During incubation of hepatocytes with 25 mM glucose, AICAR concentrations below 200 microM activated AMPK without depleting ATP and inhibited glucose phosphorylation and glucokinase translocation with half-maximal effect at 100-140 microM. Glucose phosphorylation and glucokinase translocation correlated inversely with AMPK activity. AICAR also counteracted translocation induced by a glucokinase activator and partially counteracted translocation by sorbitol. However, AICAR did not block the reversal of translocation (from cytoplasm to nucleus) after substrate withdrawal. Inhibition of glucose-induced translocation by AICAR was greater than inhibition by glucagon and was associated with phosphorylation of both GKRP and the cytoplasmic glucokinase binding protein, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) on ser-32. Expression of a kinase-active PFK2 variant lacking ser-32 partially reversed the inhibition of translocation by AICAR. Phosphorylation of GKRP by AMPK partially counteracted its inhibitory effect on glucokinase activity, suggesting altered interaction of glucokinase and GKRP. In summary, mechanisms downstream of AMPK activation, involving phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and GKRP are involved in the ATP-independent inhibition of glucose-induced glucokinase translocation by AICAR in hepatocytes.
Collapse
Affiliation(s)
- Mohammed H Mukhtar
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Arimura N, Ménager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M, Goshima Y, Inagaki M, Morone N, Usukura J, Kaibuchi K. Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol 2005; 25:9973-84. [PMID: 16260611 PMCID: PMC1280267 DOI: 10.1128/mcb.25.22.9973-9984.2005] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tang GQ, Novitzky WP, Carol Griffin H, Huber SC, Dewey RE. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:433-46. [PMID: 16236153 DOI: 10.1111/j.1365-313x.2005.02535.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The endoplasmic reticulum-associated oleate desaturase FAD2 (1-acyl-2-oleoyl-sn-glycero-3-phosphocholine Delta12-desaturase) is the key enzyme responsible for the production of linoleic acid in non-photosynthetic tissues of plants. Little is known, however, concerning the post-transcriptional mechanisms that regulate the activity of this important enzyme. The soybean genome possesses two seed-specific isoforms of FAD2, designated FAD2-1A and FAD2-1B, which differ at only 24 amino acid residues. Expression studies in yeast revealed that the FAD2-1A isoform is more unstable than FAD2-1B, particularly when cultures were maintained at elevated growth temperatures. Analysis of chimeric FAD2-1 constructs led to the identification of two domains that appear to be important in mediating the temperature-dependent instability of the FAD2-1A isoform. The enhanced degradation of FAD2-1A at high growth temperatures was partially abrogated by treating the cultures with the 26S proteasome-specific inhibitor MG132, and by expressing the FAD2-1A cDNA in yeast strains devoid of certain ubiquitin-conjugating activities, suggesting a role for ubiquitination and the 26S proteasome in protein turnover. In addition, phosphorylation state-specific antipeptide antibodies demonstrated that the Serine-185 of FAD2-1 sequences is phosphorylated during soybean seed development. Expression studies of phosphopeptide mimic mutations in yeast suggest that phosphorylation may downregulate enzyme activity. Collectively, the results show that post-translational regulatory mechanisms are likely to play an important role in modulating FAD2-1 enzyme activities.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Crop Science Department, North Carolina State University, Campus Box 7620, Raleigh, NC 27695-7620, USA
| | | | | | | | | |
Collapse
|
16
|
Manes NP, El-Maghrabi MR. The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys 2005; 438:125-36. [PMID: 15896703 DOI: 10.1016/j.abb.2005.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 12/31/2022]
Abstract
The two enzymatic activities of the highly conserved catalytic core of 6PF2K/Fru-2,6-P(2)ase are thought to be reciprocally regulated by the amino- and carboxy-terminal regions unique to each isoform. In this study, we describe the recombinant expression, purification, and kinetic characterization of two human brain 6PF2K/Fru-2,6-P(2)ase splice variants, HBP1 and HBP2. Interestingly, both lack an arginine which is highly conserved among other tissue isoforms, and which is understood to be critical to the fructose-2,6-bisphosphatase mechanism. As a result, the phosphatase activity of both HBP isoforms is negligible, but we found that it could be recovered by restoration of the arginine by site directed mutagenesis. We also found that AMP activated protein kinase and protein kinases A, B, and C catalyzed the phosphorylation of Ser-460 of HBP1, and that in addition both isoforms are phosphorylated at a second, as yet undetermined site by protein kinase C. However, none of the phosphorylations had any effect on the intrinsic kinetic characteristics of either enzymatic activity, and neither did point mutation (mimicking phosphorylation), deletion, and alternative-splice modification of the HBP1 carboxy-terminal region. Instead, these phosphorylations and mutations decreased the sensitivity of the 6PF2K to a potent allosteric inhibitor, phosphoenolpyruvate, which appears to be the major regulatory mechanism.
Collapse
Affiliation(s)
- Nathan P Manes
- Department of Physiology and Biophysics, Stony Brook University, NY 11794-8661, USA
| | | |
Collapse
|
17
|
Payne VA, Arden C, Wu C, Lange AJ, Agius L. Dual role of phosphofructokinase-2/fructose bisphosphatase-2 in regulating the compartmentation and expression of glucokinase in hepatocytes. Diabetes 2005; 54:1949-57. [PMID: 15983194 DOI: 10.2337/diabetes.54.7.1949] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hepatic glucokinase is regulated by a 68-kDa regulatory protein (GKRP) that is both an inhibitor and nuclear receptor for glucokinase. We tested the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) in regulating glucokinase compartmentation in hepatocytes. PFK2 catalyzes formation or degradation of the regulator of glycolysis fructose 2,6-bisphosphate (fructose 2,6-P2), depending on its phosphorylation state (ser-32), and is also a glucokinase-binding protein. Incubation of hepatocytes at 25 mmol/l glucose causes translocation of glucokinase from the nucleus to the cytoplasm and an increase in fructose 2,6-P2. Glucagon caused phosphorylation of PFK2-ser-32, lowered the fructose 2,6-P2 concentration, and inhibited glucose-induced translocation of glucokinase. These effects of glucagon were reversed by expression of a kinase-active PFK2 mutant (S32A/H258A) that overrides the suppression of fructose 2,6-P2 but not by overexpression of wild-type PFK2. Overexpression of PFK2 potentiated glucokinase expression in hepatocytes transduced with an adenoviral vector-encoding glucokinase by a mechanism that does not involve stabilization of glucokinase protein from degradation. It is concluded that PFK2 has a dual role in regulating glucokinase in hepatocytes: it potentiates glucokinase protein expression by posttranscriptional mechanisms and favors its cytoplasmic compartmentation. Thus, it acts in a complementary mechanism to GKRP, which also regulates glucokinase protein expression and compartmentation.
Collapse
Affiliation(s)
- Victoria A Payne
- School of Clinical Medical Sciences-Diabetes, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
18
|
Kobayashi M, Takatani N, Tanigawa M, Omata T. Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:498-506. [PMID: 15629921 PMCID: PMC543532 DOI: 10.1128/jb.187.2.498-506.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
19
|
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561-79. [PMID: 15170386 PMCID: PMC1133864 DOI: 10.1042/bj20040752] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/01/2004] [Indexed: 12/21/2022]
Abstract
Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Donthi RV, Ye G, Wu C, McClain DA, Lange AJ, Epstein PN. Cardiac Expression of Kinase-deficient 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase Inhibits Glycolysis, Promotes Hypertrophy, Impairs Myocyte Function, and Reduces Insulin Sensitivity. J Biol Chem 2004; 279:48085-90. [PMID: 15331593 DOI: 10.1074/jbc.m405510200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycolysis is important to cardiac metabolism and reduced glycolysis may contribute to diabetic cardiomyopathy. To understand its role independent of diabetes or hypoxic injury, we modulated glycolysis by cardiac-specific overexpression of kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (kd-PFK-2). PFK-2 controls the level of fructose 2,6-bisphosphate (Fru-2,6-P(2)), an important regulator of glycolysis. Transgenic mice had over 2-fold reduced levels of Fru-2,6-P(2). Heart weight/body weight ratio indicated mild hypertrophy. Sirius red staining for collagen was significantly increased. We observed a 2-fold elevation in glucose 6-phosphate and fructose 6-phosphate levels, whereas fructose 1,6-bisphosphate was reduced 2-fold. Pathways branching off of glycolysis above phosphofructokinase were activated as indicated by over 2-fold elevated UDP-N-acetylglucosamine and glycogen. The kd-PFK-2 transgene significantly inhibited glycolysis in perfused hearts. Insulin stimulation of metabolism and Akt phosphorylation were sharply reduced. In addition, contractility of isolated cardiomyocytes was impaired during basal and hypoxic incubations. The present study shows that cardiac overexpression of kinase-deficient PFK-2 reduces cardiac glycolysis that produced negative consequences to the heart including hypertrophy, fibrosis, and reduced cardiomyocyte function. In addition, metabolic and signaling responses to insulin were significantly decreased.
Collapse
Affiliation(s)
- Rajakumar V Donthi
- Department of Pediatrics-Diabetes Research, University of Louisville, School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | |
Collapse
|
21
|
Massa L, Baltrusch S, Okar DA, Lange AJ, Lenzen S, Tiedge M. Interaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) with glucokinase activates glucose phosphorylation and glucose metabolism in insulin-producing cells. Diabetes 2004; 53:1020-9. [PMID: 15047617 DOI: 10.2337/diabetes.53.4.1020] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) was recently identified as a new intracellular binding partner for glucokinase (GK). Therefore, we studied the importance of this interaction for the activity status of GK and glucose metabolism in insulin-producing cells by overexpression of the rat liver and pancreatic islet isoforms of PFK-2/FBPase-2. PFK-2/FBPase-2 overexpression in RINm5F-GK cells significantly increased the GK activity by 78% in cells expressing the islet isoform, by 130% in cells expressing the liver isoform, and by 116% in cells expressing a cAMP-insensitive liver S32A/H258A double mutant isoform. Only in cells overexpressing the wild-type liver PFK-2/FBPase-2 isoform was the increase of GK activity abolished by forskolin, apparently due to the regulatory site for phosphorylation by a cAMP-dependent protein kinase. In cells overexpressing any isoform of the PFK-2/FBPase-2, the increase of the GK enzyme activity was antagonized by treatment with anti-FBPase-2 antibody. Increasing the glucose concentration from 2 to 10 mmol/l had a significant stimulatory effect on the GK activity in RINm5F-GK cells overexpressing any isoform of PFK-2/FBPase-2. The interaction of GK with PFK-2/FBPase-2 takes place at glucose concentrations that are physiologically relevant for the activation of GK and the regulation of glucose-induced insulin secretion. This new mechanism of posttranslational GK regulation may also represent a new site for pharmacotherapeutic intervention in type 2 diabetes treatment.
Collapse
Affiliation(s)
- Laura Massa
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Goldstein BN, Maevsky AA. Critical switch of the metabolic fluxes by phosphofructo-2-kinase:fructose-2,6-bisphosphatase. A kinetic model. FEBS Lett 2002; 532:295-9. [PMID: 12482582 DOI: 10.1016/s0014-5793(02)03639-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kinetic model for the bifunctional enzyme, phosphofructo-2-kinase:fructose-2,6-bisphosphatase, is analysed by application of the graph-theoretical method, considering comparable levels for all participants. Certain elementary reactions, distributed on the enzyme surface, are considered to be co-ordinated in a single conformational transition (a model of parallel molecular operations). The method allows us to identify in the kinetic scheme its destabilising sub-scheme as a branched cycle of elementary reactions. Under certain conditions this sub-scheme induces critical phenomena (bistability or oscillations). The computer calculations for the estimated parameter values fit well the experimental observations for this system. The model explains the periodic or bistable counterphase changes of the two opposing activities of this enzyme, observed after glucose perfusion of rat hepatic enzyme samples, and predicts drastic critical changes in kinetic behaviour induced by small external signals. The model also shows the necessity of the phosphoryl intermediate in the mechanism of the bisphosphatase for the critical kind of kinetic behaviour.
Collapse
Affiliation(s)
- Boris N Goldstein
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region 142290, Pushchino, Russia.
| | | |
Collapse
|
23
|
Choi IY, Wu C, Okar DA, Lange AJ, Gruetter R. Elucidation of the role of fructose 2,6-bisphosphate in the regulation of glucose fluxes in mice using in vivo (13)C NMR measurements of hepatic carbohydrate metabolism. ACTA ACUST UNITED AC 2002. [PMID: 12230553 DOI: 10.1046/j.1432-1033.2002.t01-1-03125.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fructose 2,6-bisphosphate (Fru-2,6-P2) plays an important role in the regulation of major carbohydrate fluxes as both allosteric activator and inhibitor of target enzymes. To examine the role of Fru-2,6-P2 in the regulation of hepatic carbohydrate metabolism in vivo, Fru-2,6-P2 levels were elevated in ADM mice with adenovirus-mediated overexpression of a double mutant bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (n = 6), in comparison to normal control mice (control, n = 6). The rates of hepatic glycogen synthesis in the ADM and control mouse liver in vivo were measured using new advances in 13C NMR including 3D localization in conjunction with [1-13C]glucose infusion. In addition to glycogen C1, the C6 and C2-C5 signals were measured simultaneously for the first time in vivo, which provide the basis for the estimation of direct and indirect synthesis of glycogen in the liver. The rate of label incorporation into glycogen C1 was not different between the control and ADM group, whereas the rate of label incorporation into glycogen C6 signals was in the ADM group 5.6 +/- 0.5 micro mol.g-1.h-1, which was higher than that of the control group of 3.7 +/- 0.5 micro mol.g-1.h-1 (P < 0.02). The rates of net glycogen synthesis, determined by the glycogen C2-C5 signal changes, were twofold higher in the ADM group (P = 0.04). The results provide direct in vivo evidence that the effects of elevated Fru-2,6-P2 levels in the liver include increased glycogen storage through indirect synthesis of glycogen. These observations provide a key to understanding the mechanisms by which elevated hepatic Fru-2,6-P2 levels promote reduced hepatic glucose production and lower blood glucose in diabetes mellitus.
Collapse
Affiliation(s)
- In-Young Choi
- Departments of RadiologyBiochemistry, Molecular Biology and Biophysics Neuroscience University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
24
|
Okar DA, Manzano A, Navarro-Sabatè A, Riera L, Bartrons R, Lange AJ. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 2001; 26:30-5. [PMID: 11165514 DOI: 10.1016/s0968-0004(00)01699-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fructose-2,6-bisphosphate is responsible for mediating glucagon-stimulated gluconeogenesis in the liver. This discovery has led to the realization that this compound plays a significant role in directing carbohydrate fluxes in all eukaryotes. Biophysical studies of the enzyme that both synthesizes and degrades this biofactor have yielded insight into its molecular enzymology. Moreover, the metabolic role of fructose-2,6-bisphosphate has great potential in the treatment of diabetes.
Collapse
Affiliation(s)
- D A Okar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wu C, Okar DA, Newgard CB, Lange AJ. Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. J Clin Invest 2001; 107:91-8. [PMID: 11134184 PMCID: PMC198549 DOI: 10.1172/jci11103] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is an important regulatory enzyme of glucose metabolism. By controlling the level of fructose-2,6-bisphosphate, an allosteric activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase regulates hepatic glucose output. We studied the effects of adenovirus-mediated overexpression of this enzyme on hepatic glucose metabolism in normal or diabetic mice. These animals were treated with virus encoding either wild-type or bisphosphatase activity-deficient 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. Seven days after virus injection, hepatic fructose-2,6-bisphosphate levels increased significantly in both normal and diabetic mice, with larger increases observed in animals with overexpression of the mutant enzyme. Blood glucose levels in normal mice overexpressing either enzyme were lowered, accompanied by increased plasma lactate, triglycerides, and FFAs. Blood glucose levels were markedly reduced in diabetic mice overexpressing the wild-type enzyme, and still more so in mice overexpressing the mutant form of the enzyme. The lower blood glucose levels in diabetic mice were accompanied by partially normalized plasma triglycerides and FFAs, increased plasma lactate, and increased liver glycogen levels, relative to diabetic mice treated with a control adenovirus. Our findings underscore the critical role played by hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in control of fuel homeostasis and suggest that this enzyme may be considered as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- C Wu
- Department of Biochemistry, Molecular Biology and Biophysics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
26
|
Truesdale, Toldi, Scott. The Effect of Elevated Concentrations of Fructose 2,6-Bisphosphate on Carbon Metabolism during Deacidification in the Crassulacean Acid Metabolism Plant Kalanchöe daigremontiana. PLANT PHYSIOLOGY 1999; 121:957-964. [PMID: 10557245 PMCID: PMC59460 DOI: 10.1104/pp.121.3.957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 07/29/1999] [Indexed: 05/23/2023]
Abstract
In C(3) plants, the metabolite fructose 2,6-bisphosphate (Fru 2,6-P(2)) has an important role in the regulation of carbon partitioning during photosynthesis. To investigate the impact of Fru 2,6-P(2) on carbon metabolism during Crassulacean acid metabolism (CAM), we have developed an Agrobacterium tumefaciens-mediated transformation system in order to alter genetically the obligate CAM plant Kalanchöe daigremontiana. To our knowledge, this is the first report to use genetic manipulation of a CAM species to increase our understanding of this important form of plant metabolism. Transgenic plants were generated containing a modified rat liver 6-phosphofructo-2-kinase gene. In the plants analyzed the activity of 6-phosphofructo-2-kinase ranged from 175% to 198% of that observed in wild-type plants, resulting in Fru 2,6-P(2) concentrations that were 228% to 350% of wild-type plants after 2 h of illumination. A range of metabolic measurements were made on these transgenic plants to investigate the possible roles of Fru 2,6-P(2) during Suc, starch, and malic acid metabolism across the deacidification period of CAM. The results suggest that Fru 2,6-P(2) plays a major role in regulating partitioning between Suc and starch synthesis during photosynthesis. However, alterations in Fru 2,6-P(2) levels had little effect on malate mobilization during CAM fluxes.
Collapse
Affiliation(s)
- Truesdale
- School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
27
|
Durante P, Gueuning MA, Darville MI, Hue L, Rousseau GG. Apoptosis induced by growth factor withdrawal in fibroblasts overproducing fructose 2,6-bisphosphate. FEBS Lett 1999; 448:239-43. [PMID: 10218483 DOI: 10.1016/s0014-5793(99)00387-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose 2,6-bisphosphate is a potent endogenous stimulator of glycolysis. A high aerobic glycolytic rate often correlates with increased cell proliferation. To investigate this relationship, we have produced clonal cell lines of Rat-1 fibroblasts that stably express transgenes coding for 6-phosphofructo-2-kinase, which catalyzes the synthesis of fructose 2,6-bisphosphate, or for fructose 2,6-bisphosphatase, which catalyzes its degradation. While serum deprivation in culture reduced the growth rate of control cells, it caused apoptosis in cells overproducing fructose 2,6-bisphosphate. Apoptosis was inhibited by 5-amino-4-imidazolecarboxamide riboside, suggesting that 5'-AMP-activated protein kinase interferes with this phenomenon.
Collapse
Affiliation(s)
- P Durante
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|
28
|
Toroser D, McMichael R, Krause KP, Kurreck J, Sonnewald U, Stitt M, Huber SC. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:407-13. [PMID: 10205897 DOI: 10.1046/j.1365-313x.1999.00389.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.
Collapse
Affiliation(s)
- D Toroser
- US Department of Agriculture, Agricultural Research Service, Raleigh, NC 27607, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Argaud D, Kirby TL, Newgard CB, Lange AJ. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. J Biol Chem 1997; 272:12854-61. [PMID: 9139747 DOI: 10.1074/jbc.272.19.12854] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentration, catalyzes the terminal step in gluconeogenesis and glycogenolysis. Glucose, the product of the glucose-6-phosphatase reaction, dramatically increases the level of glucose-6-phosphatase mRNA transcripts in primary hepatocytes (20-fold), and the maximum response is obtained at a glucose concentration as low as 11 mM. Glucose specifically increases glucose-6-phosphatase mRNA and L-type pyruvate kinase mRNA. In the rat hepatoma-derived cell line, Fao, glucose increases the glucose-6-phosphatase mRNA only modestly (3-fold). In the presence of high glucose concentrations, overexpression of glucokinase in Fao cells via recombinant adenovirus vectors increases lactate production to the level found in primary hepatocytes and increases glucose-6-phosphatase gene expression by 21-fold. Similar overexpression of hexokinase I in Fao cells with high levels of glucose does not increase lactate production nor does it change the response of glucose-6-phosphatase mRNA to glucose. Glucokinase overexpression in Fao cells blunts the previously reported inhibitory effect of insulin on glucose-6-phosphatase gene expression in these cells. Raising the cellular concentration of fructose-2,6-bisphosphate, a potent effector of the direction of carbon flux through the gluconeogenic and glycolytic pathways, also stimulated glucose-6-phosphatase gene expression in Fao cells. Increasing the fructose-2,6-bisphosphate concentration over a 15-fold range (12 +/- 1 to 187 +/- 17 pmol/plate) via an adenoviral vector overexpression system, led to a 6-fold increase (0.32 +/- 0. 03 to 2.2 +/- 0.33 arbitrary units of mRNA) in glucose-6-phosphatase gene expression with a concomitant increase in glycolysis and a decrease in gluconeogenesis. Also, the effects of fructose-2, 6-bisphosphate concentrations on fructose-1,6-bisphosphatase gene expression were stimulatory, leading to a 5-6-fold increase in mRNA level over a 15-fold range in fructose-2,6-bisphosphate level. Liver pyruvate kinase and phosphoenolpyruvate carboxykinase mRNA were unchanged by the manipulation of fructose-2,6-bisphosphate level.
Collapse
Affiliation(s)
- D Argaud
- Department of Biochemistry, Medical School, University of Minnesota, Minneapolis, Minnesota 55455-0347, USA
| | | | | | | |
Collapse
|
30
|
Kessler R, Eschrich K. Ser644 is important for catalytic activity but is not involved in cAMP-dependent phosphorylation of yeast 6-phosphofructo-2-kinase. FEBS Lett 1996; 395:225-7. [PMID: 8898101 DOI: 10.1016/0014-5793(96)01045-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To identify the target amino acid for the cAMP-dependent phosphorylation of yeast 6-phosphofructo-2-kinase Ser644 was mutated to Ala. The plasmid-encoded wild-type and mutant enzymes were overexpressed in E. coli TG2 cells and in the yeast strain DFY658. Like the wild-type enzyme, the Ser644-->Ala mutant was phosphorylated in vivo after addition of glucose to yeast cells and in vitro by the catalytic subunit of protein kinase A. The specific activity of the mutant enzyme was 6-fold lower than that of the wild-type yeast 6-phosphofructo-2-kinase, but both enzymes were activated in response to the addition of glucose to yeast cells.
Collapse
Affiliation(s)
- R Kessler
- Institute of Biochemistry, University of Leipzig, School of Medicine, Germany
| | | |
Collapse
|
31
|
Pitcher JA, Fredericks ZL, Stone WC, Premont RT, Stoffel RH, Koch WJ, Lefkowitz RJ. Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J Biol Chem 1996; 271:24907-13. [PMID: 8798768 DOI: 10.1074/jbc.271.40.24907] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The G protein-coupled receptor kinases (GRKs) phosphorylate agonist occupied G protein-coupled receptors and play an important role in mediating receptor desensitization. The localization of these enzymes to their membrane incorporated substrates is required for their efficient function and appears to be a highly regulated process. In this study we demonstrate that phosphatidylinositol 4, 5-bisphosphate (PIP2) enhances GRK5-mediated beta-adrenergic receptor (betaAR) phosphorylation by directly interacting with this enzyme and facilitating its membrane association. GRK5-mediated phosphorylation of a soluble peptide substrate is unaffected by PIP2, suggesting that the PIP2-enhanced receptor kinase activity arises as a consequence of this membrane localization. The lipid binding site of GRK5 exhibits a high degree of specificity and appears to reside in the amino terminus of this enzyme. Mutation of six basic residues at positions 22, 23, 24, 26, 28, and 29 of GRK5 ablates the ability of this kinase to bind PIP2. This region of the GRK5, which has a similar distribution of basic amino acids to the PIP2 binding site of gelsolin, is highly conserved between members of the GRK4 subfamily (GRK4, GRK5, and GRK6). Indeed, all the members of the GRK4 subfamily exhibit PIP2-dependent receptor kinase activity. We have shown previously that the membrane association of betaARK (beta-adrenergic receptor kinase) (GRK2) is mediated, in vitro, by the simultaneous binding of PIP2 and the betagamma subunits of heterotrimeric G proteins to the carboxyl-terminal pleckstrin homology domain of this enzyme (Pitcher, J. A., Touhara, K., Payne, E. S., and Lefkowitz, R. J. (1995) J. Biol. Chem. 270, 11707-11710). Thus, five members of the GRK family bind PIP2, betaARK (GRK2), betaARK2 (GRK3), GRK4, GRK5, and GRK6. However, the structure, location, and regulation of the PIP2 binding site distinguishes the betaARK (GRK2 and GRK3) and GRK4 (GRK4, GRK5, and GRK6) subfamilies.
Collapse
Affiliation(s)
- J A Pitcher
- Departments of Medicine and Biochemistry, Howard Hughes Medical Research Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hasemann CA, Istvan ES, Uyeda K, Deisenhofer J. The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. Structure 1996; 4:1017-29. [PMID: 8805587 DOI: 10.1016/s0969-2126(96)00109-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glucose homeostasis is maintained by the processes of glycolysis and gluconeogenesis. The importance of these pathways is demonstrated by the severe and life threatening effects observed in various forms of diabetes. The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase catalyzes both the synthesis and degradation of fructose-2,6-bisphosphate, a potent regulator of glycolysis. Thus this bifunctional enzyme plays an indirect yet key role in the regulation of glucose metabolism. RESULTS We have determined the 2.0 A crystal structure of the rat testis isozyme of this bifunctional enzyme. The enzyme is a homodimer of 55 kDa subunits arranged in a head-to-head fashion, with each monomer consisting of independent kinase and phosphatase domains. The location of ATPgammaS and inorganic phosphate in the kinase and phosphatase domains, respectively, allow us to locate and describe the active sites of both domains. CONCLUSIONS The kinase domain is clearly related to the superfamily of mononucleotide binding proteins, with a particularly close relationship to the adenylate kinases and the nucleotide-binding portion of the G proteins. This is in disagreement with the broad speculation that this domain would resemble phosphofructokinase. The phosphatase domain is structurally related to a family of proteins which includes the cofactor independent phosphoglycerate mutases and acid phosphatases.
Collapse
Affiliation(s)
- C A Hasemann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-8884, USA.
| | | | | | | |
Collapse
|
33
|
Daniel J. Detection of antagonistic cellular regulatory functions by the gene-gene interference method in yeast. Curr Genet 1996; 29:114-21. [PMID: 8821657 DOI: 10.1007/bf02221574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It was previously assumed that a new genetic method in yeast, termed gene-gene interference, leads to the selection of genes that antagonize, and/or are antagonized by, the particular reference gene used for their selection (Daniel 1993). In this paper two pieces of evidence are advanced in favour of this view. Firstly, the reconstitution of a system of known antagonistic genes was shown to be detectable by the gene-gene interference method. Secondly, since ART1, a new gene selected in reference to the protein kinase A gene, has been shown to contain in its deduced polypeptide a putative site for phosphorylation by protein kinase A, a mutagenesis study directed toward this putative site has been performed. Two phenotypes-in vivo filamenting activity and gene-gene interference relative to the protein kinase A gene-were tested with the various mutations thus obtained and found to be consistent with the hypothesis that, under physiological conditions, phosphorylation by protein kinase A exerts an inhibitory effect on Art1 activity. The relevance of these findings on the mechanisms and potential applications of the gene-gene interference phenomenon is discussed.
Collapse
Affiliation(s)
- J Daniel
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| |
Collapse
|
34
|
Argaud D, Lange AJ, Becker TC, Okar DA, el-Maghrabi MR, Newgard CB, Pilkis SJ. Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2,6-P2 levels. J Biol Chem 1995; 270:24229-36. [PMID: 7592629 DOI: 10.1074/jbc.270.41.24229] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been postulated to be a metabolic signaling enzyme, which acts as a switch between glycolysis and gluconeogenesis in mammalian liver by regulating the level of fructose 2,6-bisphosphate. The effect of overexpressing the bifunctional enzyme was studied in FAO cells transduced with recombinant adenoviral constructs of either the wild-type enzyme or a double mutant that has no bisphosphatase activity or protein kinase phosphorylation site. With both constructs, the mRNA and protein were overexpressed by 150- and 40-fold, respectively. Addition of cAMP to cells overexpressing the wild-type enzyme increased the S0.5 for fructose 6-phosphate of the kinase by 1.5-fold but had no effect on the overexpressed double mutant. When the wild-type enzyme was overexpressed, there was a decrease in fructose 2,6-bisphosphate levels, even though 6-phosphofructo-2-kinase maximal activity increased more than 22-fold and was in excess of fructose-2,6-bisphosphatase maximal activity. The kinase:bisphosphatase maximal activity ratio was decreased, indicating that the overexpressed enzyme was phosphorylated by cAMP-dependent protein kinase. Overexpression of the double mutant resulted in a 28-fold increase in kinase maximal activity and a 3-4-fold increase in fructose 2,6-bisphosphate levels. Overexpression of this form inhibited the rate of glucose production from dihydroxyacetone by 90% and stimulated the rate of lactate plus pyruvate production by 200%. In contrast, overexpression of the wild-type enzyme enhanced glucose production and inhibited lactate plus pyruvate production. These results provide direct support for fructose 2,6-bisphosphate as a regulator of gluconeogenic/glycolytic pathway flux and suggest that regulation of bifunctional enzyme activities by covalent modification is more important than the amount of the protein.
Collapse
Affiliation(s)
- D Argaud
- Department of Physiology and Biophysics, SUNY at Stony Brook 11794, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Palczewski K, Ohguro H, Premont RT, Inglese J. Rhodopsin kinase autophosphorylation. Characterization of site-specific mutations. J Biol Chem 1995; 270:15294-8. [PMID: 7797516 DOI: 10.1074/jbc.270.25.15294] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Upon illumination, rhodopsin kinase (RK) phosphorylates the visual pigment rhodopsin, which is thought to partially terminate the biochemical events that follow photon absorption. RK enzymology was explored by mutagenesis of the residues Ser488, Thr489 (major autophosphorylation sites), and Lys491 (a distal residue). We found the following to be true. (i) Double mutations at residues Ser488 and Thr489 to Ala or Asp decrease autophosphorylation to substoichiometrical levels, while single mutations at either residue independently reduce autophosphorylation by half. (ii) Phosphorylation of residue Ser488 influences the affinity of RK for heparin-Sepharose only moderately, whereas Thr489 and Lys491 are important for this interaction. RK K491A does not phosphorylate acidic peptides, suggesting that this residue participates in substrate binding. (iii) Mutations in the autophosphorylation region affect the Km for ATP, suggesting that this region is involved in binding of ATP to the catalytic site. (iv) RK mutants S488A or S488D and RK S488A and T489A have an increased ability to phosphorylate Rho in the dark. (v) Mutations at the autophosphorylation region change the initial site of phosphorylation on photolyzed rhodopsin (Rho*), implying that this region may regulate selectivity of the site of phosphorylation.
Collapse
Affiliation(s)
- K Palczewski
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
36
|
Bollinger JM, Kwon DS, Huisman GW, Kolter R, Walsh CT. Glutathionylspermidine metabolism in Escherichia coli. Purification, cloning, overproduction, and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J Biol Chem 1995; 270:14031-41. [PMID: 7775463 DOI: 10.1074/jbc.270.23.14031] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glutathionylspermidine (GSP) synthetases of Trypanosomatidae and Escherichia coli couple hydrolysis of ATP (to ADP and Pi) with formation of an amide bond between spermidine (N-(3-aminopropyl)-1,4-diaminobutane) and the glycine carboxylate of glutathione (gamma-Glu-Cys-Gly). In the pathogenic trypanosomatids, this reaction is the penultimate step in the biosynthesis of the antioxidant metabolite, trypanothione (N1,N8-bis-(glutathionyl)spermidine), and is a target for drug design. In this study, GSP synthetase was purified to near homogeneity from E. coli B, the gene encoding it was isolated and sequenced, the enzyme was overexpressed and purified in quantity, and the recombinant enzyme was characterized. The 70-kDa protein was found to have an unexpected second catalytic activity, glutathionylspermidine amide bond hydrolysis. Thus, the bifunctional GSP synthetase/amidase catalyzes opposing amide bond-forming and -cleaving reactions, with net hydrolysis of ATP. The synthetase activity is selectively abrogated by proteolytic cleavage 81 residues from the C terminus, suggesting that the two activities reside in distinct domains (N-terminal amidase and C-terminal synthetase). Proteolysis at this site is facile in the absence of substrates, but is inhibited in the presence of ATP, glutathione, and Mg2+. A series of analogs was used to probe the spermidine-binding site of the synthetase activity. The activity of diaminopropane as a substrate, inactivity of the C4-C8 diaminoalkanes, and greater loss of specificity for analogs modified in the 3-aminopropyl moiety than for those modified in the 4-aminobutyl moiety indicate that the enzyme recognizes predominantly the diaminopropane portion of spermidine and corroborate N-1 (the aminopropyl N) as the site of glutathione linkage (Tabor, H. and Tabor, C. W. (1975) J. Biol. Chem. 250, 2648-2654). Trends in Km and kcat for a set of difluorosubstituted spermidine derivatives suggest that the enzyme may bind the minor, deprotonated form of the amine nucleophile.
Collapse
Affiliation(s)
- J M Bollinger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
37
|
Kurland IJ, Pilkis SJ. Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme. Protein Sci 1995; 4:1023-37. [PMID: 7549867 PMCID: PMC2143155 DOI: 10.1002/pro.5560040601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms.
Collapse
Affiliation(s)
- I J Kurland
- Department of Physiology, State University of New York at Stony Brook 11794-8661, USA
| | | |
Collapse
|
38
|
Abstract
Cyclic ADP-ribose (cADPR) is the most potent Ca(2+)-mobilizing agent known. It has been found in many different cell types, where it is synthesized from its precursor NAD(+) by ADP-ribosyl cyclases. cADPR binds to Ca(2+) channels in the endoplasmic reticulum membrane to activate a Ca(2+)-release mechanism. This release is itself potentiated by elevated cytoplasmic Ca(2+) concentrations. Thus, cADPR may function as an endogenous regulator of Ca(2+)-induced Ca(2+) release, and there is excitement that it may also function as a Ca(2+)-mobilizing second messenger.
Collapse
Affiliation(s)
- A Galione
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
39
|
Evidence for NH2- and COOH-terminal interactions in rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89482-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Abe Y, Uyeda K. Effect of adding phosphorylation sites for cAMP-dependent protein kinase to rat testis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochemistry 1994; 33:5766-71. [PMID: 8180203 DOI: 10.1021/bi00185a013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In contrast to liver and heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases, the testis isozyme lacks a phosphorylation site for cAMP-dependent protein kinase. In order to determine the effect of phosphorylation site location for the protein kinase on rat testis bifunctional enzyme, consensus amino acid sequences (RRXS) were added at different distances from the N-terminus by site-directed mutagenesis. The expressed wild-type enzyme (WT) and mutant enzymes containing a phosphorylation site at Ser7 (mutant enzyme RT2KS7, where RT2K = rat testis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase), Ser15 (RT2KS15), or Ser30 (RT2KS30) were purified to apparent homogeneity. All the mutant enzymes served as substrates for the protein kinase, and the phosphate incorporation was over 90%. The Km values of protein kinase A for RT2KS7, RT2KS15, and RT2KS30 were 250 microM, 110 microM, and 50 microM, respectively, and the relative rates were 1, 8, and 23. Various kinetic parameters of dephospho and phospho forms of these enzymes were determined. The kinetic constants of the dephospho form of RT2KS30 were similar to those of WT, but those of RT2KS15 and RT2KS7 showed an 8-fold increase in KmFru6P, an approximately 30% decrease in the Fru-6-P,2-kinase activity, and a 3-fold increase in fructose-2,6-bisphosphatase activity. Phosphorylation of RT2KS30 resulted in a shift in the Fru-6-P saturation curve from Michaelis-Menten kinetics to sigmoidal, with increased KmFru6P and activation of fructose-2,6-bisphosphatase. The kinetic constants of RT2KS15 and RT2KS7 were not altered by phosphorylation. All the mutant enzymes were more sensitive to heat inactivation than was WT.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Abe
- Research Service, Department of Veterans Affairs Medical Center, Dallas, Texas
| | | |
Collapse
|
41
|
Kretschmer M, Langer C, Prinz W. Mutation of monofunctional 6-phosphofructo-2-kinase in yeast to bifunctional 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Biochemistry 1993; 32:11143-8. [PMID: 8218176 DOI: 10.1021/bi00092a025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that 6-phosphofructo-2-kinase in yeast has negligible fructose-2,6-bisphosphatase activity even though resembling in part of its C-terminal sequence the phosphatase domain of the bifunctional liver enzyme. Here we show that exchanging Ser-404 to His-404 in the yeast peptide creates a bifunctional enzyme with a fructose-2,6-bisphosphatase activity involving a phosphoprotein intermediate. Like mammalian bifunctional enzymes, the His-404 mutant protein is readily phosphorylated by fructose 2,6-P2 with a half-saturation of 0.4 microM, the same Km value as for its fructose-2,6-bisphosphatase activity. Protein phosphorylation by the C-subunit of cAMP-dependent protein kinase, presumably at a C-terminal consensus site, increases the Km value to 1.5 microM. The newly created fructose-2,6-bisphosphatase is inhibited competitively by its product fructose 6-P with a K(i) of 0.6 mM. No effect of the His-404 mutation was found on 6-phosphofructo-2-kinase activity, in line with the mutant yeast enzyme having independent kinase and phosphatase domains, like its mammalian wild-type counterparts. The results would fit with the evolution of the PFK26 gene having involved fusion between kinase and phosphatase genes--as proposed for the mammalian enzyme--but with accompanying or later silencing of the fructose-2,6-bisphosphatase activity.
Collapse
Affiliation(s)
- M Kretschmer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
42
|
Redwood CS, Marston SB, Gusev NB. The functional effects of mutations Thr673-->Asp and Ser702-->Asp at the Pro-directed kinase phosphorylation sites in the C-terminus of chicken gizzard caldesmon. FEBS Lett 1993; 327:85-9. [PMID: 8392947 DOI: 10.1016/0014-5793(93)81045-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We expressed the C-terminal 99 amino acids of chicken gizzard caldesmon (658C) and two point mutants in which the preferred phosphorylation sites of MAP kinase and p34cdc2 kinase, Ser702 and Thr673 were altered to aspartic acid. The T673D mutant was indistinguishable from 658C but S702D was not phosphorylated by MAP kinase, was significantly less potent as an inhibitor of actin-tropomyosin activation of myosin MgATPase, and bound less actin-tropomyosin at low concentrations. Thus Ser702 is involved in the tropomyosin-dependent inhibitory mechanism of caldesmon, and its phosphorylation by MAP kinase or p34cdc2 kinase could modulate caldesmon function.
Collapse
Affiliation(s)
- C S Redwood
- Department of Cardiac Medicine, National Heart and Lung Institute, London, UK
| | | | | |
Collapse
|
43
|
Rousseau GG, Hue L. Mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a bifunctional enzyme that controls glycolysis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:99-127. [PMID: 8393580 DOI: 10.1016/s0079-6603(08)60868-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- G G Rousseau
- Department of Biochemistry and Cell Biology, University of Louvain Medical School, Brussels, Belgium
| | | |
Collapse
|
44
|
Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4 phosphoenolpyruvate carboxylase from sorghum. The effect of negative charge at position 8. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41844-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|