1
|
Angelini G, Salinari S, Bertuzzi A, Iaconelli A, Mingrone G. Metabolic surgery improves insulin resistance through the reduction of gut-secreted heat shock proteins. Commun Biol 2018; 1:69. [PMID: 30271951 PMCID: PMC6123703 DOI: 10.1038/s42003-018-0069-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic surgery improves insulin resistance and is associated with the remission of type 2 diabetes, but the mechanisms involved remain unknown. We find that human jejunal mucosa secretes heat shock proteins (HSPs) in vitro, in particular HSP70 and GRP78. Circulating levels of HSP70 are higher in people resistant to insulin, compared to the healthy and normalize after duodenal-jejunal bypass. Insulin sensitivity negatively correlates with the plasma level of HSP70, while body mass index does not. A high-energy diet increases the circulating levels of HSP70 and insulin resistance. HSP70 stimulates the accumulation of lipid droplets and inhibits Ser473 phosphorylation of Akt and glucose uptake in immortalized liver cells and peripheral blood cells. Serum depleted of HSPs, as well as the serum from the insulin-resistant people subjected to a duodenal-jejunal bypass, reverse these features, identifying gut-secreted HSPs as possible causes of insulin resistance. Duodenal-jejunal bypass might reduce the secretion of HSPs either by shortening the food transit or by decreasing the fat stimulation of endocrine cells.
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Internal Medicine, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Serenella Salinari
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", University of Rome "Sapienza", Via Ariosto 25, 00185, Rome, Italy
| | - Alessandro Bertuzzi
- CNR-Institute of Systems Analysis and Computer Science (IASI), Via dei Taurini 19, 00185, Rome, Italy
| | - Amerigo Iaconelli
- Department of Internal Medicine, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy. .,Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London, UK.
| |
Collapse
|
2
|
Lassiter DG, Nylén C, Sjögren RJO, Chibalin AV, Wallberg-Henriksson H, Näslund E, Krook A, Zierath JR. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle. Diabetologia 2018; 61:424-432. [PMID: 29022062 PMCID: PMC6449061 DOI: 10.1007/s00125-017-4451-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/11/2017] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Insulin-mediated signals and AMP-activated protein kinase (AMPK)-mediated signals are activated in response to physiological conditions that represent energy abundance and shortage, respectively. Focal adhesion kinase (FAK) is implicated in insulin signalling and cancer progression in various non-muscle cell types and plays a regulatory role during skeletal muscle differentiation. The role of FAK in skeletal muscle in relation to insulin stimulation or AMPK activation is unknown. We examined the effects of insulin or AMPK activation on FAK phosphorylation in human skeletal muscle and the direct role of FAK on glucose and lipid metabolism. We hypothesised that insulin treatment and AMPK activation would have opposing effects on FAK phosphorylation and that gene silencing of FAK would alter metabolism. METHODS Human muscle was treated with insulin or the AMPK-activating compound 5-aminoimadazole-4-carboxamide ribonucleotide (AICAR) to determine FAK phosphorylation and glucose transport. Primary human skeletal muscle cells were used to study the effects of insulin or AICAR treatment on FAK signalling during serum starvation, as well as to determine the metabolic consequences of silencing the FAK gene, PTK2. RESULTS AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397 in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated by increased p-ACCS222, concomitant with reduced p-FAKY397. FAK signalling was reduced owing to serum starvation and AICAR treatment as demonstrated by reduced p-paxillinY118. Silencing PTK2 in primary human skeletal muscle cells increased palmitate oxidation and reduced glycogen synthesis. CONCLUSIONS/INTERPRETATION AMPK regulates FAK signalling in skeletal muscle. Moreover, siRNA-mediated FAK knockdown enhances lipid oxidation while impairing glycogen synthesis in skeletal muscle. Further exploration of the interaction between AMPK and FAK may lead to novel therapeutic strategies for diabetes and other chronic conditions associated with an altered metabolic homeostasis.
Collapse
Affiliation(s)
- David G Lassiter
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | - Carolina Nylén
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | - Rasmus J O Sjögren
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden
| | | | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 65, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Maher AC, McFarlan J, Lally J, Snook LA, Bonen A. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1115-23. [PMID: 25163918 DOI: 10.1152/ajpregu.00014.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.
Collapse
Affiliation(s)
- A C Maher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J McFarlan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J Lally
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - L A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - A Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Yan PK, Zhang LN, Feng Y, Qu H, Qin L, Zhang LS, Leng Y. SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models. Acta Pharmacol Sin 2014; 35:613-24. [PMID: 24786232 PMCID: PMC4814034 DOI: 10.1038/aps.2013.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
Abstract
AIM The sodium glucose cotransporter 2 (SGLT2) plays an important role in renal glucose reabsorption, thus serves as a new target for the treatment of diabetes. The purpose of this study was to evaluate SHR3824 as a novel selective SGLT2 inhibitor and to characterize its in vivo effects on glucose homeostasis. The effects of chronic administration of SHR3824 on peripheral insulin sensitivity and pancreatic β-cell function were also investigated. METHODS The in vitro potency and selectivity of SHR3824 were assessed in HEK293 cells transfected with human SGLT2 or SGLT1. Acute and multi-dose studies were performed on ICR mice, GK rats and db/db mice to assess the ability of SHR3824 to enhance urinary glucose excretion and improve blood glucose levels. 2-Deoxyglucose uptake and insulin immunohistochemical staining were performed in the soleus muscle and pancreas, respectively, of db/db mice. A selective SGLT2 inhibitor BMS512148 (dapagliflozin) was taken as positive control. RESULTS SHR3824 potently inhibited human SGLT2 in vitro, but exerted much weak inhibition on human SGLT1 (the IC50 values of SHR3824 against human SGLT2 and SGLT1 were 2.38 and 4324 nmol/L, respectively). Acute oral administration of SHR3824 (0.3, 1.0, 3.0 mg/kg) dose-dependently improved glucose tolerance in ICR mice, and reduced hyperglycemia by increasing urinary glucose excretion in GK rats and db/db mice. Chronic oral administration of SHR3824 (0.3, 1.0, 3.0 mg·kg(-1)·d(-1)) dose-dependently reduced blood glucose and HbA1c levels in GK rats and db/db mice, and significantly increased insulin-stimulated glucose uptake in the soleus muscles and enhanced insulin staining in the islet cells of db/db mice. CONCLUSION SHR3824 is a potent and selective SGLT2 inhibitor and exhibits antidiabetic efficacy in several rodent models, suggesting its potential as a new therapeutic agent for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Pang-ke Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-na Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lian-shan Zhang
- Shanghai Hengrui Pharmaceuticals Co, Ltd, Shanghai 200245, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Tishinsky JM, Gulli RA, Mullen KL, Dyck DJ, Robinson LE. Fish oil prevents high-saturated fat diet-induced impairments in adiponectin and insulin response in rodent soleus muscle. Am J Physiol Regul Integr Comp Physiol 2012; 302:R598-605. [DOI: 10.1152/ajpregu.00328.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High saturated fatty acid (SFA) diets contribute to the development of insulin resistance, whereas fish oil-derived n-3 polyunsaturated fatty acids (PUFA) increase the secretion of adiponectin (Ad), an adipocyte-derived protein that stimulates fatty acid oxidation (FAO) and improves skeletal muscle insulin response. We sought to determine whether fish oil could prevent and/or restore high SFA diet-induced impairments in Ad and insulin response in soleus muscle. Sprague-Dawley rats were fed 1) a low-fat control diet (CON group), 2) high-SFA diet (SFA group), or 3) high SFA with n-3 PUFA diet (SFA/n-3 PUFA group). At 4 wk, CON and SFA/n-3 PUFA animals were terminated, and SFA animals were either terminated or fed SFA or SFA/n-3 PUFA for an additional 2 or 4 wk. The effect of diet on Ad-stimulated FAO, insulin-stimulated glucose transport, and expression of Ad, insulin and inflammatory signaling proteins was determined in the soleus muscle. Ad stimulated FAO in CON and 4 wk SFA/n-3 PUFA (+36%, +39%, respectively P ≤ 0.05) only. Insulin increased glucose transport in CON, 4 wk SFA/n-3 PUFA, and 4 wk SFA + 4 wk SFA/n-3 PUFA (+82%, +33%, +25%, respectively P ≤ 0.05); this effect was lost in all other groups. TLR4 expression was increased with 4 wk of SFA feeding (+24%, P ≤ 0.05), and this was prevented in 4 wk SFA/n-3 PUFA. Suppressor of cytokine signaling-3 expression was increased in SFA and SFA/n-3 PUFA (+33 and +18%, respectively, P ≤ 0.05). Our results demonstrate that fish oil can prevent high SFA diet-induced impairments in both Ad and insulin response in soleus muscle.
Collapse
Affiliation(s)
- Justine M. Tishinsky
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Roberto A. Gulli
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kerry L. Mullen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David J. Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
SOGAARD PETER, HARLÉN MIKAEL, LONG YUNCHAU, SZEKERES FERENC, BARNES BRIANR, CHIBALIN ALEXANDERV, ZIERATH JULEENR. VALIDATION OF THEIN VITROINCUBATION OF EXTENSOR DIGITORUM LONGUS MUSCLE FROM MICE WITH A MATHEMATICAL MODEL. J BIOL SYST 2011. [DOI: 10.1142/s0218339010003494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vitro incubation of tissues; in particular, skeletal muscles from rodents, is a widely-used experimental method in diabetes research. This experimental method has previously been validated, both experimentally and theoretically. However, much of the method's experimental data remains unclear, including the high-rate of lactate production and the lack of an observable increase in glycogen content, within a given time. The predominant hypothesis explaining the high-rate of lactate production is that this phenomenon is dependent on a mechanism in glycolysis that works as a safety valve, producing lactate when glucose uptake is super-physiological. Another hypothesis is that existing anoxia forces more ATP to be produced from glycolysis, leading to an increased lactate concentration. The lack of an observable increase in glycogen content is assumed to be dependent on limitations in sensitivity of the measuring method used. We derived a mathematical model to investigate which of these hypotheses is most likely to be correct. Using our model, data analysis indicates that the in vitro incubated muscle specimens, most likely are sensing the presence of existing anoxia, rather than an overflow in glycolysis. The anoxic milieu causes the high lactate production. The model also predicts an increased glycogenolysis. After mathematical analyses, an estimation of the glycogen concentration could be made with a reduced model. In conclusion, central anoxia is likely to cause spatial differences in glycogen concentrations throughout the entire muscle. Thus, data regarding total glycogen levels in the incubated muscle do not accurately represent the entire organ. The presented model allows for an estimation of total glycogen, despite spatial differences present in the muscle specimen.
Collapse
Affiliation(s)
- PETER SOGAARD
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
- Systems Biology Research Centre, Department of Biomedicine, School of Life Sciences, University of Skövde, Box 408, 541 28 Skövde, Sweden
| | - MIKAEL HARLÉN
- Systems Biology Research Centre, Department of Cell and Molecular Biology, School of Life Sciences, University of Skövde, Box 408, 541 28 Skövde, Sweden
| | - YUN CHAU LONG
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
| | - FERENC SZEKERES
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
| | - BRIAN R. BARNES
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
| | - ALEXANDER V. CHIBALIN
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
| | - JULEEN R. ZIERATH
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Stefanyk LE, Gulli RA, Ritchie IR, Chabowski A, Snook LA, Bonen A, Dyck DJ. Recovered insulin response by 2 weeks of leptin administration in high-fat fed rats is associated with restored AS160 activation and decreased reactive lipid accumulation. Am J Physiol Regul Integr Comp Physiol 2011; 301:R159-71. [PMID: 21525176 DOI: 10.1152/ajpregu.00636.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leptin is an adipokine that increases fatty acid (FA) oxidation, decreases intramuscular lipid stores, and improves insulin response in skeletal muscle. In an attempt to elucidate the underlying mechanisms by which these metabolic changes occur, we administered leptin (Lep) or saline (Sal) by miniosmotic pumps to rats during the final 2 wk of a 6-wk low-fat (LF) or high-fat (HF) diet. Insulin-stimulated glucose transport was impaired by the HF diet (HF-Sal) but was restored with leptin administration (HF-Lep). This improvement was associated with restored phosphorylation of Akt and AS160 and decreased in reactive lipid species (ceramide, diacylglycerol), known inhibitors of the insulin-signaling cascade. Total muscle citrate synthase (CS) activity was increased by both leptin and HF diet, but was not additive. Leptin increased subsarcolemmal (SS) and intramyofibrillar (IMF) mitochondria CS activity. Total muscle, sarcolemmal, and mitochondrial (SS and IMF) FA transporter (FAT/CD36) protein content was significantly increased with the HF diet, but not altered by leptin. Therefore, the decrease in reactive lipid stores and subsequent improvement in insulin response, secondary to leptin administration in rats fed a HF diet was not due to a decrease in FA transport protein content or altered cellular distribution.
Collapse
Affiliation(s)
- Leslie E Stefanyk
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
8
|
Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE, Kharitonenkov A, Krook A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 2011; 27:286-97. [PMID: 21309058 DOI: 10.1002/dmrr.1177] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Fibroblast growth factor (FGF) 21, a novel member of the FGF family, plays a role in a variety of endocrine functions, including regulation of glucose and lipid metabolism. The role of FGF21 in skeletal muscle is currently not known. METHODS Serum levels and skeletal muscle mRNA of FGF21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS Serum FGF21 levels increased 20% in T2D versus normal glucose tolerant subjects (p < 0.05), whereas skeletal muscle mRNA expression was unaltered. Fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body mass index (BMI) significantly correlated with serum FGF21 levels in T2D (p < 0.01), but not in normal glucose tolerant subjects. Serum FGF21 concentrations were greater in T2D patients in the highest tertile of fasting insulin (p < 0.05) and BMI (p < 0.05). Stepwise regression analysis identified BMI as the strongest independent variable correlating with FGF21. FGF21 exposure increased basal and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering phosphorylation of Akt or AMP-activated protein kinase. CONCLUSIONS Plasma FGF21 is increased in T2D patients, and positively correlated with fasting insulin and BMI. However, FGF21 has direct effects in enhancing skeletal muscle glucose uptake, providing additional points of regulation that may contribute to the beneficial effects of FGF21 on glucose homeostasis. Whether increased plasma FGF21 in T2D is a compensatory mechanism to increase glucose metabolism remains to be determined.
Collapse
Affiliation(s)
- Fredirick L Mashili
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Thrush AB, Harasim E, Chabowski A, Gulli R, Stefanyk L, Dyck DJ. A single prior bout of exercise protects against palmitate-induced insulin resistance despite an increase in total ceramide content. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1200-8. [PMID: 21325642 DOI: 10.1152/ajpregu.00091.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ceramide accumulation has been implicated in the impairment of insulin-stimulated glucose transport in skeletal muscle following saturated fatty acid (FA) exposure. Importantly, a single bout of exercise can protect against acute lipid-induced insulin resistance. The mechanism by which exercise protects against lipid-induced insulin resistance is not completely known but may occur through a redirection of FA toward triacylglycerol (TAG) and away from ceramide and diacylglycerol (DAG). Therefore, in the current study, an in vitro preparation was used to examine whether a prior bout of exercise could confer protection against palmitate-induced insulin resistance and whether the pharmacological [50 μM fumonisin B(1) (FB1)] inhibition of ceramide synthesis in the presence of palmitate could mimic the protective effect of exercise. Soleus muscle of sedentary (SED), exercised (EX), and SED in the presence of FB1 (SED+FB1) were incubated with or without 2 mM palmitate for 4 h. This 2-mM palmitate exposure impaired insulin-stimulated glucose transport (-28%, P < 0.01) and significantly increased ceramide, DAG, and TAG accumulation in the SED group (P < 0.05). A single prior bout of exercise prevented the detrimental effects of palmitate on insulin signaling and caused a partial redistribution of FA toward TAG (P < 0.05). However, the net increase in ceramide content in response to palmitate exposure in the EX group was not different compared with SED, despite the maintenance of insulin sensitivity. The incubation of soleus from SED rats with FB1 (SED+FB1) prevented the detrimental effects of palmitate and caused a redirection of FA toward TAG accumulation (P < 0.05). Therefore, this research suggests that although inhibiting ceramide accumulation can prevent the detrimental effects of palmitate, a single prior bout of exercise appears to protect against palmitate-induced insulin resistance, which may be independent of changes in ceramide content.
Collapse
Affiliation(s)
- A Brianne Thrush
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Mechanisms for skeletal muscle insulin resistance in patients with pancreatic ductal adenocarcinoma. Nutrition 2010; 27:796-801. [PMID: 21050717 DOI: 10.1016/j.nut.2010.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/13/2010] [Accepted: 08/31/2010] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Weight loss, glucose intolerance, and insulin resistance are seen in patients with pancreatic ductal adenocarcinoma (PDAC). Peripheral insulin resistance is decreased after tumor resection in patients with PDAC, which is consistent with the hypothesis that factors from the tumor may induce skeletal muscle insulin resistance. Our aim was to investigate the possible mechanisms for their skeletal muscle insulin resistance. Accordingly, the action of insulin on glucose metabolism and content of energy metabolites in muscle of patients with PDAC were investigated. To explore whether PDAC cells could influence muscle glucose uptake, myotubes were exposed to media conditioned by PDAC cells. METHODS Muscle biopsies from patients with PDAC (n=13), cancer of other sites (n=8), chronic pancreatitis (n=8), and controls with benign diseases (n=8) were assessed for glycogen, adenosine triphosphate, and phosphocreatine content. Basal and insulin-stimulated glucose transport and incorporation into glycogen were also assessed. Myotubes were treated with media conditioned by PDAC (MiaPaca 2) cells and glucose transport was monitored. RESULTS Insulin-stimulated glucose transport, muscle glycogen, and adenosine triphosphate content were decreased in patients with PDAC compared with controls, and insulin stimulation did not significantly increase glucose incorporation into glycogen in vitro in patients with PDAC. Adenosine triphosphate content correlated with glycogen content but not with glucose transport in skeletal muscle. Media conditioned with human PDAC cells did not affect basal or insulin-stimulated glucose transport in L6 myotubes. CONCLUSION In patients with PDAC, muscle insulin resistance is an early and specific finding unrelated to weight loss, plasma free fatty acid levels, and energy status of the cell. PDAC cell-derived factors did not directly induce insulin resistance in myotubes, suggesting a lack of direct tumor-related effects.
Collapse
|
11
|
Duehlmeier R, Hacker A, Widdel-Bigdely A, Engelhardt WV, Sallmann HP. Insulin stimulates GLUT4 translocation in the semitendinosus muscle of Shetland ponies. Vet J 2010; 184:176-81. [DOI: 10.1016/j.tvjl.2009.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 02/07/2023]
|
12
|
Sogaard P, Szekeres F, Garcia-Roves PM, Larsson D, Chibalin AV, Zierath JR. Spatial insulin signalling in isolated skeletal muscle preparations. J Cell Biochem 2010; 109:943-9. [PMID: 20069552 DOI: 10.1002/jcb.22470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During in vitro incubation in the absence or presence of insulin, glycogen depletion occurs in the inner core of the muscle specimen, concomitant with increased staining of hypoxia-induced-factor-1-alpha and caspase-3, markers of hypoxia and apoptosis, respectively. The aim of this study was to determine whether insulin is able to diffuse across the entire muscle specimen in sufficient amounts to activate signalling cascades to promote glucose uptake and glycogenesis within isolated mouse skeletal muscle. Phosphoprotein multiplex assay on lysates from muscle preparation was performed to detect phosphorylation of insulin-receptor on Tyr(1146), Akt on Ser(473) and glycogen-synthases-kinase-3 on Ser(21)/Ser(9). To address the spatial resolution of insulin signalling, immunohistochemistry studies on cryosections were performed. Our results provide evidence to suggest that during the in vitro incubation, insulin sufficiently diffuses into the centre of tubular mouse muscles to promote phosphorylation of these signalling events. Interestingly, increased insulin signalling was observed in the core of the incubated muscle specimens, correlating with the location of oxidative fibres. In conclusion, insulin action was not restricted due to insufficient diffusion of the hormone during in vitro incubation in either extensor digitorum longus or soleus muscles from mouse under the specific experimental settings employed in this study. Hence, we suggest that the glycogen depleted core as earlier observed is not due to insufficient insulin action.
Collapse
Affiliation(s)
- Peter Sogaard
- Department of Molecular Medicine and Surgery, Section Integrative Physiology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Jiang LQ, Garcia-Roves PM, de Castro Barbosa T, Zierath JR. Constitutively active calcineurin in skeletal muscle increases endurance performance and mitochondrial respiratory capacity. Am J Physiol Endocrinol Metab 2010; 298:E8-E16. [PMID: 19861587 DOI: 10.1152/ajpendo.00403.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of an activated form of calcineurin in skeletal muscle selectively up-regulates slow-fiber-specific gene expression. Here, we tested the hypothesis that expression of activated calcineurin in skeletal muscle influences body composition, energy homeostasis, and exercise performance. Using transgenic mice expressing activated calcineurin (CnA*) in skeletal muscle (MCK-CnA* transgenic mice), we determined whether skeletal muscle reprogramming by calcineurin activation affects exercise performance and skeletal muscle mitochondrial function. Body weight and extensor digitorum longus (EDL) skeletal muscle weight were reduced 10% in MCK-CnA* mice compared with wild-type littermates. Basal oxygen consumption, food intake, and voluntary exercise behavior were unchanged between MCK-CnA* and wild-type mice. However, when total energy expenditure was normalized by fat-free mass, energy expenditure was increased in MCK-CnA* mice. An endurance performance treadmill running test revealed MCK-CnA* mice are fatigue resistant and run 50% farther before exhaustion. After a standardized exercise bout, glycogen and triglyceride content in EDL muscle was higher in MCK-CnA* vs. wild-type mice. Mitochondrial respiratory capacity was increased 35% in EDL muscle from resting MCK-CnA* mice. In conclusion, our results provide evidence to support the hypothesis that calcineurin activation in skeletal muscle increases mitochondrial oxidative function and energy substrate storage, which contributes to enhanced endurance exercise performance. These adaptive changes occur as a consequence of a lifelong expression of a constitutively active calcineurin and mimic the response to chronic endurance training.
Collapse
Affiliation(s)
- Lake Q Jiang
- Dept. of Molecular Medicine and Surgery, Dept. of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm S-17177, Sweden
| | | | | | | |
Collapse
|
14
|
Sogaard P, Szekeres F, Holmström M, Larsson D, Harlén M, Garcia-Roves P, Chibalin AV. Effects of fibre type and diffusion distance on mouse skeletal muscle glycogen content in vitro. J Cell Biochem 2009; 107:1189-97. [PMID: 19507232 DOI: 10.1002/jcb.22223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vitro incubation of isolated rodent skeletal muscle is a widely used procedure in metabolic research. One concern with this method is the development of an anoxic state during the incubation period that can cause muscle glycogen depletion. Our aim was to investigate whether in vitro incubation conditions influence glycogen concentration in glycolytic extensor digitorum longus (EDL) and oxidative soleus mouse muscle. Quantitative immunohistochemistry was applied to assess glycogen content in incubated skeletal muscle. Glycogen concentration was depleted, independent of insulin-stimulation in the incubated skeletal muscle. The extent of glycogen depletion was correlated with the oxidative fibre distribution and with the induction of hypoxia-induced-factor-1-alpha. Insulin exposure partially prevented glycogen depletion in soleus, but not in EDL muscle, providing evidence that glucose diffusion is not a limiting step to maintain glycogen content. Our results provide evidence to suggest that the anoxic milieu and the intrinsic characteristics of the skeletal muscle fibre type play a major role in inducing glycogen depletion in during in vitro incubations.
Collapse
Affiliation(s)
- Peter Sogaard
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Galuska D, Kotova O, Barrès R, Chibalina D, Benziane B, Chibalin AV. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Am J Physiol Endocrinol Metab 2009; 297:E38-49. [PMID: 19366873 DOI: 10.1152/ajpendo.90990.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle Na(+)-K(+)-ATPase plays a central role in the clearance of K(+) from the extracellular fluid, therefore maintaining blood [K(+)]. Na(+)-K(+)-ATPase activity in peripheral tissue is impaired in insulin resistant states. We determined effects of high-fat diet (HFD) and exercise training (ET) on skeletal muscle Na(+)-K(+)-ATPase subunit expression and insulin-stimulated translocation. Skeletal muscle expression of Na(+)-K(+)-ATPase isoforms and transcription factor DNA binding was determined before or after 5 days of swim training in Wistar rats fed chow or HFD for 4 or 12 wk. Skeletal muscle insulin resistance was observed after 12 wk of HFD. Na(+)-K(+)-ATPase alpha(1)-subunit protein expression was increased 1.6-fold (P < 0.05), whereas alpha(2)- and beta(1)-subunits and protein expression were decreased twofold (P < 0.01) in parallel with decrease in plasma membrane Na(+)-K(+)-ATPase activity after 4 wk of HFD. Exercise training restored alpha(1)-, alpha(2)-, and beta(1)-subunit expression and Na(+)-K(+)-ATPase activity to control levels and reduced beta(2)-subunit expression 2.2-fold (P < 0.05). DNA binding activity of the alpha(1)-subunit-regulating transcription factor ZEB (AREB6) and alpha(1) mRNA expression were increased after HFD and restored by ET. DNA binding activity of Sp-1, a transcription factor involved in the regulation of alpha(2)- and beta(1)-subunit expression, was decreased after HFD. ET increased phosphorylation of the Na(+)-K(+)-ATPase regulatory protein phospholemman. Phospholemman mRNA and protein expression were increased after HFD and restored to control levels after ET. Insulin-stimulated translocation of the alpha(2)-subunit to plasma membrane was impaired by HFD, whereas alpha(1)-subunit translocation remained unchanged. Alterations in sodium pump function precede the development of skeletal muscle insulin resistance. Disturbances in skeletal muscle Na(+)-K(+)-ATPase regulation, particularly the alpha(2)-subunit, may contribute to impaired ion homeostasis in insulin-resistant states such as obesity and type 2 diabetes.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diet, Atherogenic
- Dietary Fats/pharmacology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Insulin/pharmacology
- Insulin Resistance/genetics
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Ouabain/pharmacokinetics
- Physical Conditioning, Animal/physiology
- Protein Transport/drug effects
- Rats
- Rats, Wistar
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
- Swimming
- Tritium/pharmacokinetics
Collapse
Affiliation(s)
- Dana Galuska
- Departments of Physiology, Karolinska Institutet, von Eulers väg 4a, 4 tr, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate. Biomed Microdevices 2009; 11:413-9. [PMID: 18975093 DOI: 10.1007/s10544-008-9247-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We report a porous membrane-based cell culture device that can conduct localized electrical stimulation of a cell monolayer. The device's cell culture substrate is a microporous alumina membrane with an underlying thin poly(dimethylsiloxane) (PDMS) film spotted with holes. When electric current is generated between the device's Pt ring electrodes--one of which is placed above the cells and the other below the PDMS layer--the current density condenses at the holes in the PDMS film, and cells located above the holes can be electrically stimulated. C2C12 cells were confluently cultured on the substrate and were differentiated to myotubes. To control the stimulated area in the substrate, we attempted to seal and reopen the holes of the PDMS film by using an air bubble. Since the current pulse could be effectively blocked at the sealed holes, fluorescent Ca2+ transients, indicative of cellular excitation, were observed from the myotubes located above holes in the open state.
Collapse
|
17
|
Karlsson HK, Chibalin AV, Koistinen HA, Yang J, Koumanov F, Wallberg-Henriksson H, Zierath JR, Holman GD. Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes 2009; 58:847-54. [PMID: 19188436 PMCID: PMC2661600 DOI: 10.2337/db08-1539] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE In skeletal muscle, insulin stimulates glucose transport activity three- to fourfold, and a large part of this stimulation is associated with a net translocation of GLUT4 from an intracellular compartment to the cell surface. We examined the extent to which insulin or the AMP-activated protein kinase activator AICAR can lead to a stimulation of the exocytosis limb of the GLUT4 translocation pathway and thereby account for the net increase in glucose transport activity. RESEARCH DESIGN AND METHODS Using a biotinylated photoaffinity label, we tagged endogenous GLUT4 and studied the kinetics of exocytosis of the tagged protein in rat and human skeletal muscle in response to insulin or AICAR. Isolated epitrochlearis muscles were obtained from male Wistar rats. Vastus lateralis skeletal muscle strips were prepared from open muscle biopsies obtained from six healthy men (age 39 +/- 11 years and BMI 25.8 +/- 0.8 kg/m2). RESULTS In rat epitrochlearis muscle, insulin exposure leads to a sixfold stimulation of the GLUT4 exocytosis rate (with basal and insulin-stimulated rate constants of 0.010 and 0.067 min(-1), respectively). In human vastus lateralis muscle, insulin stimulates GLUT4 translocation by a similar sixfold increase in the exocytosis rate constant (with basal and insulin-stimulated rate constants of 0.011 and 0.075 min(-1), respectively). In contrast, AICAR treatment does not markedly increase exocytosis in either rat or human muscle. CONCLUSIONS Insulin stimulation of the GLUT4 exocytosis rate constant is sufficient to account for most of the observed increase in glucose transport activity in rat and human muscle.
Collapse
Affiliation(s)
- Håkan K.R. Karlsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V. Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Heikki A. Koistinen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Division of Cardiology, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U Helsinki, Helsinki, Finland
| | - Jing Yang
- Department of Biology and Biochemistry, University of Bath, Bath, U.K
| | | | | | - Juleen R. Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Geoffrey D. Holman
- Department of Biology and Biochemistry, University of Bath, Bath, U.K
- Corresponding author: Geoffrey D. Holman,
| |
Collapse
|
18
|
Mullen KL, Pritchard J, Ritchie I, Snook LA, Chabowski A, Bonen A, Wright D, Dyck DJ. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 2009; 296:R243-51. [DOI: 10.1152/ajpregu.90774.2008] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-fat (HF) diets can induce insulin resistance (IR) by altering skeletal muscle lipid metabolism. An imbalance between fatty acid (FA) uptake and oxidation results in intramuscular lipid accumulation, which can impair the insulin-signaling cascade. Adiponectin (Ad) is an insulin-sensitizing adipokine known to stimulate skeletal muscle FA oxidation and reduce lipid accumulation. Evidence of Ad resistance has been shown in obesity and following chronic HF feeding and may contribute to lipid accumulation observed in these conditions. Whether Ad resistance precedes and is associated with the development of IR is unknown. We conducted a time course HF feeding trial for 3 days, 2 wk, or 4 wk to determine the onset of Ad resistance and identify the ensuing changes in lipid metabolism and insulin signaling leading to IR in skeletal muscle. Ad stimulated FA oxidation (+28%, P ≤ 0.05) and acetyl-CoA carboxylase phosphorylation (+34%, P ≤ 0.05) in control animals but failed to do so in any HF-fed group (i.e., as early as 3 days). By 2 wk, plasma membrane FA transporters and intramuscular diacylglycerol (DAG) and ceramide were increased, and insulin-stimulated phosphorylation of both protein kinase B and protein kinase B substrate 160 was blunted compared with control animals. After 4 wk of HF feeding, maximal insulin-stimulated glucose transport was impaired compared with control. Taken together, our results demonstrate that an early loss of Ad's stimulatory effect on FA oxidation precedes an increase in plasmalemmal FA transporters and the accumulation of intramuscular DAG and ceramide, blunted insulin signaling, and ultimately impaired maximal insulin-stimulated glucose transport in skeletal muscle induced by HF diets.
Collapse
|
19
|
Thrush AB, Heigenhauser GJ, Mullen KL, Wright DC, Dyck DJ. Palmitate acutely induces insulin resistance in isolated muscle from obese but not lean humans. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1205-12. [DOI: 10.1152/ajpregu.00909.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to high fatty acids (FAs) induces whole body and skeletal muscle insulin resistance. The globular form of the adipokine, adiponectin (gAd), stimulates FA oxidation and improves insulin sensitivity; however, its ability to prevent lipid-induced insulin resistance in humans has not been tested. The purpose of this study was to determine 1) whether acute (4 h) exposure to 2 mM palmitate would impair insulin signaling and glucose transport in isolated human skeletal muscle, 2) whether muscle from obese humans is more susceptible to the effects of palmitate, and 3) whether the presence of 2 mM palmitate + 2.5 μg/ml gAd (P+gAd) could prevent the effects of palmitate. Insulin-stimulated (10 mU/ml) glucose transport was not different, relative to control, following exposure to palmitate (−10%) or P+gAd (−3%) in lean muscle. In obese muscle, the absolute increase in glucose transport from basal to insulin-stimulated conditions was significantly decreased following palmitate (−55%) and P+gAd (−36%) exposure (control vs. palmitate; control vs. P+gAd, P < 0.05). There was no difference in the absolute increase in glucose transport between palmitate and P+gAd, indicating that in the presence of palmitate, gAd did not improve glucose transport. The palmitate-induced reduction in insulin-stimulated glucose transport in muscle from obese individuals may have been due to reduced Ser Akt (control vs. palmitate; P+gAd, P < 0.05) and Akt substrate 160 (AS160) phosphorylation (control vs. palmitate; P+gAd, P < 0.05). FA oxidation was significantly increased in muscle of lean and obese individuals in the presence of gAd ( P < 0.05), suggesting that the stimulatory effects of gAd on FA oxidation may not be sufficient to entirely prevent palmitate-induced insulin resistance in obese muscle.
Collapse
|
20
|
Hu X, Feng Y, Liu X, Zhao XF, Yu JH, Yang YS, Sydow-Bäckman M, Hörling J, Zierath JR, Leng Y. Effect of a novel non-thiazolidinedione peroxisome proliferator-activated receptor alpha/gamma agonist on glucose uptake. Diabetologia 2007; 50:1048-57. [PMID: 17333104 DOI: 10.1007/s00125-007-0622-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/07/2007] [Indexed: 12/01/2022]
Abstract
AIMS/HYPOTHESIS The effect of the benzopyran derivative T33, a novel non-thiazolidinedione agent, was studied on peroxisome proliferator-activated receptors (PPARs), insulin signalling and glucose uptake in adipocytes and skeletal muscle. We hypothesised that T33 could activate PPARgamma and exert a beneficial effect on insulin action on glucose uptake and lipid metabolism. MATERIALS AND METHODS Using a cell-based reporter gene assay, T33 was identified as a PPARalpha/gamma dual agonist, which activated human PPARgamma and PPARalpha with EC50 values of 19 and 148 nmol/l, respectively. The effect of T33 on glucose metabolism was studied in cultured 3T3-L1 adipocytes and L6 myotubes. In vivo effects of T33 on skeletal muscle were determined in ob/ob mice treated with 8 mg/kg T33. The effect of T33 on metabolic abnormalities was observed in diet-induced obese mice. RESULTS Exposure of 3T3-L1 adipocytes to T33 for 4 days increased basal and insulin-stimulated glucose uptake, with no effect noted in L6 myotubes. Treatment of ob/ob mice for 20 days with T33 normalised basal and insulin-stimulated glucose uptake and increased phosphorylation of Akt and p38 mitogen-activated protein kinase in skeletal muscle. In contrast, phosphorylation of AMP-activated protein kinase was unaltered. Moreover, T33 improved insulin sensitivity and lipid metabolism in diet-induced obese mice. CONCLUSIONS/INTERPRETATION T33 is non-thiazolidinedione PPARalpha/gamma dual agonist which directly increases basal and insulin-stimulated glucose uptake in adipocytes and secondarily improves insulin action on insulin signalling and glucose metabolism in skeletal muscle from diabetic ob/ob mice.
Collapse
Affiliation(s)
- X Hu
- Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Zu Chong Zhi Road 555, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jessen N, Buhl ES, Schmitz O, Lund S. Impaired insulin action despite upregulation of proximal insulin signaling: novel insights into skeletal muscle insulin resistance in liver cirrhosis. J Hepatol 2006; 45:797-804. [PMID: 17046094 DOI: 10.1016/j.jhep.2006.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIMS Disturbance in glucose metabolism is a common feature in liver diseases and this is associated with skeletal muscle insulin resistance. However, the underlying molecular mechanisms are unclear. To characterize skeletal muscle insulin resistance associated with liver disease, we examined muscles from animals after an acute, 5 weeks perturbation of the common bile duct. Clinical findings, elevated plasma levels of liver enzymes and histological examinations confirmed cirrhosis. METHODS/RESULTS : Cirrhotic animals were insulin resistant and this was associated with reduced glucose transport into muscles. Interestingly, activity in the proximal part of the insulin signaling cascade was not decreased, as evinced by increased activity of key enzymes in the signal to glucose transport. Expression of the glucose transporter, GLUT4, was normal. So together these results indicate that signaling downstream of PKB/Akt and/or the translocation of GLUT4 is impaired in skeletal muscle from cirrhotic animals. CONCLUSIONS In conclusion, in an animal model of liver cirrhosis whole body insulin resistance is associated with insulin resistance in skeletal muscles. Unlike other common forms of insulin resistance, muscles from cirrhotic animals have increased activity in the proximal insulin signaling cascade. This emphasizes the fact that skeletal muscle insulin resistance associated with liver cirrhosis is a unique entity.
Collapse
Affiliation(s)
- Niels Jessen
- Medical Research Laboratory and Medical Department M (Endocrinology and Diabetes), Aarhus University Hospital, Aarhus Sygehus (NBG), DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
22
|
Alkhateeb H, Chabowski A, Bonen A. Viability of the isolated soleus muscle during long-term incubation. Appl Physiol Nutr Metab 2006; 31:467-76. [PMID: 16900237 DOI: 10.1139/h06-022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle metabolism has been examined in perfused hindlimb muscles and in isolated muscle preparations. While long-term viability of the fast-twitch epitrochlearis has been documented with respect to glucose transport, it appears that long-term incubated soleus muscles are less stable when incubated ex vivo for many hours. Therefore, in the present study, we have examined whether the isolated soleus muscle remains metabolically viable for up to 18 h with respect to maintaining ATP and phosphocreatine (PCr) concentrations, carbohydrate and fatty-acid metabolism, insulin signalling, and protein expression. Soleus muscles were incubated in well-oxygenated Medium 199 (M199) supplemented with low concentrations of insulin (14.3 microU/mL) for 0, 6, 12, and 18 h. During this incubating period the concentrations of ATP and PCr were stable, indicating that oxygenation and substrate supply were being maintained. In addition, the concentrations of proglycogen and macroglycogen were not altered, whereas an increase (+30%) in intramuscular triacylglycerol concentration was observed at the end of 18 h of incubation (p < 0.05). Complex molecular processes in the long-term incubated muscles were also stable. This was shown by maintenance of basal as well as insulin-stimulated rates of 3-O-methyl glucose transport, and by the maintenance of protein expression of the glucose transporter GLUT4 and the fatty acid transporters FAT/CD36 and FABPpm. In addition, the insulin-stimulated translocation of GLUT4 to the plasma membrane, which involves a complex signalling cascade, was fully preserved. In conclusion, in well-oxygenated soleus muscles maintained in M199 supplemented with extremely low concentrations of insulin, ATP and PCr concentrations, carbohydrate and fatty acid metabolism, insulin signalling, and protein expression were stably maintained for up to 18 h. This provides for opportunities to examine muscle metabolic function under very highly controlled conditions.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
23
|
Nedachi T, Kanzaki M. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes. Am J Physiol Endocrinol Metab 2006; 291:E817-28. [PMID: 16735448 DOI: 10.1152/ajpendo.00194.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C(2)C(12) myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation ( approximately 3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C(2)C(12) myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C(2)C(12) myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C(2)C(12) myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.
Collapse
Affiliation(s)
- Taku Nedachi
- TUBERO/Tohoku University Biomedical Engineering Research Organization, Tohoku University 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | |
Collapse
|
24
|
Karlsson HKR, Ahlsén M, Zierath JR, Wallberg-Henriksson H, Koistinen HA. Insulin signaling and glucose transport in skeletal muscle from first-degree relatives of type 2 diabetic patients. Diabetes 2006; 55:1283-8. [PMID: 16644684 DOI: 10.2337/db05-0853] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aberrant insulin signaling and glucose metabolism in skeletal muscle from type 2 diabetic patients may arise from genetic defects and an altered metabolic milieu. We determined insulin action on signal transduction and glucose transport in isolated vastus lateralis skeletal muscle from normal glucose-tolerant first-degree relatives of type 2 diabetic patients (n = 8, 41 +/- 3 years, BMI 25.1 +/- 0.8 kg/m(2)) and healthy control subjects (n = 9, 40 +/- 2 years, BMI 23.4 +/- 0.7 kg/m(2)) with no family history of diabetes. Basal and submaximal insulin-stimulated (0.6 and 1.2 nmol/l) glucose transport was comparable between groups, whereas the maximal response (120 nmol/l) was 38% lower (P < 0.05) in the relatives. Insulin increased phosphorylation of Akt and Akt substrate of 160 kDa (AS160) in a dose-dependent manner, with comparable responses between groups. AS160 phosphorylation and glucose transport were positively correlated in control subjects (R(2) = 0.97, P = 0.01) but not relatives (R(2) = 0.46, P = 0.32). mRNA of key transcriptional factors and coregulators of mitochondrial biogenesis were also determined. Skeletal muscle mRNA expression of peroxisome proliferator-activated receptor (PPAR) gamma coactivator (PGC)-1alpha, PGC-1beta, PPARdelta, nuclear respiratory factor-1, and uncoupling protein-3 was comparable between first-degree relatives and control subjects. In conclusion, the uncoupling of insulin action on Akt/AS160 signaling and glucose transport implicates defective GLUT4 trafficking as an early event in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Håkan K R Karlsson
- Department of Clinical Physiology and Integrative Physiology, Karolinska Institutet, von Eulers väg 4, II, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
25
|
Bryzgalova G, Gao H, Ahren B, Zierath JR, Galuska D, Steiler TL, Dahlman-Wright K, Nilsson S, Gustafsson JA, Efendic S, Khan A. Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia 2006; 49:588-97. [PMID: 16463047 DOI: 10.1007/s00125-005-0105-3] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 10/07/2005] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS We used oestrogen receptor-alpha (ERalpha) knockout (ERKO) and receptor-beta (ERbeta) knockout (BERKO) mice to investigate the mechanism(s) behind the effects of oestrogens on glucose homeostasis. METHODS Endogenous glucose production (EGP) was measured in ERKO mice using a euglycaemic-hyperinsulinaemic clamp. Insulin secretion was determined from isolated islets. In isolated muscles, glucose uptake was assayed by using radiolabelled isotopes. Genome-wide expression profiles were analysed by high-density oligonucleotide microarray assay, and the expression of the genes encoding steroyl-CoA desaturase and the Leptin receptor (Scd1 and Lepr, respectively) was confirmed by RT-PCR. RESULTS ERKO mice had higher fasting blood glucose, plasma insulin levels and IGT. The plasma leptin level was increased, while the adiponectin concentration was decreased in ERKO mice. Levels of both glucose- and arginine-induced insulin secretion from isolated islets were similar in ERKO and wild-type mice. The euglycaemic-hyperinsulinaemic clamp revealed that suppression of EGP by increased insulin levels was blunted in ERKO mice, which suggests a pronounced hepatic insulin resistance. Microarray analysis revealed that in ERKO mice, the genes involved in hepatic lipid biosynthesis were upregulated, while genes involved in lipid transport were downregulated. Notably, hepatic Lepr expression was decreased in ERKO mice. In vitro studies showed a modest decrease in insulin-mediated glucose uptake in soleus and extensor digitorum longus (EDL) muscles of ERKO mice. BERKO mice demonstrated normal glucose tolerance and insulin release. CONCLUSIONS/INTERPRETATION We conclude that oestrogens, acting via ERalpha, regulate glucose homeostasis mainly by modulating hepatic insulin sensitivity, which can be due to the upregulation of lipogenic genes via the suppression of Lepr expression.
Collapse
Affiliation(s)
- G Bryzgalova
- Department of Molecular Medicine, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Barnes BR, Glund S, Long YC, Hjälm G, Andersson L, Zierath JR. 5'-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. FASEB J 2005; 19:773-9. [PMID: 15857891 DOI: 10.1096/fj.04-3221com] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) activity is increased during exercise in an intensity- and glycogen-dependent manner. We previously reported that a mutation in the AMPK3 subunit (Prkag3225Q) increases AMPK activity and skeletal muscle glycogen content. Transfection experiments revealed the R225Q mutation is associated with high basal AMPK activity and diminished AMP dependence. Thus, the R225Q mutation can be considered a loss-of-function mutation that abolished allosteric regulation by AMP/ATP, causing increased basal AMPK activity. We used AMPK3 transgenic (Tg-Prkag3225Q) and knockout (Prkag3-/-) mice to determine the relationship between AMPK activity, glycogen content, and ergogenics (ability to perform work) in isolated extensor digitorum longus skeletal muscle after contractions induced by electrical stimulation. Contraction-induced AMPK activity was inversely coupled to glycogen content in wild-type and Tg-Prkag3225Q mice, but not in Prkag3-/- mice, highlighting a partial feedback control of glycogen on contraction-induced AMPK activity in the presence of a functional AMPK3 isoform. Skeletal muscle glycogen content was positively correlated to work performance, regardless of genotype. Thus, chronic activation of AMPK by the Prkag3225Q mutation directly influences skeletal muscle ergogenics by enhancing glycogen content. In conclusion, functional studies of the AMPK3 isoform further support the close connection between glycogen content and exercise performance in skeletal muscle.
Collapse
Affiliation(s)
- Brian R Barnes
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Barnes BR, Long YC, Steiler TL, Leng Y, Galuska D, Wojtaszewski JFP, Andersson L, Zierath JR. Changes in exercise-induced gene expression in 5'-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice. Diabetes 2005; 54:3484-9. [PMID: 16306365 DOI: 10.2337/diabetes.54.12.3484] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) is important for metabolic sensing. We used AMPKgamma3 mutant-overexpressing Tg-Prkag3(225Q) and AMPKgamma3-knockout Prkag3-/- mice to determine the role of the AMPKgamma3 isoform in exercise-induced metabolic and gene regulatory responses in skeletal muscle. Mice were studied after 2 h swimming or 2.5 h recovery. Exercise increased basal and insulin-stimulated glucose transport, with similar responses among genotypes. In Tg-Prkag3(225Q) mice, acetyl-CoA carboxylase (ACC) phosphorylation was increased and triglyceride content was reduced after exercise, suggesting that this mutation promotes greater reliance on lipid oxidation. In contrast, ACC phosphorylation and triglyceride content was similar between wild-type and Prkag3-/- mice. Expression of genes involved in lipid and glucose metabolism was altered by genetic modification of AMPKgamma3. Expression of lipoprotein lipase 1, carnitine palmitoyl transferase 1b, and 3-hydroxyacyl-CoA dehydrogenase was increased in Tg-Prkag3(225Q) mice, with opposing effects in Prkag3-/- mice after exercise. GLUT4, hexokinase II (HKII), and glycogen synthase mRNA expression was increased in Tg-Prkag3(225Q) mice after exercise. GLUT4 and HKII mRNA expression was increased in wild-type mice and blunted in Prkag3-/- mice after recovery. In conclusion, the Prkag3(225Q) mutation, rather than presence of a functional AMPKgamma3 isoform, directly promotes metabolic and gene regulatory responses along lipid oxidative pathways in skeletal muscle after endurance exercise.
Collapse
Affiliation(s)
- Brian R Barnes
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Long YC, Barnes BR, Mahlapuu M, Steiler TL, Martinsson S, Leng Y, Wallberg-Henriksson H, Andersson L, Zierath JR. Role of AMP-activated protein kinase in the coordinated expression of genes controlling glucose and lipid metabolism in mouse white skeletal muscle. Diabetologia 2005; 48:2354-64. [PMID: 16237515 DOI: 10.1007/s00125-005-1962-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS AMP-activated protein kinase (AMPK) regulates metabolic adaptations in skeletal muscle. The aim of this study was to investigate whether AMPK modulates the expression of skeletal muscle genes that have been implicated in lipid and glucose metabolism under fed or fasting conditions. METHODS Two genetically modified animal models were used: AMPK gamma3 subunit knockout mice (Prkag3(-/-)) and skeletal muscle-specific transgenic mice (Tg-Prkag3(225Q)) that express a mutant (R225Q) gamma3 subunit. Levels of mRNA transcripts of genes involved in lipid and glucose metabolism in white gastrocnemius muscles of these mice (under fed or 16-h fasting conditions) were assessed by quantitative real-time PCR. RESULTS Wild-type mice displayed a coordinated increase in the transcription of skeletal muscle genes encoding proteins involved in lipid/oxidative metabolism (lipoprotein lipase, fatty acid transporter, carnitine palmitoyl transferase-1 and citrate synthase) and glucose metabolism (glycogen synthase and lactate dehydrogenase) in response to fasting. In contrast, these fasting-induced responses were impaired in Prkag3(-/-) mice. The transcription of genes involved in lipid and oxidative metabolism was increased in the skeletal muscle of Tg-Prkag3(225Q) mice compared with that in wild-type mice. Moreover, the expression of the genes encoding hexokinase II and 6-phosphofrucktokinase was decreased in Tg-Prkag3(225Q) mice after fasting. CONCLUSIONS/INTERPRETATION AMPK is involved in the coordinated transcription of genes critical for lipid and glucose metabolism in white glycolytic skeletal muscle.
Collapse
Affiliation(s)
- Y C Long
- Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bruce CR, Mertz VA, Heigenhauser GJF, Dyck DJ. The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes 2005; 54:3154-60. [PMID: 16249439 DOI: 10.2337/diabetes.54.11.3154] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adiponectin is an adipose-derived hormone that plays an important role in regulating insulin sensitivity in rodents. However, little is known regarding the effect of adiponectin on metabolism in human skeletal muscle. Therefore, we examined whether the globular head of adiponectin, gAcrp30, acutely activates fatty acid oxidation and glucose uptake in isolated human skeletal muscle. Furthermore, we aimed to determine whether these effects would differ in muscle from lean versus obese individuals. Treatment with gAcrp30 (2.5 microg/ml) increased fatty acid oxidation in lean muscle (70%, P < 0.0001) and to a lesser extent in obese muscle (30%, P < 0.01). In the absence of insulin, gAcrp30 increased glucose uptake 37% in lean (P < 0.05) and 33% in obese muscle (P < 0.05). Combined exposure of insulin and gAcrp30 demonstrated an additive effect on glucose uptake in lean and obese individuals, but this effect was reduced by 50% in obese muscle (P < 0.05). These metabolic effects were attributable to an increase in AMP-activated protein kinase-alpha1 (AMPKalpha1) and AMPKalpha2 activity. However, in obese muscle the activation of AMPKalpha2 by gAcrp30 was blunted. This study provides evidence that gAcrp30 plays a role in regulating fatty acid and glucose metabolism in human skeletal muscle. However, the effects are blunted in obesity, indicating the possible development of adiponectin resistance.
Collapse
Affiliation(s)
- Clinton R Bruce
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | | | | | | |
Collapse
|
30
|
Duhlmeier R, Hacker A, Widdel A, von Engelhardt W, Sallmann HP. Mechanisms of insulin-dependent glucose transport into porcine and bovine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2005; 289:R187-97. [PMID: 15817843 DOI: 10.1152/ajpregu.00502.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Euglycemic, hyperinsulinemic clamp tests have shown that adult ruminants are less insulin-sensitive than monogastric omnivores. The present study was carried out to elucidate possible cellular mechanisms contributing to this impaired insulin sensitivity of ruminants. Western blotting was used to measure glucose transporters 1 and 4 (GLUT1, GLUT4) in oxidative (musculus masseter and diaphragm) and glycolytic (musculus longissimus dorsi and semitendinosus) skeletal muscle in the crude membranes of pigs and cows. Muscles were characterized biochemically. To determine insulin-stimulated 3-O-D-[(3)H]-methylglucose (3-O-MG) uptake and GLUT4 translocation, porcine and bovine musculus semitendinosus strips were removed by open muscle biopsy and incubated without and with 0.1 or 20 mIU insulin/ml. GLUT4 translocation was analyzed using subcellular fractionation techniques to isolate partially purified plasma membranes and cytoplasmic vesicles and using Western blotting. GLUT4 protein contents were significantly higher in oxidative than in glycolytic muscles in pigs and cows. GLUT1 protein contents were significantly higher in glycolytic than in oxidative muscles in bovines but not in porcines. The 3-O-MG uptake into musculus semitendinosus was similar in both species. Maximum insulin-induced GLUT4 translocation into musculus semitendinosus plasma membrane was significantly lower in bovines than in porcines. These results indicate that GLUT1 is the predominant glucose transporter in bovine glycolytic muscles and that a reinforced insulin-independent glucose uptake via GLUT1 may compensate for the impaired insulin-stimulated GLUT4 translocation, resulting in a similar 3-O-MG uptake in bovine and porcine musculus semitendinosus. These findings may explain at least in part the impaired in vivo insulin sensitivity of adult ruminants compared with that of omnivorous monogastric animals.
Collapse
Affiliation(s)
- Reinhard Duhlmeier
- Department of Physiological Chemistry, Foundation University of Veterinary Medicine Hannover, Germany
| | | | | | | | | |
Collapse
|
31
|
Isaksson B, Wang F, Permert J, Olsson M, Fruin B, Herrington MK, Enochsson L, Erlanson-Albertsson C, Arnelo U. Chronically administered islet amyloid polypeptide in rats serves as an adiposity inhibitor and regulates energy homeostasis. Pancreatology 2005; 5:29-36. [PMID: 15775697 DOI: 10.1159/000084488] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 05/19/2004] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Islet amyloid polypeptide (IAPP) reduces food intake and body weight in laboratory animals. In addition, IAPP appears to regulate nutrient metabolism. In the present studies, we investigated the effect of chronic IAPP treatment on different aspects of energy homeostasis. METHODS IAPP was infused (25 pmol/kg/min) from subcutaneous osmotic pumps for 2-7 days. Rats in 2 saline-infused control groups were fed ad libitum (AF) or pair-fed (PF) against the IAPP-treated rats. RESULTS As expected, the IAPP infusion reduced food intake and body weight gain. In addition, the IAPP treatment decreased the epididymal fat pad (vs. PF rats, p < 0.05) and lowered circulating levels of triglycerides (vs. PF rats, p < 0.05), free fatty acids (vs. PF rats, p < 0.05), leptin (vs. both AF and PF rats, p < 0.05) and insulin (vs. AF rats, p < 0.05). In contrast, glucose and protein metabolism in the IAPP-treated rats was largely unchanged, as shown in results regarding serum glucose, glucose transport in skeletal muscle, blood urea nitrogen, and glycogen and protein content in the liver and in skeletal muscle. CONCLUSION/INTERPRETATION In summary, chronic IAPP exposure led to a changed lipid metabolism, which was characterized by decreased adiposity, hypolipidemia and hypoleptinemia, and to unchanged glucose and protein homeostasis. These results were similar to those seen in rodents during chronic exposure to another satiety/adiposity regulator, leptin. In conclusion, chronically administered IAPP plays a role as a satiety and adiposity signal in rats, and helps regulate energy homeostasis.
Collapse
Affiliation(s)
- B Isaksson
- Arvid Wretlind Laboratory for Metabolic and Nutritional Research, Department of Surgery, Karolinska Institutet at Huddinge University Hospital, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barnes BR, Marklund S, Steiler TL, Walter M, Hjälm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath JR, Andersson L. The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 2004; 279:38441-7. [PMID: 15247217 DOI: 10.1074/jbc.m405533200] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5'-AMP-activated protein kinase (AMPK) is a metabolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific gamma3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK gamma3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse gamma3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK gamma3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK gamma3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK gamma3 isoform as a therapeutic target for prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Brian R Barnes
- Department of Surgical Sciences and the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Leng Y, Steiler TL, Zierath JR. Effects of insulin, contraction, and phorbol esters on mitogen-activated protein kinase signaling in skeletal muscle from lean and ob/ob mice. Diabetes 2004; 53:1436-44. [PMID: 15161746 DOI: 10.2337/diabetes.53.6.1436] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effects of diverse stimuli, including insulin, muscle contraction, and phorbol 12-myristate-13-acetate (PMA), were determined on phosphorylation of mitogen-activated protein kinase (MAPK) signaling modules (c-Jun NH(2)-terminal kinase [JNK], p38 MAPK, and extracellular signal-related kinase [ERK1/2]) in skeletal muscle from lean and ob/ob mice. Insulin increased phosphorylation of JNK, p38 MAPK, and ERK1/2 in isolated extensor digitorum longus (EDL) and soleus muscle from lean mice in a time- and dose-dependent manner. Muscle contraction and PMA also elicited robust effects on these parallel MAPK modules. Insulin action on JNK, p38 MAPK, and ERK1/2 phosphorylation was significantly impaired in EDL and soleus muscle from ob/ob mice. In contrast, muscle contraction-mediated JNK, p38 MAPK, and ERK1/2 phosphorylation was preserved. PMA effects on phosphorylation of JNK and ERK1/2 were normal in ob/ob mice, whereas effects on p38 MAPK were abolished. In conclusion, insulin, contraction, and PMA activate MAPK signaling in skeletal muscle. Insulin-mediated responses on MAPK signaling are impaired in skeletal muscle from ob/ob mice, whereas the effect of contraction is generally well preserved. In addition, PMA-induced phosphorylation of JNK and ERK1/2 are preserved, whereas p38 MAPK pathways are impaired in skeletal muscle from ob/ob mice. Thus, appropriate MAPK responses can be elicited in insulin-resistant skeletal muscle via an insulin-independent mechanism.
Collapse
Affiliation(s)
- Ying Leng
- Professor of Physiology, Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, II, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Hager P, Hagman B, Wikström AC, Strömmer L. CRF-receptor 1 blockade attenuates acute posttraumatic hyperglycemia in rats1. J Surg Res 2004; 119:72-9. [PMID: 15126085 DOI: 10.1016/j.jss.2004.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND Hyperglycemia and insulin resistance after surgical stress are mediated by a complex neuroendocrine response. The present studies were undertaken to determine whether a corticotropin releasing factor (CRF)-receptor 1 (R1) antagonist, CP-154,526 (CP) could alter trauma-induced effects on blood glucose levels, insulin action on skeletal muscle, and dexamethasone-induced suppression of endogenous glucocorticoid secretion. MATERIALS AND METHODS We used a standardized experimental model of small intestinal resection in the rat. Studies were performed 2 hours after surgery in four groups of rats (n = 24-48) given vehicle or 40 mg of CP i.p. 1 hour before surgical trauma or only anesthesia (controls). Measurements of (I) b-glucose and p-insulin, corticosterone, and ACTH; (II) glucose transport; (III) phosphatidylinositol 3-kinase (PI 3-K) activity in skeletal muscle; and (IV) the dexamethasone-suppression test were performed. RESULTS Surgery resulted in hyperglycemia, reduced insulin-stimulated glucose transport, and a pathological dexamethasone-suppression test. B-glucose levels were attenuated in traumatized rats given CP compared to vehicle (P < 0.05). After surgery, p-corticosterone levels were moderately reduced by CP (P < 0.05) and p-ACTH unchanged by the drug. Glucose transport and PI 3-kinase activity as well as the dexamethasone-suppression test were unaffected by administration of CP. CONCLUSIONS Hyperglycemia in response to small intestinal resection in the rat could be reduced but not inhibited by CRF-R1 blockade. We hypothesize that CRF action within the central nervous system can regulate the hyperglycemic response to surgical stress via mechanisms other than the pituitary-adrenal axis. Our results also indicate that the hypothalamic stress response after surgical stress is dependent on other factors apart from CRF.
Collapse
Affiliation(s)
- Peter Hager
- Department of Surgery, Center for Surgical Sciences at Karolinska Institutet, Karolinska University Hospital at Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Koistinen HA, Galuska D, Chibalin AV, Yang J, Zierath JR, Holman GD, Wallberg-Henriksson H. 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes 2003; 52:1066-72. [PMID: 12716734 DOI: 10.2337/diabetes.52.5.1066] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AMP-activated protein kinase (AMPK) activation by AICAR (5-amino-imidazole carboxamide riboside) is correlated with increased glucose transport in rodent skeletal muscle via an insulin-independent pathway. We determined in vitro effects of insulin and/or AICAR exposure on glucose transport and cell-surface GLUT4 content in skeletal muscle from nondiabetic men and men with type 2 diabetes. AICAR increased glucose transport in a dose-dependent manner in healthy subjects. Insulin and AICAR increased glucose transport and cell-surface GLUT4 content to a similar extent in control subjects. In contrast, insulin- and AICAR-stimulated responses on glucose transport and cell-surface GLUT4 content were impaired in subjects with type 2 diabetes. Importantly, exposure of type 2 diabetic skeletal muscle to a combination of insulin and AICAR increased glucose transport and cell-surface GLUT4 content to levels achieved in control subjects. AICAR increased AMPK and acetyl-CoA carboxylase phosphorylation to a similar extent in skeletal muscle from subjects with type 2 diabetes and nondiabetic subjects. Our studies highlight the potential importance of AMPK-dependent pathways in the regulation of GLUT4 and glucose transport activity in insulin-resistant skeletal muscle. Activation of AMPK is an attractive strategy to enhance glucose transport through increased cell surface GLUT4 content in insulin-resistant skeletal muscle.
Collapse
Affiliation(s)
- Heikki A Koistinen
- Department of Surgical Sciences, Karolinska Hospital, Karolinska Institutet, von Eulers väg 4, II tr, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Isaksson B, Strömmer L, Friess H, Büchler MW, Herrington MK, Wang F, Zierath JR, Wallberg-Henriksson H, Larsson J, Permert J. Impaired insulin action on phosphatidylinositol 3-kinase activity and glucose transport in skeletal muscle of pancreatic cancer patients. Pancreas 2003; 26:173-7. [PMID: 12604916 DOI: 10.1097/00006676-200303000-00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Glucose intolerance or overt diabetes occurs in 80% of patients with pancreatic cancer (PC). This associated metabolic disorder includes peripheral insulin resistance, which may be caused by factors produced by the PC. The mechanism underlying PC-associated insulin resistance has not been clearly defined. AIM To characterize basal and insulin-stimulated glucose transport, phosphatidylinositol (PI) 3-kinase activity, and glucose transporter 4 (GLUT4) in skeletal muscles of PC patients. METHODOLOGY Skeletal muscle samples were obtained from the abdominal wall of 17 PC patients during surgery. Control muscles were sampled in the same way from 11 donors undergoing abdominal surgery for benign diseases. PI 3-kinase activity, glucose transport, and GLUT4 were assessed in vitro in these muscles. RESULTS In the presence of physiologic concentrations of insulin, glucose transport and PI 3-kinase activity were significantly decreased in the PC group compared with controls. At supraphysiologic insulin concentrations, glucose transport was significantly decreased but PI 3-kinase activity was normalized. In the absence of insulin, these parameters were not significantly different between PC and control groups. Muscle GLUT4 contents were similar between PC and control groups. CONCLUSION Defects in insulin-mediated PI 3-kinase activity and glucose transport contribute to the insulin resistance in patients with PC.
Collapse
Affiliation(s)
- Bengt Isaksson
- Arvid Wretlind Laboratory for Metabolic and Nutritional Research, Department of Surgery, Karolinska Institute at Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kawano Y, Ryder JW, Rincon J, Zierath JR, Krook A, Wallberg-Henriksson H. Evidence against high glucose as a mediator of ERK1/2 or p38 MAPK phosphorylation in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 281:E1255-9. [PMID: 11701441 DOI: 10.1152/ajpendo.2001.281.6.e1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia leads to multiple changes in insulin signaling in skeletal muscle from people with type 2 diabetes. We hypothesized that mitogen-activated protein kinase (MAPK) signaling cascades may be directly activated by an acute exposure to high extracellular glucose concentrations. We determined whether an elevation in the extracellular glucose concentration would induce signal transduction in skeletal muscle via MAPK cascades. Epitrochlearis muscles were incubated in the presence of 5 or 25 mM glucose. Exposure of muscle to either hyperosmosis (600 mM mannitol) or insulin (6 nM) led to a marked increase in extracellular signal-regulated protein kinase (ERK)1/2 phosphorylation. Hyperosmosis elicited a 5.2-fold increase in p38 phosphorylation (P < 0.05), whereas insulin was without effect. ERK1/2 phosphorylation was not increased by high glucose exposure. After a 20-min exposure to 25 mM glucose, a tendency toward repressed (23%) p38 phosphorylation was observed (P = 0.06). No effect of high glucose was noted on signal transduction to signal transducer and activator of transcription 3 and Akt. In conclusion, short-term exposure of skeletal muscle to high levels of glucose does not appear to alter ERK1/2 or p38 MAPK phosphorylation.
Collapse
Affiliation(s)
- Y Kawano
- Department of Clinical Physiology, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL. Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 2001; 50:1149-57. [PMID: 11334420 DOI: 10.2337/diabetes.50.5.1149] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Conjugated linoleic acid (CLA) isomers have a number of beneficial health effects, as shown in biomedical studies with animal models. Previously, we reported that a mixture of CLA isomers improved glucose tolerance in ZDF rats and activated peroxisome proliferator-activated receptor (PPAR)-gamma response elements in vitro. Here, our aim was to elucidate the effect(s) of specific CLA isomers on whole-body glucose tolerance, insulin action in skeletal muscle, and expression of genes important in glucose and lipid metabolism. ZDF rats were fed either a control diet (CON), one of two CLA supplemented diets (1.5% CLA) containing differing isoforms of CLA (47% c9,t11; 47.9% c10,t12, 50:50; or 91% c9,t11, c9,t11 isomers), or were pair-fed CON diet to match the intake of 50:50. The 50:50 diet reduced adiposity and improved glucose tolerance compared with all other ZDF treatments. Insulin-stimulated glucose transport and glycogen synthase activity in skeletal muscle were improved with 50:50 compared with all other treatments. Neither phosphatidlyinositol 3-kinase activity nor Akt activity in muscle was affected by treatment. Uncoupling protein 2 in muscle and adipose tissue was upregulated by c9,t11 and 50:50 compared with ZDF controls. PPAR-gamma mRNA was downregulated in liver of c9,t11 and pair-fed ZDF rats. Thus, the improved glucose tolerance in 50:50 rats is attributable to, at least in part, improved insulin action in muscle, and CLA effects cannot be explained simply by reduced food intake.
Collapse
Affiliation(s)
- J W Ryder
- Department of Clinical Physiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Strömmer L, Isaksson B, Wickbom M, Arnelo U, Ostenson C, Herrington M, Permert J. Effect of carbohydrate feeding on insulin action in skeletal muscle after surgical trauma in the rat. Nutrition 2001; 17:332-6. [PMID: 11369174 DOI: 10.1016/s0899-9007(00)00587-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic stress after surgery is associated with peripheral insulin resistance. Recent studies have suggested that preoperative glucose can ameliorate postoperative decreases in insulin-stimulated glucose disposal. In the present experiments, we used a bowel-resection model of surgical trauma to test the hypothesis that elevations of serum insulin induced by preoperative oral glucose or ad libitum feeding affects postoperative insulin-stimulated glucose uptake in skeletal muscle. Insulin-stimulated glucose transport was measured in vitro in soleus muscles after surgical trauma in fasted rats given oral glucose or water before surgery. Insulin-stimulated glucose transport was also assessed in vitro in fasted or fed traumatized rats and non-traumatized control animals. In addition, stress hormones (glucagon, corticosterone, and adrenaline) were measured before and after surgical trauma in fasted rats and rats fed ad libitum. In vitro skeletal-muscle insulin sensitivity and responsiveness were reduced postoperatively in fasted animals that received oral glucose loads before bowel resections and in rats fed ad libitum or fasted before surgery versus non-traumatized rats (all P < 0.05). Stress-hormone concentrations after trauma did not differ between fed and fasted animals. In the current study, insulin sensitivity and responsiveness were reduced in isolated skeletal muscles after bowel resection, but neither preoperative glucose supplementation nor free intake of mixed nutrients ameliorated the development of postoperative insulin resistance.
Collapse
Affiliation(s)
- L Strömmer
- Arvid Wretlinds Laboratory for Metabolic and Nutritional Research, Department of Surgery, Karolinska Institute at Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
Brozinick JT, McCoid SC, Reynolds TH, Nardone NA, Hargrove DM, Stevenson RW, Cushman SW, Gibbs EM. GLUT4 overexpression in db/db mice dose-dependently ameliorates diabetes but is not a lifelong cure. Diabetes 2001; 50:593-600. [PMID: 11246879 DOI: 10.2337/diabetes.50.3.593] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported that overexpression of GLUT4 in lean, nondiabetic C57BL/KsJ-lepr(db/+) (db/+) mice resulted in improved glucose tolerance associated with increased basal and insulin-stimulated glucose transport in isolated skeletal muscle. We used the diabetic (db/db) litter mates of these mice to examine the effects of GLUT4 overexpression on in vivo glucose utilization and on in vitro glucose transport and GLUT4 translocation in diabetic mice. We examined in vivo glucose disposal by oral glucose challenge and hyperinsulinemic-hyperglycemic clamps. We also evaluated the in vitro relationship between glucose transport activity and cell surface GLUT4 levels as assessed by photolabeling with the membrane-impermeant reagent 2-N-(4-(1-azi-2,2,2-trifluoroethyl)benzoyl)-1,3-bis(D-mannose-4-yloxy)-2-propylamine in extensor digitorum longus (EDL) muscles. All parameters were examined as functions of animal age and the level of GLUT4 overexpression. In young mice (age 10-12 weeks), both lower (two- to threefold) and higher (four- to fivefold) levels of GLUT4 overexpression were associated with improved glucose tolerance compared to age-matched nontransgenic (NTG) mice. However, glucose tolerance deteriorated with age in db/db mice, although less rapidly in transgenic mice expressing the higher level of GLUT4. Glucose infusion rates during hyperinsulinemic-hyperglycemic clamps were increased with GLUT4 overexpression, compared with NTG mice in both lower and higher levels of GLUT4 overexpression, even in the older mice. Surprisingly, isolated EDL muscles from diabetic db/db mice did not exhibit alterations in either basal or insulin-stimulated glucose transport activity or cell surface GLUT4 compared to nondiabetic db/+ mice. Furthermore, both GLUT4 overexpression levels and animal age are associated with increased basal and insulin-stimulated glucose transport activities and cell surface GLUT4. However, the observed increased glucose transport activity in older db/db mice was not accompanied by an equivalent increase in cell surface GLUT4 compared to younger animals. Thus, although in vivo glucose tolerance is improved with GLUT4 overexpression in young animals, it deteriorates with age; in contrast, insulin responsiveness as assessed by the clamp technique remains improved with GLUT4 overexpression, as does in vitro insulin action. In summary, despite an impairment in whole-body glucose tolerance, skeletal muscle of the old transgenic GLUT4 db/db mice is still insulin responsive in vitro and in vivo.
Collapse
Affiliation(s)
- J T Brozinick
- Experimental Diabetes, Metabolism and Nutrition Section, DB/NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Strömmer L, Abou El-Ella G, Kamel A, Marcus C, Hager P, Adrian TE, Permert J. Upregulation of uncoupling protein homologues in skeletal muscle but not adipose tissue in posttraumatic insulin resistance. Biochem Biophys Res Commun 2001; 281:334-40. [PMID: 11181051 DOI: 10.1006/bbrc.2001.4360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic alterations after surgical stress include peripheral insulin resistance and increased utilization of fat as a fuel substrate. An up-regulation of skeletal muscle uncoupling proteins (UCPs) has been associated with physiologic states of insulin resistance and enhanced fat metabolism in rodents. We examined whether posttraumatic insulin resistance induced the UCPs in gastrocnemius and soleus muscle and white adipose tissue in an experimental model of surgical trauma. Insulin sensitivity was significantly reduced in isolated soleus muscles but unchanged in adipocytes after trauma. In traumatized rats, mRNA and protein contents of UCP2 and UCP3 and were significantly increased in both muscle types. UCP2 protein content in adipose tissue was unaltered by surgical stress. Circulating NEFAs and glycerol were reduced after surgical trauma. We hypothesize that the changes in UCP2 and UCP3 gene and protein expression are involved in the regulation of substrate utilization in posttraumatic insulin resistance.
Collapse
Affiliation(s)
- L Strömmer
- Arvid Wretlinds Laboratory for Metabolic, Karolinska Institute at Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Strömmer L, Isaksson B, Arnelo U, Lundkvist I, Ostenson CG, Wickbom M, Herrington M, Permert J. Preoperative feeding does not reverse postoperative insulin resistance in skeletal muscle in the rat. Metabolism 2000; 49:486-91. [PMID: 10778873 DOI: 10.1016/s0026-0495(00)80013-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolic studies on injured and postoperative patients have shown impaired glucose disposal in peripheral tissues after trauma. Using small-bowel resection as a model of surgical trauma, we investigated whether substrate availability could ameliorate the changes in muscle glucose uptake induced by trauma. We also studied the effect of preoperative feeding on postoperative insulin-stimulated insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity in both Wistar rats and genetically non-insulin-dependent diabetic Goto-Kakazaki rats (GK rats). Serum glucose, insulin, plasma epinephrine, lactate, and plasma nonesterified free fatty acids (NEFAs) were measured as indicators of the metabolic state and surgical stress. Insulin-stimulated glucose transport was significantly reduced in fed traumatized Wistar rats compared with fed nontraumatized rats (P < .05). Significant increases in in vivo insulin-stimulated IRS-1-associated PI 3-kinase activity were found in fed traumatized Wistar rats compared with fed nontraumatized Wistar rats and fasted traumatized Wistar rats, as well as fed traumatized GK rats compared with fed nontraumatized GK animals (all P < .017). Serum insulin concentrations were significantly reduced in fed traumatized Wistar and GK rats compared with the respective fed nontraumatized groups (both P < .01). Serum glucose levels were significantly elevated in fed traumatized GK rats compared with fed nontraumatized animals (P < .01). In the present study, preoperative feeding did not prevent a postoperative reduction in insulin-stimulated glucose transport in skeletal muscle. The finding that insulin-stimulated PI 3-kinase activity increased after trauma in both Wistar and GK rats indicates that postoperative insulin resistance is not caused by an impairment in the early steps of the insulin signaling pathway. The postoperative decreases in serum insulin despite high blood glucose suggest that trauma impairs the insulin response to hyperglycemia.
Collapse
Affiliation(s)
- L Strömmer
- Department of Surgery, Karolinska Institute at Huddinge Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ryder JW, Fahlman R, Wallberg-Henriksson H, Alessi DR, Krook A, Zierath JR. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement Of the mitogen- and stress-activated protein kinase 1. J Biol Chem 2000; 275:1457-62. [PMID: 10625698 DOI: 10.1074/jbc.275.2.1457] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growing evidence suggests that activation of mitogen-activated protein kinase (MAPK) signal transduction mediates changes in muscle gene expression in response to exercise. Nevertheless, little is known about upstream or downstream regulation of MAPK in response to muscle contraction. Here we show that ex vivo muscle contraction stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38(MAPK) phosphorylation. Phosphorylation of ERK1/2 or p38(MAPK) was unaffected by protein kinase C inhibition (GF109203X), suggesting that protein kinase C is not involved in mediating contraction-induced MAPK signaling. Contraction-stimulated phosphorylation of ERK1/2 and p38(MAPK) was completely inhibited by pretreatment with PD98059 (MAPK kinase inhibitor) and SB203580 (p38(MAPK) inhibitor), respectively. Muscle contraction also activated MAPK downstream targets p90 ribosomal S6 kinase (p90(Rsk)), MAPK-activated protein kinase 2 (MAPKAP-K2), and mitogen- and stress-activated protein kinase 1 (MSK1). Use of PD98059 or SB203580 revealed that stimulation of p90(Rsk) and MAPKAP-K2 most closely reflects ERK and p38(MAPK) stimulation, respectively. Stimulation of MSK1 in contracting skeletal muscle required the activation of both ERK and p38(MAPK). These data demonstrate that muscle contraction, separate from systemic influence, activates MAPK signaling. Furthermore, we are the first to show that contractile activity stimulates MAPKAP-K2 and MSK1.
Collapse
Affiliation(s)
- J W Ryder
- Department of Clinical Physiology, Karolinska Hospital and the Department of Physiology and Pharmacology, Karolinska Institute, S-171 76 Stockholm
| | | | | | | | | | | |
Collapse
|
44
|
Chibalin AV, Yu M, Ryder JW, Song XM, Galuska D, Krook A, Wallberg-Henriksson H, Zierath JR. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: differential effects on insulin-receptor substrates 1 and 2. Proc Natl Acad Sci U S A 2000; 97:38-43. [PMID: 10618367 PMCID: PMC26612 DOI: 10.1073/pnas.97.1.38] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen content increased 2- and 4-fold after 1 and 5 days of exercise, with no change in glycogen synthase expression. Protein expression of the glucose transporter GLUT4 and the insulin receptor increased 2-fold after 1 day, with no further change after 5 days of exercise. Insulin-stimulated receptor tyrosine phosphorylation increased 2-fold after 5 days of exercise. Insulin-stimulated tyrosine phosphorylation of insulin-receptor substrate (IRS) 1 and associated phosphatidylinositol (PI) 3-kinase activity increased 2.5- and 3. 5-fold after 1 and 5 days of exercise, despite reduced (50%) IRS-1 protein content after 5 days of exercise. After 1 day of exercise, IRS-2 protein expression increased 2.6-fold and basal and insulin-stimulated IRS-2 associated PI 3-kinase activity increased 2. 8-fold and 9-fold, respectively. In contrast to IRS-1, IRS-2 expression and associated PI 3-kinase activity normalized to sedentary levels after 5 days of exercise. Insulin-stimulated Akt phosphorylation increased 5-fold after 5 days of exercise. In conclusion, increased insulin-stimulated glucose transport after exercise is not limited to increased GLUT4 expression. Exercise leads to increased expression and function of several proteins involved in insulin-signal transduction. Furthermore, the differential response of IRS-1 and IRS-2 to exercise suggests that these molecules have specialized, rather than redundant, roles in insulin signaling in skeletal muscle.
Collapse
Affiliation(s)
- A V Chibalin
- Department of Surgical Sciences, Karolinska Hospital, S-171 76, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ryder JW, Kawano Y, Galuska D, Fahlman R, Wallberg-Henriksson H, Charron MJ, Zierath JR. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J 1999; 13:2246-56. [PMID: 10593872 DOI: 10.1096/fasebj.13.15.2246] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.
Collapse
Affiliation(s)
- J W Ryder
- Department of Clinical Physiology, Karolinska Hospital, S-171 76, Department of Physiology and Pharmacology, Karolinska Institute, S-171 77, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
46
|
Rincón J, Krook A, Galuska D, Wallberg-Henriksson H, Zierath JR. Altered skeletal muscle glucose transport and blood lipid levels in habitual cigarette smokers. CLINICAL PHYSIOLOGY (OXFORD, ENGLAND) 1999; 19:135-42. [PMID: 10200895 DOI: 10.1046/j.1365-2281.1999.00161.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We determined whether habitual cigarette smoking alters insulin-stimulated glucose transport and GLUT4 protein expression in skeletal muscle. Vastus lateralis muscle was obtained from 10 habitual cigarette smokers and 10 control subjects using an open muscle biopsy procedure. Basal 3-O-methylglucose transport was twofold higher (P < 0.01) in muscle from habitual smokers (0.05 +/- 0.08 vs. 1.04 +/- 0.19 mumol ml-1 h-1; controls vs. smokers respectively). Insulin (600 pmol l-1) increased glucose transport 2.6-fold (P > 0.05) in muscle from control subjects, whereas no significant increase was noted in habitual smokers. Skeletal muscle GLUT4 protein expression was similar between the groups. FFA levels were elevated in the smokers (264 +/- 49 vs. 748 +/- 138 mumol l-1 for control subjects vs. smokers; P < 0.05), and serum triglyceride levels were increased in the smokers (0.9 +/- 0.2 vs. 2.3 +/- 0.6 mmol l-1 for control subjects vs. smokers; P < 0.05). Skeletal muscle carnitine palmitil (acyl) transferase activity was similar between the groups, indicating that FFA transport into the mitochondria was unaltered by cigarette smoking. In conclusion, cigarette smoking appears to have a profound effect on glucose transport in skeletal muscle. Basal glucose transport is markedly elevated, whereas insulin-stimulated glucose transport is impaired. These changes cannot be explained by altered protein expression of GLUT4, but may be related to increased serum FFA and triglyceride levels. These findings highlight the importance of identifying habitual cigarette smokers in studies aimed at assessing factors that lead to alterations in lipid and glucose homeostasis in people with non-insulin-dependent diabetes mellitus (NIDDM).
Collapse
Affiliation(s)
- J Rincón
- Department of Clinical Physiology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
47
|
Zierath JR, Ryder JW, Doebber T, Woods J, Wu M, Ventre J, Li Z, McCrary C, Berger J, Zhang B, Moller DE. Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology 1998; 139:5034-41. [PMID: 9832442 DOI: 10.1210/endo.139.12.6364] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thiazolidinedione (TZD) insulin sensitizers are specific agonists of peroxisome proliferator activated receptor (PPAR)gamma. However, their mechanism of action and the in vivo target tissue(s) that mediate insulin sensitization remain poorly defined. Although PPARgamma messenger RNA expression has been reported in skeletal muscle, the expression of PPARgamma within myocytes in intact muscle tissue has not been examined. An antipeptide PPARgamma antibody was generated; immunohistochemistry was then used to demonstrate that PPARgamma is present within nuclei of myocytes [in both skeletal (white and red fibers) and cardiac tissue (rodent and human)]. The effect of insulin sensitizer treatment on muscle insulin action was studied using ob/ob mice after 4 days dosing with a potent (6 nM PPARgamma Kd) TZD (10 mg/kg x day). 2-deoxyglucose (2-DOG) uptake was then assessed in freshly isolated soleus muscles from lean vs. ob/ob vs. TZD-treated ob/ob mice. In lean mouse muscles, 2-DOG uptake was stimulated by 82%, 95%, 165% (with 25, 100, 2000 microU/ml insulin); muscles from ob/ob were severely insulin resistant (<80% stimulation with 2000 microU/ml insulin). Muscles from TZD-treated ob/ob displayed a normal insulin response with 100 (71%) or 2000 (158%) microU/ml insulin. Additional studies were performed using ZDF rats treated with/without TZD for 7 days. In vivo 2-DOG glucose uptake into soleus, gastrocnemius, and diaphragm muscles was measured during euglycemic-hyperinsulinemic clamp. Compared with lean rats, muscle 2-DOG uptake in ZDF was reduced by 52% (soleus) or 71% (diaphragm). Partial (40-60%) normalization of the reduced 2-DOG uptake was evident in TZD-treated ZDF rats. In contrast to the effect of in vivo treatment on muscle insulin action, preincubation of isolated soleus muscles from naive lean or ob/ob mice for 5 h with 100 nM TZD did not affect insulin-stimulated 2-DOG uptake. We conclude: 1) PPARgamma is expressed in myocytes within skeletal and cardiac muscle. 2) In vivo activation of PPARgamma by treatment of insulin-resistant mice/rats with a potent TZD corrects impaired muscle insulin action. 3) The lack of a direct effect on muscle after 5 h in vitro TZD incubation suggests that changes in insulin action may require a longer duration of PPARgamma activation or that improved muscle insulin sensitivity may result from an indirect in vivo effect of PPARgamma activation (e.g. changes in systemic lipid metabolism).
Collapse
Affiliation(s)
- J R Zierath
- Department of Clinical Biochemistry, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hjeltnes N, Galuska D, Björnholm M, Aksnes AK, Lannem A, Zierath JR, Wallberg-Henriksson H. Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis. FASEB J 1998; 12:1701-12. [PMID: 9837860 DOI: 10.1096/fasebj.12.15.1701] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Complete spinal cord lesion leads to profound metabolic abnormalities and striking changes in muscle morphology. Here we assess the effects of electrically stimulated leg cycling (ESLC) on whole body insulin sensitivity, skeletal muscle glucose metabolism, and muscle fiber morphology in five tetraplegic subjects with complete C5-C7 lesions. Physical training (seven ESLC sessions/wk for 8 wk) increased whole body insulin-stimulated glucose uptake by 33+/-13%, concomitant with a 2.1-fold increase in insulin-stimulated (100 microU/ml) 3-O-methylglucose transport in isolated vastus lateralis muscle. Physical training led to a marked increase in protein expression of GLUT4 (378+/-85%), glycogen synthase (526+/-146%), and hexokinase II (204+/-47%) in vastus lateralis muscle, whereas phosphofructokinase expression (282+/-97%) was not significantly changed. Hexokinase II activity was significantly increased, whereas activity of phosphofructokinase, glycogen synthase, and citrate synthase was not changed after training. Muscle fiber type distribution and fiber area were markedly altered compared to able-bodied subjects before ESLC training, with no change noted in either parameter after ECSL training. In conclusion, muscle contraction improves insulin action on whole body and cellular glucose uptake in cervical cord-injured persons through a major increase in protein expression of key genes involved in the regulation of glucose metabolism. Furthermore, improvements in insulin action on glucose metabolism are independent of changes in muscle fiber type distribution.
Collapse
Affiliation(s)
- N Hjeltnes
- Sunnaas Hospital, 1450 Nesoddtangen, Norway
| | | | | | | | | | | | | |
Collapse
|
49
|
Galuska D, Ryder J, Kawano Y, Charron MJ, Zierath JR. Insulin signaling and glucose transport in insulin resistant skeletal muscle. Special reference to GLUT4 transgenic and GLUT4 knockout mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 441:73-85. [PMID: 9781315 DOI: 10.1007/978-1-4899-1928-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Glucose homeostasis is impaired in patients with non-insulin dependent diabetes mellitus (NIDDM) and this defect in due in part, to defects in glucose transport in skeletal muscle. Intense interest is now focused on whether reduced insulin-mediated glucose transport in muscle from NIDDM patients results from alterations in the insulin signal transduction pathway or from alterations in traffic and/or translocation of GLUT4 to the plasma membrane. Recently, potential targets for impaired traffic/translocation of GLUT4 have been reported to include defective phosphorylation of IRS-1 and reduced PI-3 kinase activity. In addition to insulin signaling defects, impaired glucose transport may result from a defect(s) in the activation or functional capacity of GLUT4. Because GLUT4 is dysregulated in skeletal muscle from NIDDM patients, it is an attractive target for gene therapy. Overexpression of GLUT4 in muscle results in increased glucose uptake and metabolism, and protects against the development of insulin resistance in transgenic mice. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycemia, understanding the molecular regulation of glucose transport in skeletal muscle is necessary to develop effective strategies to prevent or reduce the incidence of NIDDM.
Collapse
Affiliation(s)
- D Galuska
- Department of Clinical Physiology, Karolinska Hospital, Stockholm, Sweden. jrzD.Galuska et al
| | | | | | | | | |
Collapse
|
50
|
Zierath JR, Tsao TS, Stenbit AE, Ryder JW, Galuska D, Charron MJ. Restoration of hypoxia-stimulated glucose uptake in GLUT4-deficient muscles by muscle-specific GLUT4 transgenic complementation. J Biol Chem 1998; 273:20910-5. [PMID: 9694838 DOI: 10.1074/jbc.273.33.20910] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To investigate whether GLUT4 is required for exercise/hypoxia-induced glucose uptake, we assessed glucose uptake under hypoxia and normoxia in extensor digitorum longus (EDL) and soleus muscles from GLUT4-deficient mice. In EDL and soleus from wild type control mice, hypoxia increased 2-deoxyglucose uptake 2-3-fold. Conversely, hypoxia did not alter 2-deoxyglucose uptake in either EDL or soleus from either male or female GLUT4-null mice. Next we introduced the fast-twitch skeletal muscle-specific MLC-GLUT4 transgene into GLUT4-null mice to determine whether changes in the metabolic milieu accounted for the lack of hypoxia-mediated glucose transport. Transgenic complementation of GLUT4 in EDL was sufficient to restore hypoxia-mediated glucose uptake. Soleus muscles from MLC-GLUT4-null mice were transgene-negative, and hypoxia-stimulated 2-deoxyglucose uptake was not restored. Although ablation of GLUT4 in EDL did not affect normoxic glycogen levels, restoration of GLUT4 to EDL led to an increase in glycogen under hypoxic conditions. Male GLUT4-null soleus displayed reduced normoxic glycogen stores, but female null soleus contained significantly more glycogen under normoxia and hypoxia. Reduced normoxic levels of ATP and phosphocreatine were measured in male GLUT4-null soleus but not in EDL. However, transgenic complementation of GLUT4 prevented the decrease in hypoxic ATP and phosphocreatine levels noted in male GLUT4-null and control EDL. In conclusion, we have demonstrated that GLUT4 plays an essential role in the regulation of muscle glucose uptake in response to hypoxia. Because hypoxia is a useful model for exercise, our results suggest that stimulation of glucose transport in response to exercise in skeletal muscle is totally dependent upon GLUT4. Furthermore, the compensatory glucose transport system that exists in GLUT4-null soleus muscle is not sensitive to hypoxia/muscle contraction.
Collapse
Affiliation(s)
- J R Zierath
- Department of Clinical Physiology, Karolinska Hospital, S-171 76, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|