1
|
Yang Y, Zhu X, Jia X, Hou W, Zhou G, Ma Z, Yu B, Pi Y, Zhang X, Wang J, Wang G. Phosphorylation of Msx1 promotes cell proliferation through the Fgf9/18-MAPK signaling pathway during embryonic limb development. Nucleic Acids Res 2020; 48:11452-11467. [PMID: 33080014 PMCID: PMC7672426 DOI: 10.1093/nar/gkaa905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022] Open
Abstract
Msh homeobox (Msx) is a subclass of homeobox transcriptional regulators that control cell lineage development, including the early stage of vertebrate limb development, although the underlying mechanisms are not clear. Here, we demonstrate that Msx1 promotes the proliferation of myoblasts and mesenchymal stem cells (MSCs) by enhancing mitogen-activated protein kinase (MAPK) signaling. Msx1 directly binds to and upregulates the expression of fibroblast growth factor 9 (Fgf9) and Fgf18. Accordingly, knockdown or antibody neutralization of Fgf9/18 inhibits Msx1-activated extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. Mechanistically, we determined that the phosphorylation of Msx1 at Ser136 is critical for enhancing Fgf9 and Fgf18 expression and cell proliferation, and cyclin-dependent kinase 1 (CDK1) is apparently responsible for Ser136 phosphorylation. Furthermore, mesenchymal deletion of Msx1/2 results in decreased Fgf9 and Fgf18 expression and Erk1/2 phosphorylation, which leads to serious defects in limb development in mice. Collectively, our findings established an important function of the Msx1-Fgf-MAPK signaling axis in promoting cell proliferation, thus providing a new mechanistic insight into limb development.
Collapse
Affiliation(s)
- Yenan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xiaoli Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Xiang Jia
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Guoqiang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zhangjing Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Bin Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jingqiang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Huang J, Wang K, Shiflett LA, Brotto L, Bonewald LF, Wacker MJ, Dallas SL, Brotto M. Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle 2019; 18:3562-3580. [PMID: 31735119 PMCID: PMC6927711 DOI: 10.1080/15384101.2019.1691796] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and sarcopenia (osteosarcopenia (OS)) are twin-aging diseases. The biochemical crosstalk between muscle and bone seems to play a role in OS. We have previously shown that osteocytes produce soluble factors with beneficial effects on muscle and vice versa. Recently, enhanced FGF9 production was observed in the OmGFP66 osteogenic cell line. To test its role in myogenic differentiation, C2C12 myoblasts were treated with recombinant FGF9. FGF9 as low as 10 ng/mL inhibited myogenic differentiation, suggesting that FGF9 might be a potential inhibitory factor produced from bone cells with effects on muscle cells. FGF9 (10–50 ng/mL) significantly decreased mRNA expression of MyoG and Mhc while increasing the expression of Myostatin. Consistent with the phenotype, RT-qPCR array revealed that FGF9 (10 ng/mL) increased the expression of Icam1 while decreased the expression of Wnt1 and Wnt6 decreased, respectively. FGF9 decreased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and reduced the expression of genes (i.e. Cacna1s, RyR2, Naftc3) directly associated with intracellular Ca2+ homeostasis. Myogenic differentiation in human skeletal muscle cells was similarly inhibited by FGF9 but required higher doses of 200 ng/mL FGF9. FGF9 was also shown to stimulate C2C12 myoblast proliferation. FGF2 and the FGF9 subfamily members FGF16 and FGF20 also inhibited C2C12 myoblast differentiation and enhanced proliferation. Intriguingly, the differentiation inhibition was independent of proliferation enhancement. These findings suggest that FGF9 may modulate myogenesis via a complex signaling mechanism.
Collapse
Affiliation(s)
- Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN USA
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
3
|
Schroer AB, Mohamed JS, Willard MD, Setola V, Oestreich E, Siderovski DP. A role for Regulator of G protein Signaling-12 (RGS12) in the balance between myoblast proliferation and differentiation. PLoS One 2019; 14:e0216167. [PMID: 31408461 PMCID: PMC6691989 DOI: 10.1371/journal.pone.0216167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022] Open
Abstract
Regulators of G Protein Signaling (RGS proteins) inhibit G protein-coupled receptor (GPCR) signaling by accelerating the GTP hydrolysis rate of activated Gα subunits. Some RGS proteins exert additional signal modulatory functions, and RGS12 is one such protein, with five additional, functional domains: a PDZ domain, a phosphotyrosine-binding domain, two Ras-binding domains, and a Gα·GDP-binding GoLoco motif. RGS12 expression is temporospatially regulated in developing mouse embryos, with notable expression in somites and developing skeletal muscle. We therefore examined whether RGS12 is involved in the skeletal muscle myogenic program. In the adult mouse, RGS12 is expressed in the tibialis anterior (TA) muscle, and its expression is increased early after cardiotoxin-induced injury, suggesting a role in muscle regeneration. Consistent with a potential role in coordinating myogenic signals, RGS12 is also expressed in primary myoblasts; as these cells undergo differentiation and fusion into myotubes, RGS12 protein abundance is reduced. Myoblasts isolated from mice lacking Rgs12 expression have an impaired ability to differentiate into myotubes ex vivo, suggesting that RGS12 may play a role as a modulator/switch for differentiation. We also assessed the muscle regenerative capacity of mice conditionally deficient in skeletal muscle Rgs12 expression (via Pax7-driven Cre recombinase expression), following cardiotoxin-induced damage to the TA muscle. Eight days post-damage, mice lacking RGS12 in skeletal muscle had attenuated repair of muscle fibers. However, when mice lacking skeletal muscle expression of Rgs12 were cross-bred with mdx mice (a model of human Duchenne muscular dystrophy), no increase in muscle degeneration was observed over time. These data support the hypothesis that RGS12 plays a role in coordinating signals during the myogenic program in select circumstances, but loss of the protein may be compensated for within model syndromes of prolonged bouts of muscle damage and repair.
Collapse
Affiliation(s)
- Adam B. Schroer
- Department of Physiology & Pharmacology, WVU School of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Junaith S. Mohamed
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, United States of America
| | - Melinda D. Willard
- Department of Pharmacology, The University of North Carolina, Chapel Hill, NC, United States of America
| | - Vincent Setola
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States of America
| | - Emily Oestreich
- Department of Pharmacology, The University of North Carolina, Chapel Hill, NC, United States of America
- * E-mail: (EO); (DPS)
| | - David P. Siderovski
- Department of Physiology & Pharmacology, WVU School of Medicine, West Virginia University, Morgantown, WV, United States of America
- * E-mail: (EO); (DPS)
| |
Collapse
|
4
|
Saleh A, Subramaniam G, Raychaudhuri S, Dhawan J. Cytoplasmic sequestration of the RhoA effector mDiaphanous1 by Prohibitin2 promotes muscle differentiation. Sci Rep 2019; 9:8302. [PMID: 31165762 PMCID: PMC6549159 DOI: 10.1038/s41598-019-44749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle differentiation is controlled by adhesion and growth factor-dependent signalling through common effectors that regulate muscle-specific transcriptional programs. Here we report that mDiaphanous1, an effector of adhesion-dependent RhoA-signalling, negatively regulates myogenesis at the level of Myogenin expression. In myotubes, over-expression of mDia1ΔN3, a RhoA-independent mutant, suppresses Myogenin promoter activity and expression. We investigated mDia1-interacting proteins that may counteract mDia1 to permit Myogenin expression and timely differentiation. Using yeast two-hybrid and mass-spectrometric analysis, we report that mDia1 has a stage-specific interactome, including Prohibitin2, MyoD, Akt2, and β-Catenin, along with a number of proteosomal and mitochondrial components. Of these interacting partners, Prohibitin2 colocalises with mDia1 in cytoplasmic punctae in myotubes. We mapped the interacting domains of mDia1 and Phb2, and used interacting (mDia1ΔN3/Phb2 FL or mDia1ΔN3/Phb2-Carboxy) and non-interacting pairs (mDia1H + P/Phb2 FL or mDia1ΔN3/Phb2-Amino) to dissect the functional consequences of this partnership on Myogenin promoter activity. Co-expression of full-length as well as mDia1-interacting domains of Prohibitin2 reverse the anti-myogenic effects of mDia1ΔN3, while non-interacting regions do not. Our results suggest that Prohibitin2 sequesters mDia1, dampens its anti-myogenic activity and fine-tunes RhoA-mDia1 signalling to promote differentiation. Overall, we report that mDia1 is multi-functional signalling effector whose anti-myogenic activity is modulated by a differentiation-dependent interactome. The data have been deposited to the ProteomeXchange with identifier PXD012257.
Collapse
Affiliation(s)
- Amena Saleh
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gunasekaran Subramaniam
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Swasti Raychaudhuri
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India.
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
5
|
Rajabi HN, Takahashi C, Ewen ME. Retinoblastoma protein and MyoD function together to effect the repression of Fra-1 and in turn cyclin D1 during terminal cell cycle arrest associated with myogenesis. J Biol Chem 2014; 289:23417-27. [PMID: 25006242 DOI: 10.1074/jbc.m113.532572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acquisition of skeletal muscle-specific function and terminal cell cycle arrest represent two important features of the myogenic differentiation program. These cellular processes are distinct and can be separated genetically. The lineage-specific transcription factor MyoD and the retinoblastoma protein pRb participate in both of these cellular events. Whether and how MyoD and pRb work together to effect terminal cell cycle arrest is uncertain. To address this question, we focused on cyclin D1, whose stable repression is required for terminal cell cycle arrest and execution of myogenesis. MyoD and pRb are both required for the repression of cyclin D1; their actions, however, were found not to be direct. Rather, they operate to regulate the immediate early gene Fra-1, a critical player in mitogen-dependent induction of cyclin D1. Two conserved MyoD-binding sites were identified in an intronic enhancer of Fra-1 and shown to be required for the stable repression of Fra-1 and, in turn, cyclin D1. Localization of MyoD alone to the intronic enhancer of Fra-1 in the absence of pRb was not sufficient to elicit a block to Fra-1 induction; pRb was also recruited to the intronic enhancer in a MyoD-dependent manner. These observations suggest that MyoD and pRb work together cooperatively at the level of the intronic enhancer of Fra-1 during terminal cell cycle arrest. This work reveals a previously unappreciated link between a lineage-specific transcription factor, a tumor suppressor, and a proto-oncogene in the control of an important facet of myogenic differentiation.
Collapse
Affiliation(s)
- Hasan N Rajabi
- From the Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Chiaki Takahashi
- From the Dana-Farber Cancer Institute, Boston, Massachusetts 02215, the Cancer Research Institute of Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan, and
| | - Mark E Ewen
- From the Dana-Farber Cancer Institute, Boston, Massachusetts 02215, the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| |
Collapse
|
6
|
Tanaka K, Sato K, Yoshida T, Fukuda T, Hanamura K, Kojima N, Shirao T, Yanagawa T, Watanabe H. Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle Nerve 2012; 44:968-77. [PMID: 22102468 DOI: 10.1002/mus.22224] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Community effect is a phenomenon caused by cell-cell communication during myogenesis. In myogenic C2C12 cells in vitro, the confluent phase is needed for myogenesis induction. METHODS To examine the cell-density effect, growth kinetics and myogenic differentiation were investigated in cells plated at four different cell densities. RESULTS We found that expression of a myogenic differentiation marker was high in a density-dependent manner. At high density, where cell-cell contact was obvious, contact inhibition after the proliferation stage was accompanied by microarray findings demonstrating upregulation of negative regulating cell-cycle markers, including CDKI p21 and the muscle differentiation markers MyoD and myogenin. Interestingly, developmentally regulated protein expression (drebrin) protein expression was also upregulated in a density-dependent manner. CONCLUSIONS These results suggest that contact inhibition after the proliferation stage may induce growth arrest via cell-cell communication through the expression of CDKI p21 and may be responsible for progressing cell fusion.
Collapse
Affiliation(s)
- Kanako Tanaka
- Course of Health Sciences, Gunma University Graduate School of Health Sciences, Showa, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bower NI, Johnston IA. Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon. PLoS One 2010; 5:e11100. [PMID: 20559434 PMCID: PMC2885424 DOI: 10.1371/journal.pone.0011100] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d−1 at days 2 and 3 of the culture, increasing to 66% d−1 at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.
Collapse
Affiliation(s)
- Neil I Bower
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom.
| | | |
Collapse
|
8
|
Foletta VC, Prior MJ, Stupka N, Carey K, Segal DH, Jones S, Swinton C, Martin S, Cameron-Smith D, Walder KR. NDRG2, a novel regulator of myoblast proliferation, is regulated by anabolic and catabolic factors. J Physiol 2009; 587:1619-34. [PMID: 19204049 DOI: 10.1113/jphysiol.2008.167882] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle tissue undergoes adaptive changes in response to stress and the genes that control these processes are incompletely characterised. NDRG2 (N-myc downstream-regulated gene 2), a stress- and growth-related gene, was investigated in skeletal muscle growth and adaption. While NDRG2 expression levels were found to be up-regulated in both differentiated human and mouse myotubes compared with undifferentiated myoblasts, the suppression of NDRG2 in C2C12 myoblasts resulted in slowed myoblast proliferation. The increased expression levels of the cell cycle inhibitors, p21 Waf1/Cip1 and p27 Kip1, and of various muscle differentiation markers in NDRG2-deficient myoblasts indicate that a lack of NDRG2 promoted cell cycle exiting and the onset of myogenesis. Furthermore, the analysis of NDRG2 regulation in C2C12 myotubes treated with catabolic and anabolic agents and in skeletal muscle from human subjects following resistance exercise training revealed NDRG2 gene expression to be down-regulated during hypertrophic conditions, and conversely, up-regulated during muscle atrophy. Together, these data demonstrate that NDRG2 expression is highly responsive to different stress conditions in skeletal muscle and suggest that the level of NDRG2 expression may be critical to myoblast growth and differentiation.
Collapse
|
9
|
Kim HJ, Archer E, Escobedo N, Tapscott SJ, Unguez GA. Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Dev Dyn 2008; 237:2830-43. [PMID: 18816861 DOI: 10.1002/dvdy.21702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tissue regeneration through stem cell activation and/or cell dedifferentiation is widely distributed across the animal kingdom. By comparison, regeneration in mammals is poor and this may reflect a limited dedifferentiation potential of mature cells. Because mammalian myotubes can dedifferentiate in the presence of newt blastema extract, the present study tested the dedifferentiation induction capability of the blastema from the teleost Sternopygus macrurus (SmBE). Our in vitro data showed that SmBE did not induce cell cycle reentry of myonuclei in myotubes. Instead, SmBE caused myotubes to detach and time-lapse imaging analyses characterized the cellular events before their detachment. Furthermore, SmBE enhanced myoblast proliferation and reversibly inhibited their differentiation. These data suggest the presence of protein factors in SmBE that regulate mammalian muscle physiology and differentiation, but do not support the conservation of a dedifferentiation induction capability by the blastema of S. macrurus.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Biology Department, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | |
Collapse
|
10
|
Kodaira K, Imada M, Goto M, Tomoyasu A, Fukuda T, Kamijo R, Suda T, Higashio K, Katagiri T. Purification and identification of a BMP-like factor from bovine serum. Biochem Biophys Res Commun 2006; 345:1224-31. [PMID: 16716261 DOI: 10.1016/j.bbrc.2006.05.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 05/08/2006] [Indexed: 12/28/2022]
Abstract
Myogenic differentiation is suppressed in vitro by unknown factors present in fetal bovine serum (FBS). We found that specific inhibitors of bone morphogenetic proteins (BMPs) stimulated myogenic differentiation even in the presence of 20% FBS, which in turn activated specific BMP signaling. Moreover, these specific BMP inhibitors blocked maturation of osteoblastic cells induced by FBS, indicating that BMP-like factor(s) in serum regulate both myogenic and osteoblastic differentiation. The factor identified had an apparent molecular weight (Mw) of over 100kDa on a Superdex 200 column for molecular sieving HPLC, but an apparent Mw of 33kDa on SDS-PAGE under non-reducing conditions. Analysis of a purified preparation from FBS (5L) by liquid chromatography-tandem mass spectrometry revealed the presence of an amino acid sequence conserved between mature human and murine BMP-4. This is the first study to show that BMP-4 is present in FBS as a large complex.
Collapse
Affiliation(s)
- Kunihiko Kodaira
- Division of Pathophysiology, Saitama Medical School, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sasson IE, Stern MJ. FGF and PI3 kinase signaling pathways antagonistically modulate sex muscle differentiation in C. elegans. Development 2004; 131:5381-92. [PMID: 15469970 DOI: 10.1242/dev.01423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myogenesis in vertebrate myocytes is promoted by activation of the phosphatidyl-inositol 3'-kinase (PI3 kinase) pathway and inhibited by fibroblast growth factor (FGF) signaling. We show that hyperactivation of the Caenorhabditis elegans FGF receptor, EGL-15, similarly inhibits the differentiation of the hermaphrodite sex muscles. Activation of the PI3 kinase signaling pathway can partially suppress this differentiation defect, mimicking the antagonistic relationship between these two pathways known to influence vertebrate myogenesis. When ectopically expressed in body wall muscle precursor cells, hyperactivated EGL-15 can also interfere with the proper development of the body wall musculature. Hyperactivation of EGL-15 has also revealed additional effects on a number of fundamental processes within the postembryonic muscle lineage, such as cell division polarity. These studies provide important in vivo insights into the contribution of FGF signaling events to myogenesis.
Collapse
Affiliation(s)
- Isaac E Sasson
- Yale University School of Medicine, Department of Genetics, I-354 SHM, PO Box 208005, New Haven, CT 06520-8005, USA
| | | |
Collapse
|
12
|
Ricaud S, Vernus B, Duclos M, Bernardi H, Ritvos O, Carnac G, Bonnieu A. Inhibition of autocrine secretion of myostatin enhances terminal differentiation in human rhabdomyosarcoma cells. Oncogene 2003; 22:8221-32. [PMID: 14614446 DOI: 10.1038/sj.onc.1207177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcomas (RMSs) are one of the most common solid tumor of childhood. Rhabdomyosarcoma (RMS) cells fail to both complete the skeletal muscle differentiation program and irreversibly exit the cell cycle as a consequence of an active repression exerted on the muscle-promoting factor MyoD. Myostatin is a negative regulator of normal muscle growth, we have thus studied its possible role in RMS cells. Here, we present evidence that overexpression of myostatin is a common feature of RMS since both subtypes of RMS (embryonal RD and alveolar Rh30 cells) express high levels of myostatin when compared to nontumoral skeletal muscle cells. Interestingly, we found that inactivation of myostatin through overexpression of antisense myostatin or of follistatin (a myostatin antagonist) constructs enhanced differentiation of RD cells. In addition, RD and Rh30 cells treated with blocking antimyostatin antibodies progress into the myogenic terminal differentiation program. Finally, our results suggest that high levels of myostatin could impair MyoD function in RMS cells. These results show that an autocrine myostatin loop contributes to maintain RMS cells in an undifferentiating stage and suggest that new therapeutic approaches could be exploited for the treatment of RMS based on inactivation of myostatin protein.
Collapse
Affiliation(s)
- Stéphanie Ricaud
- INRA, UMR 866-Differenciation Cellulaire et Croissance, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 2002; 277:49831-40. [PMID: 12244043 DOI: 10.1074/jbc.m204291200] [Citation(s) in RCA: 614] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.
Collapse
Affiliation(s)
- Brett Langley
- Animal Genomics, AgResearch, Private Bag 3123, East Street, Hamilton, New Zealand
| | | | | | | | | | | |
Collapse
|
14
|
Goel HL, Dey CS. PKC-regulated myogenesis is associated with increased tyrosine phosphorylation of FAK, Cas, and paxillin, formation of Cas-CRK complex, and JNK activation. Differentiation 2002; 70:257-71. [PMID: 12190987 DOI: 10.1046/j.1432-0436.2002.700604.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous reports suggest that PKC plays an important role in regulating myogenesis. However, the regulatory signaling pathways are not fully understood. We examined the effects of PKC downregulation on signaling events during skeletal muscle differentiation. We found that downregulation of PKC results in increased myogenesis in C2C12 cells as measured by creatine kinase activity and myogenin expression. We showed that, during differentiation, downregulation of PKC expression results in increased tyrosine phosphorylation of FAK, Cas, and paxillin, concomitant with enhanced Cas-CrkII complex formation, which leads to activation of JNK2. But in proliferated muscle cells, PKC inhibition results in FAK and Cas tyrosine dephosphorylation. Further, disruption of actin cytoskeleton by cytochalasin D prevents the activation of FAK and Cas as well as the formation of Cas-CrkII complex stimulated by PKC downregulation during muscle cell differentiation. Finally, we observed that PKC downregulation increases the tyrosine phosphorylation of focal adhesion associated proteins. Based on the above data, we propose that PKC downregulation results in enhanced tyrosine phosphorylation of FAK, Cas, and paxillin, thus promoting the establishment of Cas-CrkII complex, leading to activation of JNK and that these interactions are dependent upon the integrity of actin cytoskeleton during muscle cell differentiation. Data presented here significantly contribute to elucidating the regulatory role of PKC in myogenesis possibly through integrin signaling pathway.
Collapse
Affiliation(s)
- Hira Lal Goel
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, India
| | | |
Collapse
|
15
|
Kontaridis MI, Liu X, Zhang L, Bennett AM. Role of SHP-2 in fibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts. Mol Cell Biol 2002; 22:3875-91. [PMID: 11997521 PMCID: PMC133814 DOI: 10.1128/mcb.22.11.3875-3891.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligand activation of the fibroblast growth factor receptor (FGFR) represses myogenesis and promotes activation of extracellular signal-regulated kinases 1 and 2 (Erks). The precise mechanism through which the FGFR transmits both of these signals in myoblasts remains unclear. The SH2 domain-containing protein tyrosine phosphatase, SHP-2, has been shown to participate in the regulation of FGFR signaling. However, no role for SHP-2 in FGFR myogenic signaling is known. In this study, we show that stimulation of C2C12 myoblasts with FGF-2 induces SHP-2 complex formation with tyrosyl-phosphorylated FGFR substrate 2 alpha (FRS-2 alpha). Both the catalytic activity and, to a much lesser extent, the Grb2 binding-tyrosyl phosphorylation sites of SHP-2 are required for maximal FGF-2-induced Erk activity and Elk-1 transactivation. When overexpressed in C2C12 myoblasts, wild-type SHP-2, but not a catalytically inactive SHP-2 mutant, potentiates the suppressive effects of FGF-2 on muscle-specific gene expression. In addition, expression of a constitutively active mutant of SHP-2 is sufficient to prevent myogenesis. The constitutively active mutant of SHP-2 induces hyper-tyrosyl phosphorylation of FRS-2 alpha but fails to stimulate or potentiate either FGF-2-induced Erk activation or Elk-1 transactivation. These data suggest that in myoblasts, SHP-2 represses myogenesis via a pathway that is independent of the Erks. We propose that SHP-2 plays a pivotal role in FGFR signaling in myoblasts via both Erk-dependent and Erk-independent pathways.
Collapse
Affiliation(s)
- Maria I Kontaridis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Adult skeletal muscle has a remarkable ability to regenerate following myotrauma. Because adult myofibers are terminally differentiated, the regeneration of skeletal muscle is largely dependent on a small population of resident cells termed satellite cells. Although this population of cells was identified 40 years ago, little is known regarding the molecular phenotype or regulation of the satellite cell. The use of cell culture techniques and transgenic animal models has improved our understanding of this unique cell population; however, the capacity and potential of these cells remain ill-defined. This review will highlight the origin and unique markers of the satellite cell population, the regulation by growth factors, and the response to physiological and pathological stimuli. We conclude by highlighting the potential therapeutic uses of satellite cells and identifying future research goals for the study of satellite cell biology.
Collapse
Affiliation(s)
- T J Hawke
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
17
|
Edom-Vovard F, Bonnin MA, Duprez D. Misexpression of Fgf-4 in the chick limb inhibits myogenesis by down-regulating Frek expression. Dev Biol 2001; 233:56-71. [PMID: 11319857 DOI: 10.1006/dbio.2001.0221] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle development involves an initial period of myoblast replication followed by a phase in which some myoblasts continue to proliferate while others undergo terminal differentiation. The latter process involves the permanent cessation of DNA synthesis, activation of muscle-specific gene expression, and fusion of single cells to generate multinucleated muscle fibres. The in vivo signals regulating the progression through all these steps remain unknown. Fibroblast growth factors (Fgfs) and Fgf receptors comprise a large family whose members have been shown to play multiple roles in the development of skeletal muscle in vitro. Exogenously applied Fgfs are able to stimulate proliferation and suppress myogenic differentiation in cell culture. We sought to determine the role played by Fgf-4 during limb myogenesis in vivo. Fgf-4 transcripts are located at both extremities of myotubes whereas the mRNAs of one of the Fgf receptors, Frek, are detected in mononucleated proliferating myoblasts surrounding the multinucleated fibres. Overexpression of mouse Fgf-4 (mFgf-4) using a replication-competent retrovirus, RCAS, leads to a down-regulation of muscle markers followed by an inhibition of terminal differentiation in limb muscles. Using quail/chick transplantations we were able to follow the muscle cells and found a dramatic decrease in their number after exposure to mFgf-4. Interestingly ectopic mFgf-4 down-regulates Frek transcripts in limb muscle areas. We conclude that overexpression of mFgf-4 inhibits myoblast proliferation, probably by down-regulating Frek mRNAs. This suggests a role for Fgf-4, located at the extremities of the myotubes, where it could be responsible for the absence of Frek mRNA in the muscle fibre.
Collapse
Affiliation(s)
- F Edom-Vovard
- Institut d'Embryologie Cellulaire et Moléculaire, CNRS (FRE 2160) et du College de France, 49 bis, avenue de la Belle Gabrielle, Nogent Sur Marne Cedex, 94736, France
| | | | | |
Collapse
|
18
|
Abstract
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.
Collapse
Affiliation(s)
- Q Wei
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
19
|
Steenstrup T, Hannon K. Isolation of a spontaneously fusing BC3H1 muscle cell line: fusion alters the response to serum stimulation. In Vitro Cell Dev Biol Anim 2000; 36:241-8. [PMID: 10852349 DOI: 10.1290/1071-2690(2000)036<0241:ioasfb>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Differentiation of skeletal muscle cells involves two distinct events: exit from the cell cycle and expression of muscle-specific contractile genes and formation of multinucleated myocytes. Although many studies have shown that growth factors regulate the initial step of differentiation, little is known about regulation of fusion. BC3H1 cells are a skeletal muscle cell line characterized by a nonfusing phenotype and an ability to dedifferentiate. When subjected to serum or growth factors, differentiated BC3H1 cells lose muscle-specific gene expression and re-enter the cell cycle. In this study, we describe a spontaneously fusing clone of BC3H1 cells. We demonstrate that this fusion capability is not due to altered muscle regulatory factor or adhesion molecule expression. Furthermore, we show that fusion inhibits dedifferentiation. Multinucleated BC3H1 cells do not lose myosin expression, nor do they re-enter the cell cycle. Fused BC3HI cells react to serum stimulation with a hypertrophic response. Our results suggest that the state of differentiation, mono- or multi-nucleated, is essential to how myocytes react to growth stimulation and may provide a mechanism for how differentiation, fusion, and hypertrophy are regulated in vivo.
Collapse
Affiliation(s)
- T Steenstrup
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University,West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
20
|
Capiati DA, Limbozzi F, T�llez-I��n MT, Boland RL. Evidence on the participation of protein kinase C ? in the proliferation of cultured myoblasts. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990801)74:2<292::aid-jcb13>3.0.co;2-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Abstract
Fibroblast growth factors (FGFs) and their receptors are critical participants in embryonic development, including the genesis of skeletal, cardiac, and smooth muscle. FGF signaling is mediated through interactions between multiple FGF ligands and transmembrane tyrosine kinase receptors, resulting in activation of a number of signal transduction pathways. Skeletal myocytes express FGF ligands and receptors in a coordinated fashion, suggesting that these molecules participate in autocrine signaling in the myocyte. Endogenously produced FGF has been shown to inhibit myogenesis, but the role of FGF receptor availability in directing myocyte proliferation and differentiation has not been established. To determine the contribution of receptor availability to the regulation of myogenesis, receptor availability was either increased by expressing a full-length FGF receptor-1 or decreased by expressing a truncated FGF receptor-1 in cultured skeletal myocytes. Constitutive expression of a full-length FGF receptor-1 increased myocyte proliferation and delayed differentiation. Conversely, a reduction in functional FGF receptor signaling by expression of a truncated FGF receptor-1 decreased proliferation and enhanced differentiation of myocytes. These data demonstrate that FGF receptor availability plays a critical regulatory role in skeletal myogenesis.
Collapse
Affiliation(s)
- K A Scata
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
22
|
Layne MD, Farmer SR. Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res 1999; 249:177-87. [PMID: 10328964 DOI: 10.1006/excr.1999.4465] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays a role in several disease states such as sepsis, cachexia, and non-insulin-dependent diabetes. TNF-alpha interferes with insulin signaling and inhibits differentiation-specific gene expression in adipose tissue and skeletal muscle. We have examined the mechanisms by which TNF-alpha, in comparison to basic fibroblast growth factor (bFGF), inhibits the insulin-like growth factor-I (IGF-I)-induced differentiation of C2C12 myoblasts. Adhesion of quiescent, suspended myoblasts to collagen in high concentrations of IGF-I (10 nM) induced these cells to proliferate during the initial 24 h postplating and in so doing transiently inhibited the expression of myogenin, an essential transcription factor controlling myoblast differentiation. Low doses of IGF-I (1 nM) were minimally mitogenic and enhanced muscle-specific gene expression. Quiescent myoblasts treated with bFGF in combination with IGF-I did not express myogenin, but expressed proliferating cell nuclear antigen and underwent DNA synthesis. In contrast, TNF-alpha in the presence or absence of 1 nM IGF-I, did not stimulate DNA synthesis in myoblasts. However, TNF-alpha inhibited myogenin mRNA and protein expression. Expression of the cyclin-dependent kinase inhibitor p21 correlated with myogenin expression and myoblast differentiation, but not with growth arrest. These results indicate that both TNF-alpha and bFGF inhibit myogenin expression but differentially influence myoblast proliferation.
Collapse
Affiliation(s)
- M D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
23
|
Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbé JC, Lamb N, Fernandez A. cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity. Mol Cell Biol 1999; 19:3167-76. [PMID: 10082583 PMCID: PMC84110 DOI: 10.1128/mcb.19.4.3167] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.
Collapse
Affiliation(s)
- M Kitzmann
- Institut de Génétique Humaine, Centre National de Recherche Scientifique, UPR 1142, 34396 Montpellier cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Roman J, Schuyler W, McDonald JA, Roser S. Heparin inhibits lung branching morphogenesis: potential role of smooth muscle cells in cleft formation. Am J Med Sci 1998; 316:368-78. [PMID: 9856690 DOI: 10.1097/00000441-199812000-00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung branching morphogenesis is the process by which the embryonic lung undergoes repetitive branching to form the bronchial tree. This process occurs during the pseudoglandular stage of lung development and requires epithelial-mesenchymal interactions. Coinciding with lung branching morphogenesis is the appearance of parabronchial smooth muscle cells (PSMCs) and the accumulation of extracellular matrices (ECMs) around the developing airways. The authors previously reported in preliminary form that heparin prevents the branching of murine lung explants (Roman et al., Am Rev Respir Dis. 1991; 143:A401); this article corroborates those early observations and expands them by demonstrating that heparin results in disruption of PSMC distribution and abnormal organization of ECMs around the developing airways. These changes were associated with inhibition of lung branching morphogenesis in the absence of effects on cell proliferation. The data provide further support for the role of ECMs in lung branching morphogenesis, and points to PSMCs as potential players in this process.
Collapse
Affiliation(s)
- J Roman
- Department of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| | | | | | | |
Collapse
|
25
|
Heparin Inhibits Lung Branching Morphogenesis: Potential Role of Smooth Muscle Cells in Cleft Formation. Am J Med Sci 1998. [DOI: 10.1016/s0002-9629(15)40446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Nakashima K, Ohtsuka A, Hayashi K. Comparison of the effects of thyroxine and triiodothyronine on protein turnover and apoptosis in primary chick muscle cell cultures. Biochem Biophys Res Commun 1998; 251:442-8. [PMID: 9792793 DOI: 10.1006/bbrc.1998.9483] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary chick muscle cells were treated with physiological level of thyroxine (T4) or triiodothyronine (T3) to examine the effects of the hormones on growth, protein turnover, and apoptosis of the cells. Creatine kinase activity, as an index of differentiation, was increased by both T4 and T3. Even when the conversion from T4 to T3 was blocked by iopanoic acid, T4 increased creatine kinase activity. The rate of protein degradation estimated from [3H] tyrosine release was increased by T3 but not by T4. DNA cleavage and fragmentation, as indices of apoptosis, were induced by T3 but not by T4. These results show that T4 stimulates cell differentiation but not protein degradation and apoptosis in primary chick muscle cells, while all events are stimulated by T3.
Collapse
Affiliation(s)
- K Nakashima
- Department of Biochemical Science and Technology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890, Japan
| | | | | |
Collapse
|
27
|
Kang JS, Mulieri PJ, Miller C, Sassoon DA, Krauss RS. CDO, a robo-related cell surface protein that mediates myogenic differentiation. J Cell Biol 1998; 143:403-13. [PMID: 9786951 PMCID: PMC2132836 DOI: 10.1083/jcb.143.2.403] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Revised: 09/10/1998] [Indexed: 12/26/2022] Open
Abstract
CDO, a member of the Ig/fibronectin type III repeat subfamily of transmembrane proteins that includes the axon guidance receptor Robo, was identified by virtue of its down-regulation by the ras oncogene. We report here that one prominent site of cdo mRNA expression during murine embryogenesis is the early myogenic compartment (newly formed somites, dermomyotome and myotome). CDO is expressed in proliferating and differentiating C2C12 myoblasts and in myoblast lines derived by treating 10T1/2 fibroblasts with 5-azacytidine, but not in parental 10T1/2 cells. Overexpression of CDO in C2C12 cells accelerates differentiation, while expression of secreted soluble extracellular regions of CDO inhibits this process. Oncogenic Ras is known to block differentiation of C2C12 cells via downregulation of MyoD. Reexpression of CDO in C2C12/Ras cells induces MyoD; conversely, MyoD induces CDO. Reexpression of either CDO or MyoD rescues differentiation of C2C12/Ras cells without altering anchorage-independent growth or morphological transformation. CDO and MyoD are therefore involved in a positive feedback loop that is central to the inverse relationship between cell differentiation and transformation. It is proposed that CDO mediates, at least in part, the effects of cell-cell interactions between muscle precursors that are critical in myogenesis.
Collapse
Affiliation(s)
- J S Kang
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
28
|
Veal EA, Jackson MJ. C-myc is expressed in mouse skeletal muscle nuclei during post-natal maturation. Int J Biochem Cell Biol 1998; 30:811-21. [PMID: 9722986 DOI: 10.1016/s1357-2725(98)00032-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous data have indicated the presence of c-myc mRNA and protein in mature skeletal muscle, but whether the protein is present as a Myc/Max heterodimer capable of influencing transcription in that tissue or its potential role in pathological muscle tissue has not been examined. The expression of c-myc in normal and mdx dystrophic mouse skeletal muscle was therefore investigated. C-myc mRNA was detected by Northern hybridisation in normal and dystrophic mouse muscle from mice up to 40 days of age and immunohistochemical staining confirmed that c-myc protein was expressed in muscle fibre nuclei in the muscles of mice up to 40 days of age. The presence of Myc-containing complexes that are able to bind to the concensus Myc/Max binding site was demonstrated in these muscles using the electrophoretic mobility shift assay. These results show that c-myc protein is expressed in functional complexes in both normal and dystrophic mouse skeletal muscle during post-natal maturation. They also show that expression of c-myc in mouse skeletal muscle decreases to undetectable levels by about 40 days of age. Although no differences were detected between the expression of c-myc in mdx and control mouse muscle, these data show that muscle contains Myc protein which has previously been demonstrated to be capable of initiating programmed cell death in other tissues.
Collapse
MESH Headings
- Animals
- Apoptosis
- Base Sequence
- Binding Sites/genetics
- Cell Nucleus/metabolism
- DNA/genetics
- DNA/metabolism
- DNA, Complementary/genetics
- Female
- Gene Expression Regulation, Developmental
- Genes, myc
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Development
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- E A Veal
- Department of Medicine, University of Liverpool, UK
| | | |
Collapse
|
29
|
Weyman CM, Wolfman A. Mitogen-activated protein kinase kinase (MEK) activity is required for inhibition of skeletal muscle differentiation by insulin-like growth factor 1 or fibroblast growth factor 2. Endocrinology 1998; 139:1794-800. [PMID: 9528964 DOI: 10.1210/endo.139.4.5950] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both insulin-like growth factor 1 (IGF-1) and fibroblast growth factor 2 (FGF-2) are key modulators of skeletal myoblast differentiation. The critical signaling pathways used by either IGF-1 or FGF-2 to inhibit differentiation have not been determined. In this study, we show that both IGF-1 and FGF-2 inhibit the differentiation of 23A2 myoblasts and that both stimulate signaling through mitogen-activated protein kinase (MAPK) kinase (MEK) to MAPK roughly 8-fold in 23A2 myoblasts. We used the selective chemical inhibitor of MEK, PD 098059, to determine if signaling by MEK is required by IGF-1 or FGF-2 to inhibit differentiation. PD 098059 did not affect the ability of 23A2 myoblasts to differentiate. Addition of PD 098059 to the culture medium 10 min before the addition of IGF-1 or FGF-2 completely blocked the signal from MEK to MAPK and restored the ability of the 23A2 myoblasts to differentiate in the presence of either IGF-1 or FGF-2. The peak of signaling through MEK to MAPK in response to either IGF-1 or FGF-2 occurred within the first hour with maximal activation observed after 10 min. This signal remained elevated (at roughly 70% above basal) for at least 48 h. PD 098059 was added to the culture 60 min after IGF-1 or FGF-2 to test whether this initial peak of signaling was sufficient for the inhibition of differentiation. The restoration of myogenic potential seen when cells were preincubated with PD 098059 was essentially identical to that seen when PD 098059 was added to cultures after the initial peak of signaling from MEK to MAPK, suggesting that persistent signaling through MEK is required for the inhibition of differentiation by either IGF-1 or FGF-2.
Collapse
Affiliation(s)
- C M Weyman
- Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195, USA.
| | | |
Collapse
|
30
|
Miralles F, Ron D, Baiget M, Félez J, Muñoz-Cánoves P. Differential regulation of urokinase-type plasminogen activator expression by basic fibroblast growth factor and serum in myogenesis. Requirement of a common mitogen-activated protein kinase pathway. J Biol Chem 1998; 273:2052-8. [PMID: 9442043 DOI: 10.1074/jbc.273.4.2052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The broad spectrum protease urokinase-type plasminogen activator (uPA) has been implicated in muscle regeneration in vivo as well as in myogenic proliferation and differentiation in vitro. These processes are known to be modulated by basic fibroblast growth factor (FGF-2) and serum. We therefore investigated the mechanism(s) underlying the regulation of uPA expression by these two stimuli in proliferating and differentiating myoblasts. The expression of uPA mRNA and the activity of the uPA gene product were induced by FGF-2 and serum in proliferating myoblasts. uPA induction occurred at the level of transcription and required the uPA-PEA3/AP1 enhancer element, since deletion of this site in the full promoter abrogated induction by FGF-2 and serum. Using L6E9 skeletal myoblasts, devoid of endogenous FGF receptors, which have been engineered to express either FGF receptor-1 (FGFR1) or FGF receptor-4 (FGFR4), we have demonstrated that both receptors, known to be expressed in skeletal muscle cell precursors, were able to mediate uPA induction by FGF-2, whereas serum stimulation was FGF receptor-independent. The induction of uPA by FGF-2 and serum in FGFR1- and in FGFR4-expressing myoblasts required the mitogen-activated protein kinase pathway, since treatment of cells with a specific inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated kinase-2 kinase, PD98059, blocked uPA promoter induction. Although FGF-2 and serum induced uPA in proliferating myoblasts, their actions on cell-cell contact-induced differentiating myoblasts differed dramatically. FGF-2, but not serum, repressed uPA expression in differentiation-committed myoblasts, and these effects were also shown to occur at the level of uPA transcription. Altogether, these results indicate a dual regulation of the uPA gene by FGF-2 and serum, which ensures uPA expression throughout the whole myogenic process in different myoblastic lineages. The effects of FGF-2 and serum on uPA expression may contribute to the proteolytic activity required during myoblast migration and fusion, as well as in muscle regeneration.
Collapse
Affiliation(s)
- F Miralles
- Departament de Receptors Cel.lulars, Institut de Recerca Oncològica, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Bennett AM, Tonks NK. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 1997; 278:1288-91. [PMID: 9360925 DOI: 10.1126/science.278.5341.1288] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The signal transduction pathway or pathways linking extracellular signals to myogenesis are poorly defined. Upon mitogen withdrawal from C2C12 myoblasts, the mitogen-activated protein kinase (MAPK) p42Erk2 is inactivated concomitant with up-regulation of muscle-specific genes. Overexpression of MAPK phosphatase-1 (MKP-1) inhibited p42Erk2 activity and was sufficient to relieve the inhibitory effects of mitogens on muscle-specific gene expression. Later during myogenesis, endogenous expression of MKP-1 decreased. MKP-1 overexpression during differentiation prevented myotube formation despite appropriate expression of myosin heavy chain. This indicates that muscle-specific gene expression is necessary but not sufficient to commit differentiated myocytes to myotubes and suggests a function for the MAPKs during the early and late stages of skeletal muscle differentiation.
Collapse
Affiliation(s)
- A M Bennett
- Cold Spring Harbor Laboratory, Demerec Building, 1 Bungtown Road, Post Office Box 100, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
32
|
Stern HM, Lin-Jones J, Hauschka SD. Synergistic interactions between bFGF and a TGF-beta family member may mediate myogenic signals from the neural tube. Development 1997; 124:3511-23. [PMID: 9342044 DOI: 10.1242/dev.124.18.3511] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the myotome within somites depends on unknown signals from the neural tube. The present study tested the ability of basic fibroblast growth factor (bFGF), transforming growth factor-beta1 (TGF-beta1) and dorsalin-1 (dsl-1) to promote myogenesis in stage 10–14 chick paraxial mesoderm utilizing 72 hour explant cultures. Each of these factors alone and the combination of bFGF with dsl-1 had limited to no myogenic-promoting activity, but the combination of bFGF with TGF-beta1 demonstrated a potent dose-dependent effect. In addition, bFGF enhanced the survival/proliferation of somite cells. 98% of stage 10–11 caudal segmental plate explants treated with bFGF plus TGF-beta1, exhibited myosin heavy chain (MHC)-positive cells (avg.=60 per explant), whereas only 15% of similarly treated somites responded with an average of 5 MHC-positive cells. Thus at stage 10–11, there are rostrocaudal differences in myogenic responsiveness with the caudal (more ‘immature’) paraxial mesoderm being more myogenically responsive to these factors than are somites. It was also discovered that 17% of stage 10–11 caudal segmental plate explants exhibited several MHC-positive cells even when cultured without added growth factors, further demonstrating a different myogenic potential of the caudal paraxial mesoderm. Stage 13–14 paraxial mesoderm also exhibited a myogenic response to bFGF/TGF-beta1 but, unlike stage 10–11 embryos, both somites and segmental plate exhibited a strong response. A two-step mechanism for the bFGF/TGF-beta1 effect is suggested by the finding that only TGF-beta1 was required during the first 12 hours of culture, whereas bFGF plus a TGF-beta-like factor were required for the remainder of the culture. The biological relevance of the findings with bFGF is underscored by the observation that a monoclonal antibody to bFGF inhibited myogenic signaling from the dorsal neural tube. However, a monoclonal antibody that can neutralize the three factors TGF-beta1, TGF-beta2 and TGF-beta3 did not block myogenic signals from the neural tube, raising the possibility that another TGF-beta family member may be involved in vivo.
Collapse
Affiliation(s)
- H M Stern
- University of Washington, Department of Biochemistry, Seattle, 98195, USA
| | | | | |
Collapse
|
33
|
Kim L, Steves A, Collins M, Fu J, Ritchie ME. bFGF induces BCK promoter-driven expression in muscle via increased binding of a nuclear protein. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C223-9. [PMID: 9252460 DOI: 10.1152/ajpcell.1997.273.1.c223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Changes in gene expression occurring during skeletal muscle differentiation are exemplified by downregulation of brain creatine kinase (BCK) and induction of muscle creatine kinase (MCK). Although both are transcriptionally regulated, there appears to be no transcription factor-element overlap, suggesting that their coordinate expression results from culture medium-related influences. Basic fibroblast growth factor (bFGF) prevents myogenesis and represses MCK expression by inhibiting transcriptional activation. It was hypothesized that bFGF similarly influenced BCK by inducing its expression. Accordingly, BCK promoter constructs were transiently transfected into C2C12 cells and, after a switch to differentiation medium, were treated with bFGF, bFGF plus herbimycin, adenosine 3',5'-cyclic monophosphate (cAMP), or phorbol 12-myristate 13-acetate (PMA). Analyses demonstrated that bFGF responsiveness was contained within a 33-base pair element. Electromobility shift assays showed that bFGF induction increased the abundance of the nuclear factor binding the element. Both effects were prevented by herbimycin. Neither cAMP nor PMA specifically induced the construct containing the bFGF-responsive element. The induced factor required phosphorylation to bind, implying that bFGF-mediated increases in binding may be due to transcription factor phosphorylation.
Collapse
Affiliation(s)
- L Kim
- Division of Cardiology, University of Cincinnati College of Medicine, Ohio 45267-0542, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Voets T, Wei L, De Smet P, Van Driessche W, Eggermont J, Droogmans G, Nilius B. Downregulation of volume-activated Cl- currents during muscle differentiation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C667-74. [PMID: 9124311 DOI: 10.1152/ajpcell.1997.272.2.c667] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used the whole cell configuration of the patch-clamp technique to investigate volume-activated Cl- currents in BC3H1 and C2C12 cells, two mouse muscle cell lines that can be switched from a proliferating to a differentiated musclelike state. Reducing the extracellular osmolality by 40% evoked large Cl- currents in proliferating BC3H1 and C2C12 cells. These currents were outwardly rectifying and had an anion permeability sequence as follows: I- > Br- > Cl- >> gluconate. They were inhibited by >50% by flufenamic acid (500 microM), niflumic acid (500 microM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 microM) but were relatively insensitive to tamoxifen (100 microM). A reduction in the serum concentration in the culture medium induced growth arrest in both cell lines, and the cells started to differentiate into spindle-shaped nonfusing muscle cells (BC3H1) or myotubes (C2C12). This differentiation was accompanied by a drastic decrease in the magnitude of the volume-activated Cl- currents. The close correlation between volume-activated Cl- currents and cell proliferation suggests that these currents may be involved in cell proliferation.
Collapse
Affiliation(s)
- T Voets
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
36
|
Katagiri T, Akiyama S, Namiki M, Komaki M, Yamaguchi A, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res 1997; 230:342-51. [PMID: 9024793 DOI: 10.1006/excr.1996.3432] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic protein (BMP) is a family of cytokines that induce ectopic bone formation when implanted into muscular tissues. We reported that BMP-2 inhibits the terminal differentiation of C2C12 myoblasts and converts them into osteoblast lineage cells (Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A., and Suda, T. (1994) J. Cell Biol. 127, 1755-1766). In the present study, we examined the molecular mechanism of the inhibitory effect of BMP-2 on terminal differentiation of myogenic cells. When either MyoD or myogenin cDNA was introduced into C3H10T1/2 (10T1/2) cells with a muscle-specific CAT reporter containing four copies of the right E-box of muscle creatine kinase (MCK) enhancer, the CAT activity was dose-dependently suppressed by BMP-2. Furthermore, BMP-2 inhibited the terminal differentiation of these subclonal 10T1/2 cells that stably expressed MyoD or myogenin into mature myotubes that expressed myosin heavy chain and troponin T. The differentiation of a subclone of the MyoD-transfected NIH3T3 cells into mature muscle cells was also inhibited by BMP-2. BMP-2 induced alkaline phosphatase activity in 10T1/2-derived, but not in NIH3T3-derived MyoD-transfected cells. These cells constitutively expressed exogenous MyoD and myogenin, which were localized exclusively in the nuclei irrespective of the presence and the absence of BMP-2. However, these cells failed to express the mRNAs of endogenous myogenic factors and MCK when cultured with BMP-2. In the electrophoresis mobility shift assay using nuclear extracts of the myogenic cells, MyoD and myogenin bound to the right E-box in the enhancer region of the MCK gene even in the presence of BMP-2. These results suggest that BMP-2 inhibits the terminal differentiation of myogenic cells by suppressing the transcriptional activity of the myogenic factors.
Collapse
Affiliation(s)
- T Katagiri
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rohrer DK, Blau HM. Defective myogenesis in NFB-s mutant associated with a saturable suppression of MYF5 activity. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:349-61. [PMID: 9039845 DOI: 10.1007/bf02369892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myogenic cell lines have proved to be useful tools for investigating the molecular mechanisms that control cellular differentiation. NFB-s is a mutant myogenic cell line which fails to differentiate in vitro, and can repress differentiation in normal myogenic cells when fused to form heterokaryons. The NFB-s cell line was used here to study the molecular mechanisms underlying such myogenic repression. Using muscle-specific reporter genes, we show that NFB-s cells fail to activate fully the muscle differentiation program at a transcriptional level, although muscle-specific transcription can be enhanced by regulators of differentiation such as pertussis toxin. Paradoxically we find that the myogenic regulator myf5 is expressed at constitutively high levels in NFB-s cells, and retains DNA binding activity. Expression plasmids encoding NFB-derived myf5 cDNA can rescue the myogenic phenotype in NFB-s cells, demonstrating that a threshold level of positive regulators must be reached before the myogenic program is activated. Thus, the dominant negative phenotype does not appear to result from defective myf5, but is due to a dosage-dependent saturable mechanism that interferes with myf5 function. These studies demonstrate that the stoichiometric ratio of positive and negative regulators is critical for determining the myogenic differentiation state.
Collapse
Affiliation(s)
- D K Rohrer
- Department of Molecular Pharmacology, Stanford University Medical Center, California 94305-5332, USA
| | | |
Collapse
|
38
|
Abstract
Skeletal muscle cells are a useful model for studying cell differentiation. Muscle cell differentiation is marked by myoblast proliferation followed by progressive fusion to form large multinucleated myotubes that synthesize muscle-specific proteins and contract spontaneously. The molecular analysis of myogenesis has advanced with the identification of several myogenic regulatory factors, including myod1, myd, and myogenin. These factors regulate each other's expression and that of muscle-specific proteins such as the acetylcholine receptor and acetylcholinesterase (AChE). In order to investigate the role of extracellular matrix (ECM) in myogenesis we have cultured myoblasts (C2C12) in the presence or absence of an exogenous ECM (Matrigel). In addition, we have induced differentiation of myoblasts in the presence or absence of Matrigel and/or chlorate, a specific inhibitor of proteoglycan sulfation. Our results indicated that the formation of fused myotubes and expression of AChE was stimulated by Matrigel. Treatment of myoblasts induced to differentiate with chlorate resulted in an inhibition of cell fusion and AChE activity. Chlorate treatment was also found to inhibit the deposition and assembly of ECM components such fibronectin and laminin. The expression of myogenin mRNA was observed when myoblasts were induced to differentiate, but was unaffected by the presence of Matrigel or by culture of the cells in the presence of chlorate. These results suggest that the expression of myogenin is independent of the presence of ECM, but that the presence of ECM is essential for the formation of myotubes and the expression of later muscle-specific gene products.
Collapse
Affiliation(s)
- F Melo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
39
|
Melo F, Carey DJ, Brandan E. Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(199608)62:2<227::aid-jcb11>3.0.co;2-i] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Lim RW, Zhu CY, Stringer B. Differential regulation of primary response gene expression in skeletal muscle cells through multiple signal transduction pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:91-100. [PMID: 7718627 DOI: 10.1016/0167-4889(94)00226-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One of the earliest cellular responses to growth factors is the rapid induction of primary response genes. One group of such genes was originally isolated as tetradecanoyl phorbol acetate (TPA) inducible sequences (TIS genes) from mouse 3T3 cells. Proteins encoded by the TIS genes include two transcription factors: TIS8 (also known as egr1/NGFIA/zif268) and TIS1 (also known as NGFIB/nur77/N10). We have examined the inducibility of these two genes in a skeletal muscle cell line in response to agents that have been reported to block muscle differentiation. We report here that basic fibroblast growth factor (bFGF) induced the expression of both TIS1 and TIS8 in mouse C2C12cells. Both genes were also inducible by TPA while forskolin which activates the cAMP-dependent pathway induced TIS1 but not TIS8. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment repressed the bFGF induction of TIS1 but had little effect on the bFGF-stimulated expression of TIS8. Moreover, while both TPA and bFGF stimulated the hyperphosphorylation of c-RAF and the activity of MAP kinase, TPA pretreatment failed to block RAF phosphorylation or the stimulation of MAP kinase activity by bFGF. Induction of the two TIS genes in skeletal myoblasts therefore appeared to be dependent to different extents on the activation of protein kinase A (PKA), PKC and MAP kinase.
Collapse
Affiliation(s)
- R W Lim
- Department of Pharmacology, University of Missouri-Columbia 65212, USA
| | | | | |
Collapse
|
41
|
Rao SS, Kohtz DS. Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor beta. A role for cyclin D1 in control of myoblast differentiation. J Biol Chem 1995; 270:4093-100. [PMID: 7876159 DOI: 10.1074/jbc.270.8.4093] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Differentiation of skeletal myoblasts in culture is negatively regulated by certain growth factors, including basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF beta). We investigated the effects of bFGF and TGF beta on D-type cyclin expression in skeletal myoblasts. When myoblasts were induced to differentiate in low mitogen medium, expression of cyclin D1 rapidly fell below detectable levels. In contrast, expression of cyclin D3 increased to levels exceeding those present in myoblasts. Expression of cyclin D1 was induced in myoblasts by bFGF and TGF beta (albeit with different kinetics for each factor), while induction of cyclin D3 expression was inhibited by these growth factors. Although these results are consistent with other reports showing induction of cyclin D1 by growth factors, induction of cyclin D3 expression during terminal differentiation of myoblasts and inhibition of this induction by growth factors is surprising. These results suggest that cyclin D3, previously thought to be only a positive regulator of cell cycle progression, may also function in the cellular context of terminal differentiated muscle. Stable expression of cyclin D1 from an ectopic viral promoter inhibits C2C12 myoblast differentiation, but only in those clones where the level of cyclin D1 expression does not significantly exceed that present in control myoblasts stimulated by bFGF. Together, these result suggest that cyclin D1 expression functions in the inhibition of myoblast differentiation by certain growth factors.
Collapse
Affiliation(s)
- S S Rao
- Department of Pathology, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
42
|
Zemtsov A, Cameron GS, Bradley CA, Montalvo-Lugo V, Mattioli F. Identification and activity of cytosol creatine phosphokinase enzymes in normal and diseased skin. Am J Med Sci 1994; 308:365-9. [PMID: 7985727 DOI: 10.1097/00000441-199412000-00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phosphocreatine molecules (PCR) in skin regenerate adenosine triphosphate and help cutaneous tissue survive ischemia associated with skin flaps, grafts, and hair transplantation procedures. In addition, PCR concentration in psoriasis is elevated many times above normal, indicating either overproduction of PCR by mitochondrial creatine phosphokinase (CPK) enzymes or a defect in cytosol CPK enzymatic activity. Skin CPK isoenzymes, before this study, have not been identified. Herein, for the first time, cytosol CPK enzymatic activity was measured in normal and psoriatic, involved and uninvolved skin, skin tumors, and mouse skin and keratinocyte cell cultures. Creatine phosphokinase MM is the major isoenzyme in normal, uninvolved psoriatic and mouse skin. Total CPK enzymatic activity was increased in psoriasis and skin tumors. These data clearly indicate that increased PCR concentration in a psoriatic skin is not a result of decreased cytosol CPK enzymatic activity.
Collapse
Affiliation(s)
- A Zemtsov
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | | | | | | | | |
Collapse
|
43
|
Morgan L, Jessen KR, Mirsky R. Negative regulation of the P0 gene in Schwann cells: suppression of P0 mRNA and protein induction in cultured Schwann cells by FGF2 and TGF beta 1, TGF beta 2 and TGF beta 3. Development 1994; 120:1399-409. [PMID: 7519543 DOI: 10.1242/dev.120.6.1399] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the development of peripheral nerves, Schwann cells are induced to form myelin sheaths round the larger axons. This process involves a complex series of events and the nature of the molecular signals that regulate and control myelin formation in Schwann cells is not well understood. Our previous experiments on rat Schwann cells in vitro, using serum-free defined medium, showed that a myelin-related protein phenotype could be induced in early postnatal Schwann cells in culture by elevation of intracellular cyclic AMP levels in the absence of growth factors, conditions under which the cells are not dividing. Cells with this phenotype expressed the major myelin glycoprotein P0 and expression of p75 NGF receptor, N-CAM, GFAP and A5E3 proteins was down-regulated. These changes are all characteristics associated with myelination in vivo. In contrast, when cyclic AMP levels were elevated in the presence of serum, suppression of cyclic AMP-induced differentiation resulted and DNA synthesis was induced. In this paper, we have used this model system and extended our analysis to explore the relationship between defined growth factors and suppression of myelination. We have used pure recombinant growth factors normally present in peripheral nerves, i.e. FGF1 and FGF2 and TGF beta 1, TGF beta 2, and TGF beta 3 and shown that, like serum, they can strongly suppress the forskolin-mediated induction of the P0 gene, both at the level of mRNA and protein synthesis. For both growth factor families, the suppression of P0 gene expression is dose-dependent and takes place in serum-starved cells that are mitotically quiescent. In the case of FGF2, however, even more complete suppression is obtained when the cells are simultaneously allowed to enter the cell cycle by inclusion of high concentrations of insulin in the culture medium. The present results raise the possibility that, in addition to the positive axonal signals that are usually envisaged to control the onset of myelination, growth factors present in the nerve may exert negative regulatory signals during development and thus help control the time of onset and the rate of myelination in peripheral nerves.
Collapse
Affiliation(s)
- L Morgan
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | |
Collapse
|
44
|
Abstract
Mitochondrial Creatine Kinase (MtCK) is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine, and exists in mammals as two isoenzymes encoded by separate genes. In rats and humans, sarcomere-specific MtCK (sMtCK) is expressed only in skeletal and heart muscle, and has 87% nucleotide identity across the 1257 bp coding region. The ubiquitous isoenzyme of MtCK (uMtCK) is expressed in many tissues with highest levels in brain, gut, and kidney, and has 92% nucleotide identity between the 1254 bp coding regions of rat and human. Both genes are highly regulated developmentally in a tissue-specific manner. There is virtually no expression of sMtCK mRNA prior to birth. Unlike cytosolic muscle CK (MCK) and brain CK (BCK), there is no developmental isoenzyme switch between the MtCKs. Cell culture models representing the tissue-specific expression of either sMtCK or uMtCK are available, but there are no adequate developmental models to examine their regulation. Several animal models are available to examine the coordinate regulation of the CK gene family and include 1) Cardiac Stress by coarctation (sMtCK, BCK, and MCK), 2) Uterus and placenta during pregnancy (uMtCK and BCK), and 3) Diabetes and mitochondrial myopathy (sMtCK, BCK, and MCK). We report the details of these findings, and discuss the coordinate regulation of the genes necessary for high-energy transduction.
Collapse
Affiliation(s)
- R M Payne
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
45
|
Vandromme M, Carnac G, Gauthier-Rouvière C, Fesquet D, Lamb N, Fernandez A. Nuclear import of the myogenic factor MyoD requires cAMP-dependent protein kinase activity but not the direct phosphorylation of MyoD. J Cell Sci 1994; 107 ( Pt 2):613-20. [PMID: 8207083 DOI: 10.1242/jcs.107.2.613] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MyoD is a nuclear phosphoprotein that belongs to the family of myogenic regulatory factors and acts in the transcriptional activation of muscle-specific genes. We have investigated the role of cAMP-dependent protein kinase (A-kinase) in modulating the nuclear locale of MyoD. Purified MyoD protein microinjected into the cytoplasm of rat embryo fibroblasts is rapidly translocated into the nucleus. Inhibition of A-kinase activity through injection of the specific inhibitory peptide PKI prevents this nuclear localisation. This inhibition of nuclear location is specifically reversed by injection of purified A-kinase catalytic subunit, showing the requirement for A-kinase in the nuclear import of MyoD. Site-directed mutagenesis of all the putative sites for A-kinase-dependent phosphorylation on MyoD, substituting serine or threonine residues for the non-phosphorylatable amino acid alanine, had no effect on nuclear import of mutated MyoD. These data exclude the possibility that the effect of A-kinase on the nuclear translocation of MyoD is mediated by direct phosphorylation of MyoD and imply that A-kinase operates through phosphorylation of components involved in the nuclear transport of MyoD.
Collapse
Affiliation(s)
- M Vandromme
- Cell Biology Unit, CRBM, CNRS-INSERM, Montpellier, France
| | | | | | | | | | | |
Collapse
|
46
|
Mason IJ, Fuller-Pace F, Smith R, Dickson C. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech Dev 1994; 45:15-30. [PMID: 8186145 DOI: 10.1016/0925-4773(94)90050-7] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have isolated cDNA and genomic clones for the murine FGF-7 gene and examined its expression throughout development. Transcripts were transiently detected in the developing myocardium, differentially regulated between the atrium and ventricle. The gene was also expressed in the myotomes of the somites, coincident with FGF-4 and FGF-5 transcripts, and was detected transiently in cleaved muscles. Regional expression was detected in the ventricular zone of the developing forebrain at 14.5 d.p.c. Later in development, FGF-7 RNA was detected in mesenchymal tissues suggesting a role in epithelial-mesenchymal interactions and in the dermis consistent with its proposed role as a keratinocyte mitogen. Our results suggest that FGF-7 is likely to have diverse roles during development.
Collapse
Affiliation(s)
- I J Mason
- Division of Anatomy and Cell Biology, U.M.D.S. Guy's Hospital, London, UK
| | | | | | | |
Collapse
|
47
|
Christenson MA, Means AR. Coordinate regulation of mRNAs from multiple calmodulin genes during myoblast differentiation in vitro. J Cell Physiol 1993; 154:343-9. [PMID: 8425915 DOI: 10.1002/jcp.1041540218] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multiple genes encoding identical calmodulin molecules have been found in all mammalian species so far examined, but little is known regarding the factors involved in regulating the expression of this gene family. We have investigated the possibility of differential regulation under conditions of cell cycle withdrawal and differentiation in the nonfusing BC3H1 myoblast. Transcripts from the three genes are expressed in myoblasts and myocytes and each of the mRNA species decreases during BC3H1 differentiation. Calmodulin protein levels also decrease, although with distinct kinetics with respect to the mRNAs. Previous studies indicated that a decrease in transcription is involved (Epstein et al., Molecular Endocrinology 3:193-202, 1989). In this study, an increase in stability for each of the mRNA species is also shown to contribute to overall mRNA levels. The calmodulin mRNAs are also found to decrease under conditions of cell cycle withdrawal when differentiation is blocked. This demonstrates that the expression of mRNA from all three genes is directly coupled with the proliferation state but only indirectly with the differentiation state. Consistent with this, calmodulin expression decreases in serum deprived fibroblasts as they exit the cell cycle.
Collapse
Affiliation(s)
- M A Christenson
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
48
|
Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 1992; 71:1181-94. [PMID: 1335366 DOI: 10.1016/s0092-8674(05)80066-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myogenin belongs to a family of myogenic helix-loop-helix (HLH) proteins that activate muscle transcription through binding to a conserved DNA sequence associated with numerous muscle-specific genes. Fibroblast growth factor (FGF) inhibits myogenesis by inactivating myogenic HLH proteins. We show that activated protein kinase C (PKC) can substitute for FGF and inhibit transcriptional activity of myogenic HLH proteins. In transfected cells, FGF induces phosphorylation of a conserved site in the DNA-binding domain of myogenin. This site is phosphorylated by PKC in vivo and in vitro and mediates repression of the myogenic program through a loss in DNA binding activity. A myogenin mutant lacking the PKC phosphorylation site is not repressed by FGF, confirming this site as a molecular target for FGF-dependent repression of muscle transcription. These results establish a direct link between the signal transduction pathways that inhibit myogenesis and the transcription factors directly activating muscle-specific genes.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
In muscle cells, as in a variety of cell types, proliferation and differentiation are mutually exclusive events controlled by a balance of opposing cellular signals. Members of the MyoD family of muscle-specific helix-loop-helix proteins which, in collaboration with ubiquitous factors, activate muscle differentiation and inhibit cell proliferation function at the nexus of the cellular circuits that control proliferation and differentiation of muscle cells. The activities of these myogenic regulators are negatively regulated by peptide growth factors and activated oncogenes whose products transmit growth signals from the membrane to the nucleus. Recent studies have revealed multiple mechanisms through which intracellular growth factor signals may interfere with the functions of the myogenic regulators. When expressed at high levels, members of the MyoD family can override mitogenic signals and can cause growth arrest independent of their effects on differentiation. The ability of these myogenic regulators to inhibit proliferation of normal as well as transformed cells from multiple lineages suggests that they interact with conserved components of the cellular machinery involved in cell cycle progression and that similar types of regulatory factors participate in differentiation and cell cycle control in diverse cell types.
Collapse
Affiliation(s)
- E N Olson
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| |
Collapse
|
50
|
Chen G, Quinn LS. Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract. J Cell Physiol 1992; 153:563-74. [PMID: 1447318 DOI: 10.1002/jcp.1041530318] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have utilized a model system to investigate myotrophic factors released by normal adult mouse muscles following a crush injury. We found that saline extracts from gently crushed mouse muscles (CME) contain potent mitogenic activities which act on primary newborn mouse myoblast cultures, as well as on mouse C2 cells, a mouse myoblast cell line. We compared the activity of CME on mouse myoblasts with that of basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I), two growth factors known to be mitogenic for primary myoblasts (Allen, Dodson, and Lutein: Exp. Cell. Res., 152:154-160, 1984; DiMario and Strohman: Differentiation, 39:42-49, 1988; Allen and Boxhorn: J. Cell. Physiol., 138:311-315, 1989; Dodson, Allen, and Hossner: Endocrinology, 117:2357-2363, 1985; Florini and Magri: Am. J. Physiol., 256:C701-C711, 1989). We found that CME could act in an additive fashion to saturating doses of bFGF to increase proliferation in myoblast cultures. Additionally, CME acted additively to the combination of saturating amounts of bFGF and IGF-I on both C2 and primary myoblast cultures. We also examined additivity of CME with the combination of saturating doses of bFGF, IGF-I, transferrin (Tf), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), adrenocorticotrophin (ACTH), and macrophage colony-stimulating factor (M-CSF). Our data indicate that CME contains Tf, as well as one or more uncharacterized mitogens for myoblasts which are distinct from Tf, the IGFs, bFGF, EGF, PDGF, M-CSF, and ACTH. These uncharacterized mitogens may act independently of known growth factors to stimulate myoblast proliferation, or may act through modulation of known growth factor activities.
Collapse
Affiliation(s)
- G Chen
- Department of Biological Structure, University of Washington, Seattle 98195
| | | |
Collapse
|