1
|
In vivo evaluation of GG2-GG1/A2 element activity in the insulin promoter region using the CRISPR-Cas9 system. Sci Rep 2021; 11:20290. [PMID: 34645928 PMCID: PMC8514523 DOI: 10.1038/s41598-021-99808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
The insulin promoter is regulated by ubiquitous as well as pancreatic β-cell-specific transcription factors. In the insulin promoter, GG2-GG1/A2-C1 (bases - 149 to - 116 in the human insulin promoter) play important roles in regulating β-cell-specific expression of the insulin gene. However, these events were identified through in vitro studies, and we are unaware of comparable in vivo studies. In this study, we evaluated the activity of GG2-GG1/A2 elements in the insulin promoter region in vivo. We generated homozygous mice with mutations in the GG2-GG1/A2 elements in each of the Ins1 and Ins2 promoters by CRISPR-Cas9 technology. The mice with homozygous mutations in the GG2-GG1/A2 elements in both Ins1 and Ins2 were diabetic. These data suggest that the GG2-GG1/A2 element in mice is important for Ins transcription in vivo.
Collapse
|
2
|
Kobiita A, Godbersen S, Araldi E, Ghoshdastider U, Schmid MW, Spinas G, Moch H, Stoffel M. The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. Cell Rep 2021; 32:107846. [PMID: 32640216 DOI: 10.1016/j.celrep.2020.107846] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of pancreatic β-cells to respond to increased demands for insulin during metabolic stress critically depends on proper ribosome homeostasis and function. Excessive and long-lasting stimulation of insulin secretion can elicit endoplasmic reticulum (ER) stress, unfolded protein response, and β-cell apoptosis. Here we show that the diabetes susceptibility gene JAZF1 is a key transcriptional regulator of ribosome biogenesis, global protein, and insulin translation. JAZF1 is excluded from the nucleus, and its expression levels are reduced upon metabolic stress and in diabetes. Genetic deletion of Jazf1 results in global impairment of protein synthesis that is mediated by defects in ribosomal protein synthesis, ribosomal RNA processing, and aminoacyl-synthetase expression, thereby inducing ER stress and increasing β-cell susceptibility to apoptosis. Importantly, JAZF1 function and its pleiotropic actions are impaired in islets of murine T2D and in human islets exposed to metabolic stress. Our study identifies JAZF1 as a central mediator of metabolic stress in β-cells.
Collapse
Affiliation(s)
- Ahmad Kobiita
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Elisa Araldi
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Umesh Ghoshdastider
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Giatgen Spinas
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitäts-Spital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Brain signalling systems: A target for treating type I diabetes mellitus. Brain Res Bull 2019; 152:191-201. [PMID: 31325597 DOI: 10.1016/j.brainresbull.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
From early to later stages of Type I Diabetes Mellitus (TIDM), signalling molecules including brain indolamines and protein kinases are altered significantly, and that has been implicated in the Metabolic Disorders (MD) as well as impairment of retinal, renal, neuronal and cardiovascular systems. Considerable attention has been focused to the effects of diabetes on these signalling systems. However, the exact pathophysiological mechanisms of these signals are not completely understood in TIDM, but it is likely that hyperglycemia, acidosis, and insulin resistance play significant roles. Insulin maintains normal glycemic levels and it acts by binding to its receptor, so that it activates the receptor's tyrosine kinase activity, resulting in phosphorylation of several substrates. Those substrates provide binding/interaction sites for signalling molecules, including serine/threonine kinases and indolamines. For more than two decades, our research has been focused on the mechanisms of protein kinases, CaM Kinase and Serotonin transporter mediated alterations of indolamines in TIDM. In this review, we have also discussed how discrete areas of brain respond to insulin or some of the pharmacological agents that triggers or restores these signalling molecules, and it may be useful for the treatment of specific region wise changes/disorders of diabetic brain.
Collapse
|
4
|
Kuang J, Hou X, Zhang J, Chen Y, Su Z. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene. FEBS Lett 2014; 588:1071-9. [PMID: 24583012 DOI: 10.1016/j.febslet.2014.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/27/2014] [Accepted: 02/14/2014] [Indexed: 02/05/2023]
Abstract
Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease.
Collapse
Affiliation(s)
- Jiangying Kuang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Ohta Y, Kosaka Y, Kishimoto N, Wang J, Smith SB, Honig G, Kim H, Gasa RM, Neubauer N, Liou A, Tecott LH, Deneris ES, German MS. Convergence of the insulin and serotonin programs in the pancreatic β-cell. Diabetes 2011; 60:3208-16. [PMID: 22013016 PMCID: PMC3219954 DOI: 10.2337/db10-1192] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.
Collapse
Affiliation(s)
- Yasuharu Ohta
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Yasuhiro Kosaka
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Nina Kishimoto
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Juehu Wang
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Stuart B. Smith
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Gerard Honig
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
- Center for Neurobiology and Psychiatry, University of California, San Francisco, San Francisco, California
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California
| | - Hail Kim
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Rosa M. Gasa
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Nicole Neubauer
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Angela Liou
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
- Center for Neurobiology and Psychiatry, University of California, San Francisco, San Francisco, California
| | - Laurence H. Tecott
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
- Center for Neurobiology and Psychiatry, University of California, San Francisco, San Francisco, California
| | - Evan S. Deneris
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michael S. German
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Corresponding author: Michael S. German,
| |
Collapse
|
6
|
Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 2011; 145:224-41. [PMID: 21496643 DOI: 10.1016/j.cell.2011.03.027] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/18/2010] [Accepted: 03/15/2011] [Indexed: 01/25/2023]
Abstract
The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex "negative" GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect "tethered" interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cis-acting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion.
Collapse
Affiliation(s)
- Milan Surjit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U964, Université de Strasbourg, Collège de France, Illkirch, 67404, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Meur G, Qian Q, da Silva Xavier G, Pullen TJ, Tsuboi T, McKinnon C, Fletcher L, Tavaré JM, Hughes S, Johnson P, Rutter GA. Nucleo-cytosolic shuttling of FoxO1 directly regulates mouse Ins2 but not Ins1 gene expression in pancreatic beta cells (MIN6). J Biol Chem 2011; 286:13647-56. [PMID: 21335550 PMCID: PMC3075709 DOI: 10.1074/jbc.m110.204248] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/14/2011] [Indexed: 01/26/2023] Open
Abstract
The Forkhead box transcription factor FoxO1 regulates metabolic gene expression in mammals. FoxO1 activity is tightly controlled by phosphatidylinositol 3-kinase (PI3K) signaling, resulting in its phosphorylation and nuclear exclusion. We sought here to determine the mechanisms involved in glucose and insulin-stimulated nuclear shuttling of FoxO1 in pancreatic β cells and its consequences for preproinsulin (Ins1, Ins2) gene expression. Nuclear-localized endogenous FoxO1 translocated to the cytosol in response to elevated glucose (3 versus 16.7 mM) in human islet β cells. Real-time confocal imaging of nucleo-cytosolic shuttling of a FoxO1-EGFP chimera in primary mouse and clonal MIN6 β cells revealed a time-dependent glucose-responsive nuclear export, also mimicked by exogenous insulin, and blocked by suppressing insulin secretion. Constitutively active PI3K or protein kinase B/Akt exerted similar effects, while inhibitors of PI3K, but not of glycogen synthase kinase-3 or p70 S6 kinase, blocked nuclear export. FoxO1 overexpression reversed the activation by glucose of pancreatic duodenum homeobox-1 (Pdx1) transcription. Silencing of FoxO1 significantly elevated the expression of mouse Ins2, but not Ins1, mRNA at 3 mM glucose. Putative FoxO1 binding sites were identified in the distal promoter of rodent Ins2 genes and direct binding of FoxO1 to the Ins2 promoter was demonstrated by chromatin immunoprecipitation. A 915-bp glucose-responsive Ins2 promoter was inhibited by constitutively active FoxO1, an effect unaltered by simultaneous overexpression of PDX1. We conclude that nuclear import of FoxO1 contributes to the suppression of Pdx1 and Ins2 gene expression at low glucose, the latter via a previously unsuspected and direct physical interaction with the Ins2 promoter.
Collapse
Affiliation(s)
- Gargi Meur
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Qingwen Qian
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gabriela da Silva Xavier
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Timothy J. Pullen
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Takashi Tsuboi
- the Department of Life Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Caroline McKinnon
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Laura Fletcher
- the Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jeremy M. Tavaré
- the Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stephen Hughes
- the Nuffield Department of Surgery, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom, and
| | - Paul Johnson
- the Nuffield Department of Surgery, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom, and
| | - Guy A. Rutter
- From the Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Abstract
The biological responses of the transforming growth factor-β (TGF-β) superfamily, which includes Activins and Nodal, are induced by activation of a receptor complex and Smads. A type I receptor, which is a component of the complex, is known as an activin receptor-like kinase (ALK); currently seven ALKs (ALK1-ALK7) have been identified in humans. Activins signaling, which is mediated by ALK4 and 7 together with ActRIIA and IIB, plays a critical role in glucose-stimulated insulin secretion, development/neogenesis, and glucose homeostatic control of pancreatic endocrine cells; the insulin gene is regulated by these signaling pathways via ALK7, which is a receptor for Activins AB and B and Nodal. This review discusses signal transduction of ALKs in pancreatic endocrine cells and the role of ALKs in insulin gene regulation.
Collapse
Affiliation(s)
- Rie Watanabe
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Briant JA, Nielsen DA, Proudnikov D, Londono D, Ho A, Ott J, Kreek MJ. Evidence for association of two variants of the nociceptin/orphanin FQ receptor gene OPRL1 with vulnerability to develop opiate addiction in Caucasians. Psychiatr Genet 2010; 20:65-72. [PMID: 20032820 PMCID: PMC3832186 DOI: 10.1097/ypg.0b013e32833511f6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The OPRL1 gene encodes the nociceptin/orphanin FQ receptor, which plays a role in regulating tolerance and behavioral responses to morphine. However, there is limited information on whether variants of OPRL1 are associated with vulnerability to develop opiate addiction. In this study, we examined five variants of OPRL1 and their role in determining vulnerability to develop opiate addiction. METHODS We recruited 447 individuals: 271 former severe heroin addicts and 176 healthy controls. Using a 5'-fluorogenic exonuclease assay, we genotyped individuals at five variants in OPRL1. It was then determined whether there was a significant association of allele, genotype, or haplotype frequency with vulnerability to develop opiate addiction. RESULTS When the cohort was stratified by ethnicity, we found that, in Caucasians but not in African-Americans or Hispanics, the allele frequency of rs6090041 and rs6090043 were significantly associated point-wise with opiate addiction (P=0.03 and 0.04, respectively). Of the haplotypes formed by these two variants, one haplotype was found to be associated with protection from developing opiate addiction in both African-Americans (point-wise P=0.04) and Caucasians (point-wise P=0.04), and another haplotype with vulnerability to develop opiate addiction in Caucasians only (P=0.020). CONCLUSION This study provides evidence for an association of two variants of the OPRL1 gene, rs6090041 and rs6090043, with vulnerability to develop opiate addiction, suggesting a role for nociceptin/orphanin FQ receptor in the development of opiate addiction.
Collapse
Affiliation(s)
- Judith A. Briant
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - David A. Nielsen
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, and Michael E. DeBakey V.A. Medical Center, Houston, TX
| | - Dmitri Proudnikov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Douglas Londono
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Ann Ho
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jurg Ott
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10065, USA
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
11
|
Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci U S A 2010; 107:3105-10. [PMID: 20133622 DOI: 10.1073/pnas.0910533107] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man.
Collapse
|
12
|
Ferguson LA, Docherty HM, MacKenzie AE, Docherty K. An engineered zinc finger protein reveals a role for the insulin VNTR in the regulation of the insulin and adjacent IGF2 genes. FEBS Lett 2009; 583:3181-6. [PMID: 19733567 DOI: 10.1016/j.febslet.2009.08.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/05/2009] [Accepted: 08/29/2009] [Indexed: 01/27/2023]
Abstract
An engineered zinc finger protein (eZFP) was isolated from a library based on its ability to activate expression of the endogenous insulin gene in HEK-293 cells. Using a panel of insulin promoter constructs, the eZFP was shown to act through the variable number of tandem repeat (VNTR) region located 365 base pairs upstream of the transcription start site. The eZFP also activated expression of the IGF2 gene that lies close to INS on chromosome 11p15. These results demonstrate that the INSVNTR controls expression of the insulin and IGF2 genes and provide a mechanistic explanation for previous studies that demonstrated an association between INSVNTR genotypes and placental levels of IGF2.
Collapse
Affiliation(s)
- Laura A Ferguson
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
13
|
Efficient, glucose responsive and islet-specific transgene expression by a modified rat insulin promoter. Gene Ther 2009; 16:1202-9. [PMID: 19727136 PMCID: PMC2762485 DOI: 10.1038/gt.2009.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was done to improve efficiency and islet specificity of the rat insulin promoter (RIP). Various RIP lengths were prepared and tested in vitro to drive luciferase reporter gene expression in INS1-cells, alpha-cells, acinar cells, ductal cells and fibroblasts. The CMV promoter was used as a positive control. In addition, the DsRed reporter gene was administered in vivo to rat pancreas by ultrasound-targeted microbubble destruction (UTMD). Confocal microscopy was used to detect the presence and distribution of DsRed within the pancreas after UTMD. A modified RIP3.1 promoter, which includes portions of the insulin gene after its transcription start site is fivefold more active in INS-1 cells than the full-length RIP promoter or the CMV promoter. RIP3.1 is regulated by glucose level and various islet transcription factors in vitro, and exhibits activity in alpha-cells, but not in exocrine cells. In vivo delivery of RIP3.1-DsRed resulted in expression of DsRed protein in beta-cells, and to a lesser extent in alpha-cells under normal glucose conditions. No DsRed signal was present in exocrine pancreas under RIP3.1. A modified RIP, RIP3.1, efficiently and specifically directs gene expression to endocrine pancreas.
Collapse
|
14
|
Won JC, Rhee BD, Ko KS. Glucose-responsive gene expression system for gene therapy. Adv Drug Deliv Rev 2009; 61:633-40. [PMID: 19394377 DOI: 10.1016/j.addr.2009.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/25/2009] [Indexed: 12/30/2022]
Abstract
Regulation of gene expression by glucose is an important mechanism for mammals in adapting to their nutritional environment. Glucose, the primary fuel for most cells, modulates gene expression that is crucial in the cellular adaptation to glycemic variation. Transcription of the genes for insulin and glycolytic and lipogenic enzymes is stimulated by glucose in pancreatic beta-cells and liver. Recent findings further support the key role of the carbohydrate-responsive element binding protein in the regulation of glycolytic and lipogenic genes by glucose and dietary carbohydrates. Herein, we review the transcriptional regulation of glucose-responsive genes, and recent advances in the gene therapy using glucose-responsive gene expression for diabetes.
Collapse
Affiliation(s)
- Jong Chul Won
- Department of Internal Medicine, Sanggye Paik Hospital, Mitochondrial Research Group, Inje University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
15
|
Yang Y, Chang BHJ, Samson SL, Li MV, Chan L. The Krüppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 2009; 37:2529-38. [PMID: 19264802 PMCID: PMC2677877 DOI: 10.1093/nar/gkp122] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glis3 is a member of the Krüppel-like family of transcription factors and is highly expressed in islet β cells. Mutations in GLIS3 cause the syndrome of neonatal diabetes and congenital hypothyroidism (NDH). Our aim was to examine the role of Glis3 in β cells, specifically with regard to regulation of insulin gene transcription. We demonstrate that insulin 2 (Ins2) mRNA expression in rat insulinoma 832/13 cells is markedly increased by wild-type Glis3 overexpression, but not by the NDH1 mutant. Furthermore, expression of both Ins1 and Ins2 mRNA is downregulated when Glis3 is knocked down by siRNA. Glis3 binds to the Ins2 promoter in the cell, detected by chromatin immunoprecipitation. Deletion analysis of Ins2 promoter identifies a sequence (5′-GTCCCCTGCTGTGAA-3′) from −255 to −241 as the Glis3 response element and binding occur specifically via the Glis3 zinc finger region as revealed by mobility shift assays. Moreover, Glis3 physically and functionally interacts with Pdx1, MafA and NeuroD1 to modulate Ins2 promoter activity. Glis3 also may indirectly affect insulin promoter activity through upregulation of MafA and downregulation of Nkx6-1. This study uncovers a role of Glis3 for regulation of insulin gene expression and expands our understanding of its role in the β cell.
Collapse
Affiliation(s)
- Yisheng Yang
- Diabetes and Endocrinology Research Center, Division of Diabetes and Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Jang WG, Kim EJ, Park KG, Park YB, Choi HS, Kim HJ, Kim YD, Kim KS, Lee KU, Lee IK. Glucocorticoid receptor mediated repression of human insulin gene expression is regulated by PGC-1α. Biochem Biophys Res Commun 2007; 352:716-21. [PMID: 17150186 DOI: 10.1016/j.bbrc.2006.11.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022]
Abstract
Transcriptional regulation of the insulin gene plays a critical role in maintenance of pancreatic beta cell function in response to various stimuli. Here, we used INS-1 cells to test the hypothesis that PGC-1alpha regulates human insulin gene transcription by modulating glucocorticoid (GR) binding to the insulin gene promoter. Analysis of the human insulin promoter region revealed that the suppressive region regulated by GR and PGC-1alpha is localized from -362 to -257 bp. To locate the GR binding site in the human insulin promoter region, EMSAs were performed with candidate GR binding sequences and confirmed that a palindromic region (Palin, -284 to -274 bp) specifically interacts with GR. We also found that the Palin-binding activity of GR is increased in the presence of PGC-1alpha. These findings suggest that PGC-1alpha elevates the binding of GR to Palin and thereby enhances the GR-mediated inhibition of human insulin transcription.
Collapse
Affiliation(s)
- Won Gu Jang
- Department of Genetic Engineering, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
DNA sequences that regulate expression of the insulin gene are located within a region spanning approximately 400 bp that flank the transcription start site. This region, the insulin promoter, contains a number of cis-acting elements that bind transcription factors, some of which are expressed only in the beta-cell and a few other endocrine or neural cell types, while others have a widespread tissue distribution. The sequencing of the genome of a number of species has allowed us to examine the manner in which the insulin promoter has evolved over a 450 million-year period. The major findings are that the A-box sites that bind PDX-1 are among the most highly conserved regulatory sequences, and that the conservation of the C1, E1, and CRE sequences emphasize the importance of MafA, E47/beta2, and cAMP-associated regulation. The review also reveals that of all the insulin gene promoters studied, the rodent insulin promoters are considerably dissimilar to the human, leading to the conclusion that extreme care should be taken when extrapolating rodent-based data on the insulin gene to humans.
Collapse
Affiliation(s)
- Colin W Hay
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | | |
Collapse
|
18
|
McKinnon CM, Ravier MA, Rutter GA. FoxO1 is required for the regulation of preproglucagon gene expression by insulin in pancreatic alphaTC1-9 cells. J Biol Chem 2006; 281:39358-69. [PMID: 17062568 DOI: 10.1074/jbc.m605022200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forkhead/winged helix box gene, group O-1 (FoxO1) is a member of a family of nuclear transcription factors regulated by insulin-dependent phosphorylation and implicated in the development of the endocrine pancreas. We show here firstly that FoxO1 protein is expressed in both primary mouse islet alpha and beta cells. Examined in clonal alphaTC1-9 cells, insulin caused endogenous FoxO1 to translocate from the nucleus to the cytoplasm. Demonstrating the importance of nuclear exclusion of FoxO1 for the inhibition of preproglucagon gene expression, FoxO1 silencing by RNA interference reduced preproglucagon mRNA levels by >40% in the absence of insulin and abolished the decrease in mRNA levels elicited by the hormone. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed direct binding of FoxO1 to a forkhead consensus binding site, termed GL3, in the preproglucagon gene promoter region, localized -1798 bp upstream of the transcriptional start site. Deletion or mutation of this site diminished FoxO1 binding and eliminated transcriptional regulation by glucose or insulin. FoxO1 silencing also abolished the acute regulation by insulin, but not glucose, of glucagon secretion, demonstrating the importance of FoxO1 expression in maintaining the alpha-cell phenotype.
Collapse
Affiliation(s)
- Caroline M McKinnon
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | |
Collapse
|
19
|
Fukazawa T, Matsuoka J, Naomoto Y, Nakai T, Durbin ML, Kojima I, Lakey JRT, Tanaka N. Development of a novel beta-cell specific promoter system for the identification of insulin-producing cells in in vitro cell cultures. Exp Cell Res 2006; 312:3404-12. [PMID: 16934249 DOI: 10.1016/j.yexcr.2006.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 07/07/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Recently, it has been reported that islet transplantation into patients with Type 1 diabetes may achieve insulin independence for a year or longer [Shapiro et al., Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, N Engl J Med. 343 (2000) 230-238]. However, the amount of donor islet tissue is limited, therefore, multiple approaches are being explored to generate insulin-producing cells in vitro. Some promising results have been obtained using mouse and human stem cells and progenitor cells [Soria et al., From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus, Diabetologia. 4 (2001) 407-415; Lechner et al., Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus, Am J Physiol Endocrinol Metab. 284 (2003) 259-266; Bonner-Weir et al., In vitro cultivation of human islets from expanded ductal tissue, Proc Natl Acad Sci U S A, 97 (2000) 7999-8004; Assady et al., Insulin production by human embryonic stem cells, 50 (2001) Diabetes 1691-1697]. However, the efficiency of obtaining populations with high numbers of differentiated cells has been poor. In order to improve the efficiency of producing and selecting insulin-producing cells from undifferentiated cells, we have designed a novel beta-cell specific and glucose responsive promoter system designated pGL3.hINS-363 3x. This artificial promoter system exhibits significant luciferase activity not only in insulin-producing MIN6 m9 cells but also in isolated human islets. The pGL3.hINS-363 3x construct shows no activity in non-insulin-producing cells in low glucose conditions (2 mM glucose) but demonstrates significant activity and beta-cell specificity in high glucose conditions (16 mM glucose). Furthermore, pGL3.hINS-363 3x shows significant promoter activity in differentiated AR42J cells that can produce insulin after activin A and betacellulin treatment. Here, we describe a novel beta-cell specific and glucose responsive artificial promoter system designed for analyzing and sorting beta-like insulin-producing cells that have differentiated from stem cells or other progenitor cells.
Collapse
Affiliation(s)
- Takuya Fukazawa
- First Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho 2-5-1, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nishimura W, Salameh T, Kondo T, Sharma A. Regulation of insulin gene expression by overlapping DNA-binding elements. Biochem J 2006; 392:181-9. [PMID: 16050808 PMCID: PMC1317677 DOI: 10.1042/bj20050970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor MafA/RIPE3b1 is an important regulator of insulin gene expression. MafA binds to the insulin enhancer element RIPE3b (C1-A2), now designated as insulin MARE (Maf response element). The insulin MARE element shares an overlapping DNA-binding region with another insulin enhancer element A2. A2.2, a beta-cell-specific activator, like the MARE-binding factor MafA, binds to the overlapping A2 element. Our previous results demonstrated that two nucleotides in the overlapping region are required for the binding of both factors. Surprisingly, instead of interfering with each other's binding activity, the MafA and the A2-binding factors co-operatively activated insulin gene expression. To understand the molecular mechanisms responsible for this functional co-operation, we have determined the nucleotides essential for the binding of the A2.2 factor. Using this information, we have constructed non-overlapping DNA-binding elements and their derivatives, and subsequently analysed the effect of these modifications on insulin gene expression. Our results demonstrate that the overlapping binding site is essential for maximal insulin gene expression. Furthermore, the overlapping organization is critical for MafA-mediated transcriptional activation, but has a minor effect on the activity of A2-binding factors. Interestingly, the binding affinities of both MafA and A2.2 to the overlapping or non-overlapping binding sites were not significantly different, implying that the overlapping binding organization may increase the activation potential of MafA by physical/functional interactions with A2-binding factors. Thus our results demonstrate a novel mechanism for the regulation of MafA activity, and in turn beta-cell function, by altering expression and/or binding of the A2.2 factor. Our results further suggest that the major downstream targets of MafA will in addition to the MARE element have a binding site for the A2.2 factor.
Collapse
Affiliation(s)
- Wataru Nishimura
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Therese Salameh
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Takuma Kondo
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Arun Sharma
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
- To whom correspondence should be addressed, at Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, U.S.A. (email )
| |
Collapse
|
21
|
Clay LA, Wang SY, Wolters WR, Peterson BC, Waldbieser GC. Molecular characterization of the insulin-like growth factor-I (IGF-I) gene in channel catfish (Ictalurus punctatus). ACTA ACUST UNITED AC 2005; 1731:139-48. [PMID: 16298440 DOI: 10.1016/j.bbaexp.2005.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 09/15/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
The insulin-like growth factor I (IGF-I) gene was characterized in channel catfish. Partial cDNA sequence, missing exon 1 and part of exon 2, was obtained in 5'- and 3'-RACE experiments. Direct sequencing of two bacterial artificial chromosome clones revealed gene structure and provided sequence from 640 bp upstream of the initiator methionine to 136 bp beyond the polyadenylation site. Genomic sequence contained a putative TATA box 506 bp upstream of the initiator methionine. The 477-bp reading frame within five exons encoded a 159-amino acid (aa) pre-propeptide highly similar to IGF-I in higher vertebrates. The sequence encoding the signal peptide was unique in catfish and contained 70% G+C content with the potential for a stable stem-loop structure. Full-length cDNA was only maintained in recombination-deficient (DH10B) strain E. coli. Levels of IGF-I mRNA were highest in liver, followed by brain and muscle, then heart and kidney (P<0.05). A CT/GA dinucleotide microsatellite in intron 1 was highly polymorphic in commercial channel catfish, and permitted placement of the IGF-I gene on the catfish genetic map. However, specific IGF-I alleles were not correlated with differences in growth rate from 100 to 130 days post-hatch in USDA103 line catfish.
Collapse
Affiliation(s)
- Latonya A Clay
- USDA, ARS, Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | | | | | | | | |
Collapse
|
22
|
Docherty H, Hay C, Ferguson L, Barrow J, Durward E, Docherty K. Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem J 2005; 389:813-20. [PMID: 15862113 PMCID: PMC1180732 DOI: 10.1042/bj20041891] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The insulin promoter binds a number of tissue-specific and ubiquitous transcription factors. Of these, the homoeodomain protein PDX-1 (pancreatic duodenal homeobox factor-1), the basic leucine zipper protein MafA and the basic helix-loop-helix heterodimer E47/BETA2 (beta-cell E box transactivator 2; referred to here as beta2) bind to important regulatory sites. Previous studies have shown that PDX-1 can interact synergistically with E47 and beta2 to activate the rat insulin 1 promoter. The aim of the present study was to determine the relative contribution of PDX-1, MafA and E47/beta2 in regulating the human insulin promoter, and whether these factors could interact synergistically in the context of the human promoter. Mutagenesis of the PDX-1, MafA and E47/beta2 binding sites reduced promoter activity by 60, 74 and 94% respectively, in INS-1 beta-cells. In the islet glucagonoma cell line alphaTC1.6, overexpression of PDX-1 and MafA separately increased promoter activity approx. 2.5-3-fold, and in combination approx. 6-fold, indicating that their overall effect was additive. Overexpression of E47 and beta2 had no effect. In HeLa cells, PDX-1 stimulated the basal promoter by approx. 40-fold, whereas MafA, E47 and beta2 each increased activity by less than 2-fold. There was no indication of any synergistic effects on the human insulin promoter. On the other hand, the rat insulin 1 promoter and a mutated version of the human insulin promoter, in which the relevant regulatory elements were separated by the same distances as in the rat insulin 1 promoter, did exhibit synergy. PDX-1 was shown further to activate the endogenous insulin 1 gene in alphaTC1.6 cells, whereas MafA activated the insulin 2 gene. In combination, PDX-1 and MafA activated both insulin genes. Chromatin immunoprecipitation assays confirmed that PDX-1 increased the association of acetylated histones H3 and H4 with the insulin 1 gene and MafA increased the association of acetylated histone H3 with the insulin 2 gene.
Collapse
Affiliation(s)
- Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - Colin W. Hay
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - Laura A. Ferguson
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - John Barrow
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - Elaine Durward
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Pirovano A, Lorenzi C, Serretti A, Ploia C, Landoni S, Catalano M, Smeraldi E. Two new rare variants in the circadian “clock” gene may influence sleep pattern. Genet Med 2005; 7:455-7. [PMID: 16024980 DOI: 10.1097/01.gim.0000170996.58079.6d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Weyrich P, Lammers R, Fritsche A, Machicao F, Häring HU, Stefan N. A novel functional polymorphism (-336A/G) in the promoter of the partitioning-defective protein-6alpha gene is associated with increased glucose tolerance and lower concentrations of serum non-esterified fatty acids. Diabetologia 2005; 48:669-74. [PMID: 15744531 DOI: 10.1007/s00125-005-1688-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/17/2004] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS Partitioning-defective protein-6alpha (Par6alpha) has recently been demonstrated to negatively regulate insulin signalling in murine myoblasts. To address whether Par6alpha plays a role in human physiology, the present study investigated whether mutations exist in the Par6alpha gene and whether these mutations, if present, are associated with pre-diabetic phenotypes in non-diabetic subjects. METHODS The complete gene (part of the promoter [2.1 kb], all exons/introns and the 3' untranslated region) encoding Par6alpha was analysed in 664 non-diabetic subjects. We investigated possible associations between single nucleotide polymorphisms and percentage of body fat, glucose tolerance (as determined by OGTT), serum NEFA concentrations and whole-body insulin sensitivity (estimated during the OGTT, and for a subgroup of 242 subjects determined by the euglycaemic-hyperinsulinaemic clamp). RESULTS A rare A/G polymorphism was found 336-bp upstream of the translational start codon (allele frequency 0.03). The data for subjects homozygous and heterozygous for -336G (R/G, n=43) were combined and compared with those for subjects homozygous for -336A (A/A, n=621). Subjects with the R/G genotype had lower fasting (4.84+/-0.09 mmol/l, means+/-SEM, p=0.049) and 2-h (5.50+/-0.02 mmol/l, p=0.050) plasma glucose concentrations than subjects with the A/A genotype (5.02+/-0.02 and 5.94+/-0.06 mmol/l, respectively). Subjects with the R/G genotype also had lower fasting (448+/-31 micromol/l, p=0.018) and 2-h serum NEFA concentrations (61+/-7 micromol/l, p=0.015) than subjects with the A/A genotype (529+/-9 and 75+/-2 micromol/l, respectively), adjusted for age, sex and percentage of body fat. There were no differences in adiposity or whole-body insulin sensitivity between the two genotype groups (all p>0.36). A luciferase reporter gene assay revealed that the -336G promoter variant had a significantly lower (-22.8%, p=0.006) transcriptional activity in transfected C2C12 murine myoblasts than the -336A promoter variant. CONCLUSIONS/INTERPRETATION A novel functional variant in the promoter of the Par6alpha gene is associated with reduced fasting glycaemia, increased glucose tolerance and reduced serum NEFA concentrations.
Collapse
Affiliation(s)
- P Weyrich
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Pathobiochemistry, University of Tübingen, Otfried-Müller-Str.10, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Inada A, Hamamoto Y, Tsuura Y, Miyazaki JI, Toyokuni S, Ihara Y, Nagai K, Yamada Y, Bonner-Weir S, Seino Y. Overexpression of inducible cyclic AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic beta cells. Mol Cell Biol 2004; 24:2831-41. [PMID: 15024072 PMCID: PMC371116 DOI: 10.1128/mcb.24.7.2831-2841.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional control mediated by the cyclic AMP-responsive element (CRE) represents an important mechanism of gene regulation. To test our hypothesis that increased inducible cyclic AMP early repressor (ICER) Igamma inhibits function of CRE-binding proteins and thus disrupts CRE-mediated transcription in pancreatic beta cells, we generated transgenic mice with beta-cell-directed expression of ICER Igamma, a powerful repressor that is greatly increased in diabetes. Three transgenic lines clearly show that increased ICER Igamma expression in beta cells results in early severe diabetes. From birth islets were severely disorganized with a significantly increased proportion of alpha cells throughout the islet. Diabetes results from the combined effects of impaired insulin expression and a decreased number of beta cells. The decrease in beta cells appears to result from impaired proliferation rather than from increased apoptosis after birth. Cyclin A gene expression is impaired by the strong inhibition of ICER; the suppression of cyclin A results in a substantially decreased proliferation of beta cells in the postnatal period. These results suggest that CRE and CRE-binding factors have an important role in pancreatic beta-cell physiology not only directly by regulation of gene trans-activation but also indirectly by regulation of beta-cell mass.
Collapse
Affiliation(s)
- Akari Inada
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Le Lay J, Matsuoka TA, Henderson E, Stein R. Identification of a novel PDX-1 binding site in the human insulin gene enhancer. J Biol Chem 2004; 279:22228-35. [PMID: 15028719 DOI: 10.1074/jbc.m312673200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Islet beta cell type-specific transcription of the insulin gene is regulated by a number of cis-acting elements found within the proximal 5'-flanking region. The control sequences conserved between mammalian insulin genes are acted upon by transcription factors, like PDX-1 and BETA-2, that are also involved in islet beta cell function and formation. In the current study, we investigated the contribution to human insulin expression of the GG2 motif found between nucleotides -145 and -140 relative to the transcription start site. Site-specific mutants were generated within GG2 that displayed a parallel increase (i.e. -144 base pair) or decrease (i.e. -141 base pair) in insulin enhancer-driven reporter and gel shift binding activity in beta cells consistent with human GG2 being under positive regulatory control. In contrast, the corresponding site in the rodent insulin gene, which only differs from the human at nucleotides -144 and -141, is negatively regulated by the Nkx2.2 transcription factor (Cissell, M. A., Zhao, L., Sussel, L., Henderson, E., and Stein, R. (2003) J. Biol. Chem. 278, 751-756). Human GG2 activator binding activity was present in nuclear extracts prepared from human islets and enriched in those from rodent beta cell lines. The human GG2 activator binding factor(s) was shown to be approximately 38-40 kDa and distinct from other size-matched islet-enriched transcription factors, including Nkx2.2, Pax-4, Cdx2/3, and Isl-1. Combined DNA chromatographic purification and mass spectrometry analysis revealed that the GG2 activator was PDX-1. These results demonstrate that the GG2 element, despite its divergence from the core homeodomain consensus binding motif, is a site for PDX-1 activation in the human insulin gene.
Collapse
Affiliation(s)
- John Le Lay
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37215, USA
| | | | | | | |
Collapse
|
27
|
Cissell MA, Zhao L, Sussel L, Henderson E, Stein R. Transcription factor occupancy of the insulin gene in vivo. Evidence for direct regulation by Nkx2.2. J Biol Chem 2003; 278:751-6. [PMID: 12426319 DOI: 10.1074/jbc.m205905200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consensus-binding sites for many transcription factors are relatively non-selective and found at high frequency within the genome. This raises the possibility that factors that are capable of binding to a cis-acting element in vitro and regulating transcription from a transiently transfected plasmid, which would not have higher order chromatin structure, may not occupy this site within the endogenous gene. Closed chromatin structure and competition from another DNA-binding protein with similar nucleotide specificity are two possible mechanisms by which a transcription factor may be excluded from a potential binding site in vivo. Multiple transcription factors, including Pdx-1, BETA-2, and Pax6, have been implicated in expression of the insulin gene in pancreatic beta cells. In this study, the chromatin immunoprecipitation assay has been used to show that these factors do, in fact, bind to insulin control region sequences in intact beta cells. In addition, another key islet-enriched transcription factor, Nkx2.2, was found to occupy this region using the chromatin immunoprecipitation assay. In vitro DNA-binding and transient transfection assays defined how Nkx2.2 affected insulin gene expression. Pdx-1 was also shown to bind within a region of the endogenous islet amyloid polypeptide, pax-4, and glucokinase genes that were associated with control in vitro. Because Pdx-1 does not regulate gene transcription in isolation, these sequences were examined for occupancy by the other insulin transcriptional regulators. BETA-2, Pax6, and Nkx2.2 were also found to bind to amyloid polypeptide, glucokinase, and pax-4 control sequences in vivo. These studies reveal the broad application of the Pdx-1, BETA-2, Pax6, and Nkx2.2 transcription factors in regulating expression of genes selectively expressed in islet beta cells.
Collapse
Affiliation(s)
- Michelle A Cissell
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The DNA motif discovery problem abstracts the task of discovering short, conserved sites in genomic DNA. Pevzner and Sze recently described a precise combinatorial formulation of motif discovery that motivates the following algorithmic challenge: find twenty planted occurrences of a motif of length fifteen in roughly twelve kilobases of genomic sequence, where each occurrence of the motif differs from its consensus in four randomly chosen positions. Such "subtle" motifs, though statistically highly significant, expose a weakness in existing motif-finding algorithms, which typically fail to discover them. Pevzner and Sze introduced new algorithms to solve their (15,4)-motif challenge, but these methods do not scale efficiently to more difficult problems in the same family, such as the (14,4)-, (16,5)-, and (18,6)-motif problems. We introduce a novel motif-discovery algorithm, PROJECTION, designed to enhance the performance of existing motif finders using random projections of the input's substrings. Experiments on synthetic data demonstrate that PROJECTION remedies the weakness observed in existing algorithms, typically solving the difficult (14,4)-, (16,5)-, and (18,6)-motif problems. Our algorithm is robust to nonuniform background sequence distributions and scales to larger amounts of sequence than that specified in the original challenge. A probabilistic estimate suggests that related motif-finding problems that PROJECTION fails to solve are in all likelihood inherently intractable. We also test the performance of our algorithm on realistic biological examples, including transcription factor binding sites in eukaryotes and ribosome binding sites in prokaryotes.
Collapse
Affiliation(s)
- Jeremy Buhler
- Department of Computer Science, Box 1045, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | | |
Collapse
|
29
|
Kim JW, Seghers V, Cho JH, Kang Y, Kim S, Ryu Y, Baek K, Aguilar-Bryan L, Lee YD, Bryan J, Suh-Kim H. Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol Endocrinol 2002; 16:1097-107. [PMID: 11981044 DOI: 10.1210/mend.16.5.0934] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The sulfonylurea receptor 1 (SUR1) plays a key role in regulation of insulin secretion in pancreatic beta-cells. In this study we investigated the mechanism for tissue-specific expression of the SUR1 gene. A -138/-20 fragment exhibited basal promoter activity while the -660/-20 fragment contained a regulatory element for tissue-specific expression of the mouse SUR1 gene. A pancreatic beta-cell-specific transcription factor, BETA2 (beta-cell E box transcription factor)/NeuroD, enhanced the promoter activity of the -660/-20 fragment in cooperation with E47. Coexpression of a dominant negative mutant of BETA2/NeuroD, BETA2(1-233), repressed the promoter activity of the -660/-20 fragment. BETA2/NeuroD bound specifically to the E3 element located at -141. The E3 sequence in a heterologous context conferred transactivation by BETA2/NeuroD in HeLa and HIT cells. Mutation of E3 eliminated the stimulatory effect of BETA2/NeuroD. Unlike BETA2/NeuroD, neurogenin 3 (ngn3) could not activate the E3 element in HeLa cells. Overexpression of ngn3 concomitantly increased expression of BETA2/NeuroD and SUR1 in HIT cells but not in HeLa cells. These results indicate that BETA2/NeuroD induces tissue-specific expression of the SUR1 gene through the E3 element. These results also suggest that E3 is specific for BETA2/NeuroD, and the stimulatory effect of ngn3 in HIT cells may require factors specifically expressed in HIT cells.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Anatomy, Ajou University, School of Medicine, Suwon, 442-749, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Furukawa N, Shirotani T, Nakamaru K, Matsumoto K, Shichiri M, Araki E. Regulation of the insulin gene transcription by glucose. Endocr J 2002; 49:121-30. [PMID: 12081229 DOI: 10.1507/endocrj.49.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Noboru Furukawa
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Honjo, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Cooper GJS. Amylin and Related Proteins: Physiology and Pathophysiology. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Jiang S, Yu J, Wang J, Tan Z, Xue H, Feng G, He L, Yang H. Complete genomic sequence of 195 Kb of human DNA containing the gene GABRG2. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:373-82. [PMID: 11328646 DOI: 10.3109/10425170009033988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
GABA (gamma-aminobutyric acid), as the main inhibitory neurotransmitter in the brain, plays an essential role for the overall balance between neuronal excitation and inhibition by acting on GABAA receptors, which are ligand-gated chloride channels. Impaired GABAergic function contributes to certain forms of epilepsy, schizophrenia, Alzheimer's Disease, and other neurological disorders. In order to identify possible genetic features and to further study biological regulation of GABAA receptor genes whose promoter elements and sequence anomalies may contribute to epileptic disorders, as an initial step, we shot-gun sequenced a BAC clone, dj082c10 (195,909-bp in size), encompassing human gamma(2) subunit of GABAA receptor (GABRG2). It is, we believe, the first genomic sequence of the GABA receptor gamma subunit family. Four contigs were assembled from 2950 reads prior to gap in an average redundancy of eight folds over the entire region. The precision of the consensus sequence was predicted to be 99.999% after closing gaps and finishing weak regions. The nine exons of GABRG2 spans an 85-kb region that had 81 SINEs comprising 22.32%, and nine L1 elements comprising 3.40%, respectively. However, the density of L1 in the regions flanking GABRG2 gene (29.45% by 45 elements) is significantly higher than that within the gene. The length of GABRG2 introns varies in the range of 1.5 kb to 38.1 kb.
Collapse
Affiliation(s)
- S Jiang
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang H, Vogel SS, Liu N, Melton DA, Lin S. Analysis of pancreatic development in living transgenic zebrafish embryos. Mol Cell Endocrinol 2001; 177:117-24. [PMID: 11377827 DOI: 10.1016/s0303-7207(01)00408-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using DNA constructs containing regulatory sequences of the zebrafish Pdx-1 and insulin genes, germline transgenic zebrafish expressing the green fluorescent protein (GFP) reporter gene in the pancreas were generated. For both constructs, the GFP expression patterns in transgenic embryos were consistent with the mRNA expression patterns detected by RNA in situ hybridization. A deletion promoter analysis revealed that positive and negative cis-acting elements were involved in regulation of insulin gene expression. Three-dimensional reconstructions imaged from living embryos using two-photon laser-scanning microscopy (TPLSM) demonstrated that the zebrafish pancreas is formed from a single dorsal pancreatic cell mass. This is in contrast to mammals where the pancreas derives from both dorsal and ventral anlage. These transgenic fish should be useful for in vivo studies of factors involved in specifying and regulating pancreatic development and function.
Collapse
Affiliation(s)
- H Huang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
34
|
Gautron S, Gruszczynski C, Koulakoff A, Poiraud E, Lopez S, Cambier H, Dos Santos G, Berwald-Netter Y. Genetic and epigenetic control of the Na-G ion channel expression in glia. Glia 2001; 33:230-40. [PMID: 11241741 DOI: 10.1002/1098-1136(200103)33:3<230::aid-glia1022>3.0.co;2-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Na-G ion channel, previously cloned from a rat astroglia cDNA library, belongs to a new family of ion channels, related to but distinct from the predominant brain and muscle fast voltage-gated Na(+) channels. In vivo, the corresponding transcripts are widely expressed in peripheral nervous system neurons and glia, but only in selected subpopulations of neuronal and glia-like cells of the central nervous system. In the present report, we show that Na-G messenger RNA level in astrocyte and Schwann cell cultures is modulated in a cell-specific manner by several growth factors, hormones, and intracellular second messengers pathways. Striking changes in transcript level were observed in the two types of glia in response to protein-kinase A activation and to treatment with the neuregulin glial growth factor, indicating regulation of the Na-G gene by neuroglial signaling. By transient transfection of Na-G/reporter constructs into cultured cells, we show that a short genomic region, encompassing the first exon and 375 bp upstream, bears a high glial-specific transcriptional activity while part of the first intron behaves as a negative regulatory element. In vivo footprinting experiments revealed binding of glial-specific nuclear factors to several sites of the Na-G promoter region. Finally, Na-G/reporter constructs are shown to sustain a low but reproducible transcriptional response to cAMP, accounting in part for the elevation in mRNA level elicited by cAMP in Schwann cells and its reduction in astrocytes.
Collapse
Affiliation(s)
- S Gautron
- Biochimie Cellulaire, CNRS FRE 2242, Collège de France, 11 Place M. Berthelot, 75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Harrington RH, Sharma A. Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression. J Biol Chem 2001; 276:104-13. [PMID: 11024035 DOI: 10.1074/jbc.m008415200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors binding the insulin enhancer region, RIPE3b, mediate beta-cell type-specific and glucose-responsive expression of the insulin gene. Earlier studies demonstrate that activator present in the beta-cell-specific RIPE3b1-binding complex is critical for these actions. The DNA binding activity of the RIPE3b1 activator is induced in response to glucose stimulation and is inhibited under glucotoxic conditions. The C1 element within the RIPE3b region has been implicated as the binding site for RIPE3b1 activator. The RIPE3b region also contains an additional element, A2, which shares homology with the A elements in the insulin enhancer. Transcription factors (PDX-1 and HNF-1 alpha) binding to A elements are critical regulators of insulin gene expression and/or pancreatic development. Hence, to understand the roles of C1 and A2 elements in regulating insulin gene expression, we have systematically mutated the RIPE3b region and analyzed the effect of these mutations on gene expression. Our results demonstrate that both C1 and A2 elements together constitute the binding site for the RIPE3b1 activator. In addition to C1-A2 (RIPE3b) binding complexes, three binding complexes that specifically recognize A2 elements are found in nuclear extracts from insulinoma cell lines; the A2.2 complex is detected only in insulin-producing cell lines. Furthermore, two base pairs in the A2 element were critical for binding of both RIPE3b1 and A2.2 activators. Transient transfection results indicate that both C1-A2 and A2-specific binding activators cooperatively activate insulin gene expression. In addition, RIPE3b1- and A2-specific activators respond differently to glucose, suggesting that their overlapping binding specificity and functional cooperation may play an important role in regulating insulin gene expression.
Collapse
Affiliation(s)
- R H Harrington
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
36
|
Viswanath RL, Rose SD, Swift GH, MacDonald RJ. A binary mechanism for the selective action of a pancreatic beta -cell transcriptional silencer. J Biol Chem 2000; 275:40273-81. [PMID: 10995768 DOI: 10.1074/jbc.m007021200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pancreatic elastase I gene (ELA1) is selectively transcribed to high levels in pancreatic acinar cells. Pancreatic specificity is imparted by a 100-base pair enhancer that activates transcription in beta-cells of the islets of Langerhans as well as in acinar cells. Adjacent to the enhancer is a silencer that renders transcription specific to acinar cells by selectively suppressing the inherent beta-cell activity of the enhancer. We show that the selective repression of beta-cell transcription is due neither to a beta-cell specific activity of the silencer nor to selective interference with beta-cell-specific transcriptional activators acting on the enhancer. Rather, the silencer is effective in both pancreatic endocrine and acinar cell types against all low and moderate strength enhancers and promoters tested. The silencer appears to act in a binary manner by reducing the probability that a promoter will be active without affecting the rate of transcription from active promoters. We propose that the ELA1 silencer is a weak off switch capable of inactivating enhancer/promoter combinations whose strength is below a threshold level but ineffective against stronger enhancer/promoters. The apparent cell-specific effects on the ELA1 enhancer appear due to the ability of the silencer to inactivate the weak beta-cell activity of the enhancer but not the stronger acinar cell activity.
Collapse
Affiliation(s)
- R L Viswanath
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, Texas 75235-9148, USA
| | | | | | | |
Collapse
|
37
|
Mitchell B, Mugiya M, Youngblom J, Funes-Duran M, Miller R, Ezpeleta J, Rigby N, Vierra C. The genomic structure and promoter analysis of the human ABF-1 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:320-9. [PMID: 11004504 DOI: 10.1016/s0167-4781(00)00109-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human ABF-1 gene is expressed in activated B-cells and Epstein-Barr virus-immortalized lymphoblastoid cell lines. ABF-1 represents the only member belonging to the basic helix-loop-helix (bHLH) family of transcription factors whose expression pattern is restricted to B-cells. ABF-1 forms heterodimeric complexes with E2A to modulate gene transcription. We report the cloning and characterization of the human ABF-1 gene and the promoter region. The gene spans more than 3 kb and contains two exons. Exon 1 contains 274 bp of a 5'-untranslated sequence (UTR) while exon 2 contains 1097 bp of 3'-UTR. Promoter analysis of the 5'-flanking region revealed no apparent B-cell-restricted control elements within approximately 700 bp, but clearly demonstrated the presence of a functional minimal promoter residing immediately upstream of the transcription start site. Analysis of the region containing the minimal promoter activity identified no CCAAT or TATA sequence. Lastly, we have assigned the ABF-1 gene to human chromosome 8q21.1 using fluorescence in situ hybridization (FISH). The cloning of the human ABF-1 gene will facilitate further biochemical and genetic studies of its function in the regulation of B-cell differentiation.
Collapse
Affiliation(s)
- B Mitchell
- Department of Biology, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cha JY, Kim H, Kim KS, Hur MW, Ahn Y. Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene. Cooperative role of hepatocyte nuclear factors 1alpha and 3beta. J Biol Chem 2000; 275:18358-65. [PMID: 10748140 DOI: 10.1074/jbc.m909536199] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated transacting factors binding to the cis-element important in tissue-specific expression of the human glucose transporter type 2 isoform (GLUT2) gene. By transient transfection assay, we determined that the 227-base pair fragment upstream of the ATG start site contained promoter activity and that the region from +87 to +132 (site C) was responsible for tissue-specific expression. DNase I footprinting and electrophoretic mobility shift assay indicated that site C contained one binding site for hepatocyte nuclear factor 1 (HNF1) and two binding sites for HNF3. The mutations at positions +101 and +103, which are considered to be critical in binding HNF1 and HNF3, resulted in a 53% decrease in promoter activity, whereas the mutation of the proximal HNF3 binding site (+115 and +117) reduced promoter activity by 28%. The mutations of these four sites resulted in marked decrease (70%) in promoter activity as well as diminished bindings of HNF1 and HNF3. A to G mutation, which causes conversion of the HNF1 and HNF3 binding sequence to the NF-Y binding site, resulted in a 22% decrease in promoter activity. We identified that both HNF1 and HNF3 function as transcriptional activators in GLUT2 gene expression. Coexpression of the pGL+74 (+74 to +301) construct with the HNF1alpha and HNF3beta expression vectors in NIH 3T3 cells showed the synergistic effect on GLUT2 promoter activity compared with the expression of HNF1alpha, HNF3beta, or a combination of HNF1beta and HNF3beta. These data suggest that HNF1alpha and HNF3beta may be the most important players in the tissue-specific expression of the human GLUT2 gene.
Collapse
Affiliation(s)
- J Y Cha
- Department of Biochemistry and Molecular Biology and the Institute of Genetic Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, South Korea
| | | | | | | | | |
Collapse
|
39
|
Rafiq I, da Silva Xavier G, Hooper S, Rutter GA. Glucose-stimulated preproinsulin gene expression and nuclear trans-location of pancreatic duodenum homeobox-1 require activation of phosphatidylinositol 3-kinase but not p38 MAPK/SAPK2. J Biol Chem 2000; 275:15977-84. [PMID: 10821851 DOI: 10.1074/jbc.275.21.15977] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of islet beta-cells to elevated glucose concentrations (30 versus 3 mm) prompts enhanced preproinsulin (PPI) gene transcription and the trans-location to the nucleoplasm of pancreatic duodenum homeobox-1 (PDX-1; Rafiq, I., Kennedy, H., and Rutter, G. A. (1998) J. Biol. Chem. 273, 23241-23247). Here, we show that in MIN6 beta-cells, over-expression of p110.CAAX, a constitutively active form of phosphatidylinositol 3-kinase (PI3K) mimicked the activatory effects of glucose on PPI promoter activity, whereas Deltap85, a dominant negative form of the p85 subunit lacking the p110-binding domain, and the PI3K inhibitor LY 294002, blocked these effects. Similarly, glucose-stimulated nuclear trans-location of endogenous PDX-1 was blocked by Deltap85 expression, and wortmannin or LY 294002 blocked the trans-location from the nuclear membrane to the nucleoplasm of epitope-tagged PDX-1.c-myc. By contrast, SB 203580, an inhibitor of stress-activated protein kinase-2 (SAPK2)/p38 MAP kinase, had no effect on any of the above parameters, and PPI promoter activity and PDX-1.c-myc localization were unaffected by over-expression of the upstream kinase MKK6 (MAP kinase kinase-6) or wild-type p38/SAPK2, respectively. Furthermore, no change in the activity of extracted p38/SAPK2 could be detected after incubation of cells at either 3 or 30 mm glucose. These data suggest that stimulation of PI3K is necessary and sufficient for the effects of glucose on PPI gene transcription, acting via a downstream signaling pathway that does not involve p38/SAPK2.
Collapse
Affiliation(s)
- I Rafiq
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
40
|
Campbell SC, Cragg H, Elrick LJ, Macfarlane WM, Shennan KI, Docherty K. Inhibitory effect of pax4 on the human insulin and islet amyloid polypeptide (IAPP) promoters. FEBS Lett 1999; 463:53-7. [PMID: 10601637 DOI: 10.1016/s0014-5793(99)01584-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pax4 is a paired-box transcription factor that plays an important role in the development of pancreatic beta-cells. Two Pax4 cDNAs were isolated from a rat insulinoma library. One contained the full-length sequence of Pax4. The other, termed Pax4c, was identical to Pax4 but lacked the sequences encoding 117 amino acids at the COOH-terminus. Pax4 was found to inhibit the human insulin promoter through a sequence element, the C2 box, located at -253 to -244, and the islet amyloid polypeptide promoter through a sequence element located downstream of -138. The inhibitory activity of Pax4 was mapped to separate regions of the protein between amino acids 2-230 and 231-349.
Collapse
Affiliation(s)
- S C Campbell
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
41
|
Bramblett DE, Huang HP, Tsai MJ. Pancreatic islet development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:255-315. [PMID: 10582089 DOI: 10.1016/s1054-3589(08)60114-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D E Bramblett
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
42
|
Kaluz S, Kaluzová M, Opavský R, Pastoreková S, Gibadulinová A, Dequiedt F, Kettmann R, Pastorek J. Transcriptional regulation of the MN/CA 9 gene coding for the tumor-associated carbonic anhydrase IX. Identification and characterization of a proximal silencer element. J Biol Chem 1999; 274:32588-95. [PMID: 10551812 DOI: 10.1074/jbc.274.46.32588] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The MN/CA 9 (MN) gene encodes a tumor-associated isoenzyme of the carbonic anhydrase family. Functional characterization of the 3. 5-kilobase pair MN 5' upstream region by deletion analysis led to the identification of the -173 to +31 fragment as the MN promoter. In vitro DNase I footprinting revealed the presence of five protected regions (PRs) within the MN promoter. Detailed deletion analysis of the promoter identified PR1 and PR2 (numbered from the transcription start) as the most critical for transcriptional activity. PR4 negatively affected transcription, since its deletion led to increased promoter activity and was confirmed to function as a promoter-, position-, and orientation-independent silencer element. Mutational analysis indicated that the direct repeat AGGGCacAGGGC is required for efficient repressor binding. Two components of the repressor complex (35 and 42 kDa) were found to be in direct contact with PR4 by UV cross-linking. Increased cell density, known to induce MN expression, did not affect levels of PR4 binding in HeLa cells. Significantly reduced repressor level seems to be responsible for MN up-regulation in the case of tumorigenic CGL3 as compared with nontumorigenic CGL1 HeLa x normal fibroblast hybrid cells.
Collapse
Affiliation(s)
- S Kaluz
- Institute of Virology, Slovak Academy of Sciences, 842 46 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tomonari A, Yoshimoto K, Mizusawa N, Iwahana H, Itakura M. Differential regulation of the human insulin gene transcription by GG1 and GG2 elements with GG- and C1-binding factors. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:233-42. [PMID: 10524198 DOI: 10.1016/s0167-4781(99)00096-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a human growth hormone reporter system, the introduced mutations in GG1 alone or both GG elements of GG1 and GG2 in the human insulin promoter abolished 94 or 96% of the beta-cell-specific transcriptional activity in a pancreatic islet beta-cell line of MIN6, while the mutations in GG2 or its total deletion abolished 85 or 86% of the transcriptional activity. When linked to the thymidine kinase promoter, mutations in GG1 or both GG elements abolished 74% of the transcriptional activity in MIN6 cells, while the mutations in GG2 or its total deletion abolished 55 or 54%. In the electrophoretic mobility shift assay (EMSA), one nuclear factor was shown to interact with two GG elements, and another C1-binding factor with GG1 and C1. The differential effects of deletions or selective mutations in the GG2 or GG1 sequence in the oligonucleotide probes on the binding activity of GG- or C1-binding factors in EMSA proved the requirement of both GG1 and GG2 or both GG1 and C1, respectively, for the transaction of these two factors. The molecular size of the GG-binding factor was estimated about 30 kDa. Based on these, we conclude that two GG elements contribute, with GG1 more critically than GG2, to the beta-cell-specific transcription of the human insulin gene through transaction with the GG- and C1-binding factors.
Collapse
Affiliation(s)
- A Tomonari
- Otsuka Department of Molecular Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
44
|
Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 1999; 274:1011-6. [PMID: 9873045 DOI: 10.1074/jbc.274.2.1011] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the mechanisms whereby glucose stimulates insulin gene transcription in pancreatic beta-cells involves activation of the homeodomain transcription factor PDX1 (pancreatic/duodenal homeobox-1) via a stress-activated pathway involving stress-activated protein kinase 2 (SAPK2, also termed RK/p38, CSBP, and Mxi2). In the present study we show, by Western blotting and electrophoretic mobility shift assay, that in human islets of Langerhans incubated in low glucose (3 mM) PDX1 exists as an inactive 31-kDa protein localized exclusively in the cytoplasm. Transfer of the islets to high (16 mM) glucose results in rapid (within 10 min) conversion of PDX1 to an active 46-kDa form that was present predominantly in the nucleus. Activation of PDX1 appears to involve phosphorylation, as shown by incorporation of 32Pi into the 46-kDa form of the protein. These effects of glucose could be mimicked by chemical stress (sodium arsenite), or by overexpression of SAPK2 in the beta-cell line MIN6. Overexpression of SAPK2 also stimulated PDX1-dependent transcription of a -50 to -250 region of the human insulin gene promoter linked to a firefly luciferase reporter gene. The effects of glucose were inhibited by the SAPK2 inhibitor SB 203580, and by wortmannin and LY 294002, which inhibit phosphatidylinositol 3-kinase, although the effects of stress (arsenite) were inhibited only by SB 203580. These results demonstrate that glucose regulates the insulin gene promoter through activation and nuclear translocation of PDX1 via the SAPK2 pathway.
Collapse
Affiliation(s)
- W M Macfarlane
- Department of Molecular and Cell Biology, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Insulin Gene Expression. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2558(08)60090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Mansour M, Wright JR, Pohajdak B. Cloning, sequencing and characterization of the tilapia insulin gene. Comp Biochem Physiol B Biochem Mol Biol 1998; 121:291-7. [PMID: 9972302 DOI: 10.1016/s0305-0491(98)10102-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Using degenerate primers based on insulin sequences from other organisms, we report the cloning of the complete tilapia (Oreochromis niloticus) insulin gene. Using nested primers and a cassette ligation strategy we have also cloned 932 base pairs (bp) of 5' flanking and 1152 bp of 3' flanking sequence. The tilapia insulin gene has the similar three exon (one untranslated), two intron distribution found in all insulin genes sequenced to date. However, intron 1 is unique in having a smaller size (73 bp) than found in other organisms. 5' RNA extension revealed the presence of two potential transcriptional start sites. A perfect TATA box is located at -30 bp from the first transcriptional start site. Interestingly, the 5' upstream region contains a microsatellite close to the same position of a unique minisatellite found only in humans and primates. The upstream region also contains several potential control elements to regulate insulin expression that are found in mammalian insulin genes.
Collapse
Affiliation(s)
- M Mansour
- Departments of Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
47
|
Sander M, Griffen SC, Huang J, German MS. A novel glucose-responsive element in the human insulin gene functions uniquely in primary cultured islets. Proc Natl Acad Sci U S A 1998; 95:11572-7. [PMID: 9751707 PMCID: PMC21682 DOI: 10.1073/pnas.95.20.11572] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin gene transcription is limited to the beta cells within the mammalian pancreas and, like insulin secretion, is regulated by glucose. Our previous studies in primary cultured beta cells suggested the presence of a strong glucose-responsive enhancer element between base pairs -341 and -260 of the human insulin promoter, the same region in which a transcriptional repressor had been identified in beta-cell tumor lines. In an attempt to map these promoter activities and resolve these conflicting data, we designed minienhancer constructs spanning this region, and tested them in primary cultured and immortalized cells. One sequence, the Z element (base pairs -292 to -243), functions as both a potent glucose-responsive transcriptional enhancer in primary cultured islet cells and as a transcriptional repressor in immortalized beta and nonbeta cells and in primary fibroblasts. In addition, the Z element binds a novel glucose-responsive protein complex that is found in the nuclei of primary cultured islet cells, but not in the nuclei of tumor cells or primary cultured fibroblasts. These data demonstrate a critical role for the Z element in human insulin gene transcription and its regulation by glucose.
Collapse
Affiliation(s)
- M Sander
- Hormone Research Institute, University of California, San Francisco, CA 94143-0534, USA
| | | | | | | |
Collapse
|
48
|
Rafiq I, Kennedy HJ, Rutter GA. Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J Biol Chem 1998; 273:23241-7. [PMID: 9722555 DOI: 10.1074/jbc.273.36.23241] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using laser-scanning confocal microscopy, we have monitored glucose-induced changes in the subcellular localization of insulin promoter factor-1 (IPF-1) labeled with a c-myc epitope tag. This construct trans-activated the insulin promoter in single living MIN6-beta-cells as assessed by luciferase-based promoter analysis. IPF-1.c-myc expression also enhanced the response of the insulin promoter to elevations in extracellular glucose concentration. In the majority (148/235, 63%) of cells maintained at low (3 mM) extracellular glucose concentration, IPF-1.c-myc immunoreactivity was confined to the nuclear periphery. Incubation of cells at stimulatory (30 mM) glucose concentrations caused a rapid redistribution of the chimera to the nucleoplasm (775/958, 81% of cells). By contrast, the irrelevant transcription factor c-Fos, tagged with either c-myc or as a chimera with luciferase, was localized exclusively to the nucleoplasm irrespective of the glucose concentration. Furthermore, IPF-1 extended with the bulky (27 kDa) enhanced green fluorescent protein (EGFP) group was confined largely to the nucleoplasm at all glucose concentrations tested and did not support trans-activation of the insulin promoter by glucose. Movement of endogenous IPF-1 from the nuclear periphery to the nucleoplasm may therefore increase the trans-activational capacity of this factor in native beta-cells exposed to high extracellular glucose concentrations.
Collapse
Affiliation(s)
- I Rafiq
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
49
|
Goodison S, Ashcroft SJ. Trans-acting factor(s) confer glucose-responsive transcriptional regulation in the insulin gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:97-100. [PMID: 9544261 DOI: 10.1007/978-1-4899-1819-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S Goodison
- University of Oxford, Nuffield Dept. of Clinical Biochemistry, John Radcliffe Hospital, Headington, United Kingdom
| | | |
Collapse
|
50
|
Ohtani K, Shimizu H, Kato Y, Mori M. Identification and characterization of a glucose-responsiveness region upstream of human insulin gene in transfected HIT-T 15 cells. Biochem Biophys Res Commun 1998; 242:446-51. [PMID: 9446815 DOI: 10.1006/bbrc.1997.7980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To determine possible regulation of full-length human insulin gene promoter activity by glucose, we examined a 2-kilobase pair (kbp) 5'-flanking region of the human insulin gene and characterized the DNA elements in transfected HIT-T 15 cells. The expression of the 2-kilobase pair 5'-flanking region human insulin gene fused to the luciferase reporter gene occurred by transfection. In 0.8 mM glucose of the F-12 K medium, the element mediating the negative regulatory region was localized from -1782 to -1295 base pairs (bp) and stimulatory element from -1295 to -1138 bp. The elements from -1138 to -880 bp and from -356 to +252 bp possessed the elements dose-dependently responsive to 0.8 mM, 7.0 and 22.2 mM glucose. In fragment D, cotransfection of oligonucleotide that confers RIPE3b1 activator decreased the glucose-stimulated promoter activity, but the other oligonucleotide that confers STF-1 did not. The present data indicated that 2 kbp possesses glucose-responsive region in the element from -1138 to -880 bp, in addition to the previously reported element from -356 to initiation site. There may exist a RIPE3b1 activator binding site in the glucose-responsive element from -1138 to -880 bp. In addition, negatively regulatory region may exist from -1782 to -1295 bp.
Collapse
Affiliation(s)
- K Ohtani
- First Department of Internal Medicine, Gunma University School of Medicine, Japan
| | | | | | | |
Collapse
|