1
|
Al-Rihaymee S, Mahmood MS, Abdulbaqi HR, Majeed ZN. Platelet-rich fibrin as an adjunct to scaling and root planing in treatment of shallow periodontal pockets: A randomized clinical trial. J Oral Biosci 2024; 66:612-618. [PMID: 38997108 DOI: 10.1016/j.job.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVES To evaluate the efficacy of platelet-rich fibrin (PRF) as an adjunct to scaling and root planing (ScRp) for healing shallow periodontal pockets. METHODS Twelve patients with periodontitis were enrolled in this split-mouth, randomized clinical trial. A total of 24 shallow periodontal pockets (4-6 mm) were treated by either ScRp alone (control) or PRF (test). Clinical attachment loss (CAL), probing pocket depth (PPD), bleeding on probing (BOP), and plaque index (PLI), as well as platelet-derived growth factor-BB (PDGF-BB) by enzyme-linked immunosorbent assay (ELISA) in gingival crevicular fluid (GCF) were measured at baseline and at 1- and 3-month follow-up visits. RESULTS At 1- and 3-month follow-up visits, greater CAL gains (2.6 ± 0.25 mm and 3.26 ± 0.31 mm, respectively) and PPD reductions (2.58 ± 0.38 and 3.31 ± 0.39 mm, respectively) were observed in the test group compared to those in controls (CAL gain of 1.01 ± 0.49 mm and 1.43 ± 0.48 mm; PPD reduction of 1.1 ± 0.55 and 1.37 ± 0.49 mm, respectively). In addition, the increase in PDGF-BB in GCF in the test group (724.5 ± 186.09 pg/μl and 1957.5 ± 472.9 pg/μl) was significantly greater than that in controls (109.3 ± 24.07 and 614.64 ± 209.3 pg/μl) at 1- and 3-month follow-up visits, respectively. CONCLUSIONS The noninvasive use of PRF as an adjunct to ScRp successfully improved clinical periodontal parameters and might contribute to increased PDGF-BB in GCF.
Collapse
Affiliation(s)
- Sarah Al-Rihaymee
- Department of Periodontics, College of Dentistry, University of Babylon, Iraq.
| | - Maha Sh Mahmood
- Department of Periodontics, College of Dentistry, University of Baghdad, Iraq
| | - Hayder R Abdulbaqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Iraq
| | - Zeyad Nazar Majeed
- Department of Periodontics, College of Dentistry, University of Babylon, Iraq
| |
Collapse
|
2
|
Camorani S, Caliendo A, Morrone E, Agnello L, Martini M, Cantile M, Cerrone M, Zannetti A, La Deda M, Fedele M, Ricciardi L, Cerchia L. Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. J Exp Clin Cancer Res 2024; 43:92. [PMID: 38532439 PMCID: PMC10964525 DOI: 10.1186/s13046-024-03014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRβ (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRβ positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRβ positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRβ recognition. Importantly, by targeting EGFR+ tumor/PDGFRβ+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Elena Morrone
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Matteo Martini
- Institute of Light and Matter, UMR 5306, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Monica Cantile
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Margherita Cerrone
- Pathology Unit, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Massimo La Deda
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Loredana Ricciardi
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy.
| |
Collapse
|
3
|
Liu X, Li Y, Wang S, Lu M, Zou J, Shi Z, Xu B, Wang W, Hu B, Jin T, Wu F, Liu S, Fan C. PDGF-loaded microneedles promote tendon healing through p38/cyclin D1 pathway mediated angiogenesis. Mater Today Bio 2022; 16:100428. [PMID: 36238965 PMCID: PMC9552114 DOI: 10.1016/j.mtbio.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Tendon injury is one of the most serious orthopedic diseases often leading to disability of patients. Major shortages of tendon healing are due to its multiple comorbidities, uncertainty of therapeutic efficacy and insufficient of angiogenesis. With a deeper understanding of angiogenic mechanism of tendon healing, we investigated an innovative microneedle patch loaded with platelet derived growth factor (PDGF) to achieve a constant systemic administration of PDGF to enhance topical tendon healing. Rat achilles tendon injury model was performed as in vivo animal models. Histological staining showed an enhancement of tendon healing quality, especially angiogenesis. Biomechanical studies demonstrated an increase of tendon stiffness, maximum load and maximum stress with treatment of PDGF-loaded microneedles. Furthermore, MAPK/p38/Cyclin D1 pathway and angiogenesis were found to play an important role in tendon healing process by using a biological high throughput RNA-sequence method and bioinformatic analysis. The high throughput RNA-seq tendon healing results were confirmed by histochemical staining and western blot. These results suggest the novel therapeutic potential of PDGF-loaded microneedle patch in tendon surgery.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuange Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shuo Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Mingkuan Lu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Zou
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Binbin Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bo Hu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, China
| | - Tuo Jin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shen Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cunyi Fan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110136. [PMID: 33045321 DOI: 10.1016/j.pnpbp.2020.110136] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mood disorders (major depressive disorder, MDD, and bipolar disorder, BD) are considered leading causes of life-long disability worldwide, where high rates of no response to treatment or relapse and delays in receiving a proper diagnosis (~60% of depressed BD patients are initially misdiagnosed as MDD) contribute to a growing personal and socio-economic burden. The immune system may represent a new target to develop novel diagnostic and therapeutic procedures but reliable biomarkers still need to be found. METHODS In our study we predicted the differential diagnosis of mood disorders by considering the plasma levels of 54 cytokines, chemokines and growth factors of 81 BD and 127 MDD depressed patients. Clinical diagnoses were predicted also against 32 healthy controls. Elastic net models, including 5000 non-parametric bootstrapping procedure and inner and outer 10-fold nested cross-validation were performed in order to identify the signatures for the disorders. RESULTS Results showed that the immune-inflammatory signature classifies the two disorders with a high accuracy (AUC = 97%), specifically 92% and 86% respectively for MDD and BD. MDD diagnosis was predicted by high levels of markers related to both pro-inflammatory (i.e. IL-1β, IL-6, IL-7, IL-16) and regulatory responses (IL-2, IL-4, and IL-10), whereas BD by high levels of inflammatory markers (CCL3, CCL4, CCL5, CCL11, CCL25, CCL27, CXCL11, IL-9 and TNF-α). CONCLUSIONS Our findings provide novel tools for early diagnosis of BD, strengthening the impact of biomarkers research into clinical practice, and new insights for the development of innovative therapeutic strategies for depressive disorders.
Collapse
|
5
|
Bulut GB, Alencar GF, Owsiany KM, Nguyen AT, Karnewar S, Haskins RM, Waller LK, Cherepanova OA, Deaton RA, Shankman LS, Keller SR, Owens GK. KLF4 (Kruppel-Like Factor 4)-Dependent Perivascular Plasticity Contributes to Adipose Tissue inflammation. Arterioscler Thromb Vasc Biol 2021; 41:284-301. [PMID: 33054397 PMCID: PMC7769966 DOI: 10.1161/atvbaha.120.314703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to Klf4-dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using Myh11-CreERT2 eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP+ cells expressing macrophage markers. Subsequent single-cell RNA sequencing, however, showed that the majority of these cells had no detectable eYFP transcript. Further exploration revealed that intraperitoneal injection of tamoxifen in peanut oil, used for generating conditional knockout or reporter mice in thousands of previous studies, resulted in large increase in the autofluorescence and false identification of macrophages within epididymal AT as being eYFP+; and unintended proinflammatory consequences. Using newly generated Myh11-DreERT2tdTomato mice given oral tamoxifen, we virtually eliminated the problem with autofluorescence and identified 8 perivascular cell dominated clusters, half of which were altered upon DIO. Given that perivascular cell KLF4 (kruppel-like factor 4) can have beneficial or detrimental effects, we tested its role in obesity-associated AT inflammation. While smooth muscle cells and pericytes-specific Klf4 knockout (smooth muscle cells and pericytes Klf4Δ/Δ) mice were not protected from DIO, they displayed improved glucose tolerance upon DIO, and showed marked decreases in proinflammatory macrophages and increases in LYVE1+ lymphatic endothelial cells in the epididymal AT. CONCLUSIONS Perivascular cells within the AT microvasculature dynamically respond to DIO and modulate tissue inflammation and metabolism in a KLF4-dependent manner.
Collapse
Affiliation(s)
- Gamze B. Bulut
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Gabriel F. Alencar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | | | - Anh T. Nguyen
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Santosh Karnewar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Ryan M. Haskins
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Lillian K. Waller
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Olga A. Cherepanova
- Cardiovascular and Metabolic Sciences Lerner Research Institute, Cleveland Clinic
| | - Rebecca A. Deaton
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Laura S. Shankman
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Susanna R. Keller
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia
| | - Gary K. Owens
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
6
|
Ren Q, Chan KW, Huang H, Wang Z, Fang X, Guo C, Li F, Zhang L, Yao Y, Chen Z, Tian Y, Lin T. Platelet-derived alpha-granules are associated with inflammation in patients with NK/T-cell lymphoma-associated hemophagocytic syndrome. Cytokine 2019; 126:154878. [PMID: 31739215 DOI: 10.1016/j.cyto.2019.154878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Due to the variable overlap of multiple symptoms, accurate early diagnosis of NK/T-cell lymphoma-associated hemophagocytic syndrome (NK/T-LAHS) is difficult, making the prognosis extremely poor. Hemophagocytic syndrome (HPS) is now diagnosed primarily based on the hemophagocytic lymphohistiocytosis (HLH)-2004 diagnostic criteria, and platelet count is one of the baseline evaluations. However, in our study, the data showed that decreased platelets were not only a clinical feature of HPS but also the key cells that regulate inflammation by releasing α-granules containing upregulated platelet factor 4 (PF4) and downregulated platelet-derived growth factors (PDGFs). Furthermore, we found that angiopoietin-4 (ANG-4), which has significant differential expression, has been less reported, that may affect hematopoiesis and proinflammatory responses and can be used as diagnostic biomarkers together with PF4 and PDGFs.
Collapse
Affiliation(s)
- Quanguang Ren
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Ka-Wo Chan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - He Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Zhao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Xiaojie Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Chengcheng Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Fangfang Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Limei Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Yuyi Yao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Zegeng Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Ying Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| | - Tongyu Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
7
|
Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. HCMV modulation of cellular PI3K/AKT/mTOR signaling: New opportunities for therapeutic intervention? Antiviral Res 2019; 163:82-90. [PMID: 30668978 PMCID: PMC6391997 DOI: 10.1016/j.antiviral.2019.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden domestically and abroad. Current approved therapies, including ganciclovir, are only moderately efficacious, with many transplant patients suffering from a variety of side effects. A major impediment to the efficacy of current anti-HCMV drugs is their antiviral effects are restricted to the lytic stage of viral replication. Consequently, the non-lytic stages of the viral lifecycle remain major sources of HCMV infection associated with transplant recipients and ultimately the cause of morbidity and mortality. While work continues on new antivirals that block lytic replication, the dormant stages of HCMV's unique lifecycle need to be concurrently assessed for new therapeutic interventions. In this review, we will examine the role that the PI3K/Akt/mTOR signaling axis plays during the different stages of HCMV's lifecycle, and describe the advantages of targeting this cellular pathway as an antiviral strategy. In particular, we focus on the potential of exploiting the unique modifications HCMV imparts on the PI3K/Akt/mTOR pathway during quiescent infection of monocytes, which serve an essential role in the dissemination strategy of the virus.
Collapse
Affiliation(s)
- Aaron M Altman
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jamil Mahmud
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gary Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
8
|
Joshi AA, Padhye AM, Gupta HS. Platelet derived growth factor-BB levels in gingival crevicular fluid of localized intrabony defect sites treated with platelet rich fibrin membrane or collagen membrane containing recombinant human platelet derived growth factor-BB: A randomized clinical and biochemical study. J Periodontol 2019; 90:701-708. [PMID: 30637748 DOI: 10.1002/jper.18-0496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/17/2018] [Accepted: 01/01/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Development of autologous and recombinant growth factor/matrix combination products represent a new emerging trend in regenerative therapeutics and have gained increasing attention as a strategy to optimize tissue regeneration. The aim of the present study was to evaluate the levels of platelet derived growth factor-BB (PDGF-BB) in gingival crevicular fluid (GCF) during early healing period after the regenerative treatment of intrabony defects using beta tricalcium phosphate (β-TCP) as a bone regeneration material with either platelet rich fibrin (PRF) membrane or collagen membrane (CM) treated with recombinant human PDGF-BB (rhPDGF-BB). METHODS Twenty patients (13 males and 7 females) with chronic periodontitis participated in this prospective, randomized clinical and biochemical study. Each patient was randomly assigned to PRF membrane (group A) or CM incorporated with rhPDGF-BB (group B). GCF samples were obtained on days 3, 7, 14, and 30 for evaluation of PDGF-BB levels and alkaline phosphatase (ALP) levels. RESULTS On days 3 and 7 following surgery, mean levels of PDGF-BB at sites treated with PRF membrane or CM incorporated with rhPDGF-BB as a barrier membrane were not significantly different. PDGF-BB levels decreased significantly in samples collected on days 14 and 30 with significant differences between both the groups. ALP levels significantly increased from day 3 to day 30 but there was no difference between two groups. CONCLUSION Within the limitations of the study, both PRF membrane and CM incorporated with rhPDGF-BB showed comparable GCF levels of PDGF-BB initially with PRF showing more sustained levels throughout the study period.
Collapse
Affiliation(s)
- Amruta A Joshi
- Department of Periodontics, Mahatma Gandhi Mission's Dental College and Hospital, Navi Mumbai, India
| | - Ashvini M Padhye
- Department of Periodontics, Mahatma Gandhi Mission's Dental College and Hospital, Navi Mumbai, India
| | - Himani S Gupta
- Department of Periodontics, Government Dental College and Hospital, Mumbai, India
| |
Collapse
|
9
|
A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages. PLoS One 2018; 13:e0196678. [PMID: 29715315 PMCID: PMC5929533 DOI: 10.1371/journal.pone.0196678] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators—PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors—wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors—AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers.
Collapse
|
10
|
Yang P, Manaenko A, Xu F, Miao L, Wang G, Hu X, Guo ZN, Hu Q, Hartman RE, Pearce WJ, Obenaus A, Zhang JH, Chen G, Tang J. Role of PDGF-D and PDGFR-β in neuroinflammation in experimental ICH mice model. Exp Neurol 2016; 283:157-64. [PMID: 27302678 DOI: 10.1016/j.expneurol.2016.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Inflammation plays a key role in the pathophysiological processes after intracerebral hemorrhage (ICH). Post-ICH macrophages infiltrate the brain and release pro-inflammatory factors (tumor necrosis factor-α), amplifying microglial activation and neutrophil infiltration. Platelet-derived growth factor receptor-β (PDGFR-β) is expressed on macrophages and it's activation induces the recruitment of macrophages. Platelet-derived growth factor-D (PDGF-D) is an agonist with a significantly higher affinity to the PDGFR-β compared to another isoform of the receptor. In this study, we investigated the role of PDGF-D in the pro-inflammatory response after ICH in mice. METHODS A blood injection model of ICH was used in eight-week old male CD1 mice (weight 30g). Some mice received an injection of plasmin or PDGF-D. Gleevec, a PDGFR inhibitor, was administered at 1, 3 or 6h post-ICH. Plasmin was administered with or without PDGF-D siRNAs mixture or scramble siRNA. A plasmin-antagonist, ε-Aminocaproic acid (EACA), was co-administrated with the blood. The effects of ICH and treatment on the brain injury and post-ICH inflammation were investigated. RESULTS ICH resulted in the overexpression of PDGF-D, associated with the infiltration of macrophages. PDGFR-inhibition decreased ICH-induced brain injury, attenuating macrophage and neutrophil infiltration, reducing microglial activation and TNF-α production. Administration of recombinant PDGF-D induced TNF-α production, and PDGFR-inhibition attenuated it. A plasmin-antagonist suppressed PDGFR-β activation and microglial activation. Plasmin increased PDGF-D expression, and PDGF-D inhibition reduced neutrophil infiltration. CONCLUSION ICH-induced PDGF-D accumulation contributed to post-ICH inflammation via PDGFR activation and enhanced macrophage infiltration. The inhibition of PDGFR had an anti-inflammatory effect. Plasmin is a possible upstream effector of PDGF-D. The targeting of PDGF-D may provide a novel way to decrease brain injury after ICH.
Collapse
Affiliation(s)
- Peng Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Departments of Physiology, Loma Linda University, Loma Linda, CA, USA.
| | - Anatol Manaenko
- Departments of Physiology, Loma Linda University, Loma Linda, CA, USA; Departments of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Feng Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Liyan Miao
- Departments of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Gaiqing Wang
- Departments of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xuezhen Hu
- Department of Emergency Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhen-Ni Guo
- Departments of Physiology, Loma Linda University, Loma Linda, CA, USA; Neuroscience Center, Department of Neurology, The First Norman Bethune Hospital of Jilin University, Chang Chun, Jilin, China.
| | - Qin Hu
- Departments of Physiology, Loma Linda University, Loma Linda, CA, USA.
| | - Richard E Hartman
- Departments of Psychology, Loma Linda University, Loma Linda, CA, USA.
| | - William J Pearce
- Departments of Physiology, Loma Linda University, Loma Linda, CA, USA.
| | - Andre Obenaus
- Departments of Pediatrics, Loma Linda University, Loma Linda, CA, USA.
| | - John H Zhang
- Departments of Physiology, Loma Linda University, Loma Linda, CA, USA; Departments of Anesthesiology, Loma Linda University, Loma Linda, CA, USA; Departments of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| | - Gang Chen
- Departments of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jiping Tang
- Departments of Physiology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
11
|
Li Q, Wilkie AR, Weller M, Liu X, Cohen JI. THY-1 Cell Surface Antigen (CD90) Has an Important Role in the Initial Stage of Human Cytomegalovirus Infection. PLoS Pathog 2015; 11:e1004999. [PMID: 26147640 PMCID: PMC4492587 DOI: 10.1371/journal.ppat.1004999] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/03/2015] [Indexed: 01/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) infects about 50% of the US population, is the leading infectious cause of birth defects, and is considered the most important infectious agent in transplant recipients. The virus infects many cell types in vivo and in vitro. While previous studies have identified several cellular proteins that may function at early steps of infection in a cell type dependent manner, the mechanism of virus entry is still poorly understood. Using a computational biology approach, correlating gene expression with virus infectivity in 54 cell lines, we identified THY-1 as a putative host determinant for HCMV infection in these cells. With a series of loss-of-function, gain-of-function and protein-protein interaction analyses, we found that THY-1 mediates HCMV infection at the entry step and is important for infection that occurs at a low m.o.i. THY-1 antibody that bound to the cell surface blocked HCMV during the initial 60 minutes of infection in a dose-dependent manner. Down-regulation of THY-1 with siRNA impaired infectivity occurred during the initial 60 minutes of inoculation. Both THY-1 antibody and siRNA inhibited HCMV-induced activation of the PI3-K/Akt pathway required for entry. Soluble THY-1 protein blocked HCMV infection during, but not after, virus internalization. Expression of exogenous THY-1 enhanced entry in cells expressing low levels of the protein. THY-1 interacted with HCMV gB and gH and may form a complex important for entry. However, since gB and gH have previously been shown to interact, it is uncertain if THY-1 directly binds to both of these proteins. Prior observations that THY-1 (a) interacts with αVβ3 integrin and recruits paxillin (implicated in HCMV entry), (b) regulates leukocyte extravasation (critical for HCMV viremia), and (c) is expressed on many cells targeted for HCMV infection including epithelial and endothelial cells, fibroblast, and CD34+/CD38- stem cells, all support a role for THY-1 as an HCMV entry mediator in a cell type dependent manner. THY-1 may function through a complex setting, that would include viral gB and gH, and other cellular factors, thus links virus entry with signaling in host cells that ultimately leads to virus infection.
Collapse
Affiliation(s)
- Qingxue Li
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian R. Wilkie
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melodie Weller
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Perrien DS, Young CS, Alvarez-Urena PP, Dean DD, Lynch SE, Hollinger JO. Percutaneous injection of augment injectable bone graft (rhPDGF-BB and β-tricalcium phosphate [β-TCP]/bovine type I collagen matrix) increases vertebral bone mineral density in geriatric female baboons. Spine J 2013; 13:580-6. [PMID: 23541446 DOI: 10.1016/j.spinee.2013.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/11/2012] [Accepted: 02/20/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recombinant human platelet-derived growth factor-BB (rhPDGF-BB) homodimer is a chemotactic, mitogenic, and angiogenic factor expressed by platelets. This biological triad is profoundly important in the bone regenerative cascade. Therefore, the expectation was that rhPDGF-BB locally administered to designated lumbar vertebrae in a soluble Type I bovine collagen/β-tricalcium phosphate (β-TCP) injectable paste would have an osteoanabolic effect. PURPOSE The study objective focused on safety and efficacy of the rhPDGF-BB and soluble Type I bovine collagen/β-TCP to increase bone density when injected directly into specific lumbar vertebral bodies in elderly (17- to 18-year-old) female baboons. STUDY DESIGN/SETTING The study was designed to determine whether vertebral bone mineral density (BMD) in aged female baboons could be increased by locally administering recombinant rhPDGF-BB combined in a soluble Type I bovine collagen/β-TCP paste formulation. METHODS A total of six baboons were divided equally into two groups. Group 1 received 1.0 mg/mL rhPDGF-BB in 20 mM sodium acetate plus soluble Type I bovine collagen/β-TCP. Group 2 was treated with 20 mM sodium acetate plus soluble Type I bovine collagen/β-TCP. Baboons in each group also received a sham surgery. Surgery was conducted using a percutaneous, fluoroscopically guided approach, and quantitative computed tomography (qCT) and radiographs were done at dedicated time periods. The qCT was used to determine volumetric BMD (vBMD). At euthanasia (36-week posttreatment), lumbar vertebrae were recovered and analyzed by qCT scans and histology. Funds were received to support this work from BioMimetic Therapeutics, Inc. The device that is the subject of this manuscript is not Food Drug Administration approved for this indication and is not commercially available in the United States. RESULTS The qCT and histopathological data suggested that vBMD and bone morphology increased significantly in the lumbar vertebrae treated with the rhPDGF-BB-containing composition. CONCLUSIONS Bone mineral density and bone morphology quality of lumbar vertebrae in aged female baboons were improved by direct injection of rhPDGF-BB in a soluble Type I bovine collagen/β-TCP paste. Throughout the course of the study, there were neither local nor systemic adverse effects.
Collapse
Affiliation(s)
- Daniel S Perrien
- BioMimetic Therapeutics, Inc., 389 Nichol Mill Lane, Franklin, TN 37067, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kämmerer PW, Schiegnitz E, Alshihri A, Draenert FG, Wagner W. Modification of xenogenic bone substitute materials--effects on the early healing cascade in vitro. Clin Oral Implants Res 2013; 25:852-8. [PMID: 23551638 DOI: 10.1111/clr.12153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Initial platelet activation with subsequent cytokine release at the defect site plays a crucial role in tissue integration. The aim of this study was to evaluate the influence of topographic and biomimetic collagen modifications of a xenogenic bone substitute material (BSM) on in vitro platelet activation and cytokine release. MATERIAL AND METHODS Three types of xenogenic BSM were used. Two BSM with different levels of granularity (large granule BSM [XBSM/L], small granule BSM [XBSM/S]) and a BSM with collagen (XBSM/C). All three samples were incubated with platelet concentrate of four healthy volunteers at room temperature for 15 min. For all groups, highly thrombogenic collagen type 1 served as a reference and an additional preparation with platelet concentrate only (without XBSM) served as control. Platelet count and cytokine release of VEGF, PDGF, TGF-β, and IGF into the supernatant were measured. RESULTS Compared with the control group, XBSM/C showed an increase in platelets consumption (mean 41,000 ± 26,000/ml vs. 471,000 ± 38,000/ml), cytokine release of VEGF (mean 46.8 ± 7.2 pg/ml vs. 18.8 ± 2.7 pg/ml), and PDGF (mean 18,350 ± 795 pg/ml vs. 2726 ± 410 pg/ml) but not IGF (194,728 ± 51,608 pg/ml vs. 1,333,911 ± 35,314 pg/ml). There was also an increase in cytokine release of TGF-ß in XBSM/C compared with XBSM/S (77,188 ± 27,413 pg/ml vs. 38,648 ± 13,191 pg/ml), but no such difference when compared with XBSM/L (77,188 ± 27,413 pg/ml vs. 53,309 ± 29,430 pg/ml). XBSM/L showed higher platelets consumption (301,000 ± 45,000 vs. 415,000 ± 98,000) and a higher cytokine release of PDGF (3511 ± 247 pg/ml vs. 3165 ± 78 pg/ml) compared with XBSM/S. There was no distinct difference in the levels of VEGF, TGF-ß, and IGF between XBSM/L and XBSM/S. CONCLUSIONS Topographic as well as biomimetic modifications of the xenogenic BSM showed an increased platelet activation and cytokine release in vitro. This effect on the intrinsic healing cascade could result in comparable enhanced soft- and hard-tissue regeneration in vivo.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Harvard Medical School, Boston, MA, USA; Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
15
|
Chan G, Nogalski MT, Stevenson EV, Yurochko AD. Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy for viral dissemination. J Leukoc Biol 2012; 92:743-52. [PMID: 22715139 DOI: 10.1189/jlb.0112040] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HCMV pathogenesis is a direct consequence of the hematogenous dissemination of the virus to multiple host organ sites. The presence of infected monocytes in the peripheral blood and organs of individuals exhibiting primary HCMV infection have long suggested that these blood sentinels are responsible for mediating viral spread. Despite monocytes being "at the right place at the right time", their short lifespan and the lack of productive viral infection in these cells complicate this scenario of a monocyte-driven approach to viral dissemination by HCMV. However, our laboratory has provided evidence that HCMV infection is able to induce a highly controlled polarization of monocytes toward a unique and long-lived proinflammatory macrophage, which we have demonstrated to be permissive for viral replication. These observations suggest that HCMV has evolved as a distinct mechanism to induce select proinflammatory characteristics that provide infected monocytes with the necessary tools to mediate viral spread following a primary infection. In the absence of viral gene products during the early stages of infection, the process by which HCMV "tunes" the inflammatory response in infected monocytes to promote viral spread and subsequently, viral persistence remains unclear. In this current review, we focus on the viral entry process of HCMV and the potential role of receptor-ligand interactions in modulating monocyte biology. Specifically, we examine the signaling pathways initiated by the distinct combination of cellular receptors simultaneously engaged and activated by HCMV during viral entry and how the acquisition of this distinct signalsome results in a nontraditional activation of monocytes leading to the induction of the unique, functional attributes observed in monocytes following HCMV infection.
Collapse
Affiliation(s)
- Gary Chan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | | |
Collapse
|
16
|
Hyacinth HI, Gee BE, Adamkiewicz TV, Adams RJ, Kutlar A, Stiles JK, Hibbert JM. Plasma BDNF and PDGF-AA levels are associated with high TCD velocity and stroke in children with sickle cell anemia. Cytokine 2012; 60:302-8. [PMID: 22704695 DOI: 10.1016/j.cyto.2012.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 02/02/2023]
Abstract
Sickle cell anemia (SCA) associated cerebrovascular disease includes vascular remodeling, abnormal cerebral blood flow (CBF) and infarction. We studied the relationships between plasma brain derived neurotropic factor (BDNF), platelet derived growth factors (PDGF-AA and -AB/BB) and high trans-cranial Doppler (TCD) velocity, an indication of CBF velocity. Baseline plasma samples from 39 children (19 SCA with abnormal/high TCD [SATCD], 13 SCA with normal TCD [SNTCD] and 7 healthy non-SCA), were assayed for BDNF, PDGF-AA and -AB/BB plus 11 other cytokines. The sensitivity, specificity and usefulness of these biomarkers for stroke prediction was investigated. All subject groups were of similar age and gender distribution. Mean BDNF was significantly higher among SATCD than SNTCD (p=0.004) as was mean PDGF-AA (p=0.001). Similarly, mean PDGF-AA was higher among SCA subjects who developed stroke than those who did not (p=0.012). Elevated BDNF and PDGF-AA were good predictors of the presence of abnormally high CBF velocity and were both associated with severity of anemia. Elevated PDGF-AA predicted risk for stroke development. Stroke incidence and high TCD velocity were associated with elevated BDNF and PDGF-AA. These findings suggest a role for BDNF and PDGF-AA in the patho-physiological mechanism of cerebrovascular disease in SCA.
Collapse
Affiliation(s)
- Hyacinth I Hyacinth
- Genomics and Hemoglobinopathies Training Program, Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hee CK, Dines JS, Solchaga LA, Shah VR, Hollinger JO. Regenerative tendon and ligament healing: opportunities with recombinant human platelet-derived growth factor BB-homodimer. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:225-34. [PMID: 22145770 DOI: 10.1089/ten.teb.2011.0603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intrinsic tendon healing in response to injury is a reparative process that often results in formation of scar tissue with functional and mechanical properties inferior to those of the native tendon. Development of therapies that can promote regenerative, rather than reparative, healing hold the promise of improving patient recovery from tendon and ligament injuries by producing tissue that is morphologically and functionally equivalent to the native tissue. One therapeutic approach that has been a frequent topic of investigation in the preclinical literature is the use of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) to augment tendon and ligament repair. The chemotactic, mitogenic, and pro-angiogenic properties of rhPDGF-BB have been shown to result in recruitment and proliferation of tenogenic cells and a commensurate boost in extracellular matrix deposition and organization, improving the morphological and biomechanical properties of healing tendons and ligaments. The outcomes of the preclinical studies reviewed here strongly suggest that rhPDGF-BB will provide a new therapeutic opportunity to improve the treatment of injured tendons and ligaments.
Collapse
|
18
|
Human cytomegalovirus-regulated paxillin in monocytes links cellular pathogenic motility to the process of viral entry. J Virol 2010; 85:1360-9. [PMID: 21084488 DOI: 10.1128/jvi.02090-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have established that human cytomegalovirus (HCMV) infection modulates the biology of target primary peripheral blood monocytes, allowing HCMV to use monocytes as "vehicles" for its systemic spread. HCMV infection of monocytes results in rapid induction of phosphatidylinositol-3-kinase [PI(3)K] and NF-κB activities. Integrins, which are upstream of the PI(3)K and NF-κB pathways, were shown to be involved in HCMV binding to and entry into fibroblasts, suggesting that receptor ligand-mediated signaling following viral binding to integrins on monocytes could trigger the functional changes seen in infected monocytes. We now show that integrin engagement and the activation of the integrin/Src signaling pathway are essential for the induction of HCMV-infected monocyte motility. To investigate how integrin engagement by HCMV triggers monocyte motility, we examined the infected-monocyte transcriptome and found that the integrin/Src signaling pathway regulates the expression of paxillin, which is an important signal transducer in the regulation of actin rearrangement during cell adhesion and movement. Functionally, we observed that paxillin is activated via the integrin/Src signaling pathway and is required for monocyte motility. Because motility is intimately connected to cellular cytoskeletal organization, a process that is also important in viral entry, we investigated the role paxillin regulation plays in the process of viral entry into monocytes. New results confirmed that HCMV entry into target monocytes was significantly reduced in cells deficient in paxillin expression or the integrin/Src/paxillin signaling pathway. From our data, HCMV-cell interactions emerge as an essential trigger for the cellular changes that allow for HCMV entry and hematogenous dissemination.
Collapse
|
19
|
Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. Proc Natl Acad Sci U S A 2009; 106:22369-74. [PMID: 20018733 DOI: 10.1073/pnas.0908787106] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) rapidly induces a mobile and functionally unique proinflammatory monocyte following infection that is proposed to mediate viral spread. The cellular pathways used by HCMV to initiate these biological changes remain unknown. Here, we document the expression of the epidermal growth factor receptor (EGFR) on the surface of human peripheral blood monocytes but not on other blood leukocyte populations. Inhibition of EGFR signaling abrogated viral entry into monocytes, indicating that EGFR can serve as a cellular tropism receptor. Moreover, HCMV-activated EGFR was required for the induction of monocyte motility and transendothelial migration, two biological events required for monocyte extravasation into peripheral tissue, and thus viral spread. Transcriptome analysis revealed that HCMV-mediated EGFR signaling up-regulated neural Wiskott-Aldrich syndrome protein (N-WASP), an actin nucleator whose expression and function are normally limited in leukocytes. Knockdown of N-WASP expression blocked HCMV-induced but not phorbol 12-myristate 13-acetate (PMA)-induced monocyte motility, suggesting that a switch to and/or the distinct use of a new actin nucleator controlling motility occurs during HCMV infection of monocytes. Together, these data provide evidence that EGFR plays an essential role in the immunopathobiology of HCMV by mediating viral entry into monocytes and stimulating the aberrant biological activity that promotes hematogenous dissemination.
Collapse
|
20
|
Gebhard C, Akhmedov A, Mocharla P, Angstenberger J, Sahbai S, Camici GG, Lüscher TF, Tanner FC. PDGF-CC induces tissue factor expression: role of PDGF receptor alpha/beta. Basic Res Cardiol 2009; 105:349-56. [PMID: 19795151 DOI: 10.1007/s00395-009-0060-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/17/2009] [Accepted: 09/01/2009] [Indexed: 11/25/2022]
Abstract
Tissue factor (TF) is the principal trigger of the coagulation cascade and involved in arterial thrombus formation. Platelet-derived growth factor CC (PDGF-CC) is a recently discovered member of the PDGF family released upon platelet activation. This study assesses the impact of PDGF-CC on TF expression in human cells. PDGF-CC concentration-dependently induced TF expression by 2.5-fold in THP-1 cells, by 2.0-fold in human peripheral blood monocytes, by 1.4-fold in vascular smooth muscle cells, and by 2.6-fold in microvascular endothelial cells, but did not affect TF expression in aortic endothelial cells. A similar pattern was observed with PDGF-BB. In contrast, PDGF-AA did not alter TF expression in THP-1 cells. TF whole cell activity was induced following stimulation with PDGF-BB and PDGF-CC in THP-1 cells. Real-time polymerase chain reaction revealed that PDGF-CC induced TF mRNA. PDGF-CC transiently activated p42/44 MAP kinase [extracellular signal-regulated kinase (ERK)], while phosphorylation of the MAP kinases c-Jun NH(2)-terminal kinase (JNK) and p38 remained unaffected. PD98059, a specific inhibitor of ERK phosphorylation, but not the p38 inhibitor SB203580 or the JNK inhibitor SP600125 prevented PDGF-CC induced TF expression in a concentration-dependent manner. The effect of PDGF-CC was antagonized by both PDGF receptor alpha and PDGF receptor beta neutralizing antibodies; in contrast, PDGF-BB was only inhibited by PDGF receptor beta blocking antibody. PDGF receptor alpha and PDGF receptor beta inhibition prevented PDGF-CC-induced ERK phosphorylation. PDGF-CC induces TF expression via activation of alpha/beta receptor heterodimers and an ERK-dependent signal transduction pathway.
Collapse
Affiliation(s)
- Cathérine Gebhard
- Cardiovascular Research, Physiology Institute, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Verstraelen S, Nelissen I, Hooyberghs J, Witters H, Schoeters G, Van Cauwenberge P, Van Den Heuvel R. Gene profiles of THP-1 macrophages after in vitro exposure to respiratory (non-)sensitizing chemicals: Identification of discriminating genetic markers and pathway analysis. Toxicol In Vitro 2009; 23:1151-62. [DOI: 10.1016/j.tiv.2009.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/04/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022]
|
22
|
Abstract
Uveal melanoma is refractory to chemotherapy. The receptor tyrosine kinase inhibitor, imatinib mesylate, has demonstrated antiproliferative effects against uveal melanoma cells in vitro. The effects of imatinib mesylate, alone and combined with the alklyating agent, temozolomide, were examined in vivo as well as in vitro. Proliferation and angiogenic factor production of human uveal melanoma cell lines in response to imatinib mesylate and temozolomide were examined in vitro. Tumor growth, angiogenic factor production, tumor interstitial fluid pressure, and stroma constituents in response to imatinib mesylate and temozolomide were examined in vivo in mice bearing human uveal melanoma xenografts. Imatinib mesylate in vitro antagonized the antiproliferative effects of temozolomide and increased the production of angiogenic factors. In contrast, pretreatment with imatinib mesylate in vivo could improve the antitumor activity of temozolomide. Imatinib mesylate in vivo decreased the production of angiogenic factors in the tumor stroma and tumor interstitial fluid pressure. These effects were transient. Increases in angiogenic factors, interstitial fluid pressure, and tumor infiltrating macrophages were observed with continued imatinib mesylate treatment in vivo. The antitumor effects of imatinib mesylate can vary in vivo when compared with in vitro. Imatinib mesylate can both positively and negatively modify host-tumor interactions in uveal melanoma.
Collapse
|
23
|
Zurita AJ, Jonasch E, Wu HK, Tran HT, Heymach JV. Circulating biomarkers for vascular endothelial growth factor inhibitors in renal cell carcinoma. Cancer 2009; 115:2346-54. [PMID: 19402074 DOI: 10.1002/cncr.24228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, there has been significant progress in the clinical development and application of antiangiogenic therapies in renal cell carcinomas, particularly inhibitors of the vascular endothelial growth factor (VEGF) pathway. Despite this progress, no validated methods are currently available for identifying which patients are most likely to respond to treatment or experience toxic effects, selecting the optimal dose, or determining whether the intended molecular target has been effectively inhibited. However, recent studies have suggested that some of the biomarkers currently under investigation in clear cell renal cell carcinoma for VEGF pathway inhibitors are promising. These biomarkers include circulating proangiogenic factors and receptors; markers of hypoxia and endothelial damage; and cellular populations in peripheral blood, such as circulating endothelial cells. Further preclinical and translational validation studies are still needed to determine their practical utility in the clinical setting.
Collapse
Affiliation(s)
- Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1374, Houston, TX 77030-4009, USA.
| | | | | | | | | |
Collapse
|
24
|
Agis H, Bauer M, Knebl G, Watzek G, Gruber R. Effects of platelet-derived growth factor isoforms on plasminogen activation by periodontal ligament and gingival fibroblasts. J Periodontal Res 2008; 43:334-42. [PMID: 18447857 DOI: 10.1111/j.1600-0765.2007.01038.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Platelet-derived growth factor isoforms and components of the plasminogen activator system are expressed at higher levels during periodontal regeneration. Recombinant platelet-derived growth factor-BB is approved for the treatment of periodontal defects. In the present study we investigated the effect of platelet-derived growth factor isoforms on the plasminogen activator system in periodontal fibroblasts. MATERIAL AND METHODS Human periodontal ligament fibroblasts and gingival fibroblasts were exposed to platelet-derived growth factor isoforms. Changes in urokinase-type plasminogen activator, tissue-type plasminogen activator, plasminogen activator inhibitor-1 and plasminogen activator inhibitor-2 transcript levels by platelet-derived growth factor-BB were monitored with a quantitative reverse transcription-polymerase chain reaction. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 protein levels were assessed by immunoassays. The effects of platelet-derived growth factor-BB on mitogen-activated protein kinase and phosphoinositol-3 kinase/Akt signaling were investigated by western blot and inhibitor studies. Casein zymography and kinetic assays revealed the size and activity, respectively, of the plasminogen activators. RESULTS We found that incubation of periodontal ligament fibroblasts and gingival fibroblasts with platelet-derived growth factor-BB resulted in enhanced levels of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 transcripts, but not of tissue-type plasminogen activator and plasminogen activator inhibitor-2. Platelet-derived growth factor-BB also increased urokinase-type plasminogen activator and plasminogen activator inhibitor-1 release into the culture medium. Phosphorylation of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and Akt was observed in fibroblasts of both origin. Inhibition of phosphoinositol-3 kinase signaling abrogated the platelet-derived growth factor-BB effect on plasminogen activator inhibitor-1 production. Casein zymography revealed enzymatic activity of the urokinase-type plasminogen activator in cell-conditioned media and lysates of periodontal ligament fibroblasts and gingival fibroblasts. Exposure of gingival fibroblasts, but not of periodontal ligament fibroblasts, to platelet-derived growth factor isoforms moderately increased total plasminogen activation in the medium. CONCLUSION These findings suggest that periodontal ligament fibroblasts attempt to maintain an equilibrium of the plasminogen activator system in the presence of platelet-derived growth factor isoforms.
Collapse
Affiliation(s)
- H Agis
- Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
25
|
Elwell CA, Ceesay A, Kim JH, Kalman D, Engel JN. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog 2008; 4:e1000021. [PMID: 18369471 PMCID: PMC2267011 DOI: 10.1371/journal.ppat.1000021] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 02/01/2008] [Indexed: 11/19/2022] Open
Abstract
To elucidate the mechanisms involved in early events in Chlamydia trachomatis infection, we conducted a large scale unbiased RNA interference screen in Drosophila melanogaster S2 cells. This allowed identification of candidate host factors in a simple non-redundant, genetically tractable system. From a library of 7,216 double stranded RNAs (dsRNA), we identified ∼226 host genes, including two tyrosine kinases, Abelson (Abl) kinase and PDGF- and VEGF-receptor related (Pvr), a homolog of the Platelet-derived growth factor receptor (PDGFR). We further examined the role of these two kinases in C. trachomatis binding and internalization into mammalian cells. Both kinases are phosphorylated upon infection and recruited to the site of bacterial attachment, but their roles in the infectious process are distinct. We provide evidence that PDGFRβ may function as a receptor, as inhibition of PDGFRβ by RNA interference or by PDGFRβ neutralizing antibodies significantly reduces bacterial binding, whereas depletion of Abl kinase has no effect on binding. Bacterial internalization can occur through activation of PDGFRβ or through independent activation of Abl kinase, culminating in phosphorylation of the Rac guanine nucleotide exchange factor (GEF), Vav2, and two actin nucleators, WAVE2 and Cortactin. Finally, we show that TARP, a bacterial type III secreted actin nucleator implicated in entry, is a target of Abl kinase. Together, our results demonstrate that PDGFRβ and Abl kinases function redundantly to promote efficient uptake of this obligate intracellular parasite. Chlamydia trachomatis infections are a worldwide problem; they are the leading cause of preventable blindness in developing nations and the most common cause of sexually transmitted disease in the Western world. Binding and entry into host cells are critical steps to the pathogenesis of this obligate intracellular parasite; however little is known regarding the mechanism of these processes. In this work, we describe a large scale RNA interference screen to identify host factors essential for early steps in C. trachomatis infection. We discover that the Platelet Derived Growth Factor Receptor β (PDGFRβ) can function as a receptor for C. trachomatis, and that activation of both PDGFRβ and Abl kinase signaling pathways by C. trachomatis leads to phosphorylation of a Rac guanine nucleotide exchange factor, Vav2, and several actin nucleators, including WAVE2, Cortactin, and TARP, a Chlamydia type III secreted effector. Our work suggests a model of redundant activation of PDGFRβ and Abl kinase upon C. trachomatis binding that culminates in cytoskeletal rearrangements that modulate efficient uptake of this obligate intracellular parasite.
Collapse
Affiliation(s)
- Cherilyn A. Elwell
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Alhaji Ceesay
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jung Hwa Kim
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Joanne N. Engel
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 2008; 90 Suppl 1:48-54. [PMID: 18292357 DOI: 10.2106/jbjs.g.01231] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The abilities of bone to remodel, fractures to repair, and bone grafts to incorporate are all fundamental reflections of the bone remodeling cycle. This process is characterized by the recruitment and differentiation of osteoblastic and osteoclastic cell populations, whose cellular activities are coordinated and regulated by an elaborate system of growth factors and cytokines. One of the crucial biological factors responsible for reparative osseous activity is platelet-derived growth factor (PDGF). The potent stimulatory effects of PDGF as a chemoattractant and mitogen for mesenchymal cells (including osteogenic cells), along with its ability to promote angiogenesis, have been demonstrated in a variety of preclinical models predicting maxillofacial, spine and appendicular skeletal, and soft-tissue applications. The biological profile of PDGF, including its ability to recruit osteoprogenitor cells, makes it particularly suited to address the skeletal defects that are seen with comorbid conditions such as osteoporosis, diabetes, and the effects of smoking. The clinical success and safety that have been demonstrated with use of recombinant human PDGF (rhPDGF) in the repair of periodontal defects have led to U.S. Food and Drug Administration (FDA) approval of rhPDGF for this indication. Ongoing pilot and pivotal trials in the United States and internationally will continue to clarify the promising role of PDGF in the treatment of challenging skeletal disorders.
Collapse
Affiliation(s)
- Jeffrey O Hollinger
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, PO Box 208071, New Haven, CT 06520-8071, USA
| | | | | | | | | |
Collapse
|
27
|
Norden-Zfoni A, Desai J, Manola J, Beaudry P, Force J, Maki R, Folkman J, Bello C, Baum C, DePrimo SE, Shalinsky DR, Demetri GD, Heymach JV. Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin Cancer Res 2007; 13:2643-50. [PMID: 17473195 DOI: 10.1158/1078-0432.ccr-06-0919] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE There is an unmet need for noninvasive markers to measure the biological effects of targeted agents, particularly those inhibiting the vascular endothelial growth factor (VEGF) receptor (VEGFR) pathway, and identify patients most likely to benefit from treatment. In this study, we investigated potential blood-based biomarkers for SU11248 (sunitinib malate), a multitargeted tyrosine kinase inhibitor, in patients with metastatic imatinib-refractory gastrointestinal stromal tumors. EXPERIMENTAL DESIGN Patients (n=73) enrolled in a phase I/II trial received SU11248 daily for 14 or 28 days followed by 14 days without treatment per cycle. Clinical benefit was defined as progression-free survival of >6 months. We assessed plasma markers, including VEGF and soluble VEGFR-2 (sVEGFR-2), and two cellular populations bearing VEGF receptors: monocytes and, in a subset of patients, mature circulating endothelial cells (CEC). RESULTS Compared to patients with progressive disease, patients with clinical benefit had significantly greater increases in CECs (0.52 versus -0.01 CEC/microL/d, P=0.03) and smaller decreases in monocyte levels (47% versus 60%, P=0.007) during cycle 1. VEGF increased by 2.2-fold and sVEGFR-2 decreased 25% during the first 2 weeks of treatment. Neither plasma marker correlated with clinical outcome although a modest inverse correlation was observed between sVEGFR-2 changes and plasma drug levels. Monocytes, VEGF, and sVEGFR-2 all rebounded towards baseline off treatment. CONCLUSIONS Monocytes, VEGF, and sVEGFR-2 were consistently modulated by treatment, suggesting that they may serve as pharmacodynamic markers for SU11248. Changes in CECs and monocytes, but not the plasma markers, differed between the patients with clinical benefit and those with progressive disease. These end points merit further investigation in future trials to determine their utility as markers of SU11248 activity and clinical benefit in gastrointestinal stromal tumors and other tumor types.
Collapse
|
28
|
Dhillon NK, Sui Y, Pinson D, Li S, Dhillon S, Tawfik O, Callen S, Nemon O, Narayan O, Buch S. Upregulation of expression of platelet-derived growth factor and its receptor in pneumonia associated with SHIV-infected macaques. AIDS 2007; 21:307-16. [PMID: 17255737 DOI: 10.1097/qad.0b013e328012c35a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND HIV-associated pulmonary disorders are the most frequent cause of AIDS-related deaths. Rhesus macaques infected with SIV-HIV (SHIV) recapitulate the human HIV-1 lung disease and provide an excellent working model to study the pathogenesis of the human syndrome. Lungs of macaques with SHIV-associated pneumonia have pathology involving macrophage and T cell infiltration that is often accompanied with concurrent opportunistic infections. OBJECTIVE To explore the relationship between SHIV-associated respiratory disease and the expression of platelet-derived growth factor (PDGF) B chain (PDGF-B) and its cognate receptors, PDGF-Ralpha and PDGF-Rbeta, which have been implicated in chronic inflammatory processes. METHODS Lung tissues from 10 SHIV-infected rhesus macaques were evaluated for pathological changes and correlation of these lesions with PDGF-B/PDGF-R expression by real-time reverse transcriptase polymerase chain reaction and immunohistochemistry. RESULTS Virus-associated pneumonia was associated with virus replication in macrophages in the lungs, enhanced recruitment of macrophages and mononuclear cells into the organ, and, occasionally, fibrosis. These changes were accompanied by upregulation of PDGF-B and its cognate receptors in the diseased tissue. Confocal microscopy identified SHIV-infected macrophages as one of the major cell types expressing PDGF-B and PDGF-Ralpha/beta in the affected lungs. CONCLUSION These results suggest that PDGF and its cognate receptors play a critical role in the pathogenesis of pulmonary disease associated with this virus.
Collapse
Affiliation(s)
- Navneet K Dhillon
- Department of Microbiology, Immunology and Molecular Genetics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 2006; 81:1241-57. [PMID: 16970222 DOI: 10.4065/81.9.1241] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelet-derived growth factor (PDGF) is mainly believed to be an important mitogen for connective tissue, especially for fibroblasts that serve in wound healing. However, PDGF also has important roles during embryonal development, and its overexpression has been linked to different types of fibrotic disorders and malignancies. Platelet-derived growth factor is synthesized by many different cell types, and its expression is broad. Its synthesis is in response to external stimuli, such as exposure to low oxygen tension, thrombin, or stimulation by other cytokines and growth factors. In addition, PDGF may function in autocrine stimulation of tumor cells, regulation of interstitial fluid pressure, and angiogenesis. Recently, several drugs were developed that are potent inhibitors of the tyrosine kinase activity of PDGF receptors. Thus, it is important to understand the physiology of PDGF and its receptors and the role of PDGF in different diseases. This review summarizes the physiologic activity of PDGF, the expression of PDGF during embryonal development, and the roles of PDGF expression in nonmalignant disease and in different tumors.
Collapse
Affiliation(s)
- Ricardo H Alvarez
- Department of Internal Medicine, The University of Texas at Houston Medical School, Houston, USA
| | | | | |
Collapse
|
30
|
Tang J, Kozaki K, Farr AG, Martin PJ, Lindahl P, Betsholtz C, Raines EW. The absence of platelet-derived growth factor-B in circulating cells promotes immune and inflammatory responses in atherosclerosis-prone ApoE-/- mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:901-12. [PMID: 16127167 PMCID: PMC1698743 DOI: 10.1016/s0002-9440(10)62061-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Both innate and adaptive immunity contribute to the progression of inflammatory-fibrotic lesions of atherosclerosis. Although platelet-derived growth factor (PDGF)-B has been investigated as a stimulant of smooth muscle cells in vascular diseases, its effects on the immune response during disease have not been evaluated in vivo. We used hematopoietic chimeras generated after lethal irradiation of ApoE-/- recipients to test the role of PDGF in atherosclerosis. Monocyte accumulation in early atherosclerotic lesions increased 1.9-fold in ApoE-/-/PDGF-B-/- chimeras. Lymphocytes from null chimeras showed a 1.6- to 2.0-fold increase in the number of activated CD4(+) T cells and a 2.5-fold elevation of interferon-gamma-secreting CD4(+) T cells on ex vivo challenge with modified low-density lipoprotein. Splenocyte transcript levels were also altered with a twofold decrease in interleukin-10 and 1.7- and 3.0-fold increases in interleukin-18 and CCR 5, respectively. These cellular and molecular changes were consistent with a shift to a proinflammatory phenotype in null chimeras. Our data also demonstrated for the first time the presence of a recently discovered family of negative regulators of innate and adaptive immunity, the suppressors of cytokine signaling (SOCS), in developing atherosclerotic lesions. Thus, our studies identify two independent negative immune regulatory pathways-PDGF-B and SOCS-that may help limit lesion expansion.
Collapse
Affiliation(s)
- Jingjing Tang
- Department of Pathology, University Of Washington, Seattle, WA 98104-2499, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Platelet-derived growth factor (PDGF) was identified in a search for serum factors that stimulate smooth muscle cell (SMC) proliferation. During the development of lesions of atherosclerosis that can ultimately lead to vessel occlusion, SMC are stimulated by inflammatory factors to migrate from their normal location in the media. They accumulate within the forming lesion where they contribute to lesion expansion by proliferation and deposition of extracellular matrix. Different genetic manipulations in vascular cells combined with various inhibitory strategies have provided strong evidence for PDGF playing a prominent role in the migration of SMC into the neointima following acute injury and in atherosclerosis. Other activities of PDGF identified in vivo suggest additional functions for PDGF in the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Elaine W Raines
- Department of Pathology, Harborview Medical Center, University of Washington, Box 359675, 325 9th Avenue, Seattle, WA 98104, USA.
| |
Collapse
|
32
|
Abstract
This review focuses on the role of monocytes in the early phase of atherogenesis, before foam cell formation. An emerging consensus underscores the importance of the cellular inflammatory system in atherogenesis. Initiation of the process apparently hinges on accumulating low-density lipoproteins (LDL) undergoing oxidation and glycation, providing stimuli for the release of monocyte attracting chemokines and for the upregulation of endothelial adhesive molecules. These conditions favor monocyte transmigration to the intima, where chemically modified, aggregated, or proteoglycan- or antibody-complexed LDL may be endocytotically internalized via scavenger receptors present on the emergent macrophage surface. The differentiating monocytes in concert with T lymphocytes exert a modulating effect on lipoproteins. These events propagate a series of reactions entailing generation of lipid peroxides and expression of chemokines, adhesion molecules, cytokines, and growth factors, thereby sustaining an ongoing inflammatory process leading ultimately to lesion formation. New data emerging from studies using transgenic animals, notably mice, have provided novel insights into many of the cellular interactions and signaling mechanisms involving monocytes/macrophages in the atherogenic processes. A number of these studies, focusing on mechanisms for monocyte activation and the roles of adhesive molecules, chemokines, cytokines and growth factors, are addressed in this review.
Collapse
Affiliation(s)
- Bjarne Osterud
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
33
|
Kozaki K, Kaminski WE, Tang J, Hollenbach S, Lindahl P, Sullivan C, Yu JC, Abe K, Martin PJ, Ross R, Betsholtz C, Giese NA, Raines EW. Blockade of platelet-derived growth factor or its receptors transiently delays but does not prevent fibrous cap formation in ApoE null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1395-407. [PMID: 12368212 PMCID: PMC1867295 DOI: 10.1016/s0002-9440(10)64415-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Platelet-derived growth factor (PDGF) is a potent stimulant of smooth muscle cell migration and proliferation in culture. To test the role of PDGF in the accumulation of smooth muscle cells in vivo, we evaluated ApoE -/- mice that develop complex lesions of atherosclerosis. Fetal liver cells from PDGF-B-deficient embryos were used to replace the circulating cells of lethally irradiated ApoE -/- mice. One month after transplant, all monocytes in PDGF-B -/- chimeras are of donor origin (lack PDGF), and no PDGF-BB is detected in circulating platelets, primary sources of PDGF in lesions. Although lesion volumes are comparable in the PDGF-B +/+ and -/- chimeras at 35 weeks, lesions in PDGF-B -/- chimeras contain mostly macrophages, appear less mature, and have a reduced frequency of fibrous cap formation as compared with PDGF-B +/+ chimeras. However, after 45 weeks, smooth muscle cell accumulation in fibrous caps is indistinguishable in the two groups. Comparison of elicited peritoneal macrophages by RNase protection assay shows an altered cytokine and cytokine receptor profile in PDGF-B -/- chimeras. ApoE -/- mice were also treated for up to 50 weeks with a PDGF receptor antagonist that blocks all three PDGF receptor dimers. Blockade of the PDGF receptors similarly delays, but does not prevent, accumulation of smooth muscle and fibrous cap formation. Thus, elimination of PDGF-B from circulating cells or blockade of PDGF receptors does not appear sufficient to prevent smooth muscle accumulation in advanced lesions of atherosclerosis.
Collapse
Affiliation(s)
- Koichi Kozaki
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- John T Reilly
- Molecular Haematology Unit, Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
35
|
Kaminski WE, Lindahl P, Lin NL, Broudy VC, Crosby JR, Hellström M, Swolin B, Bowen-Pope DF, Martin PJ, Ross R, Betsholtz C, Raines EW. Basis of hematopoietic defects in platelet-derived growth factor (PDGF)-B and PDGF beta-receptor null mice. Blood 2001; 97:1990-8. [PMID: 11264163 DOI: 10.1182/blood.v97.7.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet-derived growth factor (PDGF)-B and PDGF beta-receptor (PDGFR beta) deficiency in mice is embryonic lethal and results in cardiovascular, renal, placental, and hematologic disorders. The hematologic disorders are described, and a correlation with hepatic hypocellularity is demonstrated. To explore possible causes, the colony-forming activity of fetal liver cells in vitro was assessed, and hematopoietic chimeras were demonstrated by the transplantation of mutant fetal liver cells into lethally irradiated recipients. It was found that mutant colony formation is equivalent to that of wild-type controls. Hematopoietic chimeras reconstituted with PDGF-B(-/-), PDGFR beta(-/-), or wild-type fetal liver cells show complete engraftment (greater than 98%) with donor granulocytes, monocytes, B cells, and T cells and display none of the cardiovascular or hematologic abnormalities seen in mutants. In mouse embryos, PDGF-B is expressed by vascular endothelial cells and megakaryocytes. After birth, expression is seen in macrophages and neurons. This study demonstrates that hematopoietic PDGF-B or PDGFR beta expression is not required for hematopoiesis or integrity of the cardiovascular system. It is argued that metabolic stress arising from mutant defects in the placenta, heart, or blood vessels may lead to impaired liver growth and decreased production of blood cells. The chimera models in this study will serve as valuable tools to test the role of PDGF in inflammatory and immune responses. (Blood. 2001;97:1990-1998)
Collapse
MESH Headings
- Anemia/embryology
- Anemia/genetics
- Anemia/metabolism
- Animals
- Blood Vessels/abnormalities
- Blood Vessels/embryology
- Bone Marrow Transplantation
- Embryonic and Fetal Development/genetics
- Erythroblastosis, Fetal/genetics
- Erythroblastosis, Fetal/metabolism
- Female
- Fetal Diseases/blood
- Fetal Diseases/genetics
- Fetal Diseases/pathology
- Fetal Heart/abnormalities
- Fetal Tissue Transplantation
- Genes, Lethal
- Genetic Complementation Test
- Genotype
- Hematopoiesis/physiology
- Hematopoietic Stem Cell Transplantation
- Inflammation
- Kidney/abnormalities
- Kidney/embryology
- Liver/cytology
- Liver/embryology
- Male
- Megakaryocytes/cytology
- Mice
- Mice, Knockout
- Neovascularization, Physiologic/genetics
- Placenta/physiopathology
- Pregnancy
- Proto-Oncogene Proteins c-sis/deficiency
- Proto-Oncogene Proteins c-sis/genetics
- Proto-Oncogene Proteins c-sis/physiology
- Radiation Chimera
- Receptor, Platelet-Derived Growth Factor beta/deficiency
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Specific Pathogen-Free Organisms
- Stress, Physiological/embryology
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
Collapse
Affiliation(s)
- W E Kaminski
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104-2499, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, and Department of Pathology, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
37
|
Crosby JR, Tappan KA, Seifert RA, Bowen-Pope DF. Chimera analysis reveals that fibroblasts and endothelial cells require platelet-derived growth factor receptorbeta expression for participation in reactive connective tissue formation in adults but not during development. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1315-21. [PMID: 10329583 PMCID: PMC1866587 DOI: 10.1016/s0002-9440(10)65384-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hypothesis that platelet-derived growth factor (PDGF) plays an important role in repair of connective tissue has been difficult to test experimentally, in part because the disruption of any of the PDGF ligand and receptor genes is embryonic lethal. We have developed a method that circumvents the embryonic lethality of the PDGF receptor (R)beta-/- genotype and minimizes the tendency of compensatory processes to mask the phenotype of gene disruption by comparing the behavior of wild-type and PDGFRbeta-/- cells within individual chimeric mice. This quantitative chimera analysis method has revealed that during development PDGFRbeta expression is important for all muscle lineages but not for fibroblast or endothelial lineages. Here we report that fibroblasts and endothelial cells, but not leukocytes, are dependent on PDGFRbeta expression during the formation of new connective tissue in and around sponges implanted under the skin. Even the 50% reduction in PDGFRbeta gene dosage in PDGFRbeta+/- cells reduces fibroblast and endothelial cell participation by 85%. These results demonstrate that the PDGFRbeta/PDGF B-chain system plays an important direct role in driving both fibroblast and endothelial cell participation in connective tissue repair, that cell behavior can be regulated by relatively small changes in PDGFRbeta expression, and that the functions served by PDGF in wound healing are different from the roles served during development.
Collapse
Affiliation(s)
- J R Crosby
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
38
|
Kitami Y, Fukuoka T, Okura T, Takata Y, Maguchi M, Igase M, Kohara K, Hiwada K. Molecular structure and function of rat platelet-derived growth factor beta-receptor gene promoter. J Hypertens 1998; 16:437-45. [PMID: 9797189 DOI: 10.1097/00004872-199816040-00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To understand the regulatory mechanism of platelet-derived growth factor beta-receptor gene expression. METHODS A 1.7 kb genomic fragment was obtained from a rat genomic library. After we had determined an entire sequence of this fragment, transcription start sites were determined both by primer extension analysis and by riboprobe mapping. We performed a functional promoter assay by using a dual-luciferase reporter system. Progressive 5'-deletions of the fragment and site-directed mutagenesis for the CCAAT motif located at -67 or -94 were used for the assay, and their promoter activities in vascular smooth muscle cells were assessed. Gel-mobility shift analysis was also performed for the CCAAT motif at -67. Effects of the upstream sequence spanning -310 through -120 on heterologous gene promoters were also investigated. RESULTS Multiple transcription start sites were observed in the 5'-flanking region, and the 1.7 kb sequence was actually active as a functional promoter in vascular smooth muscle cells. Two important sequences responsible for the basal transcriptional activity were identified by the functional promoter assay. One was the CCAAT motif at -67 which acts as a promoter itself, and the other was the upstream region spanning -310 through -210 which positively regulates the basal promoter activity. CONCLUSION The basal promoter activity of the rat platelet-derived growth factor beta-receptor gene is mainly regulated by the interaction or coordination of two sequences, the CCAAT motif and the upstream control element.
Collapse
Affiliation(s)
- Y Kitami
- The Second Department of Internal Medicine, Ehime University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Iihara K, Sasahara M, Hashimoto N, Hazama F. Induction of platelet-derived growth factor beta-receptor in focal ischemia of rat brain. J Cereb Blood Flow Metab 1996; 16:941-9. [PMID: 8784238 DOI: 10.1097/00004647-199609000-00018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our previous study on the ischemia-induced expression of platelet-derived growth factor (PDGF)-B chain in the rat brain prompted us to examine expression of PDGF beta-receptor in the ischemic brain. Focal ischemia was induced by permanent tandem occlusion of middle cerebral and common carotid arteries in spontaneously hypertensive rats. Northern analysis revealed that ischemia significantly increased expression of the receptor in the ischemic neocortex at 4 and 7 days (328 +/- 109%; 323 +/- 119%, respectively, over control: n = 4, p < 0.05 versus sham). Neurons in infarct transiently showed increased immunostaining for the receptor at 1 day, whereas neurons in periinfarct area showed sustained and increased immunoreactivity from 1 to 14 days post-ischemia. Reactive glial cells in the external capsule and in molecular layer of the neocortex adjacent to infarct possessed enhanced immunoreactivity from 1 to 21 days. Furthermore, marked immunoreactivity was observed on brain macrophages in infarct and on the abluminal side of capillaries surrounding infarct from 4 to 7 days. These results demonstrated that ischemic insult increases expression of the PDGF beta-receptor at both the mRNA and protein level in the brain, suggesting its important role in cellular cascade of the ischemic brain.
Collapse
Affiliation(s)
- K Iihara
- Department of Cerebrovascular Surgery, National Cardiovascular Center, Osaka, Japan
| | | | | | | |
Collapse
|
40
|
Li W, Pierce JH. Protein kinase C-delta, an important signaling molecule in the platelet-derived growth factor beta receptor pathway. Curr Top Microbiol Immunol 1996; 211:55-65. [PMID: 8585964 DOI: 10.1007/978-3-642-85232-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- W Li
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
41
|
Iacopino AM. Diabetic periodontitis: possible lipid-induced defect in tissue repair through alteration of macrophage phenotype and function. Oral Dis 1995; 1:214-29. [PMID: 8705829 DOI: 10.1111/j.1601-0825.1995.tb00187.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Diabetes mellitus is a major health problem in the United States affecting approximately 13 million people. The five 'classic' complications which have historically been associated with the condition are microangiopathy, neuropathy, nephropathy, microvascular disease, and delayed wound healing. Recently, periodontal disease (PD) has been declared the 'sixth' major complication of diabetes as diabetics demonstrate an increased incidence and severity of PD. The cellular and molecular basis for diabetic PD is unknown. HYPOTHESIS Recent evidence suggests that PD and delayed dermal wound healing may be manifestations of the same general systemic deficit in diabetes involving impairment of the cellular and molecular signal of wounding via alterations in macrophage phenotype. Diabetes-induced hyperlipidemia may interfere with the normal cellular and molecular signal of wounding by alteration of macrophage function and subsequent dysregulation of cytokines at the wound site. RESULTS Preliminary data in both animal models and humans suggests that hyperglycemia, in combination with elevations of serum low density lipoproteins and triglycerides, leads to formation of advanced glycation end products (AGEs) which may alter macrophage phenotype. This may be responsible for dysregulation of macrophage cytokine production and increased inflammatory tissue destruction and alveolar bone loss. IMPLICATIONS Future investigations will consider diabetic PD in the context of a generalized systemic wound healing deficit that manifests as PD in the face of constant pathologic wounding of the gingiva (bacterial plaque) or delayed dermal wound healing in instances of periodic traumatic wounding to other parts of the body. These types of studies will provide information concerning defective tissue repair in diabetics that will have clinical relevance for the understanding of PD and delayed dermal healing as well as applications of appropriate and specific therapies.
Collapse
Affiliation(s)
- A M Iacopino
- Department of Biomedical Sciences/Restorative Dentistry, Baylor College of Dentistry, Dallas, Texas 75266-0677, USA
| |
Collapse
|
42
|
Inaba T, Kawamura M, Gotoda T, Harada K, Shimada M, Ohsuga J, Shimano H, Akanuma Y, Yazaki Y, Yamada N. Effects of platelet-derived growth factor on the synthesis of lipoprotein lipase in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 1995; 15:522-8. [PMID: 7749865 DOI: 10.1161/01.atv.15.4.522] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lipoprotein lipase (LPL), which is secreted by the two predominant cell types in atherosclerotic plaque, macrophages and smooth muscle cells, may be involved in atherosclerosis by generating atherogenic remnant lipoproteins. We investigated the effects of platelet-derived growth factor (PDGF)-BB on the synthesis of LPL by human monocyte-derived macrophages. These cells were cultured in the presence of PDGF-BB for 8 days, after which the enzyme activity, mass, and mRNA levels of LPL were determined. The effect of PDGF-BB was time-dependent and dose-dependent at concentrations of 1 to 10 ng/mL. At 10 ng/mL PDGF-BB enhanced twofold to 2.3-fold the secretion of LPL, and a pulse-labeling study with [35S]methionine revealed that 10 ng/mL PDGF-BB significantly increased the synthesis of LPL. Northern blotting analysis showed that the LPL mRNA level increased dose dependently in macrophages treated with PDGF-BB, and 10 ng/mL PDGF-BB enhanced twofold the expression of LPL mRNA. The protein kinase C inhibitor staurosporine suppressed the effect of PDGF-BB on LPL activity. These results indicate that PDGF-BB stimulated transcription of the LPL gene in human monocyte-derived macrophages through protein kinase C activation and resulted in an increased synthesis of LPL. Therefore, we hypothesize that the augmented synthesis of LPL by PDGF-BB modulates atherosclerosis by influencing lipoprotein metabolism in the vascular wall.
Collapse
Affiliation(s)
- T Inaba
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|