1
|
Yehya A, Azar J, Al-Fares M, Boeuf H, Abou-Kheir W, Zeineddine D, Hadadeh O. Cardiac differentiation is modulated by anti-apoptotic signals in murine embryonic stem cells. World J Stem Cells 2024; 16:551-559. [PMID: 38817332 PMCID: PMC11135258 DOI: 10.4252/wjsc.v16.i5.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Embryonic stem cells (ESCs) serve as a crucial ex vivo model, representing epiblast cells derived from the inner cell mass of blastocyst-stage embryos. ESCs exhibit a unique combination of self-renewal potency, unlimited proliferation, and pluripotency. The latter is evident by the ability of the isolated cells to differentiate spontaneously into multiple cell lineages, representing the three primary embryonic germ layers. Multiple regulatory networks guide ESCs, directing their self-renewal and lineage-specific differentiation. Apoptosis, or programmed cell death, emerges as a key event involved in sculpting and forming various organs and structures ensuring proper embryonic development. However, the molecular mechanisms underlying the dynamic interplay between differentiation and apoptosis remain poorly understood. AIM To investigate the regulatory impact of apoptosis on the early differentiation of ESCs into cardiac cells, using mouse ESC (mESC) models - mESC-B-cell lymphoma 2 (BCL-2), mESC-PIM-2, and mESC-metallothionein-1 (MET-1) - which overexpress the anti-apoptotic genes Bcl-2, Pim-2, and Met-1, respectively. METHODS mESC-T2 (wild-type), mESC-BCL-2, mESC-PIM-2, and mESC-MET-1 have been used to assess the effect of potentiated apoptotic signals on cardiac differentiation. The hanging drop method was adopted to generate embryoid bodies (EBs) and induce terminal differentiation of mESCs. The size of the generated EBs was measured in each condition compared to the wild type. At the functional level, the percentage of cardiac differentiation was measured by calculating the number of beating cardiomyocytes in the manipulated mESCs compared to the control. At the molecular level, quantitative reverse transcription-polymerase chain reaction was used to assess the mRNA expression of three cardiac markers: Troponin T, GATA4, and NKX2.5. Additionally, troponin T protein expression was evaluated through immunofluorescence and western blot assays. RESULTS Our findings showed that the upregulation of Bcl-2, Pim-2, and Met-1 genes led to a reduction in the size of the EBs derived from the manipulated mESCs, in comparison with their wild-type counterpart. Additionally, a decrease in the count of beating cardiomyocytes among differentiated cells was observed. Furthermore, the mRNA expression of three cardiac markers - troponin T, GATA4, and NKX2.5 - was diminished in mESCs overexpressing the three anti-apoptotic genes compared to the control cell line. Moreover, the overexpression of the anti-apoptotic genes resulted in a reduction in troponin T protein expression. CONCLUSION Our findings revealed that the upregulation of Bcl-2, Pim-2, and Met-1 genes altered cardiac differentiation, providing insight into the intricate interplay between apoptosis and ESC fate determination.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Mohamad Al-Fares
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Helene Boeuf
- Inserm, Biotis, U1026, University Bordeaux, Bordeaux F-33000, France
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Dana Zeineddine
- Rammal Rammal Lab, Physio-Toxicity Environmental Team, Faculty of Sciences, Lebanese University, Nabatieh 0000, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
2
|
Endoplasmic Reticulum Stress Signaling and Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232315186. [PMID: 36499512 PMCID: PMC9740965 DOI: 10.3390/ijms232315186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Besides protein processing, the endoplasmic reticulum (ER) has several other functions such as lipid synthesis, the transfer of molecules to other cellular compartments, and the regulation of Ca2+ homeostasis. Before leaving the organelle, proteins must be folded and post-translationally modified. Protein folding and revision require molecular chaperones and a favorable ER environment. When in stressful situations, ER luminal conditions or chaperone capacity are altered, and the cell activates signaling cascades to restore a favorable folding environment triggering the so-called unfolded protein response (UPR) that can lead to autophagy to preserve cell integrity. However, when the UPR is disrupted or insufficient, cell death occurs. This review examines the links between UPR signaling, cell-protective responses, and death following ER stress with a particular focus on those mechanisms that operate in neurons.
Collapse
|
3
|
Sharma R, Jindal R. In vivo genotoxic effects of commercial grade cypermethrin on fish peripheral erythrocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:204-214. [PMID: 35527348 DOI: 10.1002/em.22484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The study explicates the genotoxic effects of commercial grade cypermethrin on peripheral erythrocytes of Catla catla, chronically exposed to two environmentally relevant concentrations. The fish was treated with sub-lethal concentrations 0.12 μg/L and 0.41 μg/L (1/10th and /1/3rd of 96 h LC50 ) of cypermethrin for 45 days. DNA damage in the exposed fish was assessed using alkaline comet assay, presence of micronuclei (MN), erythrocyte nuclear and cytoplasmic abnormalities. Exposure to cypermethrin induced a dose-dependent increase in percent DNA damage, micronucleus frequency and erythrocyte abnormalities. Nuclear anomalies such as notched nuclei, lobed nuclei, bridged nuclei, and deformed nuclei; and cytoplasmic anomalies like anisochromasia, vacuolated cytoplasm, lobed cells, and echinocytes were observed. The findings revealed the genotoxic potential of commercial formulations pyrethroid cypermethrin at concentrations found in the environment and their potential deleterious effects on nontarget aquatic organisms.
Collapse
Affiliation(s)
- Ritu Sharma
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022; 479:357-384. [PMID: 35147165 DOI: 10.1042/bcj20210854] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.
Collapse
|
5
|
Soil Physicochemical Properties, Metal Deposition, and Ultrastructural Midgut Changes in Ground Beetles, Calosoma chlorostictum, under Agricultural Pollution. SUSTAINABILITY 2020. [DOI: 10.3390/su12124805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unsustainable agricultural practices that minimize soil organic matter can promote the removal of heavy metal pollutants into the food chain. Such polluted soils can release contaminants into the groundwater, which leads to accumulation in plant tissue that is transferred to animals, birds, insects, and humans. Biomonitors of soil pollution with heavy metals can be identified by the ground beetles Calosoma chlorostictum (Coleoptera: Carabidae) as bioindicators of soil quality and its yield sustainability. The experiment was performed on two sites in Zagazig City (30.62° N, 31.44° E), Egypt. The physicochemical parameters indicated that soil moisture and organic matter had the highest differences in the polluted agricultural soil compared to the reference soil. However, there were no significant differences in chloride content. The atomic absorption analysis exhibited the highest concentration recorded for arsenic (As) and the lowest for selenium (Se) in the polluted soil and the insect’s midgut. Meanwhile, the differences between heavy metal concentrations in the total soil and midgut of C. chlorostictum from current sites indicated that the highest differences were in aluminum (Al) and mercury (Hg), while arsenic (As) and cadmium (Cd) were the lowest. Furthermore, the correlation between heavy metal concentrations in the soil and insect midgut was highest in As, while the lowest correlation was noticed in Al. We used transmission electron microscopy (TEM) that showed a more considerable disturbance in the C. chlorostictum midgut epithelial layer collected from the agricultural area than in the insects collected from the reference area. Evident ultrastructural alterations showed a rupture and distortion of microvilli, destruction of the columnar and regenerative cells, large separation between epithelial cells, and stretching of the cellular axis, as a result of which the lumen became very narrow. Moreover, a lot of vacuoles with little enzyme secretion were observed in the columnar epithelial cells. In addition, other manifestations due to pollution with heavy metals such as a pyknotic nucleus with abnormal chromatin, cytoplasmic vacuolization, disruptions, and vacuolation of mitochondria were detected, as well as the appearance of electron-dense vesicles, a lot of lysosomes, large myelin figures, and dilation of the rough endoplasmic reticulum on account of soil contamination. Potential counteractive health influence in such applications could be avoided if the soil was adequately treated.
Collapse
|
6
|
Rudnik LAC, Farago PV, Manfron Budel J, Lyra A, Barboza FM, Klein T, Kanunfre CC, Nadal JM, Bandéca MC, Raman V, Novatski A, Loguércio AD, Zanin SMW. Co-Loaded Curcumin and Methotrexate Nanocapsules Enhance Cytotoxicity against Non-Small-Cell Lung Cancer Cells. Molecules 2020; 25:molecules25081913. [PMID: 32326159 PMCID: PMC7221560 DOI: 10.3390/molecules25081913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background: As part of the efforts to find natural alternatives for cancer treatment and to overcome the barriers of cellular resistance to chemotherapeutic agents, polymeric nanocapsules containing curcumin and/or methotrexate were prepared by an interfacial deposition of preformed polymer method. Methods: Physicochemical properties, drug release experiments and in vitro cytotoxicity of these nanocapsules were performed against the Calu-3 lung cancer cell line. Results: The colloidal suspensions of nanocapsules showed suitable size (287 to 325 nm), negative charge (-33 to -41 mV) and high encapsulation efficiency (82.4 to 99.4%). Spherical particles at nanoscale dimensions were observed by scanning electron microscopy. X-ray diffraction analysis indicated that nanocapsules exhibited a non-crystalline pattern with a remarkable decrease of crystalline peaks of the raw materials. Fourier-transform infrared spectra demonstrated no chemical bond between the drug(s) and polymers. Drug release experiments evidenced a controlled release pattern with no burst effect for nanocapsules containing curcumin and/or methotrexate. The nanoformulation containing curcumin and methotrexate (NCUR/MTX-2) statistically decreased the cell viability of Calu-3. The fluorescence and morphological analyses presented a predominance of early apoptosis and late apoptosis as the main death mechanisms for Calu-3. Conclusions: Curcumin and methotrexate co-loaded nanocapsules can be further used as a novel therapeutic strategy for treating non-small-cell lung cancer.
Collapse
Affiliation(s)
- Loanda Aparecida Cabral Rudnik
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Paulo Vitor Farago
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, 81020-430 Curitiba, Brazil;
| | - Jane Manfron Budel
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
- Correspondence: ; Tel.: +55-42-3220-3124
| | - Amanda Lyra
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Fernanda Malaquias Barboza
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Traudi Klein
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Carla Cristine Kanunfre
- Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil;
| | - Jessica Mendes Nadal
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | | | - Vijayasankar Raman
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Andressa Novatski
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Alessandro Dourado Loguércio
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Sandra Maria Warumby Zanin
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, 81020-430 Curitiba, Brazil;
| |
Collapse
|
7
|
Avelar Amado P, Fonsêca Castro AH, Samúdio Santos Zanuncio V, Stein VC, Brentan da Silva D, Alves Rodrigues Dos Santos Lima L. Assessment of allelopathic, cytotoxic, genotoxic and antigenotoxic potential of Smilax brasiliensis Sprengel leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110310. [PMID: 32061987 DOI: 10.1016/j.ecoenv.2020.110310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Smilax brasiliensis (Smilacaceae) is a native Brazilian plant found in the Cerrado biome and commonly used in folk medicine. The aim of this study was to evaluate the allelopathic, cytotoxic, genotoxic, and antigenotoxic potential of extract and fractions of Smilax brasiliensis leaves. Quercetin and rutin isomers were observed in the subfractions. The dichloromethane fraction (1000 μg/mL) decreased lettuce (Lactuca sativa) seed vigor, while and ethyl acetate and hydromethanol fractions (1000 μg/mL) affected the germination, and quercetin and rutin affected the vigor and germination of onion seeds. The extract, fractions, quercetin, and rutin inhibited or promoted lettuce hypocotyl and radicle growth. The extract and fractions inhibited onion hypocotyl growth at all concentrations. With regards to radicle growth, the results were diversified: growth was either inhibited or promoted. Rutin and quercetin inhibited onion hypocotyl and radicle growth at all concentrations. The extract and fractions of Smilax brasiliensis, rutin, and quercetin did not cause cytotoxic effect evaluated by mitotic index. The extract and fractions showed genotoxic effects. Quercetin and rutin did not cause genotoxic effects. On the other hand, the extract and fractions showed antigenotoxic effects at all tested concentrations, where they were able to revert chromosomal abnormalities caused by glyphosate. However, additional studies are required to evaluate the possible use of the S. brasiliensis leaf methanol extract and fractions as natural sources of bioherbicides.
Collapse
Affiliation(s)
- Paula Avelar Amado
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), 35501-296, Divinópolis, MG, Brazil
| | - Ana Hortência Fonsêca Castro
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), 35501-296, Divinópolis, MG, Brazil
| | - Vanessa Samúdio Santos Zanuncio
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil
| | - Vanessa Cristina Stein
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), 35501-296, Divinópolis, MG, Brazil
| | - Denise Brentan da Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil
| | | |
Collapse
|
8
|
Alvim TT, Martinez CBDR. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:85-93. [DOI: 10.1016/j.mrgentox.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
|
9
|
Galasso C, D'Aniello S, Sansone C, Ianora A, Romano G. Identification of Cell Death Genes in Sea Urchin Paracentrotus lividus and Their Expression Patterns during Embryonic Development. Genome Biol Evol 2019; 11:586-596. [PMID: 30698765 PMCID: PMC6394757 DOI: 10.1093/gbe/evz020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
Apoptosis and autophagy are fundamental mechanisms of programed cell death activated during protostome and deuterostome embryonic development, contributing to the creation and remodeling of different anatomical structures. Programed cell death has been investigated at morphological and biochemical levels, but there is a lack of information concerning gene expression of death factors during deuterostome embryonic development. In this study, we analyze the expression patterns of 13 genes involved in autophagy, extrinsic and intrinsic apoptosis during blastula, gastrula, and pluteus stages of the sea urchin Paracentrotus lividus embryonic development. Results suggested the occurrence of all death mechanisms investigated, highlighting the simultaneous involvement of apoptosis and autophagy during embryonic development. In particular, gastrula was the developmental stage where the majority of death genes were highly expressed. During gastrulation apoptotic processes are fundamental for tissue remodeling, such as cavity formation and removal of inner ectodermal cells. This is the first report that identifies a panel of cell death genes in the P. lividus genome and analyzes their expression variations during ontogenesis.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
10
|
Dou X, Chen L, Lei M, Zellmer L, Jia Q, Ling P, He Y, Yang W, Liao DJ. Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation. Int J Biol Sci 2018; 14:1800-1812. [PMID: 30443184 PMCID: PMC6231223 DOI: 10.7150/ijbs.26962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, “who dies” clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes.
Collapse
Affiliation(s)
- Xixi Dou
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P.R. China
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Qingwen Jia
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Wenxiu Yang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China.,Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| |
Collapse
|
11
|
Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn. Histochem Cell Biol 2017; 149:245-260. [DOI: 10.1007/s00418-017-1623-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2017] [Indexed: 12/31/2022]
|
12
|
Multi-parametric imaging of cell heterogeneity in apoptosis analysis. Methods 2017; 112:105-123. [DOI: 10.1016/j.ymeth.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022] Open
|
13
|
Hübner D, Kaluđerović MR, Gómez-Ruiz S, Kaluđerović GN. Anionic chlorido(triphenyl)tin(IV) bearing N-phthaloylglycinato or 1,2,4-benzenetricarboxylato 1,2-anhydride ligands: potential cytotoxic and apoptosis-inducing agents against several types of cancer. Chem Biol Drug Des 2016; 89:628-633. [PMID: 27748051 DOI: 10.1111/cbdd.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/09/2016] [Accepted: 10/08/2016] [Indexed: 01/08/2023]
Abstract
Two ionic triphenyltin(IV) chloride carboxylate compounds of the formula [NHEt3 ][Ph3 SnCl(L)] [LH = N-phthaloylglycine (P-GlyH), 1; 1,2,4-benzenetricarboxylic 1,2-anhydride (BTCH), 2] were tested for the in vitro activity against 518A2 (melanoma), FaDu (head and neck carcinoma), HT-29 (colon cancer), MCF-7 (breast carcinoma), and SW1736 (thyroid cancer) cell lines. The ammonium salts of the carboxylic acids are found to be not active, while anionic [Ph3 SnCl(L)]- exhibited high cytotoxicity in nM range, both higher activity and selectivity than cisplatin. Compounds 1 and 2 are inducing apoptosis, which was proved with the morphological and biochemical features such as membrane blebbing, translocation of phosphatidylserine, and DNA fragmentation. Thus, accumulation of cells in sub-G1 phase is observed. Both anionic organotin(IV) compounds showed potent cytotoxic and apoptotic properties against five cancer cell lines of various histogenetic origin.
Collapse
Affiliation(s)
- Denise Hübner
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - Milena R Kaluđerović
- Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle (Saale), Germany
| |
Collapse
|
14
|
Bednarska AJ, Laskowski R, Pyza E, Semik D, Świątek Z, Woźnicka O. Metal toxicokinetics and metal-driven damage to the gut of the ground beetle Pterostichus oblongopunctatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22047-22058. [PMID: 27541151 PMCID: PMC5099362 DOI: 10.1007/s11356-016-7412-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/04/2016] [Indexed: 06/01/2023]
Abstract
Toxicokinetics makes up the background for predicting concentrations of chemicals in organisms and, thus, ecological risk assessment. However, physiological and toxicological mechanisms behind toxicokinetics of particular chemicals are purely understood. The commonly used one-compartment model has been challenged recently, showing that in the case of metals it does not describe the pattern observed in terrestrial invertebrates exposed to highly contaminated food. We hypothesised that the main mechanism shaping toxicokinetics of metals in invertebrates at high exposure concentrations in food is the cellular damage to the gut epithelial cells. Gut damage should result in decreased metal assimilation rate, while shedding the dead cells - in increased elimination rate. We performed a typical toxicokinetic experiment, feeding the ground beetles Pterostichus oblongopunctatus food contaminated with Cd, Ni or Zn at 40 mM kg-1 for 28 days, followed by a depuration period of 14 days on uncontaminated food. The male beetles were sampled throughout the experiment for body metal concentrations and histopathological examinations of the midgut. All metals exhibited a complex pattern of internal concentrations over time, with an initial rapid increase followed by a decrease and fluctuating concentrations during further metal exposure. Histopathological studies showed massive damage to the midgut epithelium, with marked differences between the metals. Cd appeared the most toxic and caused immediate midgut cell degeneration. The effects of Ni were more gradual and pronounced after at least 1 week of exposure. Zn also caused extensive degeneration in the gut epithelium but its effects were the weakest among the studied metals.
Collapse
Affiliation(s)
- Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Elżbieta Pyza
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Danuta Semik
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Zuzanna Świątek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Woźnicka
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
15
|
Christofoletti CA, Francisco A, Pedro-Escher J, Gastaldi VD, Fontanetti CS. Diplopods as Soil Bioindicators of Toxicity After Application of Residues From Sewage Treatment Plants and Ethanol Industry. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1098-1110. [PMID: 27786153 DOI: 10.1017/s1431927616011739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Residues like sewage sludge and vinasse have been reused as agricultural fertilizers, but they also present a potential to contaminate soils. Diplopods have been considered excellent bioindicators of soil contamination. In the present study, Rhinocricus padbergi were used to assess toxicity in samples of sewage sludge, biosolids, and sugarcane vinasse. The behavioral analysis, mortality rate, and histological, histochemical, and ultrastructural analyses of the midgut of diplopods were the parameters evaluated. Behaviorally, some diplopods avoided burying themselves after 30 days in soil with biosolid or vinasse. Besides, certain residue combinations were able to cause death of all individuals between 60 and 90 days of exposure. The main tissue responses were significant brush border thickening, induction of epithelial renovation, clustering of hemocytes, accumulation of cytoplasmic granules in hepatic cells, hepatic cells with heteropycnotic nuclei, and cytoplasmic degradation. Alterations were observed at various levels among treatments with different samples and exposure times. Ultrastructural analysis revealed elongation of microvilli coated with a layer of an amorphous substance, resulting in a thicker brush border as observed in the histological analysis. After 30 days of exposure, animals showed an accumulation of spherocrystals in hepatic cells and high absorption of substances, based on the elongation of microvilli. Results obtained in the chemical analysis and the behaviors observed in diplopods suggest that animals processed the residues. Therefore, caution should be exercised in the disposal of these residues in agriculture.
Collapse
Affiliation(s)
- Cintya A Christofoletti
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Annelise Francisco
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Janaína Pedro-Escher
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Vinícius D Gastaldi
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Carmem S Fontanetti
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| |
Collapse
|
16
|
Ruocco N, Varrella S, Romano G, Ianora A, Bentley MG, Somma D, Leonardi A, Mellone S, Zuppa A, Costantini M. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:128-140. [PMID: 27130972 DOI: 10.1016/j.aquatox.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefano Varrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Matt G Bentley
- Faculty of Science and Technology, C227 Christchurch House, Bournemouth University, Talbot Campus, Poole, UK
| | - Domenico Somma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli, Italy
| | - Antonio Zuppa
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
17
|
Comparative proteomics analysis of apoptotic Spodoptera frugiperda cells during p35 knockout Autographa californica multiple nucleopolyhedrovirus infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 18:21-9. [PMID: 26922645 DOI: 10.1016/j.cbd.2016.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 11/21/2022]
Abstract
Infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutants lacking a functional p35 gene can induce host cell apoptosis, which provides the possibility to use the potential of these viruses in the biological control of pest insects. Nonetheless, the proteomics or the protein changes of Spodoptera frugiperda (Sf9) cells infected with p35 knockout AcMNPV have not yet been studied. To further improve the use of AcMNPV, we set out to analyze the protein composition and protein changes of Sf9 cells of different infection stages by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 sf9 proteins were identified by iTRAQ. After comparation of the significantly expressed 483 proteins from p35koAcMNPV-infected Sf9 cells and the significantly expressed 413 proteins from wtAcMNPV-infected Sf9 cells, we found that 226 proteins were specific to p35koAcMNPV-infected Sf9 cells. The 226 proteins were categorized according to GO classification for insects and were categorized into: biological processes, molecular functions and cellular components. Of interest, the most up-regulated proteins related to Epstein-Barr virus infection, RNA transport, Calcium signaling pathway, cGMP-PKG signaling pathway, oxidative phosphorylation and N-Glycan biosynthesis. Determination of the protein changes in p35 knockout AcMNPV-infected Sf9 cells would facilitate the better use of this virus-host cell interaction in pest insect control and other related fields.
Collapse
|
18
|
Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 2016; 11:e0147582. [PMID: 26844766 PMCID: PMC4741826 DOI: 10.1371/journal.pone.0147582] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022] Open
Abstract
The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.
Collapse
|
19
|
Yoo H, Kim E, Hwang SU, Yoon JD, Jeon Y, Park KM, Kim KJ, Jin M, Lee CK, Lee E, Kim H, Kim G, Hyun SH. Ultrastructural comparison of porcine putative embryonic stem cells derived by in vitro fertilization and somatic cell nuclear transfer. J Reprod Dev 2016; 62:177-85. [PMID: 26821870 PMCID: PMC4848575 DOI: 10.1262/jrd.2015-124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was
analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles
in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic
cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage
IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on
the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin,
low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria,
rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or
irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios,
rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare
autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on
the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high
cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich
lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs
showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles
showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of
pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical
research using pESCs, leading to new insights regarding regenerative medicine and tissue repair.
Collapse
Affiliation(s)
- Hyunju Yoo
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cyran N, Klepal W, Städler Y, Schönenberger J, von Byern J. Alterations in the mantle epithelium during transition from hatching gland to adhesive organ of Idiosepius pygmaeus (Mollusca, Cephalopoda). Mech Dev 2014; 135:43-57. [PMID: 25483816 DOI: 10.1016/j.mod.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Epithelial gland systems play an important role in marine molluscs in fabricating lubricants, repellents, fragrances, adhesives or enzymes. In cephalopods the typically single layered epithelium provides a highly dynamic variability and affords a rapid rebuilding of gland cells. While the digestive hatching gland (also named Hoyle organ) is obligatory for most cephalopods, only four genera (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions by means of glandular cells in an adhesive area on the mantle or tentacles. In Idiosepius this adhesive organ is restricted to the posterior part of the fin region on the dorsal mantle side and well developed in the adult stage. Two gland cell types could be distinguished, which produce different contents of the adhesive. During the embryonic development the same body area is occupied by the temporary hatching gland. The question arises, in which way the hatching gland degrades and is replaced by the adhesive gland. Ultrastructural analyses as well as computer tomography scans were performed to monitor the successive post hatching transformation in the mantle epithelium from hatching gland degradation to the formation of the adhesive organ. According to our investigations the hatching gland cells degrade within about 1 day after hatching by a type of programmed cell death and leave behind a temporary cellular gap in this area. First glandular cells of the adhesive gland arise 7 days after hatching and proceed evenly over the posterior mantle epithelium. In contrast, the accompanying reduction of a part of the dorsal mantle musculature is already established before hatching. The results demonstrate a distinct independence between the two gland systems and illustrate the early development of the adhesive organ as well as the corresponding modifications within the mantle.
Collapse
Affiliation(s)
- Norbert Cyran
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructural Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria.
| | - Waltraud Klepal
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructural Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Yannick Städler
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Jürg Schönenberger
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Janek von Byern
- Center for Integrative Bioinformatics Vienna, Max F Perutz Laboratories, Dr. Bohr-Gasse 9, Vienna 1030, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna 1200, Austria
| |
Collapse
|
21
|
Wilczek G, Rost-Roszkowska M, Wilczek P, Babczyńska A, Szulińska E, Sonakowska L, Marek-Swędzioł M. Apoptotic and necrotic changes in the midgut glands of the wolf spider Xerolycosa nemoralis (Lycosidae) in response to starvation and dimethoate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 101:157-67. [PMID: 24507141 DOI: 10.1016/j.ecoenv.2013.09.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 05/09/2023]
Abstract
In the present study, the intensity of degenerative changes (apoptosis, necrosis) in the cells of the midgut glands of male and female wolf spiders, Xerolycosa nemoralis (Lycosidae), exposed to natural (starvation) and anthropogenic (the organophosphorous pesticide dimethoate) stressors under laboratory conditions were compared. The spiders were collected from two differentially polluted sites, both located in southern Poland: Katowice-Welnowiec, which is heavily polluted with metals, and Pilica, the reference site. Starvation and dimethoate treatment resulted in enhancement of apoptotic and necrotic changes in the midgut glands of the spiders. The frequency of degenerative changes in starving individuals was twice as high as in the specimens intoxicated with dimethoate. The percentage of apoptotic and necrotic cells was higher in starving males than in starving females. A high intensity of necrotic changes, together with increased Cas-3 like activity and a greater percentage of cells with depolarized mitochondria, were typical of starving males from the polluted site. The cell death indices observed in females depended more strongly on the type of stressor than on previous preexposure to pollutants.
Collapse
Affiliation(s)
- G Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland.
| | - M Rost-Roszkowska
- Department of Animal Histology and Embryology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - P Wilczek
- Heart Prosthesis Institute, Bioengineering Laboratory, Wolnosci 345a, Zabrze 41-800, Poland
| | - A Babczyńska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - E Szulińska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - L Sonakowska
- Department of Animal Histology and Embryology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - M Marek-Swędzioł
- Department of Animal Histology and Embryology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| |
Collapse
|
22
|
Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility: Unanswered questions. Autophagy 2013; 9:1270-85. [PMID: 23846383 PMCID: PMC4026026 DOI: 10.4161/auto.25560] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Impaired autophagic machinery is implicated in a number of diseases such as heart disease, neurodegeneration and cancer. A common denominator in these pathologies is a dysregulation of autophagy that has been linked to a change in susceptibility to cell death. Although we have progressed in understanding the molecular machinery and regulation of the autophagic pathway, many unanswered questions remain. How does the metabolic contribution of autophagy connect with the cell’s history and how does its current autophagic flux affect metabolic status and susceptibility to undergo cell death? How does autophagic flux operate to switch metabolic direction and what are the underlying mechanisms in metabolite and energetic sensing, metabolite substrate provision and metabolic integration during the cellular stress response? In this article we focus on unresolved questions that address issues around the role of autophagy in sensing the energetic environment and its role in actively generating metabolite substrates. We attempt to provide answers by explaining how and when a change in autophagic pathway activity such as primary stress response is able to affect cell viability and when not. By addressing the dynamic metabolic relationship between autophagy, apoptosis and necrosis we provide a new perspective on the parameters that connect autophagic activity, severity of injury and cellular history in a logical manner. Last, by evaluating the cell’s condition and autophagic activity in a clear context of regulatory parameters in the intra- and extracellular environment, this review provides new concepts that set autophagy into an energetic feedback loop, that may assist in our understanding of autophagy in maintaining healthy cells or when it controls the threshold between cell death and cell survival.
Collapse
Affiliation(s)
- Ben Loos
- Department of Physiological Sciences; Faculty of Natural Sciences; University of Stellenbosch; Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
23
|
Eißmann M, Schwamb B, Melzer IM, Moser J, Siele D, Köhl U, Rieker RJ, Wachter DL, Agaimy A, Herpel E, Baumgarten P, Mittelbronn M, Rakel S, Kögel D, Böhm S, Gutschner T, Diederichs S, Zörnig M. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes. PLoS One 2013; 8:e64873. [PMID: 23717670 PMCID: PMC3661464 DOI: 10.1371/journal.pone.0064873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 04/19/2013] [Indexed: 11/29/2022] Open
Abstract
Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems.
Collapse
Affiliation(s)
- Moritz Eißmann
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Bettina Schwamb
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Inga Maria Melzer
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Julia Moser
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Dagmar Siele
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany
| | | | | | - Abbas Agaimy
- Institute for Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Esther Herpel
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Baumgarten
- Institute of Neurology (Edinger Institute), Frankfurt/Main, Germany
| | | | - Stefanie Rakel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefanie Böhm
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Tony Gutschner
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Zörnig
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
24
|
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 2012; 86:1649-65. [PMID: 22811024 DOI: 10.1007/s00204-012-0906-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- José M Matés
- Department of Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
| | | | | | | |
Collapse
|
25
|
Kayali AG, Lopez AD, Hao E, Hinton A, Hayek A, King CC. The SDF-1α/CXCR4 axis is required for proliferation and maturation of human fetal pancreatic endocrine progenitor cells. PLoS One 2012; 7:e38721. [PMID: 22761699 PMCID: PMC3382144 DOI: 10.1371/journal.pone.0038721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/14/2012] [Indexed: 01/07/2023] Open
Abstract
The chemokine receptor CXCR4 and ligand SDF-1α are expressed in fetal and adult mouse islets. Neutralization of CXCR4 has previously been shown to diminish ductal cell proliferation and increase apoptosis in the IFNγ transgenic mouse model in which the adult mouse pancreas displays islet regeneration. Here, we demonstrate that CXCR4 and SDF-1α are expressed in the human fetal pancreas and that during early gestation, CXCR4 colocalizes with neurogenin 3 (ngn3), a key transcription factor for endocrine specification in the pancreas. Treatment of islet like clusters (ICCs) derived from human fetal pancreas with SDF-1α resulted in increased proliferation of epithelial cells in ICCs without a concomitant increase in total insulin expression. Exposure of ICCs in vitro to AMD3100, a pharmacological inhibitor of CXCR4, did not alter expression of endocrine hormones insulin and glucagon, or the pancreatic endocrine transcription factors PDX1, Nkx6.1, Ngn3 and PAX4. However, a strong inhibition of β cell genesis was observed when in vitro AMD3100 treatment of ICCs was followed by two weeks of in vivo treatment with AMD3100 after ICC transplantation into mice. Analysis of the grafts for human C-peptide found that inhibition of CXCR4 activity profoundly inhibits islet development. Subsequently, a model pancreatic epithelial cell system (CFPAC-1) was employed to study the signals that regulate proliferation and apoptosis by the SDF-1α/CXCR4 axis. From a selected panel of inhibitors tested, both the PI 3-kinase and MAPK pathways were identified as critical regulators of CFPAC-1 proliferation. SDF-1α stimulated Akt phosphorylation, but failed to increase phosphorylation of Erk above the high basal levels observed. Taken together, these results indicate that SDF-1α/CXCR4 axis plays a critical regulatory role in the genesis of human islets.
Collapse
Affiliation(s)
- Ayse G. Kayali
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Ana D. Lopez
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Ergeng Hao
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Andrew Hinton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Alberto Hayek
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Charles C. King
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Petrovova E, Sedmera D, Luptakova L, Mazensky D, Danko J. Chick development and high dose of bendiocarb. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1312-1318. [PMID: 22540656 DOI: 10.1080/10934529.2012.672138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Developmental data of carbamate pesticides are scarce although they generally possess low toxicity for vertebrates. The aim of the study was to investigate the toxicity of bendiocarb to liver and central nervous system of chick embryos. Bendiocarb (1600 μg/egg) was administered to the embryo through membrana papyracea on embryonic day 3 and 10. In the liver and central nervous system we observed no macroscopic or microscopic changes. These organs were also investigated for caspase activity in regard to application of bendiocarb and no differences in the caspase immunopositivity were observed in comparison with the control. The embryolethality after bendiocarb respective dose was high (94 %) on the embryonic day 3, though following results indicated no toxicity to investigated organs and no increase in the number of apoptotic cells in survived chick embryos on both the early (day 3 of incubation) and the later (day 10 of incubation) developmental stage.
Collapse
Affiliation(s)
- Eva Petrovova
- Institute of Anatomy, University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
27
|
Dubiel EA, Martin Y, Vermette P. Bridging the Gap Between Physicochemistry and Interpretation Prevalent in Cell−Surface Interactions. Chem Rev 2011; 111:2900-36. [DOI: 10.1021/cr9002598] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Evan A. Dubiel
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| | - Yves Martin
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| |
Collapse
|
28
|
Yurchenko OV, Vaschenko MA. Morphology of spermatogenic and accessory cells in the mussel Modiolus kurilensis under environmental pollution. MARINE ENVIRONMENTAL RESEARCH 2010; 70:171-180. [PMID: 20471675 DOI: 10.1016/j.marenvres.2010.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 05/29/2023]
Abstract
A comparative light- and electron microscopic study of the male gonads of the bivalve mollusk Modiolus kurilensis from the reference and polluted sites in Amursky Bay (Sea of Japan) was conducted. Testicular acini in the mussels from the reference site had well-ordered structure (vertical spermatogenic columns located among the accessory cells bodies) whereas in the testes of the mollusks from the polluted site, the accessory and spermatogenic cell populations were disarranged. Mussels from the polluted station had about 26% of spermatogenic cells with marginal localization of nuclear chromatin, swollen outer nuclear membrane and heavily vacuolated cytoplasm and about 8% of spermatozoa with transformed or destructed acrosome; in mussels from the reference station, these values were close to zero. The accessory cells in the mussels from the polluted site were underdeveloped, and their phagocytic activity was inhibited. Our ultrastructural observations provide evidence that both spermatogenic and accessory cells are targets of environmental pollution in marine mussels.
Collapse
Affiliation(s)
- Olga V Yurchenko
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Science, Vladivostok 690041, Russia.
| | | |
Collapse
|
29
|
Archer T. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds. CNS Neurosci Ther 2010; 17:470-89. [PMID: 20553311 DOI: 10.1111/j.1755-5949.2010.00171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
30
|
Abstract
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.
Collapse
|
31
|
Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar Drugs 2010; 8:950-67. [PMID: 20479962 PMCID: PMC2866470 DOI: 10.3390/md8040950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/06/2010] [Accepted: 03/24/2010] [Indexed: 01/04/2023] Open
Abstract
The diatom-derived polyunsaturated aldehydes (PUAs), 2-trans,4-trans-decadienal, 2-trans,4-trans-octadienal, 2-trans,4-trans,7-octatrienal, 2-trans,4-trans-heptadienal, as well as tridecanal were tested on early and later larval development in the sea urchin Paracentrotus lividus. We also tested the effect of some of the more abundant diatom polyunsaturated fatty acids (PUFAs) on development, in particular 5,8,11,14,17-eicosapentaenoic acid (EPA), one of the main precursors of diatom PUAs, as well as 4,7,10,13,16,19-docosahexaenoic acid (DHA), 6,9,12,15-octadecatetraenoic acid (stearidonic acid), 6,9,12-octadecatrienoic acid (γ-linolenic acid) and 9,12-octadecadienoic acid (linoleic acid). PUAs blocked sea urchin cell cleavage in a dose dependent manner and with increasing chain length from C7 to C10 PUAs, with arrest occurring at 27.27 μM with heptadienal, 16.13 μM with octadienal, 11.47 μM with octatrienal and 5.26 μM with decadienal. Of the PUFAs tested, only EPA and stearidonic acid blocked cleavage, but at much higher concentrations compared to PUAs (331 μM for EPA and 181 μM for stearidonic acid). Sub-lethal concentrations of decadienal (1.32–5.26 μM) delayed development of embryos and larvae which showed various degrees of malformations depending on the concentrations tested. Sub-lethal concentrations also increased the proportion of TUNEL-positive cells indicating imminent death in embryos and larvae. Using decadienal as a model PUA, we show that this aldehyde can be detected spectrophotometrically for up to 14 days in f/2 medium.
Collapse
|
32
|
Abstract
Apoptosis, the best known form of programmed cell death, is tightly regulated by a number of sensors, signal transducers and effectors. Apoptosis is mainly active during embryonic development, when deletion of redundant cellular material is required for the correct morphogenesis of tissues and organs; moreover, it is essential for the maintenance of tissue homeostasis during cell life. Cells also activate apoptosis when they suffer from various insults, such as damage to DNA or to other cellular components, or impairment of basic processes, such as DNA replication and DNA repair. Removal of damaged cells is fundamental in maintaining the health of organisms. In addition, apoptosis induction following DNA damage is exploited to kill cancer cells. In this chapter we will review the main features of developmental and induced apoptosis.
Collapse
|
33
|
Hoshina MM, Marin-Morales MA. Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:2090-2095. [PMID: 19647317 DOI: 10.1016/j.ecoenv.2009.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 06/17/2009] [Accepted: 07/04/2009] [Indexed: 05/28/2023]
Abstract
In this study, micronucleus (MN) and chromosome aberration (CA) tests in Allium cepa (onion) were carried out in order to make a preliminary characterization of the water quality of the Atibaia River in an area that is under the influence of petroleum refinery and also to evaluate the effectiveness of the treatments used by the refinery. For these evaluations, seeds of A. cepa were germinated in waters collected in five different sites related with the refinery in ultra-pure water (negative control) and in methyl methanesulfonate solution (positive control). According to our results, we can suggest that even after the treatments (physicochemical, biological and stabilization pond) the final refinery effluent could induce chromosome aberrations and micronucleus in meristematic cells of A. cepa and that the discharge of the petroleum refinery effluents in the Atibaia River can interfere in the quality of this river.
Collapse
Affiliation(s)
- Márcia M Hoshina
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | |
Collapse
|
34
|
Arzumnayan A, Arzumanyan A, Anni H, Rubin R, Rubin E. Effects of ethanol on mouse embryonic stem cells. Alcohol Clin Exp Res 2009; 33:2172-9. [PMID: 19764938 DOI: 10.1111/j.1530-0277.2009.01057.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) reflects a constellation of congenital abnormalities caused by excess maternal consumption of alcohol. It is likely that interference with embryonic development plays a role in the pathogenesis of the disorder. Ethanol-induced apoptosis has been suggested as a causal factor in the genesis of FAS. Mouse embryonic stem (mES) cells are pluripotent cells that differentiate in vitro to cell aggregates termed embryoid bodies (EBs), wherein differentiation capacity and gene expression profile are similar to those of the early embryo. METHODS To investigate the effects of ethanol during differentiation, mES cells were cultured on a gelatin surface in the presence of leukemia inhibitory factor which maintains adherent undifferentiated cells or in suspension to promote formation of EBs. All cells were treated (1-6 days) with 80 mM ethanol. The pluripotency and differentiation of mES cells were evaluated by western blotting of stage-specific embryonic antigen (SSEA-1), transcription factors Oct-3/4, Sox-2, and Nanog, using alkaline phosphatase staining. Apoptosis (early to late stages) was assessed by fluorescence-activated cell sorting using TdT-mediated biotin-dUTP nick-end labelling assay and fluorescein isothiocyanate-Annexin V/propidium iodide staining. RESULTS Ethanol increased apoptosis during in vitro differentiation of mES cells to EBs, whereas undifferentiated cells were not affected. Ethanol exposure also interfered with pluripotency marker patterns causing an upregulation of SSEA-1 under self-renewal conditions. In EBs, ethanol delayed the downregulation of SSEA-1 and affected the regulation of transcription factors during differentiation. CONCLUSION Our findings suggest that ethanol may contribute to the pathogenesis of FAS by triggering apoptotic pathways during differentiation of embryonic stem cells and deregulating early stages of embryogenesis.
Collapse
Affiliation(s)
- Alla Arzumnayan
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
35
|
Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45. [DOI: 10.1016/j.pneurobio.2009.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
|
36
|
Petrovova E, Sedmera D, Lesnik F, Luptakova L. Bendiocarb effect on liver and central nervous system in the chick embryo. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2009; 44:383-388. [PMID: 19365755 DOI: 10.1080/03601230902801091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of the study was to investigate toxicity of bendiocarb (2, 3-isopropyledene-dioxyphenyl methylcarbamate) to organs of chicken embryo. The toxic action of bendiocarb was observed on liver and central nervous system (CNS). Bendiocarb was administered to chicken embryos at embryonic day (ED) 3 in a dose 500 microg/egg and 10 ED (800 microg/egg). The observations showed no macroscopic or microscopic changes in the liver and CNS with either dose or day of incubation when the bendiocarb was administered. The liver and CNS were also investigated for caspase activity in relation to application of bendiocarb and no differences in the number of cells with caspase immunopositivity were observed in comparison with the control. The results obtained indicate that bendiocarb administered in the respective doses showed no toxicity to investigated organs. Furthermore, both at the early (3 ED) and the later (10 ED) stages of development no increase in numbers of apoptotic cells in chicken embryos was observed.
Collapse
Affiliation(s)
- Eva Petrovova
- Institute of Anatomy, University of Veterinary Medicine, Komenskeho 73, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
37
|
Lin L, Penaloza C, Ye Y, Lockshin RA, Zakeri Z. Detection of apoptosis in mammalian development. Methods Mol Biol 2009; 559:259-72. [PMID: 19609762 DOI: 10.1007/978-1-60327-017-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian development is dependent on an intricate orchestration of cell proliferation and death. Deregulation in the levels, localization, and type of cell death can lead to disease and even death of the developing embryo. The mechanisms involved in such deregulation are many; alterations and or manipulations of these can aid in the detection, prevention and possible treatments of any effects this de-regulation may have. Here we describe how cell death can be detected during mammalian development, using diverse staining and microscopy methods, while taking advantage of the advancements in cell death mechanisms, derived from biochemical and teratological studies in the field.
Collapse
Affiliation(s)
- Lin Lin
- Medarex Inc, Bloomsbury, NY, USA
| | | | | | | | | |
Collapse
|
38
|
Jessica Chen M, Sepramaniam S, Armugam A, Shyan Choy M, Manikandan J, Melendez AJ, Jeyaseelan K, Sang Cheung N. Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 2008; 6:102-16. [PMID: 19305791 PMCID: PMC2647147 DOI: 10.2174/157015908784533879] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/09/2007] [Accepted: 10/01/2007] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K(+), Na(+) and Cl(-). It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.
Collapse
Affiliation(s)
- Minghui Jessica Chen
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sugunavathi Sepramaniam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Arunmozhiarasi Armugam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Meng Shyan Choy
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jayapal Manikandan
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Alirio J Melendez
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kandiah Jeyaseelan
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nam Sang Cheung
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
39
|
Zakeri Z, Lockshin RA. Cell death: history and future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:1-11. [PMID: 18437888 DOI: 10.1007/978-1-4020-6554-5_1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cell death was observed and understood since the 19th century, but there was no experimental examination until the mid-20th century. Beginning in the 1960s, several laboratories demonstrated that cell death was biologically controlled (programmed) and that the morphology was common and not readily explained (apoptosis). By 1990, the genetic basis of programmed cell death had been established, and the first components of the cell death machinery (caspase 3, bcl-2, and Fas) had been identified, sequenced, and recognized as highly conserved in evolution. The rapid development of the field has given us substantial understanding of how cell death is achieved. However, this knowledge has made it possible for us to understand that there are multiple pathways to death and that the commitment to die is not the same as execution. A cell that has passed the commitment stage but is blocked from undergoing apoptosis will die by another route. We still must learn much more about how a cell commits to death and what makes it choose a path to die.
Collapse
Affiliation(s)
- Zahra Zakeri
- Department of Biology, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Blvd., Flushing, New York 11361, USA.
| | | |
Collapse
|
40
|
Yamauchi H, Katayama KI, Ueno M, He XJ, Mikami T, Uetsuka K, Doi K, Nakayama H. Essential role of p53 in trophoblastic apoptosis induced in the developing rodent placenta by treatment with a DNA-damaging agent. Apoptosis 2008; 12:1743-54. [PMID: 17594519 DOI: 10.1007/s10495-007-0099-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Placental apoptosis plays important roles in both normal morphogenesis and pathogenesis. We previously reported that administration of cytosine arabinoside (Ara-C), a DNA-damaging agent, to pregnant rats induced apoptosis of trophoblasts in the placental labyrinth zone. Our aim here was to clarify the molecular pathway of DNA damage induced-trophoblastic apoptosis. We found the accumulation and phosphorylation of p53 protein, a tumor suppressor that mediates apoptosis under various cellular stresses, in Ara-C-treated rat placentas. Expression of the mRNAs of downstream targets of p53 was upregulated, suggesting that p53 exerts its function as a transcription factor. We also observed release of mitochondrial cytochrome c and activation of caspase-9, hallmarks of the intrinsic apoptotic pathway. Phosphorylation of Chk1 and H2A.X, target substrates of DNA damage transducers, was detected immediately after Ara-C treatment, suggesting activation of DNA damage cascades to phosphorylate p53. Ara-C-induced trophoblastic apoptosis was almost completely abrogated in placentas of Trp53 (coding p53)-deficient mice, whereas the levels of physiological apoptosis in trophoblasts were similar among wild-type and Trp53-deficient mice. These results indicate that p53 is essential for DNA damage-induced trophoblastic apoptosis and suggest that the mechanisms that regulate the damage-induced apoptosis differ from those that regulate physiological apoptosis.
Collapse
Affiliation(s)
- Hirofumi Yamauchi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki Y. Apoptosis and the insulin-like growth factor family in the developing olfactory epithelium. Anat Sci Int 2008; 82:200-6. [PMID: 18062148 DOI: 10.1111/j.1447-073x.2007.00193.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vertebrate olfactory receptor neurons (ORN) are unique in that they are continually replaced throughout life. They die by apoptosis under physiological conditions at all stages during the life cycle, and apoptotic ORN are replaced by their progenitor cells. Apoptosis is linked with neurogenesis, of which pathway is regulated by a number of growth factors and neurotrophic factors. Members of the insulin-like growth factor (IGF) family have an anti-apoptotic effect on ORN, in addition to their ability to promote the proliferation, differentiation, and survival of these neurons. Expression of IGF and related molecules at both mRNA and protein levels in the olfactory epithelium have been reported. In this review article, we focus on apoptosis, IGF, and their related molecules in the developing olfactory epithelium.
Collapse
Affiliation(s)
- Yuko Suzuki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| |
Collapse
|
42
|
Friedland JC, Lakins JN, Kazanietz MG, Chernoff J, Boettiger D, Weaver VM. alpha6beta4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-kappaB-dependent resistance to apoptosis in 3D mammary acini. J Cell Sci 2007; 120:3700-12. [PMID: 17911169 DOI: 10.1242/jcs.03484] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Malignant transformation and multidrug resistance are linked to resistance to apoptosis, yet the molecular mechanisms that mediate tumor survival remain poorly understood. Because the stroma can influence tumor behavior by regulating the tissue phenotype, we explored the role of extracellular matrix signaling and tissue organization in epithelial survival. We report that elevated (alpha6)beta4 integrin-dependent Rac-Pak1 signaling supports resistance to apoptosis in mammary acini by permitting stress-dependent activation of the p65 subunit of NF-kappaB through Pak1. We found that inhibiting Pak1 through expression of N17Rac or PID compromises NF-kappaB activation and renders mammary acini sensitive to death, but that resistance to apoptosis could be restored to these structures by overexpressing wild-type NF-kappaB p65. We also observed that acini expressing elevated levels of Pak1 can activate p65 and survive death treatments, even in the absence of activated Rac, yet will die if activation of NF-kappaB is simultaneously inhibited through expression of IkappaBalphaM. Thus, mammary tissues can resist apoptotic stimuli by activating NF-kappaB through alpha6beta4 integrin-dependent Rac-Pak1 signaling. Our data emphasize the importance of the extracellular matrix stroma in tissue survival and suggest that alpha6beta4 integrin-dependent Rac stimulation of Pak1 could be an important mechanism mediating apoptosis-resistance in some breast tumors.
Collapse
Affiliation(s)
- Julie C Friedland
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gashegu J, Ladha R, Vanmuylder N, Philippson C, Bremer F, Rooze M, Louryan S. HSP110, caspase-3 and -9 expression in physiological apoptosis and apoptosis induced by in vivo embryonic exposition to all-trans retinoic acid or irradiation during early mouse eye development. J Anat 2007; 210:532-41. [PMID: 17451530 PMCID: PMC2375737 DOI: 10.1111/j.1469-7580.2007.00719.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is an essential physiological process in embryonic development. In the developing eye of vertebrates, three periods of developmental apoptosis can be distinguished: early, intermediate and later. Within the apoptosis pathway, caspases play a crucial role. It has also been shown that HSP110 may have a potential role in apoptosis. The aim of this research was to study the expression of HSP110, caspase-3 and -9 in physiological, retinoic- or irradiation-induced apoptosis during early eye development. Seven pregnant C57Bl/6J mice received 80 mg kg(-1) of all-trans retinoic acid mixed with sesame oil. Seven pregnant NMRI mice received 2 Gy irradiation at the same gestational day. Control mice of both strains (seven mice of each) were not submitted to any treatment. Embryos were harvested at 3, 6, 12 and 24 h after exposition, fixed, dehydrated and embedded. Coronal sections (5 microm) were made. Slide staining occurred alternatively using anti-caspase-3, anti-caspase-9 and anti-HSP110 immunohistochemistry. HSP110 and caspase-3 expression presented similar topographic and chronological patterns, whereas expression of HSP110 was more precocious in retinoic acid-treated embryos. After retinoic exposure, caspase-3- and HSP110-positive cells were increased in the region of the optic vesicle. By contrast, after irradiation, caspase-3- and HSP110-positive cells were noticeably increased in the optic vesicle, peri-optical mesoderm but less in lens placode. HSP110 was expressed before caspase-3. By contrast, caspase-9 was expressed by a very small number of cells in the optic vesicle either under physiological or under teratogenic conditions. Thus, it seems that activation of caspase-9 is dispensable in early eye developmental apoptosis.
Collapse
Affiliation(s)
- Julien Gashegu
- Department of Anatomy and Embryology, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Lockshin MD. Biology of the sex and age distribution of systemic lupus erythematosus. ACTA ACUST UNITED AC 2007; 57:608-11. [PMID: 17471529 DOI: 10.1002/art.22676] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael D Lockshin
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA.
| |
Collapse
|
45
|
Yang D, Chai L, Wang J, Zhao X. Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Mol Biol Rep 2007; 35:405-12. [PMID: 17541728 DOI: 10.1007/s11033-007-9100-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Members of the caspase family play a central and evolutionary role in programmed cell death (PCD), which removes unwanted, damaged and dangerous cells during development to maintain homeostasis. In this paper, we describe the cloning and characterization of a caspase from the cotton bollworm, Helicoverpa armigera, named Hearm caspase-1. The 1,350 bp full-length cDNA contains an 885 bp open reading frame (ORF) that encodes a Hearm caspase-1 proenzyme of 294 amino acids. The deduced protein is highly homologous to Spodoptera frugiperda Sf caspase-1 and Drosophila melanogaster ICE and has the highly conserved pentapeptide QACQG, the recognized catalytic site of caspases, suggesting that it is an effector caspase of the cotton bollworm. Northern blot and RT-PCR analyses demonstrate that Hearm caspase-1 is expressed in embryos and the fat body, midgut and haemocytes of feeding and wandering larvae. Expression of Hearm caspase-1 in the haemocytes appears to be correlated with the pulse of ecdysone, and it is up-regulated by ecdysone agonist RH-2485, implying that Hearm caspase-1 activation is regulated by ecdysone.
Collapse
Affiliation(s)
- Dantong Yang
- School of Life Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
46
|
Vega Thurber R, Epel D. Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus. Dev Biol 2006; 303:336-46. [PMID: 17174294 DOI: 10.1016/j.ydbio.2006.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 10/23/2006] [Accepted: 11/13/2006] [Indexed: 12/29/2022]
Abstract
Apoptosis provides metazoans remarkable developmental flexibility by (1) eliminating damaged undifferentiated cells early in development and then (2) sculpting, patterning, and restructuring tissues during successive stages thereafter. We show here that apoptotic programmed cell death is infrequent and not obligatory during early embryogenesis of the purple sea urchin, Strongylocentrotus purpuratus. During the first 30 h of urchin development, fewer than 20% of embryos exhibit any cell death. Cell death during the cleavage stages consists of necrotic or pathological cell death, while cell death during the blastula and gastrula stages is random and predominantly caspase-mediated apoptosis. Apoptosis remains infrequent during the late blastula stage followed by a gradual increase in frequency during gastrulation. Even after prolonged exposure during the cleavage period to chemical stress, apoptosis occurs in less than 50% of embryos and always around the pre-hatching stage. Embryonic suppression of apoptosis through caspase inhibition leads to functionally normal larvae that can survive to metamorphosis, but in the presence of inducers of apoptosis, caspase inhibition leads to deformed larvae and reduced survival. Remarkably, however, pharmacological induction of apoptosis, while reducing overall survival, also significantly accelerates development of the survivors such that metamorphosis occurs up to a week before controls.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Stanford University, Hopkins Marine Station, 120 Oceanview Blvd., Pacific Grove, CA 93950, USA.
| | | |
Collapse
|
47
|
Chamberlin ME. Changes in mitochondrial electron transport chain activity during insect metamorphosis. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1016-22. [PMID: 17008455 DOI: 10.1152/ajpregu.00553.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.
Collapse
Affiliation(s)
- M E Chamberlin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
48
|
Penaloza C, Lin L, Lockshin RA, Zakeri Z. Cell death in development: shaping the embryo. Histochem Cell Biol 2006; 126:149-58. [PMID: 16816938 DOI: 10.1007/s00418-006-0214-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2006] [Indexed: 01/13/2023]
Abstract
Cell death in animals is normally classified as type I (apoptotic), type II (autophagic) or necrotic. Of the biologically controlled types of death, in most embryos apoptosis is the most common, although in metamorphosis and in cells with massive cytoplasm type II is often seen, and intermediate forms are seen. For vertebrate embryos other than mammals, apoptosis is not seen prior to gastrulation but thereafter is used to sculpt the organs of the embryo, while overproduction of cells with subsequent death of excess cells is a common means of generating high specificity with low information cost. In zebrafish at least, the inability of embryos prior to the maternal-zygotic transition to undergo apoptosis appears to derive from the inability of the cells to resist lysis once apoptosis begins, rather than any inhibition of apoptosis. In mammalian embryos, apoptosis is seen during cavitation. Thereafter, as in other embryos, cell death plays a major role in shaping and sculpting the embryo. In those situations that have been carefully studied, cell death is under tight genetic control (including regulation of gene products whose function in cell death is not yet known, such as cdk5), with activation of apoptosis sometimes regulated by local environmental variables.
Collapse
Affiliation(s)
- Carlos Penaloza
- Department of Biology, Queens College and Graduate Center of CUNY, Flushing, NY 11367, USA
| | | | | | | |
Collapse
|
49
|
Clark WD, Smith EL, Linn KA, Paul-Murphy JR, Muir P, Cook ME. Osteocyte apoptosis and osteoclast presence in chicken radii 0-4 days following osteotomy. Calcif Tissue Int 2005; 77:327-36. [PMID: 16307392 DOI: 10.1007/s00223-005-0074-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/22/2005] [Indexed: 11/30/2022]
Abstract
Osteocyte apoptosis caused by load-induced microdamage is followed by osteoclastic bone remodeling, and a causal link between apoptosis and repair has been suggested. The objectives of the present study were to use a chick model to examine the incidence of osteocyte apoptosis and the presence of osteoclasts during the first 96 hours following an osteotomy, prior to extensive callus mineralization. Osteotomies were performed on the right radii of 24 chicks at 23-24 days of age. The left radii served as controls. Radii were collected and processed at six time points following surgery (0, 12, 24, 48, 72, and 96 hours). Decalcified bone tissue sections were stained either for apoptosis using a modified TUNEL procedure or for tartrate-resistant acid phosphatase to identify osteoclasts in the intracortical and periosteal envelopes. The percentage of apoptotic osteocytes, as well as osteoclast counts (n/mm or n/mm2) were quantified in four regions (0-1, 1-2, 2-4, and 4-8 mm from the site of the osteotomy; regions 1-4, respectively) in the osteotomized radii and in the same measured areas in the control radii. Data for osteocyte apoptosis and osteoclasts in the control limb were subtracted from the osteotomized limb data to identify differences due to surgical influence. The incidence of osteocyte apoptosis was significantly higher at 12, 24, 48, and 72 hours versus 0 hours following osteotomy, and the response was highest in region 1; however, there was no interaction between time and region. Intracortical osteoclast counts (n/mm2) were elevated after 48 hours, and the response was similar in all regions. The data demonstrate that osteocyte apoptosis occurs within 24 hours in response to an osteotomy and temporally precedes an increase in osteoclast presence. Hence, osteocyte apoptosis may play a role in signaling during the bone healing process.
Collapse
Affiliation(s)
- W D Clark
- Department of Animal Sciences, College of Agriculture and Life Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
50
|
Suzuki Y. Fine structural aspects of apoptosis in the olfactory epithelium. ACTA ACUST UNITED AC 2005; 33:693-702. [PMID: 16217624 DOI: 10.1007/s11068-005-3337-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2004] [Revised: 11/12/2004] [Accepted: 12/14/2004] [Indexed: 11/30/2022]
Abstract
Vertebrate olfactory receptor neurons are unique because they are continually replaced throughout life. They die by apoptosis under physiological conditions at all stages in their life cycle, and the dead olfactory neurons are replaced by the progeny of dividing basal cells. Thus, in the olfactory epithelium apoptosis is involved in tissue homeostasis and may be a direct or indirect trigger of neurogenesis. In this study, we focused on morphological changes occurring in the olfactory epithelium, i.e., degradation of DNA, condensation of nuclear chromatin, condensation of cytoplasm, blebbing of cytoplasmic fragments, and disposal of the dying and dead cells as the final phase of apoptosis. Moreover, we addressed other stages of apoptosis examining the nature of the stimulus that provokes the apoptotic response, the signal or metabolic state, and transduction of the signal that sends the message to the effector apparatus, and the effector or execution phase, which includes the activation of proteases.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Oral Anatomy, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| |
Collapse
|