1
|
Wang HY, Nguyen TP, Sternisha AC, Carroll CL, Cross B, Morlock L, Williams NS, McBrayer S, Nijhawan D, De Brabander JK. Discovery and Optimization of N-Arylated Tetracyclic Dicarboximides That Target Primary Glioma Stem-like Cells. J Med Chem 2024; 67:9277-9301. [PMID: 38804887 DOI: 10.1021/acs.jmedchem.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We recently discovered a novel N-aryl tetracyclic dicarboximide MM0299 (1) with robust activity against glioma stem-like cells that potently and selectively inhibits lanosterol synthase leading to the accumulation of the toxic shunt metabolite 24(S),25-epoxycholesterol. Herein, we delineate a systematic and comprehensive SAR study that explores the structural space surrounding the N-aryl tetracyclic dicarboximide scaffold. A series of 100 analogs were synthesized and evaluated for activity against the murine glioma stem-like cell line Mut6 and for metabolic stability in mouse liver S9 fractions. This study led to several analogs with single-digit nanomolar activity in Mut6 glioblastoma cells that were metabolically stable in S9 fractions. In vivo pharmacokinetic analysis of selected analogs identified compound 52a (IC50 = 63 nM; S9 T1/2 > 240 min) which was orally available (39% plasma; 58% brain) and displayed excellent brain exposure. Chronic oral dosing of 52a during a 2-week tolerability study indicated no adverse effect on body weight nor signs of hematologic, liver, or kidney toxicity.
Collapse
Affiliation(s)
- Hua-Yu Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Thu P Nguyen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Alex C Sternisha
- Children's Medical Center Research Institute and Department of Pediatrics, UT Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Christopher L Carroll
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Bethany Cross
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Lorraine Morlock
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Samuel McBrayer
- Children's Medical Center Research Institute and Department of Pediatrics, UT Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Deepak Nijhawan
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
- Department of Internal Medicine, Division of Hematology/Oncology and Program in Molecular Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Jef K De Brabander
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
2
|
Nguyen TP, Wang W, Sternisha AC, Corley CD, Wang HYL, Wang X, Ortiz F, Lim SK, Abdullah KG, Parada LF, Williams NS, McBrayer SK, McDonald JG, De Brabander JK, Nijhawan D. Selective and brain-penetrant lanosterol synthase inhibitors target glioma stem-like cells by inducing 24(S),25-epoxycholesterol production. Cell Chem Biol 2023; 30:214-229.e18. [PMID: 36758549 PMCID: PMC10008516 DOI: 10.1016/j.chembiol.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Glioblastoma (GBM) is an aggressive adult brain cancer with few treatment options due in part to the challenges of identifying brain-penetrant drugs. Here, we investigated the mechanism of MM0299, a tetracyclic dicarboximide with anti-glioblastoma activity. MM0299 inhibits lanosterol synthase (LSS) and diverts sterol flux away from cholesterol into a "shunt" pathway that culminates in 24(S),25-epoxycholesterol (EPC). EPC synthesis following MM0299 treatment is both necessary and sufficient to block the growth of mouse and human glioma stem-like cells by depleting cellular cholesterol. MM0299 exhibits superior selectivity for LSS over other sterol biosynthetic enzymes. Critical for its application in the brain, we report an MM0299 derivative that is orally bioavailable, brain-penetrant, and induces the production of EPC in orthotopic GBM tumors but not normal mouse brain. These studies have implications for the development of an LSS inhibitor to treat GBM or other neurologic indications.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wentian Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex C Sternisha
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase D Corley
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hua-Yu Leo Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Ortiz
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang-Kyun Lim
- Department of Development Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Luis F Parada
- Department of Development Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
SH S, SM H. Should oxidosqualene cyclase in the cholesterol biosynthetic pathway be considered an anti-cancer target? Front Cell Dev Biol 2022; 10:1081151. [PMID: 36582466 PMCID: PMC9792840 DOI: 10.3389/fcell.2022.1081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Hyder SM
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Pujari V, Rozman K, Dhiman RK, Aldrich CC, Crick DC. Mycobacterial MenG: Partial Purification, Characterization, and Inhibition. ACS Infect Dis 2022; 8:2430-2440. [PMID: 36417754 DOI: 10.1021/acsinfecdis.2c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Menaquinone (MK) is an essential component of the electron transport chain (ETC) in the gram-variable Mycobacterium tuberculosis and many Gram-positive pathogens. Three genes in the M. tuberculosis genome were annotated as methyltransferases involved in lipoquinone synthesis in mycobacteria. Heterologous expression of Rv0558 complemented an ubiE (the quinone C-methyltransferase involved in ubiquinone and menaquinone synthesis) deletion in Escherichia coli, and expression in a wild-type E. coli strain increased quinone C-methyltransferase specific activity by threefold. Rv0558 encodes a canonical C-methyltransferase or, more specifically, a S-adenosylmethionine/demethylmenaquinol methyltransferase. Partially purified recombinant protein catalyzed the formation of MK from demethylmenaquinone (DMK), although the activity of the recombinant protein was low and appeared to require a cofactor or intact membrane structure for activity. Membrane preparations from irradiated M. tuberculosis also showed poor activity; however, membrane preparations from wild-type Mycobacterium smegmatis showed robust, substrate-dependent activity. The apparent Km values for demethylmenaquinone and SAM were 14 ± 5.0 and 17 ± 7.0 μM, respectively. Interestingly, addition of dithiothreitol, dithionite, NADH, or other substrates of primary dehydrogenases to reaction mixtures containing membrane preparations stimulated the activity. Thus, these observations strongly suggest that demethylmenaquinol is the actual substrate of MenG. Ro 48-8071, previously reported to inhibit mycobacterial MK synthesis and growth, inhibited Rv0558 activity with an IC50 value of 5.1 ± 0.5 μM, and DG70 (GSK1733953A), first described as a respiration inhibitor in M. tuberculosis, inhibits MenG activity with an IC50 value of 2.6 ± 0.6 μM.
Collapse
Affiliation(s)
- Venugopal Pujari
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kaja Rozman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rakesh K Dhiman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Dean C Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Takii S, Wu J, Okamura D. The amount of membrane cholesterol required for robust cell adhesion and proliferation in serum-free condition. PLoS One 2022; 17:e0259482. [PMID: 35857759 PMCID: PMC9299302 DOI: 10.1371/journal.pone.0259482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Serum-containing medium is widely used to support cell attachment, stable growth and serial passaging of various cancer cell lines. However, the presence of cholesterols and lipids in serum greatly hinders the analysis of the effects of cholesterol depletion on cells in culture. In this study, we developed a defined serum-free culture condition accessible to a variety of different types of adherent cancer cells. We tested different factors that are considered essential for cell culture and various extracellular matrix for plate coating, and found cells cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) basal media supplemented with Albumin (BSA) and insulin-transferrin-selenium-ethanolamine (ITS-X) on fibronectin-precoated plate (called as “DA-X condition”) showed comparable proliferation and survival to those in a serum-containing medium. Interestingly, we observed that DA-X condition could be adapted to a wide variety of adherent cancer cell lines, which enabled the analysis of how cholesterol depletion affected cancer cells in culture. Mechanistically, we found the beneficial effects of the DA-X condition in part can be attributed to the appropriate level of membrane cholesterol, and fibronectin-mediated signaling plays an important role in the suppression of cholesterol production.
Collapse
Affiliation(s)
- Shino Takii
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- * E-mail:
| |
Collapse
|
6
|
Batista MA, de Lima Teixeira dos Santos AVT, do Nascimento AL, Moreira LF, Souza IRS, da Silva HR, Pereira ACM, da Silva Hage-Melim LI, Carvalho JCT. Potential of the Compounds from Bixa orellana Purified Annatto Oil and Its Granules (Chronic ®) against Dyslipidemia and Inflammatory Diseases: In Silico Studies with Geranylgeraniol and Tocotrienols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051584. [PMID: 35268686 PMCID: PMC8911567 DOI: 10.3390/molecules27051584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Some significant compounds present in annatto are geranylgeraniol and tocotrienols. These compounds have beneficial effects against hyperlipidemia and chronic diseases, where oxidative stress and inflammation are present, but the exact mechanism of action of such activities is still a subject of research. This study aimed to evaluate possible mechanisms of action that could be underlying the activities of these molecules. For this, in silico approaches such as ligand topology (PASS and SEA servers) and molecular docking with the software GOLD were used. Additionally, we screened some pharmacokinetic and toxicological parameters using the servers PreADMET, SwissADME, and ProTox-II. The results corroborate the antidyslipidemia and anti-inflammatory activities of geranylgeraniol and tocotrienols. Notably, some new mechanisms of action were predicted to be potentially underlying the activities of these compounds, including inhibition of squalene monooxygenase, lanosterol synthase, and phospholipase A2. These results give new insight into new mechanisms of action involved in these molecules from annatto and Chronic®.
Collapse
Affiliation(s)
- Mateus Alves Batista
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Amapá, Macapá 68902-280, Brazil; (M.A.B.); (L.I.d.S.H.-M.)
| | - Abrahão Victor Tavares de Lima Teixeira dos Santos
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Aline Lopes do Nascimento
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Luiz Fernando Moreira
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Indira Ramos Senna Souza
- Diamantina Chapada Regional Hospital, Avenida Francisco Costa, 350-468, Vasco Filho, Bahia, Seabra 46900-000, Brazil;
| | - Heitor Ribeiro da Silva
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Arlindo César Matias Pereira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), São Paulo, Ribeirão Preto 05508-000, Brazil;
| | - Lorane Izabel da Silva Hage-Melim
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Amapá, Macapá 68902-280, Brazil; (M.A.B.); (L.I.d.S.H.-M.)
| | - José Carlos Tavares Carvalho
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
- Correspondence:
| |
Collapse
|
7
|
Murer L, Volle R, Andriasyan V, Petkidis A, Gomez-Gonzalez A, Yang L, Meili N, Suomalainen M, Bauer M, Policarpo Sequeira D, Olszewski D, Georgi F, Kuttler F, Turcatti G, Greber UF. Identification of broad anti-coronavirus chemical agents for repurposing against SARS-CoV-2 and variants of concern. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2022; 3:100019. [PMID: 35072124 PMCID: PMC8760634 DOI: 10.1016/j.crviro.2022.100019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 01/18/2023]
Abstract
Endemic human coronaviruses (hCoVs) 229E and OC43 cause respiratory disease with recurrent infections, while severe acute respiratory syndrome (SARS)-CoV-2 spreads across the world with impact on health and societies. Here, we report an image-based multicycle infection procedure with α-coronavirus hCoV-229E-eGFP in an arrayed chemical library screen of 5440 clinical and preclinical compounds. Toxicity counter selection and challenge with the β-coronaviruses OC43 and SARS-CoV-2 in tissue culture and human airway epithelial explant cultures (HAEEC) identified four FDA-approved compounds with oral availability. Methylene blue (MB, used for the treatment of methemoglobinemia), Mycophenolic acid (MPA, used in organ transplantation) and the anti-fungal agent Posaconazole (POS) had the broadest anti-CoV spectrum. They inhibited the shedding of SARS-CoV-2 and variants-of-concern (alpha, beta, gamma, delta) from HAEEC in either pre- or post exposure regimens at clinically relevant concentrations. Co-treatment of cultured cells with MB and the FDA-approved SARS-CoV-2 RNA-polymerase inhibitor Remdesivir reduced the effective anti-viral concentrations of MB by 2-fold, and Remdesivir by 4 to 10-fold, indicated by BLISS independence synergy modelling. Neither MB, nor MPA, nor POS affected the cell delivery of SARS-CoV-2 or OC43 (+)sense RNA, but blocked subsequent viral RNA accumulation in cells. Unlike Remdesivir, MB, MPA or POS did not reduce the release of viral RNA in post exposure regimen, thus indicating infection inhibition at a post-replicating step as well. In summary, the data emphasize the power of unbiased, full cycle compound screens to identify and repurpose broadly acting drugs against coronaviruses.
Collapse
Affiliation(s)
- Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Romain Volle
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alfonso Gomez-Gonzalez
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliane Yang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniela Policarpo Sequeira
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
8
|
Ding Z, Gu Y, Huang D, Zhou H, Zhu T, Luo X, Zhang S, Zhang S, Qian Y. Cholesterol biosynthesis inhibitor RO 48‑8071 inhibits pancreatic ductal adenocarcinoma cell viability by deactivating the JNK and ERK/MAPK signaling pathway. Mol Med Rep 2021; 24:828. [PMID: 34590153 PMCID: PMC8503744 DOI: 10.3892/mmr.2021.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/12/2021] [Indexed: 11/08/2022] Open
Abstract
The morbidity and mortality of pancreatic cancer have been continuously increasing, causing seven deaths per 100,000 individuals/year. At present, effective therapies are severely lacking, thus, highlighting the importance of developing novel therapeutic approaches. The present study aimed to investigate the inhibitory roles of the 2,3-oxidosqualene cyclase inhibitor, RO 48-8071 (RO), on pancreatic ductal adenocarcinoma. RO was used to treat the pancreatic cancer cell line (PANC-1) in vitro to examine the effects of RO on cell viability, as well as to determine its potential molecular mechanism. Moreover, experiments in a xenograft model of subcutaneous tumors generated by injecting PANC-1 cells hypodermically into nude mice were performed to observe the inhibition of RO on tumor growth. It was found that RO inhibited PANC-1 cell viability when treatment was given for 24, 48 and 72 h. The in vivo study demonstrated that RO markedly inhibited subcutaneous tumor growth in nude mice. Further studies revealed that RO could induce cell cycle arrest in the G1 phase by regulating p27, cyclin B1 and cyclin E expression to inhibit PANC-1 cell viability. Moreover, RO inactivated the JNK and ERK MAPK signaling pathway by decreasing the phosphorylation levels of JNK and ERK. Collectively, the present study demonstrated that RO served anti-pancreatic cancer roles in vitro and in vivo, which may provide new ideas and facilitate the development of novel treatment options for pancreatic cancer.
Collapse
Affiliation(s)
- Zhen Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanan Gu
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dake Huang
- Comprehensive Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tingting Zhu
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xin Luo
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
9
|
Paradela LS, Wall RJ, Carvalho S, Chemi G, Corpas-Lopez V, Moynihan E, Bello D, Patterson S, Güther MLS, Fairlamb AH, Ferguson MAJ, Zuccotto F, Martin J, Gilbert IH, Wyllie S. Multiple unbiased approaches identify oxidosqualene cyclase as the molecular target of a promising anti-leishmanial. Cell Chem Biol 2021; 28:711-721.e8. [PMID: 33691122 PMCID: PMC8153249 DOI: 10.1016/j.chembiol.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022]
Abstract
Phenotypic screening identified a benzothiophene compound with activity against Leishmania donovani, the causative agent of visceral leishmaniasis. Using multiple orthogonal approaches, oxidosqualene cyclase (OSC), a key enzyme of sterol biosynthesis, was identified as the target of this racemic compound and its enantiomers. Whole genome sequencing and screening of a genome-wide overexpression library confirmed that OSC gene amplification is associated with resistance to compound 1. Introduction of an ectopic copy of the OSC gene into wild-type cells reduced susceptibility to these compounds confirming the role of this enzyme in resistance. Biochemical analyses demonstrated the accumulation of the substrate of OSC and depletion of its product in compound (S)-1-treated-promastigotes and cell-free membrane preparations, respectively. Thermal proteome profiling confirmed that compound (S)-1 binds directly to OSC. Finally, modeling and docking studies identified key interactions between compound (S)-1 and the LdOSC active site. Strategies to improve the potency for this promising anti-leishmanial are proposed. Genetics and chemo-proteomics identify the target of a promising anti-leishmanial Biochemical assays confirm the direct inhibition of oxidosqualene cyclase in cells Docking and modeling studies identify key interactions between compound and target Strategies to improve the potency of this benzothiophene are proposed
Collapse
Affiliation(s)
- Luciana S Paradela
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Richard J Wall
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra Carvalho
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Giulia Chemi
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoriano Corpas-Lopez
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eoin Moynihan
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Davide Bello
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Maria Lucia S Güther
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Julio Martin
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
10
|
Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry 2020; 59:3951-3964. [PMID: 32930581 DOI: 10.1021/acs.biochem.0c00477] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cells are highly dependent on different metabolic pathways for sustaining their survival, growth, and proliferation. Lipid metabolism not only provides the energetic needs of the cells but also provides the raw material for cellular growth and the signaling molecules for many oncogenic pathways. Mainly processed in the liver, lipids play an essential role in the physiology of this organ and in the pathological progression of many diseases such as metabolic syndrome and hepatocellular carcinoma (HCC). The progression of HCC is associated with inflammation and complex metabolic reprogramming, and its prognosis remains poor because of the lack of effective therapies despite many years of dedicated research. Defects in hepatic lipid metabolism induce abnormal gene expression and rewire many cellular pathways involved in oncogenesis and metastasis, implying that interfering with lipid metabolism within the tumor and the surrounding microenvironment may be a novel therapeutic approach for treating liver cancer patients. Therefore, this review focuses on the latest advances in drugs targeting lipid metabolism and leading to promising outcomes in preclinical studies and some ongoing clinical trials.
Collapse
Affiliation(s)
- Malak Alannan
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France.,Faculty of Sciences I, Lebanese University, Rafik Hariri Campus, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Véronique Trézéguet
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| | - Aksam Merched
- miRCaDe team, Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| |
Collapse
|
11
|
Chen JW, Niu X, King MJ, Noedl MT, Tabin CJ, Galloway JL. The mevalonate pathway is a crucial regulator of tendon cell specification. Development 2020; 147:dev.185389. [PMID: 32467241 DOI: 10.1242/dev.185389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Tendons and ligaments are crucial components of the musculoskeletal system, yet the pathways specifying these fates remain poorly defined. Through a screen of known bioactive chemicals in zebrafish, we identified a new pathway regulating tendon cell induction. We established that statin, through inhibition of the mevalonate pathway, causes an expansion of the tendon progenitor population. Co-expression and live imaging studies indicate that the expansion does not involve an increase in cell proliferation, but rather results from re-specification of cells from the neural crest-derived sox9a+/sox10+ skeletal lineage. The effect on tendon cell expansion is specific to the geranylgeranylation branch of the mevalonate pathway and is mediated by inhibition of Rac activity. This work establishes a novel role for the mevalonate pathway and Rac activity in regulating specification of the tendon lineage.
Collapse
Affiliation(s)
- Jessica W Chen
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xubo Niu
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Matthew J King
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Marie-Therese Noedl
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
12
|
Jaramillo-Madrid AC, Ashworth J, Fabris M, Ralph PJ. The unique sterol biosynthesis pathway of three model diatoms consists of a conserved core and diversified endpoints. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: From physiological tuners to pharmacological opportunities. Br J Pharmacol 2020; 178:3089-3103. [PMID: 32335907 DOI: 10.1111/bph.15073] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oxysterols are oxygenated forms of cholesterol generated via autooxidation by free radicals and ROS, or formed enzymically by a variety of enzymes such as those involved in the synthesis of bile acids. Although found at very low concentrations in vivo, these metabolites play key roles in health and disease, particularly in development and regulating immune cell responses, by binding to effector proteins such as LXRα, RORγ and Insig and directly or indirectly regulating transcriptional programmes that affect cell metabolism and function. In this review, we summarise the routes by which oxysterols can be generated and subsequently modified to other oxysterol metabolites and highlight their diverse and profound biological functions and opportunities to alter their levels using pharmacological approaches. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New drugs with new mechanisms of action are urgently required to tackle the global tuberculosis epidemic. Following the FDA-approval of the ATP synthase inhibitor bedaquiline (Sirturo®), energy metabolism has become the subject of intense focus as a novel pathway to exploit for tuberculosis drug development. This enthusiasm stems from the fact that oxidative phosphorylation (OxPhos) and the maintenance of the transmembrane electrochemical gradient are essential for the viability of replicating and non-replicating Mycobacterium tuberculosis (M. tb), the etiological agent of human tuberculosis (TB). Therefore, new drugs targeting this pathway have the potential to shorten TB treatment, which is one of the major goals of TB drug discovery. This review summarises the latest and key findings regarding the OxPhos pathway in M. tb and provides an overview of the inhibitors targeting various components. We also discuss the potential of new regimens containing these inhibitors, the flexibility of this pathway and, consequently, the complexity in targeting it. Lastly, we discuss opportunities and future directions of this drug target space.
Collapse
|
15
|
Target identification reveals lanosterol synthase as a vulnerability in glioma. Proc Natl Acad Sci U S A 2019; 116:7957-7962. [PMID: 30923116 DOI: 10.1073/pnas.1820989116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) remains an incurable childhood brain tumor for which novel therapeutic approaches are desperately needed. Previous studies have shown that the menin inhibitor MI-2 exhibits promising activity in preclinical DIPG and adult glioma models, although the mechanism underlying this activity is unknown. Here, using an integrated approach, we show that MI-2 exerts its antitumor activity in glioma largely independent of its ability to target menin. Instead, we demonstrate that MI-2 activity in glioma is mediated by disruption of cholesterol homeostasis, with suppression of cholesterol synthesis and generation of the endogenous liver X receptor ligand, 24,25-epoxycholesterol, resulting in cholesterol depletion and cell death. Notably, this mechanism is responsible for MI-2 activity in both DIPG and adult glioma cells. Metabolomic and biochemical analyses identify lanosterol synthase as the direct molecular target of MI-2, revealing this metabolic enzyme as a vulnerability in glioma and further implicating cholesterol homeostasis as an attractive pathway to target in this malignancy.
Collapse
|
16
|
Gudde LR, Hulce M, Largen AH, Franke JD. Sterol synthesis is essential for viability in the planctomycete bacterium Gemmata obscuriglobus. FEMS Microbiol Lett 2019; 366:5304612. [DOI: 10.1093/femsle/fnz019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luke R Gudde
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| | - Martin Hulce
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Alexander H Largen
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| | - Josef D Franke
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
17
|
Mahoney CE, Pirman D, Chubukov V, Sleger T, Hayes S, Fan ZP, Allen EL, Chen Y, Huang L, Liu M, Zhang Y, McDonald G, Narayanaswamy R, Choe S, Chen Y, Gross S, Cianchetta G, Padyana AK, Murray S, Liu W, Marks KM, Murtie J, Dorsch M, Jin S, Nagaraja N, Biller SA, Roddy T, Popovici-Muller J, Smolen GA. A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat Commun 2019; 10:96. [PMID: 30626880 PMCID: PMC6327044 DOI: 10.1038/s41467-018-07959-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Aberrant metabolism of cancer cells is well appreciated, but the identification of cancer subsets with specific metabolic vulnerabilities remains challenging. We conducted a chemical biology screen and identified a subset of neuroendocrine tumors displaying a striking pattern of sensitivity to inhibition of the cholesterol biosynthetic pathway enzyme squalene epoxidase (SQLE). Using a variety of orthogonal approaches, we demonstrate that sensitivity to SQLE inhibition results not from cholesterol biosynthesis pathway inhibition, but rather surprisingly from the specific and toxic accumulation of the SQLE substrate, squalene. These findings highlight SQLE as a potential therapeutic target in a subset of neuroendocrine tumors, particularly small cell lung cancers.
Collapse
Affiliation(s)
| | - David Pirman
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Victor Chubukov
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Taryn Sleger
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Sebastian Hayes
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Zi Peng Fan
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Eric L Allen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Ying Chen
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Lingling Huang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Meina Liu
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Yingjia Zhang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | | | | | - Sung Choe
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Yue Chen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Stefan Gross
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | | | - Anil K Padyana
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Stuart Murray
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Wei Liu
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Kevin M Marks
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Joshua Murtie
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Marion Dorsch
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Shengfang Jin
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | | | - Scott A Biller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Thomas Roddy
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Janeta Popovici-Muller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
- Decibel Therapeutics, 1325 Boylston Street, Suite 500, Boston, MA, 02215, USA
| | - Gromoslaw A Smolen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA.
- Celsius Therapeutics, 215 First Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
18
|
Rabelo VWH, Viegas DDJ, Tucci EMN, Romeiro NC, Abreu PA. Virtual screening and drug repositioning as strategies for the discovery of new antifungal inhibitors of oxidosqualene cyclase. J Steroid Biochem Mol Biol 2019; 185:189-199. [PMID: 30193921 DOI: 10.1016/j.jsbmb.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 09/01/2018] [Indexed: 01/11/2023]
Abstract
Candidiasis is the most common fungal infection in immunocompromised patients, and Candida albicans is the fourth leading agent of nosocomial infections. Mortality from this infection is significant; however, the therapeutic treatment is limited, which demands the search for new drugs and new targets. In this context, oxidosqualene cyclase (OSC) catalyzes the cyclization of the 2,3-oxidosqualene to form lanosterol, an intermediate of ergosterol biosynthesis. Therefore, this enzyme constitutes an attractive therapeutic target. Thus, the aim of this study is to identify potential inhibitors of C. albicans OSC (CaOSC) from a marketed drugs database in order to discover new antifungal agents. The CaOSC 3D model was constructed using the Swiss-Model server and important features for CaOSC inhibition were identified by molecular docking of known inhibitors using Autodock Vina 1.1.2. Subsequently, virtual screening helped to identify calcitriol, the active form of vitamin D, and other four drugs, as potential inhibitors of CaOSC. The selected drugs presented an interesting pattern of interactions with this enzyme, including hydrogen bond with Asp450, a key residue in the active site. Thus, the antifungal activity of calcitriol was evaluated in vitro against Candida spp strains. Calcitriol showed antifungal activity against C. albicans and C. tropicalis, which reinforces the potential of this compound as candidate of CaOSC inhibitor. In short, the present study provides important insights for the development of new oxidosqualene cyclase inhibitors as antifungals.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Daiane de Jesus Viegas
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Erline Machado Neves Tucci
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil
| | - Nelilma Correia Romeiro
- Laboratório Integrado de Computação Científica, LICC, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, 27965-045, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil.
| |
Collapse
|
19
|
Tani O, Akutsu Y, Ito S, Suzuki T, Tateishi Y, Yamaguchi T, Niimi T, Namatame I, Chiba Y, Sakashita H, Kubota T, Yanagi T, Mizukami S, Hirayama K, Furukawa K, Yamasaki K. NMR Biochemical Assay for Oxidosqualene Cyclase: Evaluation of Inhibitor Activities on Trypanosoma cruzi and Human Enzymes. J Med Chem 2018; 61:5047-5053. [PMID: 29771525 DOI: 10.1021/acs.jmedchem.8b00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidosqualene cyclase (OSC), a membrane-associated protein, is a key enzyme of sterol biosynthesis. Here we report a novel assay for OSC, involving reaction in aqueous solution, NMR quantification in organic solvent, and factor analysis of spectra. We evaluated one known and three novel inhibitors on OSC of Trypanosoma cruzi, a parasite causative of Chagas disease, and compared their effects on human OSC for selectivity. Among them, one novel inhibitor showed a significant parasiticidal activity.
Collapse
Affiliation(s)
- Osamu Tani
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Yukie Akutsu
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Shinji Ito
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Takayuki Suzuki
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Yukihiro Tateishi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Tomohiko Yamaguchi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Tatsuya Niimi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Ichiji Namatame
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Yasunori Chiba
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
| | - Hitoshi Sakashita
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Tomomi Kubota
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Tetsuo Yanagi
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Koji Furukawa
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| |
Collapse
|
20
|
Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis. J Virol 2017; 92:JVI.01196-17. [PMID: 29046459 DOI: 10.1128/jvi.01196-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/28/2017] [Indexed: 01/16/2023] Open
Abstract
Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality.IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses.
Collapse
|
21
|
Chen D, Xu F, Zhang P, Deng J, Sun H, Wen X, Liu J. Practical Synthesis of α-Amyrin, β-Amyrin, and Lupeol: The Potential Natural Inhibitors of Human Oxidosqualene Cyclase. Arch Pharm (Weinheim) 2017; 350. [PMID: 29027714 DOI: 10.1002/ardp.201700178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
A practical synthesis of α-amyrin (1), β-amyrin (2), and lupeol (3) was accomplished in total yields of 32, 42, and 40% starting from easily available ursolic acid (4), oleanolic acid (5), and betulin (6), respectively. Remarkably, these three natural pentacyclic triterpenes exhibited potential inhibitory activity against human oxidosqualene cyclase.
Collapse
Affiliation(s)
- Dongyin Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fengguo Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Pu Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jie Deng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Quintana AM, Hernandez JA, Gonzalez CG. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development. PLoS One 2017; 12:e0180856. [PMID: 28686747 PMCID: PMC5501617 DOI: 10.1371/journal.pone.0180856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh) signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf), but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms.
Collapse
Affiliation(s)
- Anita M. Quintana
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
- Border Biomedical Research Center, NeuroModulation Cluster, University of Texas El Paso, El Paso, TX, United States of America
- * E-mail:
| | - Jose A. Hernandez
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
| | - Cesar G. Gonzalez
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
| |
Collapse
|
23
|
Rabelo VWH, Romeiro NC, Abreu PA. Design strategies of oxidosqualene cyclase inhibitors: Targeting the sterol biosynthetic pathway. J Steroid Biochem Mol Biol 2017; 171:305-317. [PMID: 28479228 DOI: 10.1016/j.jsbmb.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 01/04/2023]
Abstract
Targeting the sterol biosynthesis pathway has been explored for the development of new bioactive compounds. Among the enzymes of this pathway, oxidosqualene cyclase (OSC) which catalyzes lanosterol cyclization from 2,3-oxidosqualene has emerged as an attractive target. In this work, we reviewed the most promising OSC inhibitors from different organisms and their potential for the development of new antiparasitic, antifungal, hypocholesterolemic and anticancer drugs. Different strategies have been adopted for the discovery of new OSC inhibitors, such as structural modifications of the natural substrate or the reaction intermediates, the use of the enzyme's structural information to discover compounds with novel chemotypes, modifications of known inhibitors and the use of molecular modeling techniques such as docking and virtual screening to search for new inhibitors. This review brings new perspectives on structural insights of OSC from different organisms and reveals the broad structural diversity of OSC inhibitors which may help evidence lead compounds for further investigations with various therapeutic applications.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Nelilma Correia Romeiro
- Laboratório Integrado de Computação Científica, LICC, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, 27965-045, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé 27965-045, RJ, Brazil.
| |
Collapse
|
24
|
Kambach DM, Halim AS, Cauer A, Sun Q, Tristan CA, Celiku O, Kesarwala AH, Shankavaram U, Batchelor E, Stommel JM. Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget 2017; 8:14860-14875. [PMID: 28118603 PMCID: PMC5362450 DOI: 10.18632/oncotarget.14740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
A hallmark of cellular transformation is the evasion of contact-dependent inhibition of growth. To find new therapeutic targets for glioblastoma, we looked for pathways that are inhibited by high cell density in astrocytes but not in glioma cells. Here we report that glioma cells have disabled the normal controls on cholesterol synthesis. At high cell density, astrocytes turn off cholesterol synthesis genes and have low cholesterol levels, but glioma cells keep this pathway on and maintain high cholesterol. Correspondingly, cholesterol pathway upregulation is associated with poor prognosis in glioblastoma patients. Densely-plated glioma cells increase oxygen consumption, aerobic glycolysis, and the pentose phosphate pathway to synthesize cholesterol, resulting in a decrease in reactive oxygen species, TCA cycle intermediates, and ATP. This constitutive cholesterol synthesis is controlled by the cell cycle, as it can be turned off by cyclin-dependent kinase inhibitors and it correlates with disabled cell cycle control though loss of p53 and RB. Finally, glioma cells, but not astrocytes, are sensitive to cholesterol synthesis inhibition downstream of the mevalonate pathway, suggesting that specifically targeting cholesterol synthesis might be an effective treatment for glioblastoma.
Collapse
Affiliation(s)
- Diane M. Kambach
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan S. Halim
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - A.Gesine Cauer
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qian Sun
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos A. Tristan
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Orieta Celiku
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayne M. Stommel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc Natl Acad Sci U S A 2016; 113:E7619-E7628. [PMID: 27821754 DOI: 10.1073/pnas.1604828113] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit). A whole-genome sequencing of Siraitia, leading to a preliminary draft of the genome, was combined with an extensive transcriptomic analysis of developing fruit. A functional expression survey of nearly 200 candidate genes identified the members of the five enzyme families responsible for the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. Protein modeling and docking studies corroborated the experimentally proven functional enzyme activities and indicated the order of the metabolic steps in the pathway. A comparison of the genomic organization and expression patterns of these Siraitia genes with the orthologs of other Cucurbitaceae implicates a strikingly coordinated expression of the pathway in the evolution of this species-specific and valuable metabolic pathway. The genomic organization of the pathway genes, syntenously preserved among the Cucurbitaceae, indicates, on the other hand, that gene clustering cannot account for this novel secondary metabolic pathway.
Collapse
|
26
|
Schonewille M, de Boer JF, Mele L, Wolters H, Bloks VW, Wolters JC, Kuivenhoven JA, Tietge UJF, Brufau G, Groen AK. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J Lipid Res 2016; 57:1455-64. [PMID: 27313057 DOI: 10.1194/jlr.m067488] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 12/19/2022] Open
Abstract
Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins.
Collapse
Affiliation(s)
- Marleen Schonewille
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Mele
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henk Wolters
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma Brufau
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Amsterdam Diabetes Center, Department of Vascular Medicine, Academic Medical Center, The Netherlands
| |
Collapse
|
27
|
Molecular mechanisms of membrane targeting antibiotics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:980-7. [DOI: 10.1016/j.bbamem.2015.10.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 01/17/2023]
|
28
|
Keller M, Wolfgardt A, Müller C, Wilcken R, Böckler FM, Oliaro-Bosso S, Ferrante T, Balliano G, Bracher F. Arylpiperidines as a new class of oxidosqualene cyclase inhibitors. Eur J Med Chem 2016; 109:13-22. [DOI: 10.1016/j.ejmech.2015.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
|
29
|
Honsho M, Abe Y, Fujiki Y. Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis. J Biol Chem 2015; 290:28822-33. [PMID: 26463208 DOI: 10.1074/jbc.m115.656983] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Plasmalogen biosynthesis is regulated by modulating fatty acyl-CoA reductase 1 stability in a manner dependent on cellular plasmalogen level. However, physiological significance of the regulation of plasmalogen biosynthesis remains unknown. Here we show that elevation of the cellular plasmalogen level reduces cholesterol biosynthesis without affecting the isoprenylation of proteins such as Rab and Pex19p. Analysis of intermediate metabolites in cholesterol biosynthesis suggests that the first oxidative step in cholesterol biosynthesis catalyzed by squalene monooxygenase (SQLE), an important regulator downstream HMG-CoA reductase in cholesterol synthesis, is reduced by degradation of SQLE upon elevation of cellular plasmalogen level. By contrast, the defect of plasmalogen synthesis causes elevation of SQLE expression, resulting in the reduction of 2,3-epoxysqualene required for cholesterol synthesis, hence implying a novel physiological consequence of the regulation of plasmalogen biosynthesis.
Collapse
Affiliation(s)
- Masanori Honsho
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukio Fujiki
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Gas-Pascual E, Simonovik B, Heintz D, Bergdoll M, Schaller H, Bach TJ. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cell Suspensions: A Proteomic Analysis. Lipids 2015; 50:773-84. [PMID: 26123692 DOI: 10.1007/s11745-015-4041-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
The effect of an inhibitor of cycloartenol synthase (CAS, EC 5.4.99.8) on the proteome of tobacco BY-2 cells has been examined. CAS catalyzes the first committed step in phytosterol synthesis in plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Proteins were separated by two-dimensional electrophoresis and spots, that clearly looked differentially accumulated after visual inspection, were cut, in-gel trypsin digested, and peptides were analyzed by nano-HPLC-MS/MS. Distinct peptides were compared to sequences in the data banks and attributed to corresponding proteins and genes. Inhibition of CAS induced proteins that appear to mitigate the negative effects of the chemical exposure. However, as all enzymes that are directly involved in phytosterol biosynthesis are low-abundant proteins, significant changes in their levels could not be observed. Differences could be seen with enzymes involved in primary metabolism (glycolysis, pentose phosphate pathway etc.), in proteins of the chaperonin family, and those, like actin, that participate in formation and strengthening of the cytoskeleton and have some impact on cell growth and division.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28, rue Goethe, 67083, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
31
|
Gas-Pascual E, Simonovik B, Schaller H, Bach TJ. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cells. Lipids 2015; 50:761-72. [PMID: 26033687 DOI: 10.1007/s11745-015-4036-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/15/2015] [Indexed: 01/06/2023]
Abstract
Tobacco BY-2 cell suspensions are our preferred model for studying isoprenoid biosynthesis pathways, due to their easy genetic transformation and the efficient absorption of metabolic precursors, intermediates, and/or inhibitors. Using this model system, we have analyzed the effects of chemical and genetic blockage of cycloartenol synthase (CAS, EC 5.4.99.8), an oxidosqualene cyclase that catalyzes the first committed step in the sterol pathway of plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Short-term treatments (24 h) resulted in accumulation of oxidosqualene with no changes in the final sterol products. Interestingly, long-term treatments (6 days) induced down-regulation in gene expression not only of CAS but also of the SMT2 gene coding sterol methyltransferase 2 (EC 2.1.1.41). This explains some of the increase in 24-methyl sterols at the expense of the 24-ethyl sterols stigmasterol and sitosterol. In our alternative strategy, CAS gene expression was partially blocked by using an inducible artificial microRNA. The limited effectiveness of this approach might be explained by some dependence of the machinery for RNAi formation on an operating MVA/sterol pathway. For comparison we checked the effect of RO 48-8071 on a green cell suspension of Arabidopsis and on seedlings, containing a small spectrum of triterpenes besides phytosterols. Triterpenes remained essentially unaffected, but phytosterol accumulation was clearly diminished.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | | | | | | |
Collapse
|
32
|
Zhen YQ, Wu YM, Sang YH, Wang Y, Song QY, Yu L, Rao XJ, Dong RH. 2,3-Oxidosqualene cyclase protects liver cells from the injury of intermittent hypoxia by regulating lipid metabolism. Sleep Breath 2015; 19:1475-81. [PMID: 25855471 PMCID: PMC4662960 DOI: 10.1007/s11325-015-1167-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE 2,3-Oxidosqualene cyclase (OSC), an important enzyme of cholesterol biosynthesis, catalyzes the highly selective cyclization of 2,3-monoepoxysqualene to lanosterol. Intermittent hypoxia (IH) is a hallmark feature in obstructive sleep apnea (OSA) which is increasingly recognized as an independent risk factor for liver injury. The aim of this study was to determine the effect of IH on OSC expression and evaluate the role of OSC in the IH-induced apoptosis in hepatic cell line human liver cell (HL-02). METHODS HL-02 cells were exposed to normoxia or IH. Cell Counting Kit-8 (CCK-8) assay was used to value cell proliferation, and flow cytometry was used to determine cell apoptosis. The expression of OSC messenger RNA (mRNA) was evaluated by quantitative real-time PCR, and the expression of OSC protein was determined by Western blot. To further investigate the function of OSC in IH-induced apoptosis, oxidosqualene cyclase-enhanced green fluorescence protein (OSC-EGFP) plasmid was constructed to over-express OSC protein. Triglyceride content in HL-02 cells was analyzed by oil red staining or Triglyceride Quantification Kit. RESULTS We found that IH inhibited HL-02 cell proliferation and accelerated cell apoptosis. IH decreased OSC expression, and over-expression of OSC could protect HL-02 cells against the IH-induced hepatic cell injury. Moreover, over-expression of OSC could attenuate IH-induced cellular triglyceride accumulation. CONCLUSIONS These findings suggest that OSC are involved in IH-induced hepatic cell injury. These results may contribute to the further understanding of the mechanism underlying the liver injury in OSA patients.
Collapse
Affiliation(s)
- Yue-Qiao Zhen
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China
| | - Yu-Min Wu
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China
| | - Yan-Hong Sang
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China
| | - Yan Wang
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China
| | - Qiu-Yan Song
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China
| | - Ling Yu
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China
| | - Xiao-Juan Rao
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China
| | - Rui-Hong Dong
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Rehabilitation Street, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
33
|
The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci Rep 2015; 5:9054. [PMID: 25761781 PMCID: PMC4357009 DOI: 10.1038/srep09054] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
Abstract
Aberrant cholesterol homeostasis and biosynthesis has been observed in different tumour types. This paper investigates the role of the post-squalenic enzyme of cholesterol biosynthesis, oxidosqualene cyclase (OSC), in regulating tumour angiogenesis and metastasis dissemination in mouse models of cancer. We showed that Ro 48-8071, a selective inhibitor of OSC, reduced vascular density and increased pericyte coverage, with a consequent inhibition of tumour growth in a spontaneous mouse model of pancreatic tumour (RIP-Tag2) and two metastatic mouse models of human colon carcinoma (HCT116) and pancreatic adenocarcinoma (HPAF-II). Remarkably, the inhibition of OSC hampered metastasis formation in HCT116 and HPAF-II models. Ro 48-8071 induced tumour vessel normalization and enhanced the anti-tumoral and anti-metastatic effects of 5-fluorouracil (5-FU) in HCT116 mice. Ro 48-8071 exerted a strong anti-angiogenic activity by impairing endothelial cell adhesion and migration, and by blocking vessel formation in angiogenesis assays. OSC inhibition specifically interfered with the PI3K pathway. According to in vitro results, Ro 48-8071 specifically inhibited Akt phosphorylation in both cancer cells and tumour vasculature in all treated models. Thus, our results unveil a crucial role of OSC in the regulation of cancer progression and tumour angiogenesis, and indicate Ro 48-8071 as a potential novel anti-angiogenic and anti-metastatic drug.
Collapse
|
34
|
Planer JD, Hulverson MA, Arif JA, Ranade RM, Don R, Buckner FS. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Negl Trop Dis 2014; 8:e2977. [PMID: 25033456 PMCID: PMC4102417 DOI: 10.1371/journal.pntd.0002977] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/12/2014] [Indexed: 12/14/2022] Open
Abstract
An estimated 8 million persons, mainly in Latin America, are infected with Trypanosoma cruzi, the etiologic agent of Chagas disease. Existing antiparasitic drugs for Chagas disease have significant toxicities and suboptimal effectiveness, hence new therapeutic strategies need to be devised to address this neglected tropical disease. Due to the high research and development costs of bringing new chemical entities to the clinic, we and others have investigated the strategy of repurposing existing drugs for Chagas disease. Screens of FDA-approved drugs (described in this paper) have revealed a variety of chemical classes that have growth inhibitory activity against mammalian stage Trypanosoma cruzi parasites. Aside from azole antifungal drugs that have low or sub-nanomolar activity, most of the active compounds revealed in these screens have effective concentrations causing 50% inhibition (EC50's) in the low micromolar or high nanomolar range. For example, we have identified an antihistamine (clemastine, EC50 of 0.4 µM), a selective serotonin reuptake inhibitor (fluoxetine, EC50 of 4.4 µM), and an antifolate drug (pyrimethamine, EC50 of 3.8 µM) and others. When tested alone in the murine model of Trypanosoma cruzi infection, most compounds had insufficient efficacy to lower parasitemia thus we investigated using combinations of compounds for additive or synergistic activity. Twenty-four active compounds were screened in vitro in all possible combinations. Follow up isobologram studies showed at least 8 drug pairs to have synergistic activity on T. cruzi growth. The combination of the calcium channel blocker, amlodipine, plus the antifungal drug, posaconazole, was found to be more effective at lowering parasitemia in mice than either drug alone, as was the combination of clemastine and posaconazole. Using combinations of FDA-approved drugs is a promising strategy for developing new treatments for Chagas disease. Chronic infection with Trypanosoma cruzi causes progressive damage to the heart and other organs that is fatal in about 30% of cases. Known as Chagas disease, this is a major public health problem in Latin America. The existing medicines were developed over forty years ago and are not widely used because of toxicity and unreliable effectiveness. To discover better treatments, we screened a collection of existing drugs for growth inhibitory activity on Trypanosoma cruzi. Several dozen orally administered drugs were discovered, but when used by themselves they were not strong enough to cure the infection in an animal model. We tested a set of 24 of these drugs in every two-way combination and identified eight synergistic partners. At least two of these combinations were able to substantially lower parasite levels in the mouse model of Trypanosoma cruzi infection. Thus, finding pairs of FDA-approved drugs that can be used in combination may be a pragmatic and effective strategy for designing new therapies for Chagas disease.
Collapse
Affiliation(s)
- Joseph D. Planer
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Matthew A. Hulverson
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jennifer A. Arif
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ranae M. Ranade
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robert Don
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Frederick S. Buckner
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
35
|
Chuang JC, Valasek MA, Lopez AM, Posey KS, Repa JJ, Turley SD. Sustained and selective suppression of intestinal cholesterol synthesis by Ro 48-8071, an inhibitor of 2,3-oxidosqualene:lanosterol cyclase, in the BALB/c mouse. Biochem Pharmacol 2014; 88:351-63. [PMID: 24486573 DOI: 10.1016/j.bcp.2014.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 01/11/2023]
Abstract
The small intestine plays a fundamentally important role in regulating whole body cholesterol balance and plasma lipoprotein composition. This is articulated through the interplay of a constellation of genes that ultimately determines the net amount of chylomicron cholesterol delivered to the liver. Major advances in our insights into regulation of the cholesterol absorption pathway have been made using genetically manipulated mouse models and agents such as ezetimibe. One unresolved question is how a sustained pharmacological inhibition of intestinal cholesterol synthesis in vivo may affect cholesterol handling by the absorptive cells. Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body weight), leads to a rapid and sustained inhibition (>50%) of cholesterol synthesis in the whole small intestine. Sterol synthesis was also reduced in the large intestine and stomach. In contrast, hepatic cholesterol synthesis, while markedly suppressed initially, rebounded to higher than baseline rates within 7 days. Whole body cholesterol synthesis, fractional cholesterol absorption, and fecal neutral and acidic sterol excretion were not consistently changed with Ro 48-8071 treatment. There were no discernible effects of this agent on intestinal histology as determined by H&E staining and the level of Ki67, an index of proliferation. The mRNA expression for multiple genes involved in intestinal cholesterol regulation including NPC1L1 was mostly unchanged although there was a marked rise in the mRNA level for the PXR target genes CYP3A11 and CES2A.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Mark A Valasek
- Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Adam M Lopez
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Kenneth S Posey
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Joyce J Repa
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States; Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Stephen D Turley
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| |
Collapse
|
36
|
Hartmann M, Hemmerlin A, Gas-Pascual E, Gerber E, Tritsch D, Rohmer M, Bach TJ. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells. F1000Res 2013; 2:170. [PMID: 24555083 DOI: 10.12688/f1000research.2-170.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
We have established anin vivovisualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL.
Collapse
Affiliation(s)
- Michael Hartmann
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France ; Current address: Institute of Biological Chemistry, Washington State University, Pullman WA, 99164-6340, USA
| | - Andrea Hemmerlin
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France
| | - Elisabet Gas-Pascual
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France ; Current address: Department of Horticulture and Crop Science, Ohio State University, Wooster OH, 44691, USA
| | - Esther Gerber
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France ; Current address: Deinove SA, F-34830 Clapiers, France
| | - Denis Tritsch
- UMR 7177 CNRS, Laboratoire de Chimie et Biochimie des Microorganismes, Institut de Chimie de Strasbourg, Université de Strasbourg, F-67008 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS, Laboratoire de Chimie et Biochimie des Microorganismes, Institut de Chimie de Strasbourg, Université de Strasbourg, F-67008 Strasbourg, France
| | - Thomas J Bach
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France
| |
Collapse
|
37
|
Hartmann M, Hemmerlin A, Gas-Pascual E, Gerber E, Tritsch D, Rohmer M, Bach TJ. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells. F1000Res 2013; 2:170. [PMID: 24555083 PMCID: PMC3886798 DOI: 10.12688/f1000research.2-170.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 11/20/2022] Open
Abstract
We have established an
in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL.
Collapse
Affiliation(s)
- Michael Hartmann
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France ; Current address: Institute of Biological Chemistry, Washington State University, Pullman WA, 99164-6340, USA
| | - Andrea Hemmerlin
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France
| | - Elisabet Gas-Pascual
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France ; Current address: Department of Horticulture and Crop Science, Ohio State University, Wooster OH, 44691, USA
| | - Esther Gerber
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France ; Current address: Deinove SA, F-34830 Clapiers, France
| | - Denis Tritsch
- UMR 7177 CNRS, Laboratoire de Chimie et Biochimie des Microorganismes, Institut de Chimie de Strasbourg, Université de Strasbourg, F-67008 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS, Laboratoire de Chimie et Biochimie des Microorganismes, Institut de Chimie de Strasbourg, Université de Strasbourg, F-67008 Strasbourg, France
| | - Thomas J Bach
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, F-67083 Strasbourg, France
| |
Collapse
|
38
|
Lange S, Keller M, Müller C, Oliaro-Bosso S, Balliano G, Bracher F. Aminopropylindenes derived from Grundmann's ketone as a novel chemotype of oxidosqualene cyclase inhibitors. Eur J Med Chem 2013; 63:758-64. [DOI: 10.1016/j.ejmech.2013.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/15/2013] [Accepted: 03/01/2013] [Indexed: 12/26/2022]
|
39
|
Ito R, Masukawa Y, Hoshino T. Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase fromEuphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases. FEBS J 2013; 280:1267-80. [DOI: 10.1111/febs.12119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/23/2012] [Accepted: 01/01/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ryousuke Ito
- Graduate School of Science and Technology; Niigata University; Japan
| | - Yukari Masukawa
- Graduate School of Science and Technology; Niigata University; Japan
| | | |
Collapse
|
40
|
Moorthy NSHN, Cerqueira NMFSA, Ramos MJ, Fernandes PA. Combined ligand and structure based binding mode analysis of oxidosqualene cyclase inhibitors. RSC Adv 2013. [DOI: 10.1039/c3ra43670e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
41
|
Brown AJ. Cholesterol versus other sterols: How do they compare as physiological regulators of cholesterol homeostasis? EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew J. Brown
- BABS, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
42
|
Staedler D, Chapuis-Bernasconi C, Dehmlow H, Fischer H, Juillerat-Jeanneret L, Aebi JD. Cytotoxic Effects of Combination of Oxidosqualene Cyclase Inhibitors with Atorvastatin in Human Cancer Cells. J Med Chem 2012; 55:4990-5002. [DOI: 10.1021/jm300256z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Davide Staedler
- Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Catherine Chapuis-Bernasconi
- Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Henrietta Dehmlow
- F. Hoffmann-La Roche Ltd., Pharmaceutical Division, CH-4070 Basel, Switzerland
| | - Holger Fischer
- F. Hoffmann-La Roche Ltd., Pharmaceutical Division, CH-4070 Basel, Switzerland
| | - Lucienne Juillerat-Jeanneret
- Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Johannes D. Aebi
- F. Hoffmann-La Roche Ltd., Pharmaceutical Division, CH-4070 Basel, Switzerland
| |
Collapse
|
43
|
Watanabe T, Kurata I, Umezawa Y, Takahashi Y, Akamatsu Y. Inhibitors of human 2,3-oxidosqualene cyclase (OSC) discovered by virtual screening. Bioorg Med Chem Lett 2012; 22:231-4. [DOI: 10.1016/j.bmcl.2011.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
44
|
Zerenturk EJ, Kristiana I, Gill S, Brown AJ. The endogenous regulator 24(S),25-epoxycholesterol inhibits cholesterol synthesis at DHCR24 (Seladin-1). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:1269-77. [PMID: 22178193 DOI: 10.1016/j.bbalip.2011.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/25/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022]
Abstract
The oxysterol 24(S),25-epoxycholesterol (24,25EC) can affect cholesterol metabolism at multiple points. Previously, we proposed that 24,25EC has an especially significant role in fine-tuning cholesterol synthesis, since it parallels cholesterol production, and without it, acute cholesterol synthesis is exaggerated. 24,25EC is structurally similar to desmosterol, a substrate for the enzyme 3β-hydroxysterol ∆(24)-reductase (DHCR24, also called Seladin-1) which catalyzes a final step in cholesterol synthesis. In this study, we reveal a novel mode by which 24,25EC can regulate cholesterol synthesis, by interfering with DHCR24, resulting in the rapid accumulation of the substrate desmosterol, at the expense of cholesterol. This effect was independent of DHCR24 protein levels, and was observed in multiple mammalian cell-lines, including those of hepatic and neuronal origin. Conversely, overexpression of DHCR24 blunted the inhibition by 24,25EC. We also determined that the specificity of this effect was restricted to certain side-chain oxysterols, notably those oxygenated at C-25. Importantly, endogenous levels of 24,25EC, manipulated by genetic and pharmacological methods, were sufficient to reduce DHCR24 activity. Together, our work introduces a novel role for 24,25EC in cholesterol homeostasis, through its rapid inhibition of cholesterol synthesis at DHCR24. Also, our work provides new insights into a little studied area, the post-transcriptional regulation of DHCR24, an important enzyme in human health and disease.
Collapse
Affiliation(s)
- Eser J Zerenturk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
45
|
Mejia-Pous C, Damiola F, Gandrillon O. Cholesterol synthesis-related enzyme oxidosqualene cyclase is required to maintain self-renewal in primary erythroid progenitors. Cell Prolif 2011; 44:441-52. [PMID: 21951287 DOI: 10.1111/j.1365-2184.2011.00771.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Molecular mechanisms controlling cell fate decision making in self-renewing cells are poorly understood. A previous transcriptomic study, carried out in primary avian erythroid progenitor cells (T2ECs), revealed that the gene encoding oxidosqualene cyclase (OSC/LSS), an enzyme involved in cholesterol biosynthesis, is significantly up-regulated in self-renewing cells. The aim of the present work is to understand whether this up-regulation is required for self-renewal maintenance and what are the mechanisms involved. MATERIALS AND METHODS To investigate OSC function, we studied effects of its enzymatic activity inhibition using Ro48-8071, a specific OSC inhibitor. In addition, we completed this pharmacological approach by RNAi-mediated OSC/LSS knockdown. The study of OSC inhibition was carried out on both self-renewing and differentiating cells to observe any state-dependent effect. RESULTS Our data show that OSC acts both by protecting self-renewing T2EC cells from apoptosis and by blocking their differentiation program, as OSC inhibition is sufficient to trigger spontaneous commitment of self-renewing cells towards an early differentiation state. This is self-renewal specific, as OSC inhibition has no effect on erythroid progenitors that have already differentiated. CONCLUSIONS Taken together, our results suggest that OSC/LSS expression and activity are required to maintain cell self-renewal and may be involved in the self-renewal versus differentiation/apoptosis decision making, by keeping cells in a self-renewal state.
Collapse
Affiliation(s)
- C Mejia-Pous
- Bases Moléculaires de l'Autorenouvellement et de ses Altérations" Group, Université de Lyon, Université Lyon 1, Villeurbanne, Centre de Génétique Moléculaire et Cellulaire, Lyon, France
| | | | | |
Collapse
|
46
|
Leichner GS, Avner R, Harats D, Roitelman J. Metabolically regulated endoplasmic reticulum-associated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase: evidence for requirement of a geranylgeranylated protein. J Biol Chem 2011; 286:32150-61. [PMID: 21778231 PMCID: PMC3173168 DOI: 10.1074/jbc.m111.278036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/18/2011] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), which catalyzes the rate-limiting step in the mevalonate pathway, is ubiquitylated and degraded by the 26 S proteasome when mevalonate-derived metabolites accumulate, representing a case of metabolically regulated endoplasmic reticulum-associated degradation (ERAD). Here, we studied which mevalonate-derived metabolites signal for HMGR degradation and the ERAD step(s) in which these metabolites are required. In HMGR-deficient UT-2 cells that stably express HMGal, a chimeric protein between β-galactosidase and the membrane region of HMGR, which is necessary and sufficient for the regulated ERAD, we tested inhibitors specific to different steps in the mevalonate pathway. We found that metabolites downstream of farnesyl pyrophosphate but upstream to lanosterol were highly effective in initiating ubiquitylation, dislocation, and degradation of HMGal. Similar results were observed for endogenous HMGR in cells that express this protein. Ubiquitylation, dislocation, and proteasomal degradation of HMGal were severely hampered when production of geranylgeranyl pyrophosphate was inhibited. Importantly, inhibition of protein geranylgeranylation markedly attenuated ubiquitylation and dislocation, implicating for the first time a geranylgeranylated protein(s) in the metabolically regulated ERAD of HMGR.
Collapse
Affiliation(s)
- Gil S. Leichner
- From the Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978 and
- the Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Rachel Avner
- the Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Dror Harats
- the Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Joseph Roitelman
- From the Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978 and
- the Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer 52621, Israel
| |
Collapse
|
47
|
Liver X Receptor: an oxysterol sensor and a major player in the control of lipogenesis. Chem Phys Lipids 2011; 164:500-14. [PMID: 21693109 DOI: 10.1016/j.chemphyslip.2011.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
Abstract
De novo fatty acid biosynthesis is also called lipogenesis. It is a metabolic pathway that provides the cells with fatty acids required for major cellular processes such as energy storage, membrane structures and lipid signaling. In this article we will review the role of the Liver X Receptors (LXRs), nuclear receptors that sense oxysterols, in the transcriptional regulation of genes involved in lipogenesis.
Collapse
|
48
|
|
49
|
Gill S, Brown AJ. Exploiting a Physiological Regulator to Improve the Efficacy and Safety of Statins. Cardiovasc Drugs Ther 2011; 25:183-5. [DOI: 10.1007/s10557-011-6281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Grinter SZ, Liang Y, Huang SY, Hyder SM, Zou X. An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model 2011; 29:795-9. [PMID: 21315634 DOI: 10.1016/j.jmgm.2011.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/28/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibit cancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce the viability of BT-474 and T47-D breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of p53 to DNA in BT-474 cells (which express mutant p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.
Collapse
Affiliation(s)
- Sam Z Grinter
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, United States
| | | | | | | | | |
Collapse
|