1
|
Mahmood T, Miles JR, Minnier J, Tavori H, DeBarber AE, Fazio S, Shapiro MD. Effect of PCSK9 inhibition on plasma levels of small dense low density lipoprotein-cholesterol and 7-ketocholesterol. J Clin Lipidol 2024; 18:e50-e58. [PMID: 37923663 PMCID: PMC10957330 DOI: 10.1016/j.jacl.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Oxidized forms of cholesterol (oxysterols) are implicated in atherogenesis and can accumulate in the body via direct absorption from food or through oxidative reactions of endogenous cholesterol, inducing the formation of LDL particles loaded with oxidized cholesterol. It remains unknown whether drastic reductions in LDL-cholesterol (LDL-C) are associated with changes in circulating oxysterols and whether small dense LDL (sdLDL) are more likely to carry these oxysterols and susceptible to the effects of PCSK9 inhibition (PCSK9i). OBJECTIVE We investigate the effect of LDL-C reduction accomplished via PCSK9i on changes in plasma levels of sdLDL-cholesterol (sdLDL-C) and a common, stable oxysterol, 7-ketocholesterol (7-KC), among 134 patients referred to our Preventive Cardiology clinic. METHODS Plasma lipid panel, sdLDL-C, and 7-KC measurements were obtained from patients before and after initiation of PCSK9i. RESULTS The intervention caused a significant lowering of LDL-C (-55.4 %). The changes in sdLDL-C levels (mean reduction 51.4 %) were highly correlated with the reductions in LDL-C levels (R = 0.829, p < 0.001). Interestingly, whereas changes in plasma free 7-KC levels with PCSK9i treatment were much smaller than (-6.6 %) and did not parallel those of LDL-C and sdLDL-C levels, they did significantly correlate with changes in triglycerides and very low-density lipoprotein-cholesterol (VLDL-C) levels (R = 0.219, p = 0.025). CONCLUSION Our findings suggest a non-preferential clearance of LDL subparticles as a consequence of LDL receptor upregulation caused by PCSK9 inhibition. Moreover, the lack of significant reduction in 7-KC with PCSK9i suggests that 7-KC may be in part carried by VLDL and lost during lipoprotein processing leading to LDL formation.
Collapse
Affiliation(s)
- Tahir Mahmood
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Joshua R Miles
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Jessica Minnier
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio); Oregon Health & Science University, OHSU-PSU School of Public Health, Portland, OR, USA (Dr Minnier)
| | - Hagai Tavori
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Andrea E DeBarber
- Oregon Health & Science University, University Shared Resources, Portland, OR, USA (Dr DeBarber)
| | - Sergio Fazio
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Michael D Shapiro
- Wake Forest University School of Medicine, Section on Cardiovascular Medicine, Center for Prevention of Cardiovascular Disease, Winston-Salem, NC, USA (Dr Shapiro).
| |
Collapse
|
2
|
Luquain-Costaz C, Delton I. Oxysterols in Vascular Cells and Role in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:213-229. [PMID: 38036882 DOI: 10.1007/978-3-031-43883-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Atherosclerosis is a major cardiovascular complication of diseases associated with elevated oxidative stress such as type 2 diabetes and metabolic syndrome. In these situations, low-density lipoproteins (LDL) undergo oxidation. Oxidized LDL displays proatherogenic activities through multiple and complex mechanisms which lead to dysfunctions of vascular cells (endothelial cells, smooth muscle cells, and macrophages). Oxidized LDLs are enriched in oxidized products of cholesterol called oxysterols formed either by autoxidation, enzymatically, or by both mechanisms. Several oxysterols have been shown to accumulate in atheroma plaques and to play a key role in atherogenesis. Depending on the type of oxysterols, various biological effects are exerted on vascular cells to regulate the formation of macrophage foam cells, endothelial integrity, adhesion and transmigration of monocytes, plaque progression, and instability. Most of these effects are linked to the ability of oxysterols to induce cellular oxidative stress and cytotoxicity mainly through apoptosis and proinflammatory mediators. Like for excess cholesterol, high-density lipoproteins (HDL) can exert antiatherogenic activity by stimulating the efflux of oxysterols that have accumulated in foamy macrophages.
Collapse
Affiliation(s)
- Celine Luquain-Costaz
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- Department of Biosciences, INSA Lyon, Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.
- Department of Biosciences, INSA Lyon, Villeurbanne, France.
| |
Collapse
|
3
|
Bhargava P, Dinh D, Teramayi F, Silberg A, Petler N, Anderson AM, Clemens DM, O’Connor MS. Selective Removal of 7KC by a Novel Atherosclerosis Therapeutic Candidate Reverts Foam Cells to a Macrophage-like Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563623. [PMID: 37961383 PMCID: PMC10634755 DOI: 10.1101/2023.10.23.563623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The removal of the toxic oxidized cholesterol, 7-ketocholesterol (7KC), from cells through the administration of therapeutics has the potential to treat atherosclerosis and various other pathologies. While cholesterol is a necessary building block for homeostasis, oxidation of cholesterol can lead to the formation of toxic oxysterols involved in various pathologies, the most prominent of which is 7KC, which is formed through the non-enzymatic oxidation of cholesterol. Oxidized LDL (oxLDL) particles, highly implicated in heart disease, contain high levels of 7KC, and molecular 7KC is implicated in the pathogenesis of numerous diseases, including multiple sclerosis, hypercholesterolemia, sickle cell anemia, and multiple age related diseases. Of particular interest is the role of 7KC in the progression of atherosclerosis, with several studies associating elevated levels of 7KC with the etiology of the disease or in the transition of macrophages to foam cells. This research aims to elucidate the molecular mechanisms of UDP-003, a novel therapeutic, in mitigating the harmful effects of 7KC in mouse and human monocyte and macrophage cell lines. Experimental evidence demonstrates that administration of UDP-003 can reverse the foam cell phenotype, rejuvenating these cells by returning phagocytic function and decreasing both reactive oxygen species (ROS) and intracellular lipid droplet accumulation. Furthermore, our data suggests that the targeted removal of 7KC from foam cells with UDP-003 can potentially prevent and reverse atherosclerotic plaque formation. UDP-003 has the potential to be the first disease-modifying therapeutic approach to treating atherosclerotic disease.
Collapse
Affiliation(s)
- Prerna Bhargava
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Darren Dinh
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Fadzai Teramayi
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Ana Silberg
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | - Noa Petler
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA
| | | | | | | |
Collapse
|
4
|
Stevenson ER, Smith LC, Wilkinson ML, Lee SJ, Gow AJ. Etiology of lipid-laden macrophages in the lung. Int Immunopharmacol 2023; 123:110719. [PMID: 37595492 PMCID: PMC10734282 DOI: 10.1016/j.intimp.2023.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Uniquely positioned as sentinel cells constantly exposed to the environment, pulmonary macrophages are vital for the maintenance of the lung lining. These cells are responsible for the clearance of xenobiotics, pathogen detection and clearance, and homeostatic functions such as surfactant recycling. Among the spectrum of phenotypes that may be expressed by macrophages in the lung, the pulmonary lipid-laden phenotype is less commonly studied in comparison to its circulatory counterpart, the atherosclerotic lesion-associated foam cell, or the acutely activated inflammatory macrophage. Herein, we propose that lipid-laden macrophage formation in the lung is governed by lipid acquisition, storage, metabolism, and export processes. The cellular balance of these four processes is critical to the maintenance of homeostasis and the prevention of aberrant signaling that may contribute to lung pathologies. This review aims to examine mechanisms and signaling pathways that are involved in lipid-laden macrophage formation and the potential consequences of this phenotype in the lung.
Collapse
Affiliation(s)
- E R Stevenson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - L C Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT, United States
| | - M L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - S J Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - A J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
5
|
Saraev DD, Wu Z, Kim HYH, Porter NA, Pratt DA. Intramolecular H-Atom Transfers in Alkoxyl Radical Intermediates Underlie the Apparent Oxidation of Lipid Hydroperoxides by Fe(II). ACS Chem Biol 2023; 18:2073-2081. [PMID: 37639355 DOI: 10.1021/acschembio.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The one-electron reduction of lipid hydroperoxides by low-valent iron species is believed to be a driver of cellular lipid peroxidation and associated ferroptotic cell death. We investigated reactions of cholesterol 7α-OOH, the primary cholesterol autoxidation product, with Fe2+ to find that 7-ketocholesterol (7-KC, an oxidation product) is the major product under these (reducing) conditions. Mechanistic studies reveal the intervention of a 1,2-H-atom shift upon formation of the 7-alkoxyl radical to yield a ketyl radical that can be oxidized by either Fe3+ or O2 to give 7-KC, the most abundant oxysterol in vivo. We also investigated the corresponding reduction of the isomeric cholesterol 5α-OOH and again found that an oxidation product (5-hydroxycholesten-3-one) predominates under reducing conditions. An intramolecular H-atom shift (this time 1,4-) in the initially formed 5-alkoxyl radical is suggested to yield a ketyl radical that is oxidized to give the observed product. It would appear that a 1,2-H shift also accounts for the predominance of ketones over alcohols when unsaturated fatty acid hydroperoxides are exposed to iron-based reductants, which had previously been reported with hematin and demonstrated here with Fe2+. The predominance of 7-KC over the corresponding alcohol is maintained when cholesterol 7α-OOH embedded in phospholipid liposomes is treated with Fe2+ or when ferroptosis is induced in mouse embryonic fibroblasts. Our observation that 7-KC accumulates in ferroptotic cells suggests that it may be a good biomarker for ferroptosis.
Collapse
Affiliation(s)
- Dmitry D Saraev
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| | - Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Pariente A, Pérez-Sala Á, Ochoa R, Bobadilla M, Villanueva-Martínez Á, Peláez R, Larráyoz IM. Identification of 7-Ketocholesterol-Modulated Pathways and Sterculic Acid Protective Effect in Retinal Pigmented Epithelium Cells by Using Genome-Wide Transcriptomic Analysis. Int J Mol Sci 2023; 24:ijms24087459. [PMID: 37108627 PMCID: PMC10144535 DOI: 10.3390/ijms24087459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. AMD is characterized by the formation of lipidic deposits between the retinal pigment epithelium (RPE) and the choroid called drusen. 7-Ketocholesterol (7KCh), an oxidized-cholesterol derivative, is closely related to AMD as it is one of the main molecules accumulated in drusen. 7KCh induces inflammatory and cytotoxic responses in different cell types, and a better knowledge of the signaling pathways involved in its response would provide a new perspective on the molecular mechanisms that lead to the development of AMD. Furthermore, currently used therapies for AMD are not efficient enough. Sterculic acid (SA) attenuates the 7KCh response in RPE cells and is presented as an alternative to improve these therapies. By using genome-wide transcriptomic analysis in monkey RPE cells, we have provided new insight into 7KCh-induced signaling in RPE cells, as well as the protective capacity of SA. 7KCh modulates the expression of several genes associated with lipid metabolism, endoplasmic reticulum stress, inflammation and cell death and induces a complex response in RPE cells. The addition of SA successfully attenuates the deleterious effect of 7KCh and highlights its potential for the treatment of AMD.
Collapse
Affiliation(s)
- Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Rodrigo Ochoa
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
- Proteomics Research Core Facility, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Miriam Bobadilla
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Ángela Villanueva-Martínez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Ignacio M Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
- Biomarkers, Artificial Intelligence and Signaling (BIAS), Department of Nursing, University of La Rioja, Duquesa de la Victoria 88, 26006 Logroño, Spain
| |
Collapse
|
7
|
Li H, Xie X, Zhang L, He Y, Liu H, Qiang D, Bai G, Li L, Tang Y. Ultra-high-performance liquid chromatography-tandem mass spectrometry analysis of serum metabolomic characteristics in people with different vitamin D levels. Open Med (Wars) 2023; 18:20230658. [PMID: 36874363 PMCID: PMC9979004 DOI: 10.1515/med-2023-0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 03/05/2023] Open
Abstract
Vitamin D is a fat-soluble vitamin with multiple functions. However, the metabolism of people with different vitamin D concentrations is still unclear. Herein, we collected clinical data and analysed the serum metabolome of people with 25-hydroxyvitamin D (25[OH]D) ≥40 ng/mL (A), 30 ng/mL ≤25(OH)D <40 ng/mL (B) and 25(OH)D <30 ng/mL (C) by the ultra-high-performance liquid chromatography-tandem mass spectrometry method. We found that haemoglobin A1c, fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance and thioredoxin interaction protein were enhanced, while HOMA-β was reduced with the decrease of 25(OH)D concentration. In addition, people in the C group were diagnosed with prediabetes or diabetes. Metabolomics analysis showed that seven, thirty-four and nine differential metabolites were identified in the groups B vs A, C vs A and C vs B, respectively. Metabolites associated with cholesterol metabolism and bile acid biosynthesis, such as 7-ketolithocholic acid, 12-ketolithocholic acid, apocholic acid, N-arachidene glycine and d-mannose 6-phosphate, were significantly upregulated in the C group compared with the A or B groups. In conclusion, the disorder of vitamin D metabolism may be related to cholesterol metabolism and bile acid biosynthesis. This study provided a basis for exploring the possible mechanism leading to abnormal vitamin D metabolism.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| | - Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, Liqun West Street 2, 750001, Ningxia Hui Autonomous Region, China
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| | - Yanting He
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| | - Huili Liu
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| | - Dan Qiang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| | - Guirong Bai
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| | - Ling Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| | - Yanpan Tang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan City, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
8
|
Uchikawa T, Matoba T, Kawahara T, Baba I, Katsuki S, Koga JI, Hashimoto Y, Yamasaki R, Ichi I, Akita H, Tsutsui H. Dietary 7-ketocholesterol exacerbates myocardial ischemia-reperfusion injury in mice through monocyte/macrophage-mediated inflammation. Sci Rep 2022; 12:14902. [PMID: 36050346 PMCID: PMC9436973 DOI: 10.1038/s41598-022-19065-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence suggests that 7-ketocholesterol (7-KC), one of the most abundant dietary oxysterols, causes inflammation and cardiovascular diseases. Here we show the deteriorating effects of dietary 7-KC on myocardial ischemia-reperfusion (IR) injury and detailed the molecular mechanisms. A high-fat high-cholesterol diet containing 7-KC (7KWD) for 3 weeks increased the plasma 7-KC level compared with high-fat high-cholesterol diet in mice. In wild-type mice but not in CCR2-/- mice, dietary 7-KC increased the myocardial infarct size after IR. Flow cytometry revealed that the ratio of Ly-6Chigh inflammatory monocytes to total monocytes was increased in the 7KWD group. Unbiased RNA sequencing using murine primary macrophages revealed that 7-KC regulated the expression of transcripts related to inflammation and cholesterol biosynthesis. We further validated that in vitro, 7-KC induced endoplasmic reticulum stress, mitochondrial reactive oxygen species production, and nuclear factor-kappa B activation, which are associated with increased mRNA levels of proinflammatory cytokines. Administration of N-acetyl-L-cysteine or siRNA-mediated knockdown of PKR-like endoplasmic reticulum kinase or endoplasmic reticulum oxidase 1α suppressed the levels of 7-KC-induced inflammation. Dietary 7-KC exacerbates myocardial IR injury through monocyte/macrophage-mediated inflammation. Endoplasmic reticulum stress and oxidative stress are involved in the 7-KC-induced proinflammatory response in macrophages.
Collapse
Affiliation(s)
- Tomoki Uchikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Takuro Kawahara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| | - Isashi Baba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichiro Koga
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yu Hashimoto
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Passarelli MN, McDonald JG, Thompson BM, Arega EA, Palys TJ, Rees JR, Barry EL, Baron JA. Association of demographic and health characteristics with circulating oxysterol concentrations. J Clin Lipidol 2022; 16:345-355. [PMID: 35461764 PMCID: PMC10882644 DOI: 10.1016/j.jacl.2022.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGOUND Circulating oxysterols, cholesterol metabolites with important signaling functions, are increasingly being recognized as candidate biomarkers for several diseases, but associations with demographic and health characteristics remain poorly described. OBJECTIVE This study aims to characterize associations of major circulating oxysterols with sex, age, race/ethnicity, body mass index (BMI), lifestyle factors, and use of common medications. METHODS We measured plasma concentrations of 27-hydroxycholesterol (27-OHC), 25-hydroxycholesterol (25-OHC), 24(S)-hydroxycholesterol (24(S)-OHC), 7ɑ-hydroxycholesterol (7ɑ-OHC), and 4β-hydroxycholesterol (4β-OHC) from 1,440 participants of a completed clinical trial for the chemoprevention of colorectal adenomas. Adjusted percent difference in means were calculated using linear regression. RESULTS Women had 18% (95% CI, 14%, 22%) lower 27-OHC and 21% (15%, 27%) higher 4β-OHC than men. Blacks had 15% (7%, 23%) higher 4β-OHC than Non-Hispanic Whites, and Asian or Pacific Islanders had 19% (2%, 35%) higher 7ɑ-OHC than Non-Hispanic Whites. Individuals of BMI ≥35 kg/m2 had 33% (25%, 41%) lower 4β-OHC than those <25 kg/m2. Current smokers had 15% (5%, 24%) higher 7ɑ-OHC than never smokers, and daily alcohol drinkers had 17% (10%, 24%) higher 7ɑ-OHC than never drinkers. Statin use was associated with lower concentrations of all 5 oxysterols. Differences in mean <15% were found for characteristics such as age, total dietary energy intake, physical activity, diabetes, and anti-inflammatory drug use. CONCLUSION Circulating oxysterols are uniquely associated with multiple demographic and health characteristics.
Collapse
Affiliation(s)
- Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Enat A Arega
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Thomas J Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Judy R Rees
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Synthesis of Oxidized 3β,3'β-Disteryl Ethers and Search after High-Temperature Treatment of Sterol-Rich Samples. Int J Mol Sci 2021; 22:ijms221910421. [PMID: 34638762 PMCID: PMC8508662 DOI: 10.3390/ijms221910421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
It was proven that sterols subjected to high-temperature treatment can be concatenated, which results in polymeric structures, e.g., 3β,3'β-disteryl ethers. However, it was also proven that due to increased temperature in oxygen-containing conditions, sterols can undergo various oxidation reactions. This study aimed to prove the existence and perform quantitative analysis of oxidized 3β,3'β-disteryl ethers, which could form during high-temperature treatment of sterol-rich samples. Samples were heated at 180, 200 and 220 °C for 0.5 to 4 h. Quantitative analyses of the oxidized 3β,3'β-disteryl ethers were performed with liquid extraction, solid-phase extraction and liquid chromatography coupled with mass spectrometry. Additionally, to perform this analysis, the appropriate standards of all oxidized 3β,3'β-disteryl ethers were prepared. Eighteen various oxidized 3β,3'β-disteryl ethers (derivatives of 3β,3'β-dicholesteryl ether, 3β,3'β-disitosteryl ether and 3β,3'β-distigmasteryl ether) were prepared. Additionally, the influence of metal compounds on the mechanism of ether formation at high temperatures was investigated.
Collapse
|
11
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|
12
|
Structure and Dynamics of Oxidized Lipoproteins In Vivo: Roles of High-Density Lipoprotein. Biomedicines 2021; 9:biomedicines9060655. [PMID: 34201176 PMCID: PMC8229488 DOI: 10.3390/biomedicines9060655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/30/2023] Open
Abstract
Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.
Collapse
|
13
|
Zhang X, Alhasani RH, Zhou X, Reilly J, Zeng Z, Strang N, Shu X. Oxysterols and retinal degeneration. Br J Pharmacol 2021; 178:3205-3219. [PMID: 33501641 DOI: 10.1111/bph.15391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal degeneration, characterised by the progressive death of retinal neurons, is the most common cause of visual impairment. Oxysterols are the cholesterol derivatives produced via enzymatic and/or free radical oxidation that regulate cholesterol homeostasis in the retina. Preclinical and clinical studies have suggested a connection between oxysterols and retinal degeneration. Here, we summarise early and recent work related to retina oxysterol-producing enzymes and the distribution of oxysterols in the retina. We examine the impact of loss of oxysterol-producing enzymes on retinal pathology and explore the molecular mechanisms associated with the toxic or protective roles of individual oxysterols in different types of retinal degeneration. We conclude that increased efforts to better understand the oxysterol-associated pathophysiology will help in the development of effective retinal degeneration therapies. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.,Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, China
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow, UK
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.,Department of Vision Science, Glasgow Caledonian University, Glasgow, UK.,School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, China
| |
Collapse
|
14
|
Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: From physiological tuners to pharmacological opportunities. Br J Pharmacol 2020; 178:3089-3103. [PMID: 32335907 DOI: 10.1111/bph.15073] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oxysterols are oxygenated forms of cholesterol generated via autooxidation by free radicals and ROS, or formed enzymically by a variety of enzymes such as those involved in the synthesis of bile acids. Although found at very low concentrations in vivo, these metabolites play key roles in health and disease, particularly in development and regulating immune cell responses, by binding to effector proteins such as LXRα, RORγ and Insig and directly or indirectly regulating transcriptional programmes that affect cell metabolism and function. In this review, we summarise the routes by which oxysterols can be generated and subsequently modified to other oxysterol metabolites and highlight their diverse and profound biological functions and opportunities to alter their levels using pharmacological approaches. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Anderson A, Campo A, Fulton E, Corwin A, Jerome WG, O'Connor MS. 7-Ketocholesterol in disease and aging. Redox Biol 2020; 29:101380. [PMID: 31926618 PMCID: PMC6926354 DOI: 10.1016/j.redox.2019.101380] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023] Open
Abstract
7-Ketocholesterol (7KC) is a toxic oxysterol that is associated with many diseases and disabilities of aging, as well as several orphan diseases. 7KC is the most common product of a reaction between cholesterol and oxygen radicals and is the most concentrated oxysterol found in the blood and arterial plaques of coronary artery disease patients as well as various other disease tissues and cell types. Unlike cholesterol, 7KC consistently shows cytotoxicity to cells and its physiological function in humans or other complex organisms is unknown. Oxysterols, particularly 7KC, have also been shown to diffuse through membranes where they affect receptor and enzymatic function. Here, we will explore the known and proposed mechanisms of pathologies that are associated with 7KC, as well speculate about the future of 7KC as a diagnostic and therapeutic target in medicine.
Collapse
|
16
|
Pariente A, Peláez R, Pérez-Sala Á, Larráyoz IM. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp Eye Res 2019; 187:107746. [DOI: 10.1016/j.exer.2019.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
|
17
|
Samadi A, Gurlek A, Sendur SN, Karahan S, Akbiyik F, Lay I. Oxysterol species: reliable markers of oxidative stress in diabetes mellitus. J Endocrinol Invest 2019; 42:7-17. [PMID: 29564756 DOI: 10.1007/s40618-018-0873-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To assess the plasma oxysterol species 7-ketocholesterol (7-Kchol) and cholestane-3β,5α,6β-triol (chol-triol) as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus (DM). METHODS In total, 26 type 1 and 80 type 2 diabetes patients, along with 205 age- and gender-matched healthy controls, were included in this study. Oxysterols were quantified by liquid chromatography coupled with tandem mass spectrometry and N,N-dimethylglycine derivatization. Correlations between oxysterols and clinical/biochemical characteristics of the diabetes patients, and factors affecting 7-Kchol and chol-triol, were also determined. RESULTS Plasma 7-Kchol and chol-triol levels were significantly higher in type 1 and type 2 diabetes patients compared to healthy controls (P < 0.001). Significant positive correlations were observed between oxysterol levels and levels of glycated hemoglobin (HbA1c), glucose, serum total cholesterol, low-density lipoprotein, very-low-density lipoprotein, and triglycerides, as well as the number of coronary risk factors. Statins, oral hypoglycemic agents, and antihypertensive agents reduced the levels of oxysterols in type 2 diabetes patients. Statin use, HbA1c levels, and the number of coronary risk factors accounted for 98.8% of the changes in 7-Kchol levels, and total cholesterol, smoking status, and the number of coronary risk factors accounted for 77.3% of the changes in chol-triol levels in type 2 diabetes patients. CONCLUSIONS Plasma oxysterol levels in DM, and particularly type 2 DM, may yield complementary information regarding oxidative stress for the clinical follow-up of diabetes patients, especially those with coronary risk factors.
Collapse
Affiliation(s)
- A Samadi
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - A Gurlek
- Department of Internal Medicine, Endocrinology Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - S N Sendur
- Department of Internal Medicine, Endocrinology Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - S Karahan
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - F Akbiyik
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - I Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
- Clinical Pathology Laboratory, Hacettepe University Hospitals, 06100, Ankara, Turkey.
| |
Collapse
|
18
|
Flavonoids Ability to Disrupt Inflammation Mediated by Lipid and Cholesterol Oxidation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:243-253. [PMID: 31562634 DOI: 10.1007/978-3-030-21735-8_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Flavonoids are plant secondary metabolites that act as protectants against harmful effects of UV-B radiation inasmuch as biotic stress, conferring at the same time pigmentation of fruits and leaves [67]. The term "flavonoid" refers to phenolics having a basic skeleton of diphenylpropane (C6-C3-C6), which consists of two aromatic rings linked through three carbons that usually form an oxygenated heterocycle [25, 52]. Flavonoids are broken down into several different sub-categories based on their chemical structure. The main subclasses commonly found in food items are: flavonols, flavones, flavanones, flavan-3-ols, proanthocyanidins, and anthocyanins [44, 67]. Figure 19.1 depicts the major classification of flavonoids according to their chemical structure. Their occurrence in food matrices has been extensively reviewed [39, 44], and has been subject of extensive research in the last decades. Table 19.1 contains a few examples of compounds from each of the subcategory, with the fruit (berry) in which they are commonly found. The monomeric unit of flavonoids can dimerize and polymerize to form other important high molecular weight molecules; this is the case of proanthocyanidins, that are polymers of flavan-3-ols or flavanols. Not only do these compounds act as plant protectants, but they can also be very beneficial to human health. Cohorts studies performed in the early '90 have shown that dietary consumption of flavonoids was inversely associated with morbidity and mortality from coronary heart disease [31, 32]. These findings have opened an intensive field of research on the effects of flavonoids and flavonoids-rich food extracts in cardiovascular diseases (CVD) progression, particularly in the modulating CVD-associated oxidative stress and inflammation. In this short review, we will summarize the current findings in flavonoids beneficial effects in preventing CVD through inhibition of initial stages of CVD progression. Given the magnitude of scientific literature in the field, we will focus on two strictly mechanistic aspects: inhibition of chemical-induced LDL oxidation, and the effect of flavonoids in the monocyte/macrophages activation pathways.
Collapse
|
19
|
Brahmi F, Vejux A, Sghaier R, Zarrouk A, Nury T, Meddeb W, Rezig L, Namsi A, Sassi K, Yammine A, Badreddine I, Vervandier-Fasseur D, Madani K, Boulekbache-Makhlouf L, Nasser B, Lizard G. Prevention of 7-ketocholesterol-induced side effects by natural compounds. Crit Rev Food Sci Nutr 2018; 59:3179-3198. [DOI: 10.1080/10408398.2018.1491828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatiha Brahmi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Randa Sghaier
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Wiem Meddeb
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- LMMA/IPEST, Faculty of Science, University of Carthage, Bizerte, Tunisia
| | - Leila Rezig
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- ESIAT, Lab. Conservation et Valorisation des Aliments, Tunis, Tunisia
| | - Amira Namsi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- University Tunis El Manar, Faculty of Science of Tunis, Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Khouloud Sassi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Onco-Hematology, Faculty de Medicine of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Bioactive Molecules Research Lab, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Iham Badreddine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. ‘Valorisation des Ressources Naturelles et Environnement’, Université Ibn Zohr, Taroudant, Morocco
| | | | - Khodir Madani
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Lila Boulekbache-Makhlouf
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Boubker Nasser
- Lab. Neuroscience and Biochemistry, Université Hassan 1er, Settat, Morocco
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
20
|
7-Ketocholesterol enhances leukocyte adhesion to endothelial cells via p38MAPK pathway. PLoS One 2018; 13:e0200499. [PMID: 30063760 PMCID: PMC6067699 DOI: 10.1371/journal.pone.0200499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
7-Ketocholesterol is a major dietary cholesterol oxidation product found in high concentrations in atherosclerotic plaques, which contribute to the development of atherosclerosis. This study aimed to investigate the effects of 7-ketocholesterol on endothelial inflammation, as well as the underlying mechanisms. Pretreatment of human umbilical vein endothelial cells (HUVEC) with 7-ketocholesterol significantly enhanced the total interactions between human monocytic cells (THP-1 cell line) and TNFα-activated HUVECs under physiological flow conditions, compared to pretreatment with cholesterol (TNFα+50 μM cholesterol: 13.1 ± 0.54 cells/CPF, TNFα+50 μM 7-ketocholesterol: 18.9 ± 0.35 cells/CPF, p < 0.01). 7-Ketocholesterol enhanced the expression of E-selectin, ICAM-1, and VCAM-1 proteins. It also activated p38 mitogen-activated protein kinase (MAPK), and treatment with a p38 MAPK inhibitor inhibited both E-selectin expression via ATF-2 activation and 7-ketocholesterol-induced THP-1 adhesion to HUVECs. These findings suggest that 7-ketocholesterol enhances leukocyte–endothelial interactions by upregulating the expression of adhesion molecules, presumably via the p38 MAPK-dependent pathway.
Collapse
|
21
|
Houben T, Oligschlaeger Y, Bitorina AV, Hendrikx T, Walenbergh SMA, Lenders MH, Gijbels MJJ, Verheyen F, Lütjohann D, Hofker MH, Binder CJ, Shiri-Sverdlov R. Blood-derived macrophages prone to accumulate lysosomal lipids trigger oxLDL-dependent murine hepatic inflammation. Sci Rep 2017; 7:12550. [PMID: 28970532 PMCID: PMC5624963 DOI: 10.1038/s41598-017-13058-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Despite the consistent rise of non-alcoholic steatohepatitis (NASH) worldwide, the mechanisms that govern the inflammatory aspect of this disease remain unknown. Previous research showed an association between hepatic inflammation and lysosomal lipid accumulation in blood-derived hepatic macrophages. Additionally, in vitro findings indicated that lipids, specifically derived from the oxidized low-density lipoprotein (oxLDL) particle, are resistant to removal from lysosomes. On this basis, we investigated whether lysosomal lipid accumulation in blood-derived hepatic macrophages is causally linked to hepatic inflammation and assessed to what extent increasing anti-oxLDL IgM autoantibodies can affect this mechanism. By creating a proof-of-concept mouse model, we demonstrate a causal role for lysosomal lipids in blood-derived hepatic macrophages in mediating hepatic inflammation and initiation of fibrosis. Furthermore, our findings show that increasing anti-oxLDL IgM autoantibody levels reduces inflammation. Hence, therapies aimed at improving lipid-induced lysosomal dysfunction and blocking oxLDL-formation deserve further investigation in the context of NASH.
Collapse
Affiliation(s)
- Tom Houben
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Albert V Bitorina
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Tim Hendrikx
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Sofie M A Walenbergh
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Marie-Hélène Lenders
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Marion J J Gijbels
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Fons Verheyen
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn; Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Marten H Hofker
- Department of Pathology and Medical Biology, Molecular Genetics, Medical Biology Section, University of Groningen, University Medical Center Groningen; Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna; Spitalgasse 23, 1090, Vienna, Austria
- Center for Molecular Medicine (CeMM), Austrian Academy of Sciences; Lazarettgasse 14, A-1090, Vienna, Austria
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16:188. [PMID: 28969682 PMCID: PMC5625595 DOI: 10.1186/s12944-017-0579-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Collapse
|
23
|
Sarkar A, Das J, Ghosh P. p-TsOH-Catalyzed one-pot transformation of di- and trihydroxy steroids towards diverse A/B-ring oxo-functionalization. NEW J CHEM 2017. [DOI: 10.1039/c7nj01878a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A milder, facile, and greener transformative protocol, specifically on solid supports, to yield A-ring and/or B-ring oxo-functionalized steroids has been accomplished.
Collapse
Affiliation(s)
- Antara Sarkar
- Natural Products and Polymer Chemistry Laboratory
- Department of Chemistry
- North Bengal University
- Darjeeling-734013
- India
| | - Jayanta Das
- Natural Products and Polymer Chemistry Laboratory
- Department of Chemistry
- North Bengal University
- Darjeeling-734013
- India
| | - Pranab Ghosh
- Natural Products and Polymer Chemistry Laboratory
- Department of Chemistry
- North Bengal University
- Darjeeling-734013
- India
| |
Collapse
|
24
|
Abstract
Cholesterol export from cells to extracellular acceptors represents the first step of the reverse cholesterol transport process and is an essential part of the multifaceted pathway for cells to control their cholesterol levels. Malfunction of this pathway leads to cholesterol accumulation in cells such as macrophages, which can form the basis of conditions like atherosclerosis. A number of ATP-binding cassette (ABC) transporters, namely ABCA1, ABCA7, ABCG1, and ABCG4, play an essential role in this process. In this chapter, we describe methods utilizing radiolabeled sterols for measuring ABC-transporter mediated sterol export, utilizing endogenously expressed transporters as well as overexpression systems.
Collapse
Affiliation(s)
- Alryel Yang
- Faculty of Pharmacy, The University of Sydney, Pharmacy Bank Building A15, Camperdown, Sydney, NSW, 2006, Australia
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Pharmacy Bank Building A15, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
25
|
Mao J, Martin I, McLeod J, Nolan G, van Horn R, Vourvahis M, Lin YS. Perspective: 4β-hydroxycholesterol as an emerging endogenous biomarker of hepatic CYP3A. Drug Metab Rev 2016; 49:18-34. [PMID: 27718639 DOI: 10.1080/03602532.2016.1239630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A key goal in the clinical development of a new molecular entity is to quickly identify whether it has the potential for drug-drug interactions. In particular, confirmation of in vitro data in the early stage of clinical development would facilitate the decision making and inform future clinical pharmacology study designs. Plasma 4β-hydroxycholesterol (4β-HC) is considered as an emerging endogenous biomarker for cytochrome P450 3A (CYP3A), one of the major drug metabolizing enzymes. Although there are increasing reports of the use of 4β-HC in academic- and industry-sponsored clinical studies, a thorough review, summary and consideration of the advantages and challenges of using 4β-HC to evaluate changes in CYP3A activity has not been attempted. Herein, we review the biology of 4β-HC, its response to treatment with CYP3A inducers, inhibitors and mixed inducer/inhibitors in healthy volunteers and patients, the association of 4β-HC with other probes of CYP3A activity (e.g. midazolam, urinary cortisol ratios), and present predictive pharmacokinetic models. We provide recommendations for studying hepatic CYP3A activity in clinical pharmacology studies utilizing 4β-HC at different stages of drug development.
Collapse
Affiliation(s)
- Jialin Mao
- a Drug Metabolism and Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Iain Martin
- b Pharmacokinetics, Pharmacodynamics and Drug Metabolism , Merck , Boston , MA , USA
| | - James McLeod
- c Drug Development , Galleon Pharmaceuticals , Horsham , PA , USA
| | - Gail Nolan
- d Drug Metabolism and Pharmacokinetics , GlaxoSmithKline , Hertfordshire , UK
| | - Robert van Horn
- e Translational Medicine and Early Development , Sanofi , Bridgewater , NJ , USA
| | | | - Yvonne S Lin
- g Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| |
Collapse
|
26
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
27
|
Xu J, Lu X, Shi GP. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci 2015; 16:11574-608. [PMID: 26006236 PMCID: PMC4463718 DOI: 10.3390/ijms160511574] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that leads to several acute cardiovascular complications with poor prognosis. For decades, the role of the adventitial vasa vasorum (VV) in the initiation and progression of atherosclerosis has received broad attention. The presence of VV neovascularization precedes the apparent symptoms of clinical atherosclerosis. VV also mediates inflammatory cell infiltration, intimal thickening, intraplaque hemorrhage, and subsequent atherothrombosis that results in stroke or myocardial infarction. Intraplaque neovessels originating from VV can be immature and hence susceptible to leakage, and are thus regarded as the leading cause of intraplaque hemorrhage. Evidence supports VV as a new surrogate target of atherosclerosis evaluation and treatment. This review provides an overview into the relationship between VV and atherosclerosis, including the anatomy and function of VV, the stimuli of VV neovascularization, and the available underlying mechanisms that lead to poor prognosis. We also summarize translational researches on VV imaging modalities and potential therapies that target VV neovascularization or its stimuli.
Collapse
Affiliation(s)
- Junyan Xu
- Second Clinical Medical College, Zhujiang Hospital and Southern Medical University, Guangzhou 510280, China.
| | - Xiaotong Lu
- Second Clinical Medical College, Zhujiang Hospital and Southern Medical University, Guangzhou 510280, China.
| | - Guo-Ping Shi
- Second Clinical Medical College, Zhujiang Hospital and Southern Medical University, Guangzhou 510280, China.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Hammann S, Wendlinger C, Vetter W. Analysis of Intact Cholesteryl Esters of Furan Fatty Acids in Cod Liver. Lipids 2015; 50:611-20. [DOI: 10.1007/s11745-015-4019-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
|
29
|
Simultaneous determination of oxysterols, cholesterol and 25-hydroxy-vitamin D3 in human plasma by LC-UV-MS. PLoS One 2015; 10:e0123771. [PMID: 25875771 PMCID: PMC4395275 DOI: 10.1371/journal.pone.0123771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers. Methods A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated. Results Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S)-, 25-, 27-, 7α-hydroxycholesterol (HC) and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis. Conclusion The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and may serve as potential biomarkers of disease.
Collapse
|
30
|
Lee JW, Huang JD, Rodriguez IR. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2α and SOAT1 followed by selective efflux to HDL. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:605-19. [PMID: 25617738 DOI: 10.1016/j.bbalip.2015.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022]
Abstract
Accumulation of 7-ketocholesterol (7KCh) in tissues has been previously associated with various chronic aging diseases. Orally ingested 7KCh is readily metabolized by the liver and does not pose a toxicity threat. However, 7KCh formed in situ, usually associated with lipoprotein deposits, can adversely affect surrounding tissues by causing inflammation and cytotoxicity. In this study we have investigated various mechanisms for extra-hepatic metabolism of 7KCh (e.g. hydroxylation, sulfation) and found only esterification to fatty acids. The esterification of 7KCh to fatty acids involves the combined action of cytosolic phospholipase A2 alpha (cPLA2α) and sterol O-acyltransferase (SOAT1). Inhibition of either one of these enzymes ablates 7KCh-fatty acid ester (7KFAE) formation. The 7KFAEs are not toxic and do not induce inflammatory responses. However, they can be unstable and re-release 7KCh. The higher the degree of unsaturation, the more unstable the 7KFAE (e.g. 18:0>18:1>18:2>18:3≫20:4). Biochemical inhibition and siRNA knockdown of SOAT1 and cPLA2α ablated the 7KFAE synthesis in cultured ARPE19 cells, but had little effect on the 7KCh-induced inflammatory response. Overexpression of SOAT1 reduced the 7KCh-induced inflammatory response and provided some protection from cell death. This effect is likely due to the increased conversion of 7KCh to 7KFAEs, which reduced the intracellular 7KCh levels. Addition of HDL selectively increased the efflux of 7KFAEs and enhanced the effect of SOAT1 overexpression. Our data suggests an additional function for HDL in aiding extra-hepatic tissues to eliminate 7KCh by returning 7KFAEs to the liver for bile acid formation.
Collapse
Affiliation(s)
- Jung Wha Lee
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jiahn-Dar Huang
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ignacio R Rodriguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Orsó E, Matysik S, Grandl M, Liebisch G, Schmitz G. Human native, enzymatically modified and oxidized low density lipoproteins show different lipidomic pattern. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:299-306. [PMID: 25583048 DOI: 10.1016/j.bbalip.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/23/2014] [Accepted: 01/03/2015] [Indexed: 11/26/2022]
Abstract
In the present paper we have performed comparative lipidomic analysis of two prototypic atherogenic LDL modifications, oxidized LDL and enzymatically modified LDL. Oxidization of LDL was carried out with different chemical modifications starting from the same native LDL preparations: (i) by copper oxidation leading to terminally oxidized LDL (oxLDL), (ii) by moderate oxidization with HOCl (HOCl LDL), (iii) by long term storage of LDL at 4°C to produce minimally modified LDL (mmLDL), or (iv) by 15-lipoxygenase, produced by a transfected fibroblast cell line (LipoxLDL). The enzymatic modification of LDL was performed by treatment of native LDL with trypsin and cholesteryl esterase (eLDL). Free cholesterol (FC) and cholesteryl esters (CE) represent the predominant lipid classes in all LDL preparations. In contrast to native LDL, which contains about two-thirds of total cholesterol as CE, enzymatic modification of LDL decreased the proportion of CE to about one-third. Free cholesterol and CE in oxLDL are reduced by their conversion to oxysterols. Oxidization of LDL preferentially influences the content of polyunsaturated phosphatidylcholine (PC) and polyunsaturated plasmalogen species, by reducing the total PC fraction in oxLDL. Concomitantly, a strong rise of the lysophosphatidylcholine (LPC) fraction can be found in oxLDL as compared to native LDL. This effect is less pronounced in eLDL. The mild oxidation of LDL with hypochlorite and/or lipoxygenase does not alter the content of the analyzed lipid classes and species in a significant manner. The lipidomic characterization of modified LDLs contributes to the better understanding their diverse cellular effects.
Collapse
Affiliation(s)
- Evelyn Orsó
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Margot Grandl
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerd Schmitz
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
32
|
Sharma K, Sharma NK, Anand A. Why AMD is a disease of ageing and not of development: mechanisms and insights. Front Aging Neurosci 2014; 6:151. [PMID: 25071560 PMCID: PMC4091411 DOI: 10.3389/fnagi.2014.00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023] Open
Abstract
Ageing disorders can be defined as the progressive and cumulative outcome of several defective cellular mechanisms as well as metabolic pathways, consequently resulting in degeneration. Environment plays an important role in its pathogenesis. In contrast, developmental disorders arise from inherited mutations and usually the role of environmental factors in development of disease is minimal. Age related macular degeneration (AMD) is one such retinal degenerative disorder which starts with the progression of age. Metabolism plays an important role in initiation of such diseases of ageing. Cholesterol metabolism and their oxidized products like 7-ketocholesterol have been shown to adversely impact retinal pigment epithelium (RPE) cells. These molecules can initiate mitochondrial apoptotic processes and also influence the complements factors and expression of angiogenic proteins like VEGF etc. In this review we highlight why and how AMD is an ageing disorder and not a developmental disease substantiated by disrupted cholesterol metabolism common to several age related diseases.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Neel Kamal Sharma
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute Bethesda, MD, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| |
Collapse
|
33
|
Meyer JM, Ji A, Cai L, van der Westhuyzen DR. Minimally oxidized LDL inhibits macrophage selective cholesteryl ester uptake and native LDL-induced foam cell formation. J Lipid Res 2014; 55:1648-56. [PMID: 24891335 DOI: 10.1194/jlr.m044644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu(2+)-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R(-/-) versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.
Collapse
Affiliation(s)
- Jason M Meyer
- Department of Veterans Affairs Medical Center, Lexington, KY 40502 Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | - Ailing Ji
- Department of Veterans Affairs Medical Center, Lexington, KY 40502 Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536 Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536
| | - Lei Cai
- Department of Veterans Affairs Medical Center, Lexington, KY 40502 Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536 Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536
| | - Deneys R van der Westhuyzen
- Department of Veterans Affairs Medical Center, Lexington, KY 40502 Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536 Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
34
|
Sharpe LJ, Burns V, Brown AJ. A Lipidomic Perspective on Intermediates in Cholesterol Synthesis as Indicators of Disease Status. J Genet Genomics 2014; 41:275-82. [DOI: 10.1016/j.jgg.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022]
|
35
|
Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH. Hibiscus sabdariffa leaf polyphenolic extract inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway. Food Chem 2013; 141:397-406. [PMID: 23768373 DOI: 10.1016/j.foodchem.2013.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/02/2013] [Accepted: 03/07/2013] [Indexed: 01/18/2023]
Abstract
The oxidative modification of low-density lipoprotein (LDL) is involved in the pathogenesis of atherosclerotic lesions through the formation of macrophage-derived foam cells. In the present study, we aimed to investigate the anti-atherosclerotic effect of Hibiscus sabdariffa leaf polyphenolic extract (HLP), which is rich in flavonoid. The inhibitory effect of HLP on oxidation and lipid peroxidation of LDL was defined in vitro. HLP showed potential in reducing foam cell formation and intracellular lipid accumulation in oxidised-LDL (ox-LDL)-induced macrophage J774A.1 cells under non-cytotoxic concentrations. Molecular data showed these influences of HLP might be mediated via liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) pathway, as demonstrated by the transfection of LXRα siRNA. Our data implied that HLP up-regulated the LXRα/ABCA1 pathway, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that HLP potentially could be developed as an anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Jing-Hsien Chen
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Amaral J, Lee JW, Chou J, Campos MM, Rodríguez IR. 7-Ketocholesterol induces inflammation and angiogenesis in vivo: a novel rat model. PLoS One 2013; 8:e56099. [PMID: 23409131 PMCID: PMC3568027 DOI: 10.1371/journal.pone.0056099] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/08/2013] [Indexed: 12/20/2022] Open
Abstract
Accumulation of 7-Ketocholesterol (7KCh) in lipid deposits has been implicated in a variety of chronic diseases including atherosclerosis, Alzheimer's disease and age-related macular degeneration. 7KCh is known to be pro-inflammatory and cytotoxic to various types of cultured cells but little is known about its effects in vivo. In this study we have investigated the effects of 7KCh in vivo by implanting biodegradable wafers into the anterior chamber of the rat eye. The wafers were prepared using a mixture of two biodegradable polymers with different amounts of 7KCh. The 7KCh-containing implants induced massive angiogenesis and inflammation. By contrast, no angiogenesis and very little inflammation were observed with cholesterol-containing implants. The neovessel growth was monitored by fluorescein angiography. Neovessels were observed 4 days post implantation and peaked between 7 to 10 days. The angiography and isolectin IB(4) labeling demonstrated that the neovessels originated from the limbus and grew through the cornea. Immunolabeling with anti-CD68 suggested that the 7KCh-containing implants had extensive macrophage infiltration as well as other cell types. A significant increase in VEGF was also observed in 7KCh-containing implants by fluorescent immunolabeling and by immunoblot of the aqueous humor (AH). Direct measurement of VEGF, IL-1β and GRO/KC demonstrated a marked elevation of these factors in the AH of the 7KCh-implants. In summary this study demonstrates two important things: 1) 7KCh is pro-angiogenic and pro-inflammatory in vivo and 2) implants containing 7KCh may be used to create a novel angiogenesis model in rats.
Collapse
Affiliation(s)
- Juan Amaral
- Mechanism of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jung Wha Lee
- Mechanism of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Chou
- Mechanism of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria M. Campos
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ignacio R. Rodríguez
- Mechanism of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Mendiara I, Domeño C, Nerín C. Development of a fast sample treatment for the analysis of free and bonded sterols in human serum by LC-MS. J Sep Sci 2012; 35:3308-16. [DOI: 10.1002/jssc.201200519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/13/2012] [Accepted: 08/19/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Isabel Mendiara
- Department of Analytical Chemistry; Aragon Institute of Engineering Research I3A; University of Zaragoza; Zaragoza; Spain
| | - Celia Domeño
- Department of Analytical Chemistry; Aragon Institute of Engineering Research I3A; University of Zaragoza; Zaragoza; Spain
| | - Cristina Nerín
- Department of Analytical Chemistry; Aragon Institute of Engineering Research I3A; University of Zaragoza; Zaragoza; Spain
| |
Collapse
|
38
|
Shentu TP, Singh DK, Oh MJ, Sun S, Sadaat L, Makino A, Mazzone T, Subbaiah PV, Cho M, Levitan I. The role of oxysterols in control of endothelial stiffness. J Lipid Res 2012; 53:1348-58. [PMID: 22496390 DOI: 10.1194/jlr.m027102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelial dysfunction is a key step in atherosclerosis development. Our recent studies suggested that oxLDL-induced increase in endothelial stiffness plays a major role in dyslipidemia-induced endothelial dysfunction. In this study, we identify oxysterols, as the major component of oxLDL, responsible for the increase in endothelial stiffness. Using Atomic Force Microscopy to measure endothelial elastic modulus, we show that endothelial stiffness increases with progressive oxidation of LDL and that the two lipid fractions that contribute to endothelial stiffening are oxysterols and oxidized phosphatidylcholines, with oxysterols having the dominant effect. Furthermore, endothelial elastic modulus increases as a linear function of oxysterol content of oxLDL. Specific oxysterols, however, have differential effects on endothelial stiffness with 7-ketocholesterol and 7α-hydroxycholesterol, the two major oxysterols in oxLDL, having the strongest effects. 27-hydroxycholesterol, found in atherosclerotic lesions, also induces endothelial stiffening. For all oxysterols, endothelial stiffening is reversible by enriching the cells with cholesterol. oxLDL-induced stiffening is accompanied by incorporation of oxysterols into endothelial cells. We find significant accumulation of three oxysterols, 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, in mouse aortas of dyslipidemic ApoE⁻/⁻ mice at the early stage of atherosclerosis. Remarkably, these are the same oxysterols we have identified to induce endothelial stiffening.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
7-Ketocholesterol is Not Cytotoxic to U937 Cells When Incorporated into Acetylated Low Density Lipoprotein. Lipids 2011; 47:239-47. [DOI: 10.1007/s11745-011-3634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/07/2011] [Indexed: 01/17/2023]
|
40
|
Magenau A, Benzing C, Proschogo N, Don AS, Hejazi L, Karunakaran D, Jessup W, Gaus K. Phagocytosis of IgG-coated polystyrene beads by macrophages induces and requires high membrane order. Traffic 2011; 12:1730-43. [PMID: 21883764 DOI: 10.1111/j.1600-0854.2011.01272.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biochemical composition and biophysical properties of cell membranes are hypothesized to affect cellular processes such as phagocytosis. Here, we examined the plasma membranes of murine macrophage cell lines during the early stages of uptake of immunoglobulin G (IgG)-coated polystyrene particles. We found that the plasma membrane undergoes rapid actin-independent condensation to form highly ordered phagosomal membranes, the biophysical hallmark of lipid rafts. Surprisingly, these membranes are depleted of cholesterol and enriched in sphingomyelin and ceramide. Inhibition of sphingomyelinase activity impairs membrane condensation, F-actin accumulation at phagocytic cups and particle uptake. Switching phagosomal membranes to a cholesterol-rich environment had no effect on membrane condensation and the rate of phagocytosis. In contrast, preventing membrane condensation with the oxysterol 7-ketocholesterol, even in the presence of ceramide, blocked F-actin dissociation from nascent phagosomes and particle uptake. In conclusion, our results suggest that ordered membranes function to co-ordinate F-actin remodelling and that the biophysical properties of phagosomal membranes are essential for phagocytosis.
Collapse
Affiliation(s)
- Astrid Magenau
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yin H, Xu L, Porter NA. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem Rev 2011; 111:5944-72. [DOI: 10.1021/cr200084z] [Citation(s) in RCA: 1195] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huiyong Yin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Libin Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
42
|
Du X, Kumar J, Ferguson C, Schulz TA, Ong YS, Hong W, Prinz WA, Parton RG, Brown AJ, Yang H. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. ACTA ACUST UNITED AC 2011; 192:121-35. [PMID: 21220512 PMCID: PMC3019559 DOI: 10.1083/jcb.201004142] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ORP5 works together with Niemann Pick C-1 to facilitate exit of cholesterol from endosomes and lysosomes. Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes.
Collapse
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Adsorption of low-density lipoprotein, its oxidation, and subsequent binding of specific recombinant antibodies: An in situ ellipsometric study. Biochim Biophys Acta Gen Subj 2011; 1810:211-7. [DOI: 10.1016/j.bbagen.2010.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/05/2010] [Accepted: 10/14/2010] [Indexed: 11/20/2022]
|
44
|
Detection of oxysterols in oxidatively modified low density lipoprotein by MALDI-TOF MS. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.201000366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 2010; 13:39-75. [PMID: 19888833 PMCID: PMC2877120 DOI: 10.1089/ars.2009.2733] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/09/2009] [Accepted: 11/02/2009] [Indexed: 02/06/2023]
Abstract
Oxidative modification of LDL is known to elicit an array of pro-atherogenic responses, but it is generally underappreciated that oxidized LDL (OxLDL) exists in multiple forms, characterized by different degrees of oxidation and different mixtures of bioactive components. The variable effects of OxLDL reported in the literature can be attributed in large part to the heterogeneous nature of the preparations employed. In this review, we first describe the various subclasses and molecular composition of OxLDL, including the variety of minimally modified LDL preparations. We then describe multiple receptors that recognize various species of OxLDL and discuss the mechanisms responsible for the recognition by specific receptors. Furthermore, we discuss the contentious issues such as the nature of OxLDL in vivo and the physiological oxidizing agents, whether oxidation of LDL is a prerequisite for atherogenesis, whether OxLDL is the major source of lipids in foam cells, whether in some cases it actually induces cholesterol depletion, and finally the Janus-like nature of OxLDL in having both pro- and anti-inflammatory effects. Lastly, we extend our review to discuss the role of LDL oxidation in diseases other than atherosclerosis, including diabetes mellitus, and several autoimmune diseases, such as lupus erythematosus, anti-phospholipid syndrome, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irena Levitan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
46
|
Rodríguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 2010; 51:2847-62. [PMID: 20567027 DOI: 10.1194/jlr.r004820] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review will discuss the formation and potential implications of 7-ketocholesterol (7KCh) in the retina. 7KCh is a proinflammatory oxysterol known to be present in high amounts in oxidized LDL deposits associated with atheromatous plaques. 7KCh is generated in situ in these lipoprotein deposits where it can accumulate and reach very high concentrations. In normal primate retina, 7KCh has been found associated with lipoprotein deposits in the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE). In photodamaged rats, 7KCh has been found in the neural retina in areas of high mitochondrial content, ganglion cells, photoreceptor inner segments and synapses, and the RPE. Intermediates found by LCMS indicate 7KCh is formed via a free radical-mediated mechanism catalyzed by iron. 7KCh seems to activate several kinase signaling pathways that work via nuclear factor κB and cause the induction of vascular endothelial growth factor, interleukin (IL)-6, and IL-8. There seems to be little evidence of 7KCh metabolism in the retina, although some form of efflux mechanism may be active. The chronic mode of formation and the potent inflammatory properties of 7KCh indicate it may be an "age-related" risk factor in aging diseases such as atherosclerosis, Alzheimer's, and age-related macular degeneration.
Collapse
Affiliation(s)
- Ignacio R Rodríguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
47
|
Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes. Chem Phys Lipids 2010; 163:586-93. [DOI: 10.1016/j.chemphyslip.2010.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/07/2010] [Accepted: 05/04/2010] [Indexed: 02/03/2023]
|
48
|
Shentu TP, Titushkin I, Singh DK, Gooch KJ, Subbaiah PV, Cho M, Levitan I. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 2010; 299:C218-29. [PMID: 20410437 DOI: 10.1152/ajpcell.00383.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-keto-cholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDL-induced changes in endothelial biomechanics.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care and Sleep Medicine, Dept. of Medicine, University of Illinois, Chicago, Illinois 60612-7323, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ermak N, Lacour B, Goirand F, Drüeke TB, Vicca S. Differential apoptotic pathways activated in response to Cu-induced or HOCl-induced LDL oxidation in U937 monocytic cell line. Biochem Biophys Res Commun 2010; 393:783-7. [DOI: 10.1016/j.bbrc.2010.02.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
50
|
Munday AD, Gaus K, López JA. The platelet glycoprotein Ib-IX-V complex anchors lipid rafts to the membrane skeleton: implications for activation-dependent cytoskeletal translocation of signaling molecules. J Thromb Haemost 2010; 8:163-72. [PMID: 19874464 DOI: 10.1111/j.1538-7836.2009.03656.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The glycoprotein (GP) Ib-IX-V complex attaches platelets to areas of endothelial damage by binding von Willebrand factor (VWF), an interaction that transmits intracellular activation signals. These signals require that the complex associates with both lipid rafts and the membrane cytoskeleton, but it is not clear whether the same GPIb-IX-V subpopulation associates with both structures. OBJECTIVES To determine which subpopulation of GPIb-IX-V associates with lipid rafts, and the consequences of that interaction. METHODS We analyzed the content of proteins (particularly the GPIb-IX-V complex) and lipids in rafts from detergent lysates of platelets before and after removal of the actin cytoskeleton alone or both the actin cytoskeleton and membrane skeleton (by successive centrifugations of 15,800 x g and 100,000 x g). RESULTS In unstimulated platelets, little raft-associated GPIb-IX-V sedimented with the actin skeleton; most was removed by sedimentation of the membrane skeleton. The Src family kinase Lyn followed the same pattern. In VWF-activated platelets, almost all of the GPIb-IX-V complex and Lyn in rafts sedimented with the actin cytoskeleton, consistent with a previously described crosslinking of the membrane and actin skeletal structures following platelet activation. Disruption of the GPIbalpha-filamin linkage with N-ethylmaleimide prevented depletion of raft-associated GPIb-IX-V by skeletal sedimentation. Not all raft-associated proteins and lipids followed this pattern. CONCLUSION These results suggest that the raft association and cytoskeletal linkage of the GPIb-IX-V complex are interrelated, and both are required for optimal receptor function, perhaps because raft association attracts signaling proteins and membrane skeletal association allows these proteins to move en masse to new locations.
Collapse
Affiliation(s)
- A D Munday
- Puget Sound Blood Center, and Hematology Division (Medicine), University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|