1
|
Stallworth JY, Blair DR, Slavotinek A, Moore AT, Duncan JL, de Alba Campomanes AG. Retinopathy and optic atrophy in a case of COQ2-related primary coenzyme Q 10 deficiency. Ophthalmic Genet 2023; 44:486-490. [PMID: 36420660 PMCID: PMC10205914 DOI: 10.1080/13816810.2022.2141792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe a case of primary coenzyme Q10 deficiency in a child manifesting as early-onset renal failure, retinal dystrophy, and optic atrophy leading to progressive vision loss. METHODS Clinical presentation and workup including visual fields, electroretinogram, and optical coherence tomography are presented. Genetic testing was performed. RESULTS An eight-year-old female with nephropathy requiring renal transplantation subsequently developed progressive cone-rod dystrophy and optic atrophy. The patient had negative results on a targeted next-generation sequencing retinal dystrophy panel but whole-exome sequencing revealed two variants in COQ2 (likely biallelic), consistent with a diagnosis of primary coenzyme Q10 deficiency. CONCLUSIONS Primary coenzyme Q10 deficiency is a rare disorder with variable systemic and ocular findings; there is also genetic heterogeneity. Genetic testing aids in the diagnosis of this condition, and variants in the COQ2 and PDSS1 genes appear to have the strongest association with ocular manifestations. Oral supplementation of coenzyme Q10 may slow progression of disease. This case highlights the utility of whole-exome sequencing in the diagnosis of a rare syndromic form of ocular disease and reports a novel phenotypic association for this condition.
Collapse
Affiliation(s)
| | - David R Blair
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Anthony T Moore
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
2
|
Turton N, Heaton RA, Hargreaves IP. COVID-19 and the Assessment of Coenzyme Q10. Methods Mol Biol 2022; 2511:355-365. [PMID: 35838974 DOI: 10.1007/978-1-0716-2395-4_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coenzyme Q10 (CoQ10) plays an essential electron carrier role in the mitochondrial electron transfer chain (ETC) as well as being a potent antioxidant and influencing inflammatory mediators. In view of these functions, the reason why certain individuals may be more susceptible to the severe disease or long-term complications (long COVID) of COVID-19 infection may be associated with an underlying deficit in cellular CoQ10 status. Thus, our group has outlined an analytical method for the determination of cellular CoQ10 status using HPLC linked UV detection at 275 nm. This method has been utilized in patient tissue samples to investigate evidence of a CoQ10 deficiency and thus may have potential in determining the possible susceptibility of individuals to severe disease associated with COVID-19 infection or to long COVID.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
3
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
4
|
Navas P, Cascajo MV, Alcázar-Fabra M, Hernández-Camacho JD, Sánchez-Cuesta A, Rodríguez ABC, Ballesteros-Simarro M, Arroyo-Luque A, Rodríguez-Aguilera JC, Fernández-Ayala DJM, Brea-Calvo G, López-Lluch G, Santos-Ocaña C. Secondary CoQ 10 deficiency, bioenergetics unbalance in disease and aging. Biofactors 2021; 47:551-569. [PMID: 33878238 DOI: 10.1002/biof.1733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.
Collapse
Affiliation(s)
- Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María V Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Cortés Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Manuel Ballesteros-Simarro
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Arroyo-Luque
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
López-Pedrera C, Villalba JM, Patiño-Trives AM, Luque-Tévar M, Barbarroja N, Aguirre MÁ, Escudero-Contreras A, Pérez-Sánchez C. Therapeutic Potential and Immunomodulatory Role of Coenzyme Q 10 and Its Analogues in Systemic Autoimmune Diseases. Antioxidants (Basel) 2021; 10:antiox10040600. [PMID: 33924642 PMCID: PMC8069673 DOI: 10.3390/antiox10040600] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
- Correspondence: ; Tel.: +34-957-213795
| | - José Manuel Villalba
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| | - Alejandra Mª Patiño-Trives
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Maria Luque-Tévar
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Nuria Barbarroja
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Mª Ángeles Aguirre
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Carlos Pérez-Sánchez
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| |
Collapse
|
6
|
Proctor EC, Turton N, Boan EJ, Bennett E, Philips S, Heaton RA, Hargreaves IP. The Effect of Methylmalonic Acid Treatment on Human Neuronal Cell Coenzyme Q 10 Status and Mitochondrial Function. Int J Mol Sci 2020; 21:E9137. [PMID: 33266298 PMCID: PMC7730949 DOI: 10.3390/ijms21239137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Methylmalonic acidemia is an inborn metabolic disease of propionate catabolism, biochemically characterized by accumulation of methylmalonic acid (MMA) to millimolar concentrations in tissues and body fluids. However, MMA's role in the pathophysiology of the disorder and its status as a "toxic intermediate" is unclear, despite evidence for its ability to compromise antioxidant defenses and induce mitochondrial dysfunction. Coenzyme Q10 (CoQ10) is a prominent electron carrier in the mitochondrial respiratory chain (MRC) and a lipid-soluble antioxidant which has been reported to be deficient in patient-derived fibroblasts and renal tissue from an animal model of the disease. However, at present, it is uncertain which factors are responsible for inducing this CoQ10 deficiency or the effect of this deficit in CoQ10 status on mitochondrial function. Therefore, in this study, we investigated the potential of MMA, the principal metabolite that accumulates in methylmalonic acidemia, to induce a cellular CoQ10 deficiency. In view of the severe neurological presentation of patients with this condition, human neuroblastoma SH-SY5Y cells were used as a neuronal cell model for this investigation. Following treatment with pathological concentrations of MMA (>0.5 mM), we found a significant (p = 0.0087) ~75% reduction in neuronal cell CoQ10 status together with a significant (p = 0.0099) decrease in MRC complex II-III activity at higher concentrations (>2 mM). The deficits in neuronal CoQ10 status and MRC complex II-III activity were associated with a loss of cell viability. However, no significant impairment of mitochondrial membrane potential (ΔΨm) was detectable. These findings indicate the potential of pathological concentrations of MMA to induce a neuronal cell CoQ10 deficiency with an associated loss of MRC complex II-III activity. However, in the absence of an impairment of ΔΨm, the contribution this potential deficit in cellular CoQ10 status makes towards the disease pathophysiology methylmalonic acidemia has yet to be fully elucidated.
Collapse
Affiliation(s)
- Emma C. Proctor
- Department of Biochemistry, University of Warwick, Coventry CV4 7AL, UK;
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Elle Jo Boan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Emily Bennett
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Suzannah Philips
- Department of Clinical Biochemistry, The Royal Liverpool University Hospital, Royal Liverpool and Broadgreen NHS Trust, Prescot Street, Liverpool L7 8XP, UK;
| | - Robert A. Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| |
Collapse
|
7
|
Compound heterozygous inheritance of two novel COQ2 variants results in familial coenzyme Q deficiency. Orphanet J Rare Dis 2020; 15:320. [PMID: 33187544 PMCID: PMC7662744 DOI: 10.1186/s13023-020-01600-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background Primary coenzyme Q10 deficiency is a rare disease that results in diverse and variable clinical manifestations. Nephropathy, myopathy and neurologic involvement are commonly associated, however retinopathy has also been observed with certain pathogenic variants of genes in the coenzyme Q biosynthesis pathway. In this report, we describe a novel presentation of the disease that includes nephropathy and retinopathy without neurological involvement, and which is the result of a compound heterozygous state arising from the inheritance of two recessive potentially pathogenic variants, previously not described. Materials and methods Retrospective report, with complete ophthalmic examination, multimodal imaging, electroretinography, and whole exome sequencing performed on a family with three affected siblings. Results We show that affected individuals in the described family inherited two heterozygous variants of the COQ2 gene, resulting in a frameshift variant in one allele, and a predicted deleterious missense variant in the second allele (c.288dupC,p.(Ala97Argfs*56) and c.376C > G,p.(Arg126Gly) respectively). Electroretinography results were consistent with rod-cone dystrophy in the affected individuals. All affected individuals in the family exhibited the characteristic retinopathy as well as end-stage nephropathy, without evidence of any neurological involvement. Conclusions We identified two novel compound heterozygous variants of the COQ2 gene that result in primary coenzyme Q deficiency. Targeted sequencing of coenzyme Q biosynthetic pathway genes may be useful in diagnosing oculorenal clinical presentations syndromes not explained by more well known syndromes (e.g., Senior-Loken and Bardet-Biedl syndromes).
Collapse
|
8
|
Justine Perrin R, Rousset‐Rouvière C, Garaix F, Cano A, Conrath J, Boyer O, Tsimaratos M. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep 2020; 54:37-44. [PMID: 32685349 PMCID: PMC7358665 DOI: 10.1002/jmd2.12068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Primary coenzyme Q10 (CoQ10) deficiencies are a group of mitochondrial disorders that has proven responsiveness to replacement therapy. Mutations in enzymes involved in the biosynthesis of CoQ10 genes are associated with these deficits. The clinical presentation of this rare autosomal recessive disorder is heterogeneous and depends on the gene involved. Mutations in the COQ2, COQ6, PDSS2, and ADCK4 genes are responsible for steroid-resistant nephrotic syndrome (SRNS), which is associated with extra-renal symptoms. Previous studies have reported COQ6 mutations in 11 patients from five different families presenting with SRNS and sensorineural deafness. CASE REPORTS Our study reports the cases of two brothers of Turkish origin with renal failure and sensorineural deafness associated with COQ6 mutations responsible of CoQ10 deficiency. Optical symptoms were present in the eldest, that improved with Idebenone. CONCLUSION/DISCUSSION For the first time, COQ6 mutation with optical involvement is associated with renal and hearing impairment. Although the response to replacement CoQ10 therapy was difficult to evaluate, we think that this treatment was able to stop the disease progression in both patients, and even to prevent the occurrence/development of optical and neurological impairment in the younger brother. Mitochondrial dysfunction secondary to CoQ10 deficiency should always be suspected in patients with SRNS and extra-renal symptoms. Early recognition of this genetic SRNS is mandatory since SRNS can be avoided by adequate treatment based on CoQ10 supplement or an analogue. All cases of primary CoQ10 deficiency should be treated at an early stage to limit the progression of lesions and prevent the emergence of new symptoms.
Collapse
Affiliation(s)
- R. Justine Perrin
- Assistance Public Hôpitaux de MarseilleService Multidisciplinaire TimoneMarseilleFrance
| | | | - Florentine Garaix
- Assistance Public Hôpitaux de MarseilleService Multidisciplinaire TimoneMarseilleFrance
| | - Aline Cano
- Assistance Public Hôpitaux de MarseilleService de pédiatrie et NeurologieMarseilleFrance
| | - John Conrath
- Clinique Monticelli, OphtalmologieMarseilleFrance
| | - Olivia Boyer
- Hopital NeckerNéphrologie PediatriqueParisFrance
| | - Michel Tsimaratos
- Assistance Public Hôpitaux de MarseilleService Multidisciplinaire TimoneMarseilleFrance
| |
Collapse
|
9
|
Coenzyme Q 10 Assessment and the Establishment of a Neuronal Cell Model of CoQ 10 Deficiency. Methods Mol Biol 2020. [PMID: 32219756 DOI: 10.1007/978-1-0716-0471-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Coenzyme Q10 (CoQ10) plays a key role as an electron carrier in the mitochondrial respiratory chain and as a cellular antioxidant molecule. A deficit in CoQ10 status may contribute to disease pathophysiology by causing a failure mitochondrial energy metabolism as well as compromising cellular antioxidant capacity. This chapter outlines the analytical methods used for determining cellular CoQ10 status using high-pressure liquid chromatography with ultraviolet (HPLC-UV) detection. In addition, we present a pharmacological procedure for establishing a human neuronal cell model of CoQ10 deficiency, for use in research studies.
Collapse
|
10
|
Wang T, Zhang X, Feng L, Xu L, Xue J, Yi S, Yu Y, Zhai J. Ubiquinone Ameliorates Simvastatin Induced Respiratory Chain Complex Function Impairment in High‐Fat High‐Cholesterol Diet Fed Mice. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Wang
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
| | - Xiaoli Zhang
- Center Hospital of Taian cityTaianShandong271000China
| | - Lei Feng
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianShandong271000China
| | - Lei Xu
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
- People's Hospital of ChengyangQingdao266000China
| | - Jing Xue
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianShandong271000China
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebei050000China
| | - Shuying Yi
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianShandong271000China
| | - Jing Zhai
- Department of Basic MedicineTaishan Medical UniversityTaianShandong271000China
| |
Collapse
|
11
|
Malicdan MCV, Vilboux T, Ben-Zeev B, Guo J, Eliyahu A, Pode-Shakked B, Dori A, Kakani S, Chandrasekharappa SC, Ferreira C, Shelestovich N, Marek-Yagel D, Pri-Chen H, Blatt I, Niederhuber JE, He L, Toro C, Taylor RW, Deeken J, Yardeni T, Wallace DC, Gahl WA, Anikster Y. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat 2018; 39:69-79. [PMID: 29044765 PMCID: PMC5722658 DOI: 10.1002/humu.23345] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
Primary coenzyme Q10 (CoQ10 ; MIM# 607426) deficiencies are an emerging group of inherited mitochondrial disorders with heterogonous clinical phenotypes. Over a dozen genes are involved in the biosynthesis of CoQ10 , and mutations in several of these are associated with human disease. However, mutations in COQ5 (MIM# 616359), catalyzing the only C-methylation in the CoQ10 synthetic pathway, have not been implicated in human disease. Here, we report three female siblings of Iraqi-Jewish descent, who had varying degrees of cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, and cognitive disability. Whole-exome and subsequent whole-genome sequencing identified biallelic duplications in the COQ5 gene, leading to reduced levels of CoQ10 in peripheral white blood cells of all affected individuals and reduced CoQ10 levels in the only muscle tissue available from one affected proband. CoQ10 supplementation led to clinical improvement and increased the concentrations of CoQ10 in blood. This is the first report of primary CoQ10 deficiency caused by loss of function of COQ5, with delineation of the clinical, laboratory, histological, and molecular features, and insights regarding targeted treatment with CoQ10 supplementation.
Collapse
Affiliation(s)
- May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Jennifer Guo
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
| | - Aviva Eliyahu
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Amir Dori
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Joseph Sagol Neuroscience Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Sravan Kakani
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Settara C. Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Carlos Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Natalia Shelestovich
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Ilan Blatt
- Department of Neurology, Sheba Medical Center, Tel-Hashomer, 5621 Israel
| | - John E. Niederhuber
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
- Johns Hopkins University School of Medicine, 733 North Broadway Street, Baltimore, MD, USA
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - John Deeken
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
| | - Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| |
Collapse
|
12
|
Mitochondrial Diseases as Model of Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:129-155. [DOI: 10.1007/978-3-319-60733-7_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and Its Role in the Dietary Therapy against Aging. Molecules 2016; 21:373. [PMID: 26999099 PMCID: PMC6273282 DOI: 10.3390/molecules21030373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| |
Collapse
|
14
|
Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch. Food Chem 2015; 174:585-90. [DOI: 10.1016/j.foodchem.2014.11.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022]
|
15
|
Quinzii CM, Emmanuele V, Hirano M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol Syndromol 2014; 5:141-6. [PMID: 25126046 DOI: 10.1159/000360490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous syndrome which has been associated with 5 major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) nephropathy, (4) cerebellar ataxia, and (5) isolated myopathy. Of these phenotypes, cerebellar ataxia and syndromic or isolated nephrotic syndrome are the most common. CoQ10 deficiency predominantly presents in childhood. To date, causative mutations have been identified in a small proportion of patients, making it difficult to identify a phenotype-genotype correlation. Identification of CoQ10 deficiency is important because the disease, in particular muscle symptoms and nephropathy, frequently responds to CoQ10 supplementation.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Valentina Emmanuele
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| |
Collapse
|
16
|
Yubero D, Montero R, Artuch R, Land JM, Heales SJR, Hargreaves IP. Biochemical diagnosis of coenzyme q10 deficiency. Mol Syndromol 2014; 5:147-55. [PMID: 25126047 DOI: 10.1159/000362390] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coenzyme Q10 (CoQ10) deficiency appears to have a particularly heterogeneous clinical presentation. However, there appear to be 5 recognisable clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. However, although useful, clinical symptoms alone are insufficient for the definitive diagnosis of CoQ10 deficiency which relies upon biochemical assessment of tissue CoQ10 status. In this article, we review the biochemical methods used in the diagnosis of human CoQ10 deficiency and indicate the most appropriate tissues for this evaluation.
Collapse
Affiliation(s)
- Delia Yubero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Hospital Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - John M Land
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon J R Heales
- Chemical Pathology, Great Ormond Street Childrens Hospital, London, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
17
|
Dadabayev AR, Yin G, Latchoumycandane C, McIntyre TM, Lesnefsky EJ, Penn MS. Apolipoprotein A1 regulates coenzyme Q10 absorption, mitochondrial function, and infarct size in a mouse model of myocardial infarction. J Nutr 2014; 144:1030-6. [PMID: 24759932 PMCID: PMC4056643 DOI: 10.3945/jn.113.184291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/27/2013] [Accepted: 03/25/2014] [Indexed: 11/14/2022] Open
Abstract
HDL and apolipoprotein A1 (apoA1) concentrations inversely correlate with risk of death from ischemic heart disease; however, the role of apoA1 in the myocardial response to ischemia has not been well defined. To test whether apoA1, the primary HDL apolipoprotein, has an acute anti-inflammatory role in ischemic heart disease, we induced myocardial infarction via direct left anterior descending coronary artery ligation in apoA1 null (apoA1(-/-)) and apoA1 heterozygous (apoA1(+/-)) mice. We observed that apoA1(+/-) and apoA1(-/-) mice had a 52% and 125% increase in infarct size as a percentage of area at risk, respectively, compared with wild-type (WT) C57BL/6 mice. Mitochondrial oxidation contributes to tissue damage in ischemia-reperfusion injury. A substantial defect was present at baseline in the electron transport chain of cardiac myocytes from apoA1(-/-) mice localized to the coenzyme Q (CoQ) pool with impaired electron transfer (67% decrease) from complex II to complex III. Administration of coenzyme Q10 (CoQ10) to apoA1 null mice normalized the cardiac mitochondrial CoQ pool and reduced infarct size to that observed in WT mice. CoQ10 administration did not significantly alter infarct size in WT mice. These data identify CoQ pool content leading to impaired mitochondrial function as major contributors to infarct size in the setting of low HDL/apoA1. These data suggest a previously unappreciated mechanism for myocardial stunning, cardiac dysfunction, and muscle pain associated with low HDL and low apoA1 concentrations that can be corrected by CoQ10 supplementation and suggest populations of patients that may benefit particularly from CoQ10 supplementation.
Collapse
Affiliation(s)
| | - Guotian Yin
- Department of Cardiology, School of Medicine, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, VA Department of Cardiology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | | | - Thomas M McIntyre
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Edward J Lesnefsky
- Department of Cardiology, School of Medicine, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Marc S Penn
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, OH; and Summa Cardiovascular Institute, Summa Health System, Akron, OH
| |
Collapse
|
18
|
Ozaltin F. Primary coenzyme Q10 (CoQ 10) deficiencies and related nephropathies. Pediatr Nephrol 2014; 29:961-9. [PMID: 23736673 DOI: 10.1007/s00467-013-2482-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is a metabolic pathway that uses energy released by the oxidation of nutrients to generate adenosine triphosphate (ATP). Coenzyme Q10 (CoQ10), also known as ubiquinone, plays an essential role in the human body not only by generating ATP in the mitochondrial respiratory chain but also by providing protection from reactive oxygen species (ROS) and functioning in the activation of many mitochondrial dehydrogenases and enzymes required in pyrimidine nucleoside biosynthesis. The presentations of primary CoQ10 deficiencies caused by genetic mutations are very heterogeneous. The phenotypes related to energy depletion or ROS production may depend on the content of CoQ10 in the cell, which is determined by the severity of the mutation. Primary CoQ10 deficiency is unique among mitochondrial disorders because early supplementation with CoQ10 can prevent the onset of neurological and renal manifestations. In this review I summarize primary CoQ10 deficiencies caused by various genetic abnormalities, emphasizing its nephropathic form.
Collapse
Affiliation(s)
- Fatih Ozaltin
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey,
| |
Collapse
|
19
|
Scalais E, Chafai R, Van Coster R, Bindl L, Nuttin C, Panagiotaraki C, Seneca S, Lissens W, Ribes A, Geers C, Smet J, De Meirleir L. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol 2013; 17:625-30. [PMID: 23816342 DOI: 10.1016/j.ejpn.2013.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/15/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Primary coenzyme Q10 (CoQ10) deficiencies are heterogeneous autosomal recessive disorders. CoQ2 mutations have been identified only rarely in patients. All affected individuals presented with nephrotic syndrome in the first year of life. METHODS An infant is studied with myoclonic seizures and hypertrophic cardiomyopathy in the first months of life and developed a nephrotic syndrome in a later stage. RESULTS At three weeks of age, the index patient developed myoclonic seizures. In addition, he had hypertrophic cardiomyopathy and increased CSF lactate. A skeletal muscle biopsy performed at two months of age disclosed normal activities of the oxidative phosphorylation complexes. The child was supplemented with CoQ10 (5 mg/kg/day). At the age of four months, brain MR images showed bilateral increased signal intensities in putamen and cerebral cortex. After that age, he developed massive proteinuria. The daily dose of CoQ10 was increased to 30 mg/kg. Renal biopsy showed focal segmental glomerulosclerosis. Biochemical analyses of a kidney biopsy sample revealed a severely decreased activity of succinate cytochrome c reductase [complex II + III] suggesting ubiquinone depletion. Incorporation of labelled precursors necessary for CoQ10 synthesis was significantly decreased in cultured skin fibroblasts. His condition deteriorated and he died at the age of five months. A novel homozygous mutation c.326G > A (p.Ser109Asn) was found in COQ2. CONCLUSIONS In contrast to previously reported patients with CoQ2 the proband presented with early myoclonic epilepsy, hypertrophic cardiomyopathy and only in a later stage developed a nephrotic syndrome. The phenotype of this patient enlarges the phenotypical spectrum of the multisystem infantile variant.
Collapse
Affiliation(s)
- Emmanuel Scalais
- Department of Paediatrics, Division of Paediatric Neurology, Centre Hospitalier de Luxembourg, Rue Barblé, 4, L 1210 Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tarry-Adkins JL, Blackmore HL, Martin-Gronert MS, Fernandez-Twinn DS, McConnell JM, Hargreaves IP, Giussani DA, Ozanne SE. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth. Mol Metab 2013; 2:480-90. [PMID: 24327963 DOI: 10.1016/j.molmet.2013.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 01/18/2023] Open
Abstract
Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans.
Collapse
Key Words
- 3-NT, 3-nitrotyrosine
- 4-HNE, 4-hydroxynonenal
- BER, base excision repair
- Bax, Bcl2-associated protein
- CAST, computer assisted stereology toolbox.
- CVD, cardiovascular disease
- Cellular senescence
- CoQ, coenzyme Q
- CuZnSOD, copper-zinc superoxide dismutase
- DIG, dioxygenin
- DNA damage
- Developmental programming
- ETC, electron transport chain
- GPx, glutathione peroxidase
- GR, glutathione reductase
- MnSOD, manganese superoxide dismutase
- NEIL1, nei endonuclease VIII-like 1
- NOX, nicotinamide adenine dinucleotide diphosphate oxidase
- NTHL1, Nthl endonuclease III like-1
- O2, superoxide anion
- OGG-1, 8 oxoguanine DNA glycosylase 1
- OH-, hydroxy radicals
- Oxidative-stress
- PGFE, pulsed field gel electrophoresis
- PRDX, peroxidiredoxin
- RIS, reactive inflammatory species
- RNS, reactive nitrogen species
- ROS, reactive oxidative species
- Telomere length
- Ubiquinone
- XO, xanthine oxidase
- acta1, sarco endoplasmic reticulum Ca(2+) ATPase
- actin, alpha-1
- nppa, natriuretic peptide A
- nppb, natriuretic peptide B
- serca2, single strand breaks, SSBs
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust - MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Itkonen O, Suomalainen A, Turpeinen U. Mitochondrial coenzyme Q10 determination by isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem 2013; 59:1260-7. [PMID: 23640978 DOI: 10.1373/clinchem.2012.200196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain. Unlike most other respiratory chain disorders, CoQ10 deficiency is potentially treatable. We aimed to develop and validate an accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of mitochondrial CoQ10 in clinical samples. METHODS We used mitochondria isolated from muscle biopsies of patients (n = 166) suspected to have oxidative phosphorylation deficiency. We also used fibroblast mitochondria from 1 patient with CoQ10 deficiency and 3 healthy individuals. Samples were spiked with nonphysiologic CoQ10-[(2)H6] internal standard, extracted with 1-propanol and with ethanol and hexane (2 mL/5 mL), and CoQ10 quantified by LC-MS/MS. The method and sample stability were validated. A reference interval was established from the patient data. RESULTS The method had a limit of quantification of 0.5 nmol/L. The assay range was 0.5-1000 nmol/L and the CVs were 7.5%-8.2%. CoQ10 was stable in concentrated mitochondrial suspensions. In isolated mitochondria, the mean ratio of CoQ10 to citrate synthase (CS) activity (CoQ10/CS) was 1.7 nmol/U (95% CI, 1.6-1.7 nmol/U). We suggest a CoQ10/CS reference interval of 1.1-2.8 nmol/U for both sexes and all ages. The CoQ10/CS ratio was 5-fold decreased in fibroblast mitochondria from a patient with known CoQ10 deficiency due to recessive prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) mutations. CONCLUSIONS Normalization of mitochondrial CoQ10 concentration against citrate synthase activity is likely to reflect most accurately the CoQ10 content available for the respiratory chain. Our assay and the established reference range should facilitate the diagnosis of respiratory chain disorders and treatment of patients with CoQ10 deficiency.
Collapse
Affiliation(s)
- Outi Itkonen
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | |
Collapse
|
22
|
Emmanuele V, López LC, López L, Berardo A, Naini A, Tadesse S, Wen B, D'Agostino E, Solomon M, DiMauro S, Quinzii C, Hirano M. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. ACTA ACUST UNITED AC 2012; 69:978-83. [PMID: 22490322 DOI: 10.1001/archneurol.2012.206] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coenzyme Q(10) (CoQ(10)) deficiency has been associated with 5 major clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. Primary CoQ(10) deficiency is due to defects in CoQ(10) biosynthesis, while secondary forms are due to other causes. A review of 149 cases, including our cohort of 76 patients, confirms that CoQ(10) deficiency is a clinically and genetically heterogeneous syndrome that mainly begins in childhood and predominantly manifests as cerebellar ataxia. Coenzyme Q(10) measurement in muscle is the gold standard for diagnosis. Identification of CoQ(10) deficiency is important because the condition frequently responds to treatment. Causative mutations have been identified in a small proportion of patients.
Collapse
Affiliation(s)
- Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pastore A, Di Giovamberardino G, Petrillo S, Boenzi S, Bertini E, Dionisi-Vici C, Piemonte F. Pediatric reference intervals for muscle coenzyme Q(10). Biomarkers 2012; 17:764-6. [PMID: 23020092 DOI: 10.3109/1354750x.2012.727029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coenzyme Q(10) (CoQ(10)) is present in humans in both the reduced (ubiquinol, CoQ(10)H(2)) and oxidized (ubiquinone, CoQ(10)) forms. CoQ(10) is an essential cofactor in mitochondrial oxidative phosphorylation, and is necessary for ATP production. Total, reduced and oxidized CoQ(10) levels in skeletal muscle of 148 children were determined by HPLC coupled with electrochemical detection, and we established three level thresholds for total CoQ(10) in muscle. We defined as "severe deficiency", CoQ(10) levels falling in the range between 0.82 and 4.88 μmol/g tissue; as "intermediate deficiency", those ranging between 5.40 and 9.80 μmol/g tissue, and as "mild deficiency", the amount of CoQ(10) included between 10.21 and 19.10 μmol/g tissue. Early identification of CoQ(10) deficiency has important implications in children, not only for those with primary CoQ(10) defect, but also for patients with neurodegenerative disorders, in order to encourage earlier supplementation with this agent also in mild and intermediate deficiency.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Metabolomics and Proteomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Mitochondria are subcellular organelles whose major function is to generate energy by coupling through oxidation of nutrient substrates with ATP synthesis, via ADP phosphorylation. This process, known as oxidative phosphorylation, is carried out by the mitochondrial respiratory chain, a pathway consisting of five multi-subunit complexes, four of which take contribution from genes located in two separate compartments, the nuclear chromosomes, and a genome found in mitochondria themselves, mitochondrial DNA (mtDNA). Defects affecting either genome give rise to mitochondrial dysfunction, causing disease that often affects the brain and in particular the cerebellum. Mitochondrial disorders can give rise to pure cerebellar, spinocerebellar, or sensory ataxia, usually as part of a multisystem (and multisymptom) disorder. In this chapter we divide the diseases into those caused by mtDNA defects and those due to mutations involving nuclear genes. With more than 100 mutations in mtDNA and new nuclear genes being described all the time, we have focused on the commonest disorders and used these as examples of the different types of mitochondrial ataxia.
Collapse
Affiliation(s)
- Massimo Zeviani
- Istituto Nazionale Neurologico "C. Besta" - IRCCS, Milano, Italy.
| | | | | |
Collapse
|
25
|
Quinzii CM, Hirano M. Primary and secondary CoQ(10) deficiencies in humans. Biofactors 2011; 37:361-5. [PMID: 21990098 PMCID: PMC3258494 DOI: 10.1002/biof.155] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 11/06/2022]
Abstract
CoQ(10) deficiencies are clinically and genetically heterogeneous. This syndrome has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis variably contribute to the pathogenesis of primary CoQ(10) deficiencies.
Collapse
Affiliation(s)
| | - Michio Hirano
- Address for correspondence: Dr. Michio Hirano, MD, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY 10032, USA.
| |
Collapse
|
26
|
Cerebellar defects in Pdss2 conditional knockout mice during embryonic development and in adulthood. Neurobiol Dis 2011; 45:219-33. [PMID: 21871565 DOI: 10.1016/j.nbd.2011.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/22/2011] [Accepted: 08/03/2011] [Indexed: 01/31/2023] Open
Abstract
PDSS2 is a gene that encodes one of the two subunits of trans-prenyl diphosphate synthase that is essential for ubiquinone biosynthesis. It is known that mutations in PDSS2 can cause primary ubiquinone deficiency in humans and a similar disease in mice. Cerebellum is the most often affected organ in ubiquinone deficiency, and cerebellar atrophy has been diagnosed in many infants with this disease. In this study, two Pdss2 conditional knockout mouse lines directed by Pax2-cre and Pcp2-cre were generated to investigate the effect of ubiquinone deficiency on cerebellum during embryonic development and in adulthood, respectively. The Pdss2(f/-); Pax2-cre mouse recapitulates some symptoms of ubiquinone deficiency in infants, including severe cerebellum hypoplasia and lipid accumulation in skeletal muscles at birth. During early cerebellum development (E12.5-14.5), Pdss2 knockout initially causes the delay of radial glial cell growth and neuron progenitor migration, so the growth of mutant cerebellum is retarded. During later development (E15.5-P0), increased ectopic apoptosis of neuroblasts and impaired cell proliferation result in the progression of cerebellum hypoplasia in the mutant. Thus, the mutant cerebellum contains fewer neurons at birth, and the cells are disorganized. The developmental defect of mutant cerebellum does not result from reduced Fgf8 expression before E12.5. Electron microscopy reveals mitochondrial defects and increased autophagic-like vacuolization that may arise in response to abnormal mitochondria in the mutant cerebellum. Nevertheless, the mutant mice die soon after birth probably due to cleft palate and micrognathia, which may result from Pdss2 knockout caused by ectopic Pax2-cre expression in the first branchial arch. On the other hand, the Pdss2(f/-); Pcp2-cre mouse is healthy at birth but gradually loses cerebellar Purkinje cells and develops ataxia-like symptoms at 9.5 months; thus this conditional knockout mouse may serve as a model for ubiquinone deficiency in adult patients. In conclusion, this study provides two mouse models of Pdss2 based ubiquinone deficiency. During cerebellum development, Pdss2 knockout results in severe cerebellum hypoplasia by impairing cell migration and eliciting ectopic apoptosis, whereas Pdss2 knockout in Purkinje cells at postnatal stages leads to the development of cerebellar ataxia.
Collapse
|
27
|
Bour S, Carmona MC, Galinier A, Caspar-Bauguil S, Van Gaal L, Staels B, Pénicaud L, Casteilla L. Coenzyme Q as an antiadipogenic factor. Antioxid Redox Signal 2011; 14:403-13. [PMID: 21091355 DOI: 10.1089/ars.2010.3350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Coenzyme Q (CoQ) is not only the single antioxidant synthesized in humans but also an obligatory element of mitochondrial functions. We have previously reported CoQ deficiency in white adipose tissue of ob/ob mice. We sought to determine (i) whether this deficit exists in all species and its relevance in human obesity and (ii) to what extent CoQ could be involved in adipocyte differentiation. Here we identified in rodents as well as in humans a specific very strong nonlinear negative correlation between CoQ content in subcutaneous adipose tissue and obesity indexes. This striking correlation reveals a threshold value similar in both species. This relative deficit in CoQ content in adipose tissue rapidly took place during the time course of high-fat-diet-induced obesity in mice. Adipocyte differentiation was assessed in vitro using the preadipocyte 3T3-F442A cell line. When CoQ synthesis was inhibited by a pharmacological approach using chlorobenzoic acid, this strongly triggered adipose differentiation. In contrast, adipogenesis was strongly inhibited when a long-term increase in CoQ content was obtained by overexpressing human 4-hydroxy benzoate acid polyprenyltransferase gene. Altogether, these data suggest that a strict level of CoQ remains essential for adipocyte differentiation, and its impairment is associated with obesity.
Collapse
Affiliation(s)
- Sandy Bour
- UMR 5241 Métabolisme, Plasticité et Mitochondrie, Université de Toulouse, UPS, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Coenzyme Q(10) (CoQ(10)) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ(10) is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ(10) supplementation. CoQ(10) deficiency has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis contribute to the pathogenesis of primary CoQ(10) deficiencies. In vitro and in vivo studies are necessary to further understand the pathogenesis of the disease and to develop more effective therapies.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
29
|
Glover EI, Martin J, Maher A, Thornhill RE, Moran GR, Tarnopolsky MA. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve 2010; 42:739-48. [PMID: 20886510 DOI: 10.1002/mus.21758] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Case reports and open-label studies suggest that coenzyme Q(10) (CoQ(10)) treatment may have beneficial effects in mitochondrial disease patients; however, controlled trials are warranted to clinically prove its effectiveness. Thirty patients with mitochondrial cytopathy received 1200 mg/day CoQ(10) for 60 days in a randomized, double-blind, cross-over trial. Blood lactate, urinary markers of oxidative stress, body composition, activities of daily living, quality of life, forearm handgrip strength and oxygen desaturation, cycle exercise cardiorespiratory variables, and brain metabolites were measured. CoQ(10) treatment attenuated the rise in lactate after cycle ergometry, increased (∽1.93 ml) VO(2)/kg lean mass after 5 minutes of cycling (P < 0.005), and decreased gray matter choline-containing compounds (P < 0.05). Sixty days of moderate- to high-dose CoQ(10) treatment had minor effects on cycle exercise aerobic capacity and post-exercise lactate but did not affect other clinically relevant variables such as strength or resting lactate.
Collapse
Affiliation(s)
- Elisa I Glover
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 2010; 19:535-54. [PMID: 20367194 DOI: 10.1517/13543781003727495] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Coenzyme Q(10) (CoQ(10)) is found in blood and in all organs. CoQ(10) deficiencies are due to autosomal recessive mutations, ageing-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer and muscular and cardiovascular diseases have been associated with low CoQ(10) levels, as well as different ataxias and encephalomyopathies. AREAS COVERED IN THIS REVIEW We review the efficacy of a variety of commercial formulations which have been developed to solubilise CoQ(10) and promote its better absorption in vivo, and its use in the therapy of pathologies associated with low CoQ(10) levels, with emphasis in the results of the clinical trials. Also, we review the use of its analogues idebenone and MitoQ. WHAT THE READER WILL GAIN This review covers the most relevant aspects related with the therapeutic use of CoQ(10), including existing formulations and their effects on its bioavailability. TAKE HOME MESSAGE CoQ(10) does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ(10) absorption. Oral CoQ(10) is a viable antioxidant strategy in many diseases, providing a significant to mild symptomatic benefit. Idebenone and MitoQ are promising substitutive CoQ(10)-related drugs which are well tolerated and safe.
Collapse
Affiliation(s)
- Jose M Villalba
- Universidad de Córdoba, Facultad de Ciencias, Departamento de Biología Celular, Fisiología e Inmunología, Campus Universitario de Rabanales, Edificio Severo Ochoa, 3a planta 14014 Córdoba, Spain.
| | | | | | | |
Collapse
|
31
|
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev 2010; 131:225-35. [PMID: 20193705 DOI: 10.1016/j.mad.2010.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/19/2010] [Accepted: 02/20/2010] [Indexed: 01/28/2023]
Abstract
Coenzyme Q (Q) is a key component for bioenergetics and antioxidant protection in the cell. During the last years, research on diseases linked to Q-deficiency has highlighted the essential role of this lipid in cell physiology. Q levels are also affected during aging and neurodegenerative diseases. Therefore, therapies based on dietary supplementation with Q must be considered in cases of Q deficiency such as in aging. However, the low bioavailability of dietary Q for muscle and brain obligates to design new mechanisms to increase the uptake of this compound in these tissues. In the present review we show a complete picture of the different functions of Q in cell physiology and their relationship to age and age-related diseases. Furthermore, we describe the problems associated with dietary Q uptake and the mechanisms currently used to increase its uptake or even its biosynthesis in cells. Strategies to increase Q levels in tissues are indicated.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, CIBERER-Instituto de Salud Carlos III, Carretera de Utrera, Km 1, 41013 Sevilla, Spain
| | | | | | | |
Collapse
|
32
|
El Sabbagh S, Lebre AS, Bahi-Buisson N, Delonlay P, Soufflet C, Boddaert N, Rio M, Rötig A, Dulac O, Munnich A, Desguerre I. Epileptic phenotypes in children with respiratory chain disorders. Epilepsia 2010; 51:1225-35. [PMID: 20196775 DOI: 10.1111/j.1528-1167.2009.02504.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Epilepsy is a commonly reported but rarely described clinical hallmark of mitochondrial respiratory chain defects (RCDs) with encephalopathy. METHODS From 1990-2006 we collected data about 56 children with RCD (single, n = 24 or multiple, n = 20 mitochondrial complex deficiencies; mtDNA mutation, n = 11; mtDNA depletion n = 10 of 21; and nuclear gene mutation n = 11). Epileptic features were reviewed retrospectively. RESULTS First seizures were frequently (47 patients, 82.5%) preceded by failure to thrive, psychomotor delay, ataxia, or multisystemic dysfunction. Sixty percent of the patients had several seizure types. Six age-related epilepsy phenotypes could be identified: status epilepticus complicating neonatal multivisceral deficiency (2 patients), neonatal myoclonic encephalopathy (3 patients), infantile spasms (8 patients), refractory or recurrent status epilepticus (21 patients), epilepsia partialis continua (4 patients), and myoclonic epilepsy (18 patients). Except for infantile spasms, epilepsy was difficult to control in most patients (95%). Valproate was administered to 25 patients, one of whom developed acute liver failure 6 days later. Twenty-two patients (45%) died, half of them within 9 months from the onset of epilepsy. DISCUSSION In RCD, epilepsy is not only difficult to control but its occurrence often indicates a severe turn in the course of the disease. For one-third of the patients, classical biochemical measures failed to reveal any abnormality and RCD could be detected in the liver only.
Collapse
|
33
|
|
34
|
Sacconi S, Trevisson E, Salviati L, Aymé S, Rigal O, Garcia Redondo A, Mancuso M, Siciliano G, Tonin P, Angelini C, Auré K, Lombès A, Desnuelle C. Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord 2010; 20:44-8. [DOI: 10.1016/j.nmd.2009.10.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/28/2009] [Indexed: 11/26/2022]
|
35
|
Ugalde C, Morán M, Blázquez A, Arenas J, Martín MA. Mitochondrial Disorders Due to Nuclear OXPHOS Gene Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:85-116. [DOI: 10.1007/978-90-481-2813-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Evans MA, Golomb BA. Statin-associated adverse cognitive effects: survey results from 171 patients. Pharmacotherapy 2009; 29:800-11. [PMID: 19558254 DOI: 10.1592/phco.29.7.800] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
STUDY OBJECTIVE To characterize the adverse cognitive effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). DESIGN Patient survey-based analysis. PATIENTS One hundred seventy-one patients (age range 34-86 yrs) who self-reported memory or other cognitive problems associated with statin therapy while participating in a previous statin effects study. MEASUREMENTS AND MAIN RESULTS Patients completed a survey assessing statin-associated, cognitive-specific adverse drug reaction (ADR) characteristics, relation of the ADR to specific statin and dose (or potency), and time course of symptom onset and recovery. Visual analog scales were used to assess the effect of the cognitive ADRs on seven quality-of-life domains. Demographic and clinical data were also collected. To target cognitive ADRs with a probable or definite causal relationship to statins, the Naranjo adverse drug reaction probability scale was used: 128 patients (75%) experienced cognitive ADRs determined to be probably or definitely related to statin therapy. Of 143 patients (84%) who reported stopping statin therapy, 128 (90%) reported improvement in cognitive problems, sometimes within days of statin discontinuation (median time to first-noted recovery 2.5 wks). Of interest, in some patients, a diagnosis of dementia or Alzheimer's disease reportedly was reversed. Nineteen patients whose symptoms improved or resolved after they discontinued statin therapy and who underwent rechallenge with a statin exhibited cognitive problems again (multiple times in some). Within this vulnerable group, a powerful relationship was observed between potency of the statin and fraction of trials with that agent resulting in cognitive ADRs (p<0.00001). Quality of life was significantly adversely affected for each of the seven assessed domains (all p<0.00000001). CONCLUSION Findings from the survey suggest that cognitive problems associated with statin therapy have variable onset and recovery courses, a clear relation to statin potency, and significant negative impact on quality-of-life. Administration of a patient-targeted questionnaire is a feasible approach that provides a useful complement to other ADR surveillance approaches.
Collapse
Affiliation(s)
- Marcella A Evans
- Department of Medicine, University of California-San Diego, La Jolla, California 92093-0995, USA
| | | |
Collapse
|
37
|
Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, López LC, Hirano M, Quinzii CM, Sadowski MI, Hardy J, Singleton A, Clayton PT, Rahman S. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 2009; 84:558-66. [PMID: 19375058 DOI: 10.1016/j.ajhg.2009.03.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 01/01/2023] Open
Abstract
Coenzyme Q(10) is a mobile lipophilic electron carrier located in the inner mitochondrial membrane. Defects of coenzyme Q(10) biosynthesis represent one of the few treatable mitochondrial diseases. We genotyped a patient with primary coenzyme Q(10) deficiency who presented with neonatal lactic acidosis and later developed multisytem disease including intractable seizures, global developmental delay, hypertrophic cardiomyopathy, and renal tubular dysfunction. Cultured skin fibroblasts from the patient had a coenzyme Q(10) biosynthetic rate of 11% of normal controls and accumulated an abnormal metabolite that we believe to be a biosynthetic intermediate. In view of the rarity of coenzyme Q(10) deficiency, we hypothesized that the disease-causing gene might lie in a region of ancestral homozygosity by descent. Data from an Illumina HumanHap550 array were analyzed with BeadStudio software. Sixteen regions of homozygosity >1.5 Mb were identified in the affected infant. Two of these regions included the loci of two of 16 candidate genes implicated in human coenzyme Q(10) biosynthesis. Sequence analysis demonstrated a homozygous stop mutation affecting a highly conserved residue of COQ9, leading to the truncation of 75 amino acids. Site-directed mutagenesis targeting the equivalent residue in the yeast Saccharomyces cerevisiae abolished respiratory growth.
Collapse
Affiliation(s)
- Andrew J Duncan
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Mercier S, Josselin de Wasch M, Labarthe F, Jardel C, Lombès A, Munnich A, Toutain A, Nivet H, Saliba E, Chantepie A, Castelnau P. [Clinical variability and diagnosis steps in childhood mitochondrial disease]. Arch Pediatr 2009; 16:322-30. [PMID: 19233626 DOI: 10.1016/j.arcped.2008.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 12/03/2008] [Accepted: 12/26/2008] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Mitochondrial respiratory chain deficiencies are known for their high clinical variability. Difficult to diagnose, the prevalence of these diseases is probably underestimated. METHODS We report 18 children diagnosed with respiratory chain deficiency at the Tours University Hospital over the past 10 years. RESULTS Three clinical profiles can be distinguished depending on the age at onset of the first symptoms: the neonatal period (4 cases), between 1 month and 2 years of age (10 cases), and after 10 years (4 cases). However, no clinical feature appears specific of any age group. In contrast, respiratory chain analysis on liver biopsy was very informative for all our patients at any age and with any clinical presentation, even with predominant neurological symptoms. CONCLUSIONS These biochemical analyses support the diagnosis of mitochondrial disorders in view of molecular analysis, which nevertheless frequently remains inconclusive. These investigations should benefit from the new molecular screening technologies based on DNA chips that can identify the genomic mutations responsible for these severe and relatively frequent diseases.
Collapse
Affiliation(s)
- S Mercier
- Service de génétique, hôpital Bretonneau, CHU de Tours, université de Tours, 37000 Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Coenzyme Q10 deficiencies in neuromuscular diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:117-28. [PMID: 20225022 DOI: 10.1007/978-90-481-2813-6_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids beta-oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by mutation(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases.
Collapse
|
41
|
Choksi KB, Nuss JE, DeFord JH, Papaconstantinou J. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes. Free Radic Biol Med 2008; 45:826-38. [PMID: 18598756 PMCID: PMC2873767 DOI: 10.1016/j.freeradbiomed.2008.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/09/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022]
Abstract
Age-associated mitochondrial dysfunction is a major source of reactive oxygen species (ROS) and oxidative modification to proteins. Mitochondrial electron transport chain (ETC) complexes I and III are the sites of ROS production and we hypothesize that proteins of the ETC complexes are primary targets of ROS-mediated modification which impairs their structure and function. The pectoralis, primarily an aerobic red muscle, and quadriceps, primarily an anaerobic white muscle, have different rates of respiration and oxygen-carrying capacity, and hence, different rates of ROS production. This raises the question of whether these muscles exhibit different levels of oxidative protein modification. Our studies reveal that the pectoralis shows a dramatic age-related decline in almost all complex activities that correlates with increased oxidative modification. Similar complex proteins were modified in the quadriceps, at a significantly lower level with less change in enzyme and ETC coupling function. We postulate that mitochondrial ROS causes damage to specific ETC subunits which increases with age and leads to further mitochondrial dysfunction. We conclude that physiological characteristics of the pectoralis vs quadriceps may play a role in age-associated rate of mitochondrial dysfunction and in the decline in tissue function.
Collapse
Affiliation(s)
- Kashyap B. Choksi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Mail Route 0643, Galveston, TX 77555-0643, USA
| | - Jonathan E. Nuss
- Adlyse Inc., 9430 Key West Avenue, Suite 210, Rockville, MD 20850, USA
| | - James H. DeFord
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Mail Route 0643, Galveston, TX 77555-0643, USA
| | - John Papaconstantinou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Mail Route 0643, Galveston, TX 77555-0643, USA
- Corresponding author. Fax: +1 409 772 9216. (J. Papaconstantinou)
| |
Collapse
|
42
|
Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, Wong LJ, Cohen BH, Naviaux RK. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008; 94:16-37. [PMID: 18243024 PMCID: PMC2810849 DOI: 10.1016/j.ymgme.2007.11.018] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 12/12/2022]
Abstract
Mitochondrial disease confirmation and establishment of a specific molecular diagnosis requires extensive clinical and laboratory evaluation. Dual genome origins of mitochondrial disease, multi-organ system manifestations, and an ever increasing spectrum of recognized phenotypes represent the main diagnostic challenges. To overcome these obstacles, compiling information from a variety of diagnostic laboratory modalities can often provide sufficient evidence to establish an etiology. These include blood and tissue histochemical and analyte measurements, neuroimaging, provocative testing, enzymatic assays of tissue samples and cultured cells, as well as DNA analysis. As interpretation of results from these multifaceted investigations can become quite complex, the Diagnostic Committee of the Mitochondrial Medicine Society developed this review to provide an overview of currently available and emerging methodologies for the diagnosis of primary mitochondrial disease, with a focus on disorders characterized by impairment of oxidative phosphorylation. The aim of this work is to facilitate the diagnosis of mitochondrial disease by geneticists, neurologists, and other metabolic specialists who face the challenge of evaluating patients of all ages with suspected mitochondrial disease.
Collapse
Affiliation(s)
- Richard H. Haas
- Departments of Neurosciences & Pediatrics, University of California San Diego, La Jolla, CA and Rady Children's Hospital San Diego, San Diego, CA
- Corresponding Author: Richard H. Haas, MB, BChir, MRCP, Professor of Neurosciences and Pediatrics, University of California San Diego, T. 858-822-6700; F. 858-822-6707;
| | - Sumit Parikh
- Division of Neuroscience, The Cleveland Clinic, Cleveland, OH
| | - Marni J. Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| | - Russell P. Saneto
- Division of Pediatric Neurology, Children's Hospital and Regional Medical Center, University of Washington, Seattle, WA
| | - Nicole I. Wolf
- Department of Child Neurology, University Children's Hospital, Heidelberg, Germany
| | - Niklas Darin
- Division of Child Neurology, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Bruce H. Cohen
- Division of Neuroscience, The Cleveland Clinic, Cleveland, OH
| | - Robert K. Naviaux
- Departments of Medicine and Pediatrics, Division of Medical and Biochemical Genetics, University of California San Diego, La Jolla, CA and Rady Children's Hospital San Diego, San Diego, CA
| |
Collapse
|
43
|
Cooke M, Iosia M, Buford T, Shelmadine B, Hudson G, Kerksick C, Rasmussen C, Greenwood M, Leutholtz B, Willoughby D, Kreider R. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J Int Soc Sports Nutr 2008; 5:8. [PMID: 18318910 PMCID: PMC2315638 DOI: 10.1186/1550-2783-5-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/04/2008] [Indexed: 12/19/2022] Open
Abstract
Background To determine whether acute (single dose) and/or chronic (14-days) supplementation of CoQ10 will improve anaerobic and/or aerobic exercise performance by increasing plasma and muscle CoQ10 concentrations within trained and untrained individuals. Methods Twenty-two aerobically trained and nineteen untrained male and female subjects (26.1 ± 7.6 yrs, 172 ± 8.7 cm, 73.5 ± 17 kg, and 21.2 ± 7.0%) were randomized to ingest in a double-blind manner either 100 mg of a dextrose placebo (CON) or a fast-melt CoQ10 supplement (CoQ10) twice a day for 14-days. On the first day of supplementation, subjects donated fasting blood samples and a muscle biopsy. Subjects were then given 200 mg of the placebo or the CoQ10 supplement. Sixty minutes following supplement ingestion, subjects completed an isokinetic knee extension endurance test, a 30-second wingate anaerobic capacity test, and a maximal cardiopulmonary graded exercise test interspersed with 30-minutes of recovery. Additional blood samples were taken immediately following each exercise test and a second muscle biopsy sample was taken following the final exercise test. Subjects consumed twice daily (morning and night), 100 mg of either supplement for a period of 14-days, and then returned to the lab to complete the same battery of tests. Data was analyzed using repeated measures ANOVA with an alpha of 0.05. Results Plasma CoQ10 levels were significantly increased following 2 weeks of CoQ10 supplementation (p < 0.001); while a trend for higher muscle CoQ10 levels was observed after acute CoQ10 ingestion (p = 0.098). A trend for lower serum superoxide dismutase (SOD) was observed following acute supplementation with CoQ10 (p = 0.06), whereas serum malondialdehyde (MDA) tended to be significantly higher (p < 0.05). Following acute ingestion of CoQ10, plasma CoQ10 levels were significantly correlated to muscle CoQ10 levels; maximal oxygen consumption; and treadmill time to exhaustion. A trend for increased time to exhaustion was observed following 2 weeks of CoQ10 supplementation (p = 0.06). Conclusion Acute supplementation with CoQ10 resulted in higher muscle CoQ10 concentration, lower serum SOD oxidative stress, and higher MDA levels during and following exercise. Chronic CoQ10 supplementation increased plasma CoQ10 concentrations and tended to increase time to exhaustion. Results indicate that acute and chronic supplementation of CoQ10 may affect acute and/or chronic responses to various types of exercise.
Collapse
Affiliation(s)
- Matthew Cooke
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Mike Iosia
- Department of Health, Exercise Science, and Secondary Education; Lee University; Cleveland, TN, USA
| | - Thomas Buford
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Brian Shelmadine
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Geoffrey Hudson
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Chad Kerksick
- Department of Health and Exercise Science; University of Oklahoma; Norman, OK, USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Brian Leutholtz
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Darryn Willoughby
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| | - Richard Kreider
- Exercise & Sport Nutrition Lab; Center for Exercise, Nutrition and Preventive Health; Department of Health, Human Performance & Recreation; Baylor University; Waco, TX, USA
| |
Collapse
|
44
|
Miles MV, Miles L, Tang PH, Horn PS, Steele PE, DeGrauw AJ, Wong BL, Bove KE. Systematic evaluation of muscle coenzyme Q10 content in children with mitochondrial respiratory chain enzyme deficiencies. Mitochondrion 2008; 8:170-80. [DOI: 10.1016/j.mito.2008.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/19/2007] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
|
45
|
Quinzii CM, López LC, Von-Moltke J, Naini A, Krishna S, Schuelke M, Salviati L, Navas P, DiMauro S, Hirano M. Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J 2008; 22:1874-85. [PMID: 18230681 DOI: 10.1096/fj.07-100149] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Coenzyme Q(10) (CoQ(10)) is essential for electron transport in the mitochondrial respiratory chain and antioxidant defense. Last year, we reported the first mutations in CoQ(10) biosynthetic genes, COQ2, which encodes 4-parahydroxybenzoate: polyprenyl transferase; and PDSS2, which encodes subunit 2 of decaprenyl diphosphate synthase. However, the pathogenic mechanisms of primary CoQ(10) deficiency have not been well characterized. In this study, we investigated the consequence of severe CoQ(10) deficiency on bioenergetics, oxidative stress, and antioxidant defenses in cultured skin fibroblasts harboring COQ2 and PDSS2 mutations. Defects in the first two committed steps of the CoQ(10) biosynthetic pathway produce different biochemical alterations. PDSS2 mutant fibroblasts have 12% CoQ(10) relative to control cells and markedly reduced ATP synthesis, but do not show increased reactive oxygen species (ROS) production, signs of oxidative stress, or increased antioxidant defense markers. In contrast, COQ2 mutant fibroblasts have 30% CoQ(10) with partial defect in ATP synthesis, as well as significantly increased ROS production and oxidation of lipids and proteins. On the basis of a small number of cell lines, our results suggest that primary CoQ(10) deficiencies cause variable defects of ATP synthesis and oxidative stress, which may explain the different clinical features and may lead to more rational therapeutic strategies.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Coenzyme Q10 (CoQ10 or ubiquinone) is a lipid-soluble component of virtually all cell membranes and has multiple metabolic functions. A major function of CoQ10 is to transport electrons from complexes I and II to complex III in the respiratory chain which resides in the mitochondrial inner membrane. Deficiencies of CoQ10 (MIM 607426) have been associated with four major clinical phenotypes: 1) encephalomyopathy characterized by a triad of recurrent myoglobinuria, brain involvement, and ragged-red fibers; 2) infantile multisystemic disease typically with prominent nephropathy and encephalopathy; 3) cerebellar ataxia with marked cerebellar atrophy; and 4) pure myopathy. Primary CoQ10 deficiencies due to mutations in ubiquinone biosynthetic genes (COQ2, PDSS1, PDSS2, and ADCK3 [CABC1]) have been identified in patients with the infantile multisystemic and cerebellar ataxic phenotypes. In contrast, secondary CoQ10 deficiencies, due to mutations in genes not directly related to ubiquinone biosynthesis (APTX, ETFDH, and BRAF), have been identified in patients with cerebellar ataxia, pure myopathy, and cardiofaciocutaneous syndrome. In many patients with CoQ10 deficiencies, the causative molecular genetic defects remain unknown; therefore, it is likely that mutations in additional genes will be identified as causes of CoQ10 deficiencies.
Collapse
Affiliation(s)
- C M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
HMG-CoA reductase inhibitors (statins) are a widely used class of drug, and like all medications, have potential for adverse effects (AEs). Here we review the statin AE literature, first focusing on muscle AEs as the most reported problem both in the literature and by patients. Evidence regarding the statin muscle AE mechanism, dose effect, drug interactions, and genetic predisposition is examined. We hypothesize, and provide evidence, that the demonstrated mitochondrial mechanisms for muscle AEs have implications to other nonmuscle AEs in patients treated with statins. In meta-analyses of randomized controlled trials (RCTs), muscle AEs are more frequent with statins than with placebo. A number of manifestations of muscle AEs have been reported, with rhabdomyolysis the most feared. AEs are dose dependent, and risk is amplified by drug interactions that functionally increase statin potency, often through inhibition of the cytochrome P450 3A4 system. An array of additional risk factors for statin AEs are those that amplify (or reflect) mitochondrial or metabolic vulnerability, such as metabolic syndrome factors, thyroid disease, and genetic mutations linked to mitochondrial dysfunction. Converging evidence supports a mitochondrial foundation for muscle AEs associated with statins, and both theoretical and empirical considerations suggest that mitochondrial dysfunction may also underlie many nonmuscle statin AEs. Evidence from RCTs and studies of other designs indicates existence of additional statin-associated AEs, such as cognitive loss, neuropathy, pancreatic and hepatic dysfunction, and sexual dysfunction. Physician awareness of statin AEs is reportedly low even for the AEs most widely reported by patients. Awareness and vigilance for AEs should be maintained to enable informed treatment decisions, treatment modification if appropriate, improved quality of patient care, and reduced patient morbidity.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Department of Medicine, University of California, San Diego, California 92093-0995, USA.
| | | |
Collapse
|
48
|
Choksi KB, Nuss JE, Boylston WH, Rabek JP, Papaconstantinou J. Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes. Free Radic Biol Med 2007; 43:1423-38. [PMID: 17936188 PMCID: PMC2080815 DOI: 10.1016/j.freeradbiomed.2007.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/19/2007] [Accepted: 07/21/2007] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction generates reactive oxygen species (ROS) which damage essential macromolecules. Oxidative modification of proteins, DNA, and lipids has been implicated as a major causal factor in the age-associated decline in tissue function. Mitochondrial electron transport chain complexes I and III are the principal sites of ROS production, and oxidative modifications to the complex subunits inhibit their in vitro activity. Therefore, we hypothesize that mitochondrial complex subunits may be primary targets for oxidative damage by ROS which may impair normal complex activity by altering their structure/function leading to mitochondrial dysfunction associated with aging. This study of kidney mitochondria from young, middle-aged, and old mice reveals that there are functional decreases in complexes I, II, IV, and V between aged compared to young kidney mitochondria and these functional declines directly correlate with increased oxidative modification to particular complex subunits. We postulate that the electron leakage from complexes causes specific damage to their subunits and increased ROS generation as oxidative damage accumulates, leading to further mitochondrial dysfunction, a cyclical process that underlies the progressive decline in physiologic function seen in aged mouse kidney. In conclusion, increasing mitochondrial dysfunction may play a key role in the age-associated decline in tissue function.
Collapse
Affiliation(s)
- Kashyap B. Choksi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555-0643
| | - Jonathan E. Nuss
- Adlyse Inc., 9430 Key West Avenue, Suite 210, Rockville, MD, 20850
| | - William H. Boylston
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas, 78229
| | - Jeffrey P. Rabek
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555-0643
| | - John Papaconstantinou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555-0643
| |
Collapse
|
49
|
Montero R, Pineda M, Aracil A, Vilaseca MA, Briones P, Sánchez-Alcázar JA, Navas P, Artuch R. Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. THE CEREBELLUM 2007; 6:118-22. [PMID: 17510911 DOI: 10.1080/14734220601021700] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Coenzyme Q(10) (CoQ) deficiency is an autosomal recessive disorder presenting five phenotypes: a myopathic form, a severe infantile neurological syndrome associated with nephritic syndrome, an ataxic variant, Leigh syndrome and a pure myopathic form. The third is the most common phenotype related with CoQ deficiency and it will be the focus of this review. This new syndrome presents muscle CoQ deficiency associated with cerebellar ataxia and cerebellar atrophy as the main neurological signs. Biochemically, the hallmark of CoQ deficiency syndrome is a decreased CoQ concentration in muscle and/or fibroblasts. There is no molecular evidence of the enzyme or gene involved in primary CoQ deficiencies associated with cerebellar ataxia, although recently a family has been reported with mutations at COQ2 gene who present a distinct phenotype. Patients with primary CoQ deficiency may benefit from CoQ supplementation, although the clinical response to this therapy varies even among patients with similar phenotypes. Some present an excellent response to CoQ while others show only a partial improvement of some symptoms and signs. CoQ deficiency is the mitochondrial encephalomyopathy with the best clinical response to CoQ supplementation, highlighting the importance of an early identification of this disorder.
Collapse
Affiliation(s)
- Raquel Montero
- Biochemistry, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Haas RH. The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion 2007; 7 Suppl:S136-45. [PMID: 17485245 DOI: 10.1016/j.mito.2007.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
The evidence supporting a treatment benefit for coenzyme Q10 (CoQ10) in primary mitochondrial disease (mitochondrial disease) whilst positive is limited. Mitochondrial disease in this context is defined as genetic disease causing an impairment in mitochondrial oxidative phosphorylation (OXPHOS). There are no treatment trials achieving the highest Level I evidence designation. Reasons for this include the relative rarity of mitochondrial disease, the heterogeneity of mitochondrial disease, the natural cofactor status and easy 'over the counter availability' of CoQ10 all of which make funding for the necessary large blinded clinical trials unlikely. At this time the best evidence for efficacy comes from controlled trials in common cardiovascular and neurodegenerative diseases with mitochondrial and OXPHOS dysfunction the etiology of which is most likely multifactorial with environmental factors playing on a background of genetic predisposition. There remain questions about dosing, bioavailability, tissue penetration and intracellular distribution of orally administered CoQ10, a compound which is endogenously produced within the mitochondria of all cells. In some mitochondrial diseases and other commoner disorders such as cardiac disease and Parkinson's disease low mitochondrial or tissue levels of CoQ10 have been demonstrated providing an obvious rationale for supplementation. This paper discusses the current state of the evidence supporting the use of CoQ10 in mitochondrial disease.
Collapse
Affiliation(s)
- Richard H Haas
- Department of Neurosciences, UCSD Mitochondrial and Metabolic Disease Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0935, USA.
| |
Collapse
|