1
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
2
|
Dominguez-Lopez S, Piccart E, Lynch WB, Wollet MB, Sharpe AL, Beckstead MJ. Antagonism of Neurotensin Receptors in the Ventral Tegmental Area Decreases Methamphetamine Self-Administration and Methamphetamine Seeking in Mice. Int J Neuropsychopharmacol 2018; 21:361-370. [PMID: 29272412 PMCID: PMC5888879 DOI: 10.1093/ijnp/pyx117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022] Open
Abstract
Background Neurotensin is a peptide that modulates central dopamine neurotransmission and dopamine-related behaviors. Methamphetamine self-administration increases neurotensin levels in the ventral tegmental area, but the consequences for self-administration behavior have not been described. Here we test the hypothesis that antagonizing neurotensin receptors in the ventral tegmental area attenuates the acquisition of methamphetamine self-administration and methamphetamine intake. Methods We implanted mice with an indwelling catheter in the right jugular vein and bilateral cannulae directed at the ventral tegmental area. Mice were then trained to nose-poke for i.v. infusions of methamphetamine (0.1 mg/kg/infusion) on a fixed ratio 3 schedule. Results Mice receiving microinfusions of the neurotensin NTS1/NTS2 receptor antagonist SR142948A in the ventral tegmental area (10 ng/side) prior to the first 5 days of methamphetamine self-administration required more sessions to reach acquisition criteria. Methamphetamine intake was decreased in SR142948A-treated mice both during training and later during maintenance of self-administration. Drug seeking during extinction, cue-induced reinstatement, and progressive ratio schedules was also reduced in the SR142948A group. The effects of SR142948A were not related to changes in basal locomotor activity or methamphetamine psychomotor properties. In both SR142948A- and saline-treated mice, a strong positive correlation between methamphetamine intake and enhanced locomotor activity was observed. Conclusion Our results suggest that neurotensin input in the ventral tegmental area during initial methamphetamine exposure contributes to the acquisition of methamphetamine self-administration and modulates later intake and methamphetamine-seeking behavior in mice. Furthermore, our results highlight the role of endogenous neurotensin in the ventral tegmental area in the reinforcing efficacy of methamphetamine, independent of its psychomotor effects.
Collapse
Affiliation(s)
- Sergio Dominguez-Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Elisabeth Piccart
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - William B Lynch
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Mackenna B Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| |
Collapse
|
3
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
4
|
Tschumi CW, Beckstead MJ. Neurotensin speeds inhibition of dopamine neurons through temporal modulation of GABA A and GABA B receptor-mediated synaptic input. Neuropharmacology 2018; 131:414-423. [PMID: 29307543 DOI: 10.1016/j.neuropharm.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 01/20/2023]
Abstract
Midbrain dopamine neurons play physiological roles in many processes including reward learning and motivated behavior, and are tonically inhibited by γ-aminobutyric acid (GABA)ergic input from multiple brain regions. Neurotensin (NT) is a neuropeptide which acutely modulates midbrain dopamine neuron excitability through multiple mechanisms, one of which is a decrease of GABA-mediated inhibition. However, the mechanisms through which NT depresses GABA signaling are not known. Here we used whole cell patch-clamp electrophysiology of dopamine neurons in mouse brain slices to show that NT acts both presynaptically to increase GABAA and postsynaptically to decrease GABAB receptor-mediated currents in the substantia nigra. The active peptide fragment NT8-13 enhanced GABAA signaling presynaptically by causing an increase in the size of the readily releasable pool of GABA via activation of the NT type-1 receptor and protein kinase A. Conversely, NT8-13 depressed GABAB signaling postsynaptically via the NT type-2 receptor in a process that was modulated by protein kinase C. Both forms of plasticity could be observed simultaneously in single dopamine neurons. Thus, as the kinetics of GABAA signaling are significantly faster than those of GABAB signaling, NT functionally speeds GABAergic input to midbrain dopamine neurons. This finding contributes to our understanding of how neuropeptide-induced plasticity can simultaneously differentiate and integrate signaling by a single neurotransmitter in a single cell and provides a basis for understanding how neuropeptides use temporal shifts in synaptic strength to encode information.
Collapse
Affiliation(s)
- Christopher W Tschumi
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Servonnet A, Minogianis EA, Bouchard C, Bédard AM, Lévesque D, Rompré PP, Samaha AN. Neurotensin in the nucleus accumbens reverses dopamine supersensitivity evoked by antipsychotic treatment. Neuropharmacology 2017; 123:10-21. [DOI: 10.1016/j.neuropharm.2017.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
|
6
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Bose P, Rompré PP, Warren RA. Neurotensin enhances glutamatergic EPSCs in VTA neurons by acting on different neurotensin receptors. Peptides 2015; 73:43-50. [PMID: 26296323 DOI: 10.1016/j.peptides.2015.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 11/26/2022]
Abstract
Neurotensin (NT) is an endogenous neuropeptide that modulates dopamine and glutamate neurotransmission in several limbic regions innervated by neurons located in the ventral tegmental area (VTA). While several studies showed that NT exerted a direct modulation on VTA dopamine neurons less is known about its role in the modulation of glutamatergic neurotransmission in this region. The present study was aimed at characterising the effects of NT on glutamate-mediated responses in different populations of VTA neurons. Using whole cell patch clamp recording technique in horizontal rat brain slices, we measured the amplitude of glutamatergic excitatory post-synaptic currents (EPSCs) evoked by electrical stimulation of VTA afferents before and after application of different concentrations of NT1-13 or its C-terminal fragment, NT8-13. Neurons were classified as either Ih(+) or Ih(-) based on the presence or absence of a hyperpolarisation activated cationic current (Ih). We found that NT1-13 and NT8-13 produced comparable concentration dependent increase in the amplitude of EPSCs in both Ih(+) and Ih(-) neurons. In Ih(+) neurons, the enhancement effect of NT8-13 was blocked by both antagonists, while in Ih(-) neurons it was blocked by the NTS1/NTS2 antagonist, SR142948A, but not the preferred NTS1 antagonist, SR48692. In as much as Ih(-) neurons are non-dopaminergic neurons and Ih(+) neurons represent both dopamine and non-dopamine neurons, we can conclude that NT enhances glutamatergic mediated responses in dopamine, and in a subset of non-dopamine, neurons by acting respectively on NTS1 and an NT receptor other than NTS1.
Collapse
Affiliation(s)
- Poulomee Bose
- Department of Psychiatry, University of Montreal, Quebec, Canada
| | | | - Richard A Warren
- Department of Psychiatry, University of Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Rouibi K, Rompré PP. Role of context in neurotensin-induced sensitization to the locomotor stimulant effect of amphetamine. Peptides 2014; 58:103-7. [PMID: 24969625 DOI: 10.1016/j.peptides.2014.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that repeated central injections of neurotensin, or its active analog, D-Tyr([11])neurotensin, sensitize to the locomotor stimulant effect of amphetamine. The development of sensitization to amphetamine can be modulated by contextual stimuli associated with the drug and as a consequence the expression of sensitization becomes context-dependent. The present study was thus aimed at determining whether the induction of amphetamine sensitization by neurotensin is modulated by the context in which neurotensin is administered. Different groups of adult male Long Evans rats were injected on four occasions with D-Tyr([11])neurotensin (18 nmol/10 μl; i.c.v.) in the locomotor activity cages (paired group) or in their home cage (unpaired group); control group received vehicle injection in both environments. One week after the last central injection, the locomotor response to a single dose of amphetamine (0.75 mg/kg; i.p.) was measured in all the rats. Results show that amphetamine induced higher ambulatory, non-ambulatory and vertical activity in the paired group than in the control group confirming the sensitization effect. The paired group also displayed significant higher ambulatory activity than those in the unpaired group, confirming that the expression of sensitization was context-dependent. This context-dependency was not found however for amphetamine-induced non-ambulatory and vertical activity suggesting that neurotensin can induce both a context-dependent and context-independent sensitization.
Collapse
Affiliation(s)
- Khalil Rouibi
- Faculté de médecine, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Pierre-Paul Rompré
- Faculté de médecine, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 2014; 4:125-153. [PMID: 25379273 PMCID: PMC4219245 DOI: 10.3390/bs4020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.
Collapse
|
10
|
Hall FS, Centeno M, Perona MTG, Adair J, Dobner PR, Uhl GR. Effects of neurotensin gene knockout in mice on the behavioral effects of cocaine. Psychopharmacology (Berl) 2012; 219:35-45. [PMID: 21720755 DOI: 10.1007/s00213-011-2370-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/29/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE The neuropeptide neurotensin (NT), which has been implicated in the modulation of dopamine signaling, is expressed in a subset of dopamine neurons and antagonism of the NT receptor has been reported to reduce psychostimulant-induced behavior. Gene knockout (KO) of the neurotensin/neuromedin N precursor provides an approach to delineating possible roles of endogenous NT in psychostimulant-induced responses. OBJECTIVES Involvement of NT in cocaine responses was examined by comparing acute and conditioned locomotor responses, conditioned place preference, and sensitization in wild-type (WT), heterozygous, and homozygous NT KO mice. RESULTS NT KO mice did not differ from their WT or heterozygous littermates in either baseline or acute cocaine-stimulated locomotor activity. The locomotor stimulant effects of cocaine were slightly prolonged in these mice under some, but not all, experimental conditions. The rewarding effects of cocaine as assessed in the conditioned place preference and conditioned locomotion paradigms were also similar between genotypes at all cocaine doses tested. CONCLUSIONS These results suggest that endogenous NT is not involved in cocaine-mediated behaviors in most circumstances, but under some conditions, a slight prolongation of the effects of cocaine was observed in the absence of endogenous NT.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, National Institute on Drug Abuse, NIH/DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Fawaz CS, Martel P, Leo D, Trudeau LE. Presynaptic action of neurotensin on dopamine release through inhibition of D(2) receptor function. BMC Neurosci 2009; 10:96. [PMID: 19682375 PMCID: PMC2745416 DOI: 10.1186/1471-2202-10-96] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background Neurotensin (NT) is known to act on dopamine (DA) neurons at the somatodendritic level to regulate cell firing and secondarily enhance DA release. In addition, anatomical and indirect physiological data suggest the presence of NT receptors at the terminal level. However, a clear demonstration of the mechanism of action of NT on dopaminergic axon terminals is lacking. We hypothesize that NT acts to increase DA release by inhibiting the function of terminal D2 autoreceptors. To test this hypothesis, we used fast-scan cyclic voltammetry (FCV) to monitor in real time the axonal release of DA in the nucleus accumbens (NAcc). Results DA release was evoked by single electrical pulses and pulse trains (10 Hz, 30 pulses). Under these two stimulation conditions, we evaluated the characteristics of DA D2 autoreceptors and the presynaptic action of NT in the NAcc shell and shell/core border region. The selective agonist of D2 autoreceptors, quinpirole (1 μM), inhibited DA overflow evoked by both single and train pulses. In sharp contrast, the selective D2 receptor antagonist, sulpiride (5 μM), strongly enhanced DA release triggered by pulse trains, without any effect on DA release elicited by single pulses, thus confirming previous observations. We then determined the effect of NT (8–13) (100 nM) and found that although it failed to increase DA release evoked by single pulses, it strongly enhanced DA release evoked by pulse trains that lead to prolonged DA release and engage D2 autoreceptors. In addition, initial blockade of D2 autoreceptors by sulpiride considerably inhibited further facilitation of DA release generated by NT (8–13). Conclusion Taken together, these data suggest that NT enhances DA release principally by inhibiting the function of terminal D2 autoreceptors and not by more direct mechanisms such as facilitation of terminal calcium influx.
Collapse
Affiliation(s)
- Charbel S Fawaz
- Department of Pharmacology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Quebec, H3C 3J7, Canada.
| | | | | | | |
Collapse
|
12
|
Ramos-Ortolaza DL, Negrón A, Cruz D, Falcón E, Iturbe MC, Cajigas MH, Maldonado-Vlaar CS. Intra-accumbens shell injections of SR48692 enhanced cocaine self-administration intake in rats exposed to an environmentally-elicited reinstatement paradigm. Brain Res 2009; 1280:124-36. [PMID: 19442653 DOI: 10.1016/j.brainres.2009.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 02/08/2023]
Abstract
Neurotensin (NT) is a neuropeptide involved in cocaine reward, and in learning and memory processes related to drug use within the mesolimbic dopamine (DA) system. Studies have demonstrated that NT receptor antagonists have potential as pharmacotherapeutical tools for cocaine abuse. Therefore, it is important to understand the molecular profile of NT within mesolimbic neurons and the behavioral effects of NT receptor inhibitors on environmentally-elicited cocaine seeking behavior. To address this issue, male Sprague Dawley rats were trained to self-administer cocaine and to discriminate between environmental cues signaling cocaine vs. saline availability. Then, following extinction, these cues were used to induce reinstatement of cocaine seeking behavior. A differential expression profile was observed throughout the experiment. Particularly, a significant increase of NT levels was observed within the nucleus accumbens (NAc) shell subregion during the acquisition phase of training. To further examine the implications of this increase, separate groups of animals received intra NAc shell injections of one of three doses (25, 50, 100 nM) of the NT1 receptor antagonist SR48692 after reaching stable self-administration. Animals were injected prior to placement in the operant conditioning chambers for four consecutive sessions. An increase in lever pressing was observed following antagonist treatment, whereas no major changes in locomotor activity were observed. We propose that the observed increase in lever pressing may be a compensatory response to a decrease in reinforcement, possibly due to decreased DA release, as previous studies show that chronic SR48692 decreases basal DA release in the NAc shell.
Collapse
|
13
|
Lévesque K, Lamarche C, Rompré PP. Evidence for a role of endogenous neurotensin in the development of sensitization to the locomotor stimulant effect of morphine. Eur J Pharmacol 2008; 594:132-8. [DOI: 10.1016/j.ejphar.2008.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/09/2008] [Accepted: 07/23/2008] [Indexed: 11/25/2022]
|
14
|
Effects of the selective neurotensin antagonist SR 142948A on 3,4-methylenedioxymethamphetamine-induced behaviours in mice. Neuropharmacology 2008; 54:1107-11. [DOI: 10.1016/j.neuropharm.2008.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 01/11/2008] [Accepted: 03/02/2008] [Indexed: 11/23/2022]
|
15
|
Felszeghy K, Espinosa JM, Scarna H, Bérod A, Rostène W, Pélaprat D. Neurotensin receptor antagonist administered during cocaine withdrawal decreases locomotor sensitization and conditioned place preference. Neuropsychopharmacology 2007; 32:2601-10. [PMID: 17356568 PMCID: PMC2992550 DOI: 10.1038/sj.npp.1301382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic use of psychostimulants induces enduringly increased responsiveness to a subsequent psychostimulant injection and sensitivity to drug-associated cues, contributing to drug craving and relapse. Neurotensin (NT), a neuropeptide functionally linked to dopaminergic neurons, was suggested to participate in these phenomena. We and others have reported that SR 48692, an NT receptor antagonist, given in pre- or co-treatments with cocaine or amphetamine, alters some behavioral effects of these drugs in rats. However, its efficacy when applied following repeated cocaine administration remains unknown. We, therefore, evaluated the ability of SR 48692, administered after a cocaine regimen, to interfere with the expression of locomotor sensitization and conditioned place preference (CPP) in rats. We demonstrated that the expression of locomotor sensitization, induced by four cocaine injections (15 mg/kg, i.p.) every other day and a cocaine challenge 1 week later, was attenuated by a subsequent 2-week daily administration of SR 48692 (1 mg/kg, i.p.). Furthermore, the expression of cocaine-induced CPP was suppressed by a 10-day SR 48692 treatment started after the conditioning period (four 15 mg/kg cocaine injections every other day). Taken together, our data show that a chronic SR 48692 treatment given after a cocaine regimen partly reverses the expression of locomotor sensitization and CPP in the rat, suggesting that NT participates in the maintenance of these behaviors. Our results support the hypothesis that targeting neuromodulatory systems, such as the NT systems may offer new strategies in the treatment of drug addiction.
Collapse
Affiliation(s)
- Klara Felszeghy
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
- Brain Physiology Reseach Group
Hungarian Academy of SciencesSemmelweiss University1389, PoBox 112 Budapest,HU
| | - José M. Espinosa
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
| | - Hélène Scarna
- Laboratoire de Neuropharmacologie
Université Claude Bernard - Lyon IFaculté de Pharmacie,FR
| | - Anne Bérod
- Laboratoire de Neuropharmacologie
Université Claude Bernard - Lyon IFaculté de Pharmacie,FR
| | - William Rostène
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
| | - Didier Pélaprat
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
| |
Collapse
|
16
|
Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ. Brain levels of neuropeptides in human chronic methamphetamine users. Neuropharmacology 2007; 53:447-54. [PMID: 17688891 PMCID: PMC2526021 DOI: 10.1016/j.neuropharm.2007.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/15/2007] [Accepted: 06/01/2007] [Indexed: 11/29/2022]
Abstract
Animal data show that neuropeptide systems in the dopamine-rich brain areas of the striatum (caudate, putamen, and nucleus accumbens) are influenced by exposure to psychostimulants, suggesting that neuropeptides are involved in mediating aspects of behavioral responses to drugs of abuse. To establish in an exploratory study whether levels of neuropeptides are altered in brain of human methamphetamine users, we measured tissue concentrations of dynorphin, metenkephalin, neuropeptide Y, neurotensin, and substance P in autopsied brains of 16 chronic methamphetamine users and 17 matched control subjects. As expected, levels of most neuropeptides were enriched in dopamine-linked brain regions such as the nucleus accumbens and striatum of normal human brain. In contrast to animal findings of increased neuropeptide levels following short-term methamphetamine exposure, striatal neuropeptide concentrations were either normal or moderately decreased in the methamphetamine users. In other examined dopamine-poor cortical and subcortical brain areas, neuropeptide levels were generally either normal or variably reduced. Although the neuropeptide differences might be explained by methamphetamine-induced damage to neuropeptide-containing neurons, our human data are consistent with the possibility that, at least in the human striatum, long-term methamphetamine exposure leads to an adaptive process that is distinct from that which increases neuropeptide levels after acute methamphetamine exposure.
Collapse
Affiliation(s)
- Paul S Frankel
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | |
Collapse
|
17
|
Costa FG, Frussa-Filho R, Canteras NS, Valera AG, Felicio LF. Blockade of neurotensin receptors during amphetamine discontinuation indicates individual variability. Neuropeptides 2007; 41:83-91. [PMID: 17276509 DOI: 10.1016/j.npep.2006.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/03/2006] [Accepted: 12/07/2006] [Indexed: 11/17/2022]
Abstract
Psychostimulant-induced locomotor sensitization has been related to changes within the mesolimbic dopamine system and has been suggested to be useful to study mechanisms underlying drug craving. Neurotensin is a neuropeptide co-localized with dopamine in the mesolimbic system. The response to novelty has been suggested to be a predictor of enhanced vulnerability to behavioral sensitization. The effects of repeated treatment with the neurotensin antagonist SR48692 after amphetamine discontinuation were investigated in mice previously classified as high responders (HRs) or low responders (LRs) to novelty. Mice were repeatedly treated with 2.0mg/kg amphetamine, every other day for 11 days. During the first 7 days after amphetamine discontinuation, the animals received a daily injection of saline or 0.3mg/kg SR48692. On the eighth day after amphetamine discontinuation all subjects received a 2.0mg/kg amphetamine challenge injection. Then, mice were tested for an open field behavior and after 90min, were sacrificed for Fos expression quantification in the nucleus accumbens. Both HRs and LRs expressed amphetamine-induced sensitized locomotor activation and increased expression of Fos protein. Treatment with SR48692 prevented behavioral sensitization and Fos protein expression enhancement in LRs but not in HRs mice. These data suggest that neurotensin plays a role in individual variability to amphetamine-induced sensitization.
Collapse
Affiliation(s)
- Fabiana G Costa
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Orlando Marques Paiva 87, Cidade Universitária, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
18
|
Geisler S, Bérod A, Zahm DS, Rostène W. Brain neurotensin, psychostimulants, and stress--emphasis on neuroanatomical substrates. Peptides 2006; 27:2364-84. [PMID: 16934369 DOI: 10.1016/j.peptides.2006.03.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 03/05/2006] [Indexed: 12/29/2022]
Abstract
Neurotensin (NT) is a peptide that is widely distributed throughout the brain. NT is involved in locomotion, reward, stress and pain modulation, and in the pathophysiology of drug addiction and depression. In its first part this review brings together relevant literature about the neuroanatomy of NT and its receptors. The second part focuses on functional-anatomical interactions between NT, the mesotelencephalic dopamine system and structures targeted by dopaminergic projections. Finally, recent data about the actions of NT in processes underlying behavioral sensitization to psychostimulant drugs and the involvement of NT in the regulation of the hypothalamo-pituitary-adrenal gland axis are considered.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Pharmacological and Physiological Science, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
19
|
Boules M, Fredrickson P, Richelson E. Bioactive analogs of neurotensin: focus on CNS effects. Peptides 2006; 27:2523-33. [PMID: 16882457 DOI: 10.1016/j.peptides.2005.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 12/01/2005] [Indexed: 11/17/2022]
Abstract
Neurotensin (NT) is a 13-amino acid neuropeptide found in the central nervous system and in the gastrointestinal tract. It is closely associated anatomically with dopaminergic and other neurotransmitter systems, and evidence supports a role for NT agonists in the treatment of various neuropsychiatric disorders. However, NT is readily degraded by peptidases, so there is much interest in the development of stable NT agonists, that can be injected systemically, cross the blood-brain barrier (BBB), yet retains the pharmacological characteristics of native NT for therapeutic use in the treatment of diseases such as schizophrenia, Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
20
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
21
|
Reynolds SM, Geisler S, Bérod A, Zahm DS. Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 2006; 24:188-96. [PMID: 16882016 DOI: 10.1111/j.1460-9568.2006.04791.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin exerts complex effects on the mesolimbic dopamine system that alter motivation and contribute to neuroadaptations associated with psychostimulant drug administration. Activation of abundant neurotensin receptors in the ventral tegmental area (VTA) enhances dopamine neuron activity and associated release of dopamine in the nucleus accumbens (Acb) and cortex. In view of recent anatomical studies demonstrating that 70% of all neurotensin-containing neurons projecting to the VTA occupy the lateral preoptic area-rostral lateral hypothalamus (LPH) and lateral part of the medial preoptic area (MPOA), the present study examined functionality in the LPH-MPOA neurotensinergic pathway in the rat. Disinhibition (resulting ultimately in stimulation-like effects) of LPH-MPOA neurons with microinjected bicuculline (50 or 100 ng in 0.25 microL) produced locomotor activation that was considerably attenuated by systemic administration of the neurotensin antagonist SR 142948 A (0.03 and 0.1 mg/kg). In contrast, locomotion elicited in this manner was completely blocked by SR 142948 A infused directly into the VTA (5.0 and 15.0 ng in 0.25 microL). Baseline locomotion was unaffected by systemic or intra-VTA administration of SR 142948 A and LPH-MPOA-elicited locomotion was unaffected by infusion of SR 142948 A into the substantia nigra pars compacta and sites rostral and dorsal to the VTA. Locomotion was not elicited by infusions of bicuculline into the lateral hypothalamus at sites caudal to the LPH-MPOA, where neurotensin neurons projecting to the VTA are fewer. The results demonstrate the capacity of a neurotensin-containing pathway from LPH-MPOA to VTA to modulate locomotion. This pathway may be important in linking hippocampal and mesolimbic mechanisms in normal behaviour and drug addiction.
Collapse
Affiliation(s)
- Sheila M Reynolds
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St Louis, MO 63104, USA
| | | | | | | |
Collapse
|
22
|
Cáceda R, Kinkead B, Owens MJ, Nemeroff CB. Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation. J Neurosci 2006; 25:11748-56. [PMID: 16354933 PMCID: PMC6726044 DOI: 10.1523/jneurosci.4282-05.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine receptor agonist and NMDA receptor antagonist activation of the mesolimbic dopamine system increases locomotion and disrupts prepulse inhibition of the acoustic startle response (PPI), paradigms frequently used to study both the pharmacology of antipsychotic drugs and drugs of abuse. In rats, virally mediated overexpression of the neurotensin 1 (NT1) receptor in the nucleus accumbens antagonized d-amphetamine- and dizocilpine-induced PPI disruption, hyperlocomotion, and D-amphetamine-induced rearing. The NT receptor antagonist SR 142948A [2-[[5-(2,6-dimethoxyphenyl)-1-(4-N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino] adamantane-2-carboxylic acid, hydrochloride] blocked inhibition of dizocilpine-induced hyperlocomotion mediated by overexpression of the NT1 receptor. Together, these results suggest that increased nucleus accumbens NT neurotransmission, via the NT1 receptor, can decrease the effects of activation of the mesolimbic dopamine system and disruption of the glutamatergic input from limbic cortices, resembling the action of the atypical antipsychotic drug clozapine. In contrast to clozapine, virally mediated overexpression of the NT1 receptor in the nucleus accumbens had prolonged protective effects (up to 4 weeks after viral injection) without perturbing baseline PPI and locomotor behaviors. These data further confirm the NT1 receptor as the receptor mediating the antistimulant- and antipsychotic-like properties of NT and provide rationale for the development of NT1 receptor agonists as novel antipsychotic drugs. In addition, the NT1 receptor vector might be a valuable tool for understanding the mechanism of action of antipsychotic drugs and drugs of abuse and may have potential therapeutic applications.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
23
|
Fadel J, Dobner PR, Deutch AY. Amphetamine-elicited striatal Fos expression is attenuated in neurotensin null mutant mice. Neurosci Lett 2006; 402:97-101. [PMID: 16632196 DOI: 10.1016/j.neulet.2006.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/19/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT) has been suggested to interact with dopamine systems in different forebrain sites to exert both antipsychotic- and psychostimulant-like effects. We previously found that genetic or pharmacological manipulations that disrupt endogenous NT signaling attenuate antipsychotic drug-induced Fos expression in the dorsolateral and central striatum but not other striatal regions. To assess the role of NT in psychostimulant responses, we examined the ability of d-amphetamine (AMP) to induce Fos in wild-type and NT null mutant mice. AMP-elicited Fos expression was significantly attenuated in the medial striatum of NT null mutant mice, but was unaffected in other striatal territories. Similar results were obtained in rats and mice pretreated with the high affinity neurotensin receptor (NTR1) antagonist SR 48692. The effect of the NTR1 antagonist was particularly apparent in the striatal patch (striosome) compartment, as defined by mu-opioid receptor immunoreactivity. These data suggest that NT is required for the full activation by AMP of medial striatal neurons.
Collapse
Affiliation(s)
- Jim Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
24
|
Geisler S, Zahm DS. On the retention of neurotensin in the ventral tegmental area (VTA) despite destruction of the main neurotensinergic afferents of the VTA--implications for the organization of forebrain projections to the VTA. Brain Res 2006; 1087:87-104. [PMID: 16626637 DOI: 10.1016/j.brainres.2006.02.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 02/18/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022]
Abstract
Neurotensin (NT) modulates ventral tegmental area (VTA) signaling in a manner relevant to psychostimulant drug actions, thus inviting evaluation of psychostimulant effects in conditions of reduced or absent VTA NT. However, in a preliminary study, NT immunoreactivity (-ir) in the VTA was unaffected following destruction of the main concentration of forebrain neurotensinergic VTA afferents in the lateral preoptic-rostral lateral hypothalamic continuum (LPH) and adjacent lateral part of the medial preoptic area (MPOA). This study attempted to determine what measures are necessary to obtain a significant reduction of VTA NT-ir. Large unilateral ibotenic acid lesions were made in several structures containing NTergic, VTA-projecting neurons, including the LPH-MPOA, nucleus accumbens, VTA itself and dorsal raphe. None of these was associated with substantial ipsilateral loss of NT-ir in the VTA, lateral hypothalamus or lateral habenula. Combinations of lesions, such as LPH-MPOA plus VTA and LPH-MPOA plus dorsal raphe, also failed to substantially reduce NT-ir in these structures. Transections of the medial forebrain bundle (mfb) likewise failed to produce a substantial loss of VTA NT-ir measured with immunohistochemistry and radioimmunoassay. Transections of the mfb were carried out in combination with infusions of retrograde and anterograde axonal tract-tracers, revealing that the routes taken by some forebrain NT-ir VTA afferents circumvent mfb transections. All of these results together are consistent with the hypothesis that the connectional organization of forebrain and brainstem, potentially in combination with limited adaptive synaptogenesis, renders the VTA relatively insensitive to moderate losses of neurotensinergic and, perhaps, other peptidergic afferents.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, MO 63104, USA
| | | |
Collapse
|
25
|
Rompré PP, Bauco P. Neurotensin receptor activation sensitizes to the locomotor stimulant effect of cocaine: A role for NMDA receptors. Brain Res 2006; 1085:77-86. [PMID: 16574078 DOI: 10.1016/j.brainres.2006.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 02/08/2023]
Abstract
This study was aimed at determining whether repeated activation of neurotensin receptors sensitizes to cocaine-induced locomotor activity and whether this effect can be prevented by blockade of N-methyl-d-aspartate receptors. Independent groups of male rats were injected on four occasions, every other day (training phase), with vehicle or one of two doses (4 and 8 mg/kg) of the NMDA antagonist CPP [(+/-)-3-(2-carboxypiperazine-4-yl)-propanephosphonic)] followed by an intracerebroventricular injection of 18 nmol/10 microl of d-Tyr[(11)]neurotensin, or its vehicle. Ambulatory, non-ambulatory and vertical movements were measured for 2 h on every test day. One week after the last day of the training phase, locomotor responses to a single injection of cocaine (7.5 mg/kg, ip) were measured in all rats; a second cocaine challenge test was performed 3 weeks post-training. Results show that during the training phase d-Tyr[(11)]neurotensin produced an initial suppression of all locomotor responses followed by an augmentation of ambulatory and non-ambulatory activity compared to controls, effects that were only slightly altered by CPP. Cocaine produced higher ambulatory and non-ambulatory activity in animals pre-exposed to neurotensin than in the vehicle pre-exposed animals, a sensitization effect that was not prevented by CPP at 1 week post-training but that was blocked at 3 weeks at the high dose. When given alone, the low dose of CPP produced an effect very similar to that of neurotensin on cocaine sensitization. These results further confirm that neurotensin plays a role in sensitization to psychostimulant drugs and suggests that NMDA receptors are involved in the long-term effect of exposure to neurotensin.
Collapse
Affiliation(s)
- Pierre-Paul Rompré
- Centre de recherche Fernand-Seguin, Hôpital Louis-H. Lafontaine, 7331 Hochelaga, Montréal (Québec), Canada H1N 3V2.
| | | |
Collapse
|
26
|
Lopak V, Erb S. Activation of central neurotensin receptors reinstates cocaine seeking in the rat: modulation by a D1/D5, but not D2/D3, receptor antagonist. Psychopharmacology (Berl) 2005; 182:297-304. [PMID: 16010538 DOI: 10.1007/s00213-005-0089-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/30/2005] [Indexed: 02/08/2023]
Abstract
RATIONALE Neurotensin (NT) has been implicated in some of the behavioral effects of psychostimulants. Thus, there is reason to think that NT may play a role in the reinstatement of cocaine seeking, and that it may do so via an interaction with dopamine (DA). OBJECTIVES To assess (1) whether NT and an NT analog, D-TYR[11]NT, induce reinstatement of cocaine seeking; (2) whether the effects of NT receptor activation on reinstatement can be modulated by D1/D5 or D2/D3 antagonists; (3) the specificity of the effects of NT receptor activation on the reinstatement of cocaine seeking. METHODS In Experiment 1, rats were initially trained to self-administer cocaine. Following a subsequent period of extinction training, they were tested for the reinstatement of cocaine seeking by NT or D-TYR[11]NT (15, 30 microg i.c.v.). In Experiment 2, rats were pretreated with the D1/D5 antagonist, SCH 23390 (0.05, 0.10 mg/kg i.p.) or the D2/D3 antagonist, raclopride (0.25, 0.50 mg/kg i.p.), prior to testing for reinstatement by D-TYR[11]NT (15 microg i.c.v.). In Experiment 3, rats that had been trained to self-administer sucrose pellets were tested for the reinstatement of sucrose seeking by D-TYR[11]NT (15, 30 microg i.c.v.). RESULTS (1) Both NT and D-TYR[11]NT produced robust reinstatement of cocaine seeking; (2) the effect of the analog was attenuated by pretreatment with the D1/D5, but not D2/D3, receptor antagonist; (3) the analog did not induce the reinstatement of sucrose seeking. CONCLUSIONS The findings suggest that an interaction between NT and DA may contribute to the neurobiology of reinstatement in animals with a history of cocaine self-administration.
Collapse
Affiliation(s)
- Vanessa Lopak
- Centre for the Neurobiology of Stress, Departments of Life Science and Psychology, University of Toronto at Scarborough, Toronto, Ontario, M1A 1C4, Canada
| | | |
Collapse
|
27
|
Fredrickson P, Boules M, Lin SC, Richelson E. Neurobiologic basis of nicotine addiction and psychostimulant abuse: a role for neurotensin? Psychiatr Clin North Am 2005; 28:737-51, 746. [PMID: 16122577 DOI: 10.1016/j.psc.2005.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Addiction to psychostimulant drugs such as nicotine, amphetamine, and cocaine is a serious public health problem for which there is a paucity of accepted forms of pharmacotherapy. Nicotine dependence has become more frequently associated with psychiatric illness in recent decades, and patients who have schizophrenia are at highest risk and have the poorest prognosis for stopping their addiction. Possible mechanisms for this association include self-medication, with nicotine attenuating attentional deficits and negative symptoms. Neurotensin has been postulated to be an endogenous neuroleptic, and the performance of neurotensin analogues in animal models of addiction makes such compounds intriguing candidates for treatment of addiction in high-risk psychiatric populations.
Collapse
Affiliation(s)
- Paul Fredrickson
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
| | | | | | | |
Collapse
|
28
|
Kinkead B, Dobner PR, Egnatashvili V, Murray T, Deitemeyer N, Nemeroff CB. Neurotensin-Deficient Mice Have Deficits in Prepulse Inhibition: Restoration by Clozapine but Not Haloperidol, Olanzapine, or Quetiapine. J Pharmacol Exp Ther 2005; 315:256-64. [PMID: 15987829 DOI: 10.1124/jpet.105.087437] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prepulse inhibition (PPI) of the acoustic startle reflex is a commonly used measure of preattentive sensorimotor gating. Disrupted PPI in rodents represents an animal model of the sensorimotor gating deficits characteristic of schizophrenia. The neurotensin (NT) system is implicated in the pathophysiology of schizophrenia, and NT has been hypothesized to act as an endogenous antipsychotic. In rats, NT receptor agonists restore PPI disrupted by dopamine receptor agonists and N-methyl-D-aspartate receptor antagonists, and pretreatment with an NT receptor antagonist blocks restoration of isolation rearing induced deficits in PPI by some antipsychotic drugs. The current studies further scrutinized the role of the NT system in the regulation of PPI and in antipsychotic drug-induced restoration of PPI using NT-null mutant mice (NT-/-). NT-/- mice exhibited significantly higher pulse alone startle amplitudes and disrupted PPI compared with NT+/+ mice. Haloperidol (0.1 mg/kg) and quetiapine (0.5 mg/kg) administered 30 min before PPI testing significantly increased PPI in NT+/+ mice but had no effect on PPI in NT-/- mice. In contrast, clozapine (1.0 mg/kg) significantly increased PPI in both NT-/- and NT+/+ mice, whereas olanzapine (0.5 mg/kg) had no effect on PPI in either NT-/- or NT+/+ mice. In a separate experiment, amphetamine (2.0 mg/kg i.p.) significantly disrupted PPI in NT+/+ mice but not NT-/- mice. These results provide evidence that the effects of antipsychotic drugs (APDs) may be differentially affected by the state of NT neurotransmission and, moreover, that APDs differ in their dependence on an intact NT system.
Collapse
Affiliation(s)
- Becky Kinkead
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
29
|
Panayi F, Colussi-Mas J, Lambás-Señas L, Renaud B, Scarna H, Bérod A. Endogenous neurotensin in the ventral tegmental area contributes to amphetamine behavioral sensitization. Neuropsychopharmacology 2005; 30:871-9. [PMID: 15637639 DOI: 10.1038/sj.npp.1300638] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies showing psychostimulant-like effects of exogenous neurotensin (NT) infused into the ventral tegmental area (VTA) prompted us to examine the role in the VTA of the endogenous NT in behavioral sensitization to amphetamine. Rats were sensitized to amphetamine by means of a subcutaneous amphetamine (1 mg/kg) injection, and the same dose was injected 7 days later to evaluate the expression of sensitization. The highly selective NT-receptor antagonist SR 142948A was injected into the VTA prior to the first and/or second amphetamine administration. SR 142948A (5 pmol/side) given before the first amphetamine exposure prevented the induction of behavioral sensitization, but did not alter the acute response to amphetamine. SR 142948A given with the second amphetamine administration did not affect the expression of behavioral sensitization. In contrast to administration into the VTA, intraperitoneal administration of SR 142948A (0.03, 0.1, or 0.3 mg/kg) had no detectable effect on the induction of amphetamine sensitization. These results suggest that activation of VTA NT receptors by endogenous NT may contribute to the neuroadaptations underlying behavioral sensitization to amphetamine.
Collapse
|
30
|
Fantegrossi WE, Ko MCH, Woods JH, Richelson E. Antinociceptive, hypothermic, hypotensive, and reinforcing effects of a novel neurotensin receptor agonist, NT69L, in rhesus monkeys. Pharmacol Biochem Behav 2005; 80:341-9. [PMID: 15680187 DOI: 10.1016/j.pbb.2004.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 12/02/2004] [Accepted: 12/03/2004] [Indexed: 11/27/2022]
Abstract
Neurotensin (NT) is a tridecapeptide found in the nervous system, as well as elsewhere in the body. It has anatomic and functional relationships to dopaminergic neurons in brain. NT has been implicated in the actions of antipsychotic drugs and psychostimulants, and animal studies suggest that neurotensin directly injected into brain has reinforcing effects. Previously, we showed that one of our brain-penetrating analogs of neurotensin, NT69L (N-methyl-L-Arg, L-Lys, L-Pro, L-neo-Trp, L-tert-Leu, L-Leu), has many pharmacological effects in rats including antinociception, hypothermia, and blockade of the hyperactivity caused by psychostimulants (cocaine, D-amphetamine, and nicotine). Since these studies in rats suggest that this compound may have clinical use in humans, we were interested to know what effects NT69L had in primates. NT69L caused a potent antinociceptive effect against capsaicin (0.1 mg)-induced allodynia in 46 degrees C water in rhesus monkeys, inducing 40% of the maximal possible effect at an intravenous dosage of 0.03 mg/kg; its hypotensive effects precluded evaluation of higher dosages. Core temperature measured by rectal probe was modestly reduced at 0.01 and 0.03 mg/kg. In an intravenous self-administration procedure, NT69L was without reinforcing effects at any dose, including those that caused other pharmacological effects, and did not alter cocaine-maintained behavior when administered as a pretreatment.
Collapse
Affiliation(s)
- W E Fantegrossi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
31
|
Adams DH, Hanson GR, Keefe KA. 3,4-Methylenedioxymethamphetamine increases neuropeptide messenger RNA expression in rat striatum. ACTA ACUST UNITED AC 2005; 133:131-42. [PMID: 15661373 DOI: 10.1016/j.molbrainres.2004.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2004] [Indexed: 11/25/2022]
Abstract
The amphetamine analog 3,4-methylenedioxymethamphetamine (MDMA) is also known as the recreational drug of abuse, Ecstasy. Several neuropeptides are found in striatal neurons postsynaptic to dopamine and serotonin nerve terminals, and changes in neuropeptide neurotransmission may be important for behavioral effects of 3,4-methylenedioxymethamphetamine. This study used in situ hybridization to characterize the effects of 3,4-methylenedioxymethamphetamine on four neuropeptide mRNAs: preprodynorphin, preprotachykinin, neurotensin/neuromedin N, and preproenkephalin. Male, Sprague-Dawley rats received a single administration of 10 mg/kg 3,4-methylenedioxymethamphetamine and were sacrificed 30 min or 3 h later. Three hours after administration, 3,4-methylenedioxymethamphetamine increased preprodynorphin, preprotachykinin, and neurotensin/neuromedin N mRNAs. These increases were most prominent in ventral and medial aspects of the rostral-middle striatum, and then became more dorsally restricted in the caudal striatum. At the 30-minute time point, MDMA significantly decreased the signal for preproenkephalin mRNA in a general manner but did not affect the signal for the other neuropeptide precursors. These data suggest that 3,4-methylenedioxymethamphetamine has a generalized, transient, inhibitory effect on striatopallidal neuron gene expression, and then preferentially influences striatonigral neuropeptide systems at the later time point in a regionally selective manner.
Collapse
Affiliation(s)
- David H Adams
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Rm. 201, Salt Lake City, UT 84112-5820, USA
| | | | | |
Collapse
|
32
|
Blackburn A, Dewar K, Bauco P, Rompré PP. Excitotoxic lesions of the prefrontal cortex attenuate the potentiation of amphetamine-induced locomotion by repeated neurotensin receptor activation. Brain Res 2004; 998:184-93. [PMID: 14751589 DOI: 10.1016/j.brainres.2003.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was aimed at determining the role of prefrontal cortex neurons in the development of the potentiation of amphetamine-induced locomotor activity by repeated central injections of D-Tyr[11]neurotensin. Excitotoxic lesions of the prefrontal cortex were made by injecting bilaterally at three anterior-posterior placements 2 microg/microl of ibotenic acid. Ten days after surgery, locomotor responses to an intracerebroventricular injection of 0.18 or 18 nmol/10 microl of D-Tyr[11]neurotensin, or vehicle-saline, were measured in different groups of lesioned and sham rats. Ambulatory, non-ambulatory and vertical movements were measured for 2 h in activity cages starting immediately after the injection. This training phase was repeated on four occasions, every second day. One week after the last day of the training phase (day 14), locomotor responses to a single injection of amphetamine (0.75 mg/kg, IP) were measured in all rats. Results show that D-Tyr[11]neurotensin produced in sham animals a dose-dependent initial suppression of locomotor activity followed by an augmentation. The latter behavioral effect tended to be smaller in the lesioned rats, but not statistically different than in sham, suggesting that prefrontal cortex neurons do not play a major role in the stimulant effect of neurotensin on locomotor activity. However, sham rats pre-exposed to the high dose of D-Tyr[11]neurotensin showed stronger non-ambulatory and vertical movements than saline pre-exposed rats when tested with amphetamine; this sensitization effect was not observed in lesioned rats. The present results show that prefrontal cortex neurons are part of the neural circuitry involved in the development of amphetamine sensitization by repeated activation of central neurotensin receptors.
Collapse
Affiliation(s)
- Annie Blackburn
- Centre de recherche Fernand-Seguin, Hôpital Louis-H. Lafontaine, 7331, Hochelaga, Montréal, Québec, Canada H1N 3V2
| | | | | | | |
Collapse
|
33
|
Richelson E, Boules M, Fredrickson P. Neurotensin agonists: possible drugs for treatment of psychostimulant abuse. Life Sci 2003; 73:679-90. [PMID: 12801589 DOI: 10.1016/s0024-3205(03)00388-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although many neuropeptides have been implicated in the pathophysiology of psychostimulant abuse, the tridecapeptide neurotensin holds a prominent position in this field due to the compelling literature on this peptide and psychostimulants. These data strongly support the hypothesis that a neurotensin agonist will be clinically useful to treat the abuse of psychostimulants, including nicotine. This paper reviews the evidence for a role for neurotensin in stimulant abuse and for a neurotensin agonist for its treatment.
Collapse
|
34
|
Abstract
Central administration of neurotensin (NT) results in a variety of neurobehavioral effects which, depending upon the administration site, resemble the effects of antipsychotic drugs (APDs) and psychostimulants. All clinically effective APDs exhibit significant affinities for dopamine D(2) receptors, supporting the hypothesis that an increase in dopaminergic tone contributes to schizophrenic symptoms. Psychostimulants increase extracellular dopamine (DA) levels and chronics administration can produce psychotic symptoms over time. APDs and psychostimulants induce Fos and NT expression in distinct striatal subregions, suggesting that changes in gene expression underlie some of their effects. To gain insight into the functions of NT, we analyzed APD and psychostimulant induction of Fos in NT knockout mice and rats pretreated with the NT antagonist SR 48692. In both NT knockout mice and rats pretreated with SR 48692, haloperidol-induced Fos expression was markedly attenuated in the dorsolateral striatum; amphetamine-induced Fos expression was reduced in the medial striatum. These results indicate that NT is required for the activation of specific subpopulations of striatal neurons in distinct striatal subregions in response to both APDs and psychostimulants. This review integrates these new findings with previous evidence implicating NT in both APD and psychostimulant responses.
Collapse
Affiliation(s)
- Paul R Dobner
- Department of Molecular Genetics and Microbiology, Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester 01655, USA.
| | | | | |
Collapse
|
35
|
Licata SC, Pierce RC. The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitization. J Neurochem 2003; 85:14-22. [PMID: 12641723 DOI: 10.1046/j.1471-4159.2003.01662.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the development of behavioral sensitization to psychostimulants such as cocaine and amphetamine is confined mainly to one nucleus in the brain, the ventral tegmental area (VTA), this process is nonetheless complex, involving a complicated interplay between neurotransmitters, neuropeptides and trophic factors. In the present review we present the hypothesis that calcium-stimulated second messengers, including the calcium/calmodulin-dependent protein kinases and the Ras/mitogen-activated protein kinases, represent the major biochemical pathways whereby converging extracellular signals are integrated and amplified, resulting in the biochemical and molecular changes in dopaminergic neurons in the VTA that represent the critical neuronal correlates of the development of behavioral sensitization to psychostimulants. Moreover, given the important role of calcium-stimulated second messengers in the expression of behavioral sensitization, these signal transduction systems may represent the biochemical substrate through which the transient neurochemical changes associated with the development of behavioral sensitization are translated into the persistent neurochemical, biochemical and molecular alterations in neuronal function that underlie the long-term expression of psychostimulant-induced behavioral sensitization.
Collapse
Affiliation(s)
- Stephanie C Licata
- Laboratory of Neuropsychopharmacology, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
36
|
Legault M, Congar P, Michel FJ, Trudeau LE. Presynaptic action of neurotensin on cultured ventral tegmental area dopaminergic neurones. Neuroscience 2002; 111:177-87. [PMID: 11955721 DOI: 10.1016/s0306-4522(01)00614-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine-containing neurones of the ventral tegmental area express neurotensin receptors which are involved in regulating cell firing and dopamine release. Although indirect evidence suggests that some neurotensin receptors may be localised on the nerve terminals of dopaminergic neurones in the striatum and thus locally regulate dopamine release, a clear demonstration of such a mechanism is lacking and a number of indirect sites of action are possible. We have taken advantage of a simplified preparation in which cultured rat ventral tegmental area dopaminergic neurones establish nerve terminals that co-release glutamate to determine whether neurotensin can act at presynaptic sites. We recorded glutamate-mediated synaptic currents that were generated by dopaminergic nerve terminals as an index of presynaptic function. The neurotensin receptor agonist NT(8-13) caused an inward current and an enhancement of the firing rate of dopaminergic neurones together with an increase in the frequency of spontaneous glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). Incompatible with a direct excitatory action on nerve terminals, NT(8-13) failed to change the amplitude of individual action potential-evoked EPSCs or the frequency of miniature EPSCs recorded in the presence of tetrodotoxin. However, NT(8-13) reduced the ability of terminal D2 dopamine receptors to inhibit action potential-evoked EPSCs in isolated dopaminergic neurones. Taken together, our results suggest that in addition to its well-known somatodendritic excitatory effect leading to an increase in firing rate, neurotensin also acts on nerve terminals. The main effect of neurotensin on nerve terminals is not to produce a direct excitation, but rather to decrease the effectiveness of D2 receptor-mediated presynaptic inhibition.
Collapse
Affiliation(s)
- M Legault
- Départements de Pharmacologie et de Psychiatrie, Centre de Recherche en Sciences Neurologiques, Centre de Recherche Fernand Seguin, Université de Montréal, Montréal, QC, Canada
| | | | | | | |
Collapse
|
37
|
Costa FG, Frussa-Filho R, Felicio LF. The neurotensin receptor antagonist, SR48692, attenuates the expression of amphetamine-induced behavioural sensitisation in mice. Eur J Pharmacol 2001; 428:97-103. [PMID: 11779043 DOI: 10.1016/s0014-2999(01)01271-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of acute administration of the neurotensin receptor antagonist, SR48692 (2-[[1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazol-3-carbonyl]amino]adamantane-2-carboxylic acid), on amphetamine-induced behavioural sensitisation were studied with the locomotor activity of mice in an open-field as an experimental parameter. The animals were repeatedly pretreated with saline or amphetamine (2.0 mg/kg, i.p. once a day, every other day for 13 days) and 2, 9 and 16 days after the last injection they received an acute i.p. administration of saline or 0.3 mg/kg SR48692 15 min before a challenge i.p. injection of 2.0 mg/kg amphetamine. Locomotor activity of the amphetamine-challenged mice was significantly higher in amphetamine-pretreated animals than in saline-pretreated mice on days 9 and 16 after withdrawal. SR48692 prevented the expression of this behavioural sensitisation. In addition, in saline-pretreated mice, the first two challenge injections of amphetamine sufficed to induce a sensitized locomotor response to the third challenge injection of the drug. SR48692 administration before amphetamine challenge injections prevented the development of this challenge injection-induced sensitisation in saline-pretreated mice but not in amphetamine-pretreated animals. In order to determine the effects of SR48692 on the expression of amphetamine-induced behavioural sensitisation in the absence of this challenge injection-induced sensitisation, the experiment was redone with a single challenge test 9 days after pretreatment. Once again, SR48692 prevented the expression of amphetamine-induced behavioural sensitisation. These results suggest that neurotensinergic transmission has a critical role in both the initiation and expression of locomotor sensitisation to amphetamine.
Collapse
Affiliation(s)
- F G Costa
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
38
|
Adams DH, Hanson GR, Keefe KA. Differential effects of cocaine and methamphetamine on neurotensin/neuromedin N and preprotachykinin messenger RNA expression in unique regions of the striatum. Neuroscience 2001; 102:843-51. [PMID: 11182247 DOI: 10.1016/s0306-4522(00)00530-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study employed in situ hybridization to directly compare the effects of cocaine and methamphetamine on neurotensin/neuromedin N and preprotachykinin messenger RNAs in distinct striatal regions. Male, Sprague-Dawley rats received a single administration of 15mg/kg methamphetamine (s.c.) or 30mg/kg cocaine (i.p.) and were killed 30min or 3h later. Methamphetamine and cocaine produced significant increases in preprotachykinin messenger RNA in the striatum after 3h, but often in different subregions. Both drugs produced similar effects on preprotachykinin messenger RNA in the rostral striatum. However, methamphetamine produced significant increases in all regions of the caudal striatum, whereas cocaine-induced preprotachykinin messenger RNA expression was limited to dorsal regions of this striatal area. Methamphetamine also produced a significant increase in preprotachykinin messenger RNA in the caudal striatum after 30min, whereas cocaine had no significant effect on preprotachykinin messenger RNA at this early time-point. The pattern of changes in neurotensin/neuromedin N messenger RNA caused by methamphetamine and cocaine after 3h was even more distinct. Cocaine produced significant increases in neurotensin/neuromedin N messenger RNA in all regions of the rostral striatum, whereas methamphetamine had no effect in these areas. Furthermore, in more caudal sections, cocaine predominantly affected neurotensin/neuromedin N expression in dorsal aspects of the striatum, whereas methamphetamine significantly increased neurotensin/neuromedin N messenger RNA in all regions. There was much less effect of either drug on neuropeptide expression in the nucleus accumbens. The only significant effect was an increase in neurotensin/neuromedin N messenger RNA in the core region 3h after methamphetamine administration. These results indicate that methamphetamine and cocaine increase preprotachykinin and neurotensin/neuromedin N messenger RNAs in distinct regions of the striatum. The ability of methamphetamine and cocaine to alter neuropeptide messenger RNA expression in unique regions of the striatum may be important for the long-term effects of these drugs, such as sensitization, since the striatum is not homogeneous in its connections and function.
Collapse
Affiliation(s)
- D H Adams
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Rm. 201, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|